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Circulating C-reactive protein (CRP) is a key acute-phase protein and one of the main 
clinical biomarkers for inflammation and infection. CRP is an important upstream medi-
ator of inflammation and is associated with the onset of a number of important disease 
states including cardiovascular disease and neurodegenerative disorders such as 
Alzheimer’s disease. This pentraxin exerts pro-inflammatory properties via dissociation 
of the pentamer (pCRP) to a monomeric form (mCRP). This dissociation is induced by 
binding of pCRP to cell surface phosphocholine residues exposed by the action of phos-
pholipase A2 (PLA2). Given the association of CRP with the onset of a range of serious 
disease states this CRP dissociation process is a tempting drug target for the develop-
ment of novel small-molecule therapeutics. This review will discuss potential targets for 
chemotherapeutic intervention elucidated during studies of CRP-mediated inflammation 
and provide an up-to-date summary of the development of small molecules, not only 
targeted directly at inhibiting conversion of pCRP to mCRP, but also those developed for 
activity against PLA2, given the key role of this enzyme in the activation of CRP.

Keywords: CRP, inflammation, chemotherapy, phospholipid, phospholipase

inTRODUCTiOn

Pentameric C-reactive protein (p-CRP) is a pentraxin, composed of five identical subunits, linked 
by van der Waals and H-bonding, each weighing around 23 kDa with, what is described as, a jelly 
role shape with the subunits arranged around a central, hydrophobic pore. The pentamer presents 
two faces, each distinguished by their binding capabilities. Thus, the A face (effector face) binds to 
globular head groups of compliment c1q and Fcγ cell surface receptors on leukocytes while the B 
(binding) face exhibits one binding site per subunit which undergoes Ca2+-mediated binding with 
phosphocholine moieties exposed on lipid membranes (1). pCRP is synthesized in the liver and is 
freely circulating. While normally present at negligible levels, plasma concentrations rise 6–12 h after 
acute inflammatory insult to 1,000-fold levels after 24–48 h, focused at sites of inflammation (2, 3).  
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FigURe 1 | Action of PLA2 on arachidonic acid-containing phospholipids and subsequent mechanism of dissociation of pCRP to mCRP.
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As a result, CRP is used as a biomarker for inflammation and 
infection. It was long thought that pCRP was a direct mediator 
of inflammation leading to upregulation of endothelial cellular 
adhesion molecules, activation of the compliment system, phago-
cytosis, and release of a range of inflammatory signaling proteins 
(4, 5). However, it has recently been shown that the dissociation 
into the monomeric form, mCRP, is the key pro-inflammatory 
event (6). Further work has shown that this event is localized to 
sites of inflammation and mCRP plays an important role in the 
pathogenesis of inflammation interacting with endothelial cells, 
neutrophils, macrophages, and platelets (7). mCRP, rather than 
pCRP, induces upregulation of IL-8, MCP-1, E-selectin, ICAM-1, 
and VCAM-1 in endothelial cells resulting in increased adhe-
sion of neutrophils (8). These studies reveal that this process is 
mediated via p38 MAPK signaling. Interestingly, recent work 
indicates that the interaction with endothelial cells is initiated via 
binding to lipid rafts rather than receptors, such as FcγRs on the 
cell surface (9, 10). CRP is a ligand for LOX-1 which mediates 
the entry of oxidized low-density lipoprotein (ox-LDL) across 
the endothelium (11). Furthermore, mCRP is implicated in the 
uptake of ox-LDL by macrophages leading to foam cell formation 
(12). mCRP can also activate monocytes to adhere to endothelia 
and transmigrate—a process mediated via binding with integrin 
receptors (13, 14). High local levels of mCRP have been detected 
in the myocardium of patients suffering from acute coronary syn-
drome (15) and the choroids obtained from donors at high risk of 
developing age-related macular degeneration (16). Furthermore, 
it has been shown there is an accumulation of mCRP in pertinent 
brain regions, arising from poststroke inflammation (17) and 
evidence that this observation explains the known link between 

ischemic stroke and onset of AD (18). In addition, Aβ plaques have 
been demonstrated to cause dissociation of pCRP to mCRP lead-
ing to a buildup of the latter in cortical tissue of AD patients (19).

The dissociation of pCRP to mCRP has now been delineated  
in some detail. The dissociation is mediated by binding of pCRP 
subunits to phosphocholine residues of lysophosphotidylcholines 
(LPC) exposed on cell membranes (Figure 1). LPC is generated  
by the action of pro-inflammatory phospholipase (PLA2) enzymes 
acting on cell surface lysophospholipids. This link between PLA2 
and CRP-mediated inflammation is backed up by the 6–12 h delay 
observed between inflammatory insult and onset of high levels of 
CRP. Furthermore, CRP formation is prevented by pre-incubation 
of monocytes with ONO-RS-82, a well-known inhibitor of PLA2 
enzymes (20). Dissociation is also mediated via interaction with 
phosphocholine present on the surface of activated platelets, 
which acts to localize mCRP generation to areas of inflammation 
such as atherosclerotic plaques (13). Localized dissociation may 
also arise from binding of pCRP to lysophosphocholine residues 
exposed on the surface of ox-LDL, by lipoprotein-associated 
PLA2 (Lp-PLA2) (11). The most recent studies have provided a 
more detailed mechanism of dissociation (21). Binding of pCRP 
on activated monocytes, in addition to docking with phospho-
choline, also involves interactions between hydrophobic regions 
of the pentamer and lipid rafts on the cell surface. The protein is 
then released onto microvesicles and undergoes a conformational 
change to an activated pentamer designated pCRP*. This moiety, 
while still pentameric, exists in a more open form and undergoes 
binding with a globular head group of complement C1q, which 
inserts into the central cavity forcing the subunits of the pentamer 
further apart to ultimately cause dissociation to mCRP.
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FigURe 2 | Example structures of anti-PLA2 drugs and small-molecule binders to CRP.
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CHeMOTHeRAPeUTiC TARgeTS  
in CRP DiSSOCiATiOn

The clear link between pCRP-mCRP dissociation and the onset/
mediation of inflammation indicates that inhibition of this 
process is, potentially, a valuable chemotherapeutic strategy for 
the treatment of a range of conditions associated with the inflam-
matory response. A number of key stages, from initial exposure 
of cell surface phosphocholine residues to mCRP-mediated acti-
vation of monocytes/platelets/endothelia potentially provide an  
opportunity for chemotherapeutic inhibition. However, an under-
standing of these various processes at the molecular level is an  
important prerequisite for the development of small molecules 
abrogation. Fortunately, investigations have provided informa-
tion on amino acid–ligand interactions by in  silico modeling, 
site-directed mutagenesis studies, and X-ray crystallographic infor-
mation. For instance, an X-ray crystal structure of pCRP bound 
to phosphocholine reveals key amino acids involved in ligand 
binding (1). Significantly, a hydrophobic cavity is shown to exist, 
adjacent to the binding region, providing a potential blueprint 
for the design of inhibitors of pCRP–phosphocholine binding. 
Furthermore, an X-ray crystal structure of a CRP dissociation  
inhibitor, 1,6-bis(phosphocholine)-hexane, a drug discussed 
further below, bound to the active of two CRP pentamers has 
also been determined (22). A crystal structure of the globular 

head group of C1q has been solved, and the information used to 
provide a model for the interaction of this domain with p-CRP 
and to postulate amino acid residue interactions involved in 
complement-pentamer binding (23). Site-directed mutagenesis 
studies have also been directed toward identifying the key CRP–
C1q interactions (24). mCRP-mediated activation of monocytes 
via binding to integrins αvβ3 and α4β1 has also been simulated  
by in silico modeling yielding identification of potential binding 
sites (14). Significantly, this study, while predicting favorable 
mCRP-integrin binding, indicates significant steric interactions in 
pCRP-integrin models of binding. The identification of lipid raft 
interactions as key to mCRP binding to a range of targets, inclu-
ding endothelia, via cholesterol binding sequence (9, 10) offers  
an additional target for small-molecule intervention-although 
this interaction has not been studied at similar levels of details to 
some of those discussed above.

These studies provide information that can be used to develop 
small-molecule agents to inhibit the interaction between pCRP 
and phosphocholine, complement C1q-induced dissociation to 
mCRP and subsequent activation of monocytes. However, to  
date, the only stage which has which has been perturbed by 
small-molecule agents is the initial binding of pCRP to phos-
phocholine, to be discussed herein. Nevertheless, an important 
stage of CRP activation is exposure of phosphocholine residues 
on cell surfaces by PLA2 and the action of this enzyme has been 
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linked to CRP-mediated inflammation (20). A large number of 
small molecules have been developed to inhibit phospholipase 
activity although only a small number have been shown to lower 
levels of mCRP (20). However, the use of PLA2 inhibitors to 
treat neuroinflammation, via suppression of pro-inflammatory 
lysophospholipid formation, has been postulated (25) and, given 
the clear links between mCRP formation and lysophospholipid 
exposure, further implicates the use of PLA2 inhibitors to prevent 
CRP dissociation. Thus, this review will focus on summarizing 
work in this area.

SMALL-MOLeCULe inHiBiTORS  
OF PHOSPHOLiPASe A2

Among the various subgroups within the phospholipase A2 
superfamily, secreted phospholipase A2 (sPLA2), cytosolic phos-
pholipase A2 (cPLA2), and lipoprotein-associated phospholipase 
A2 (LpPLA2) have been the most popular targets for the develop-
ment of inhibitors. The development of small molecules against 
the PLA2 family has been extensively reviewed and this mini 
review will seek to provide a brief, up-to-date overview of only the 
most successful drug candidates against s-, c-, and LpPLA2 (26).

All PLA2 enzymes catalyze the hydrolysis of phospholipids at 
cell membranes or the surface of lipoproteins, to produce free 
fatty acids and exposing lysophospholipids, including LPC, on 
the cell surface (Figure 1). The former may include arachidonic 
acid, which is converted to inflammatory-mediating eicosanoids, 
indicating a dual pro-inflammatory role for PLA2 enzymes.

Lipoprotein-associated phospholipase (LpPLA2) hydrolyzes 
oxidized phospholipids present on the surface of ox-LDL produc-
ing pro-inflammatory oxidized fatty acids and lysophospholipids 
(27). A plausible link between LpPLA2 activity and CRP activa-
tion is supported by the detection of CRP/ox-LDL complexes in 
the plasma of atherosclerosis patients (28). The central role of this 
enzyme in the development of inflammation has led to its use 
as a predictive biomarker for the onset of atherosclerosis (29).  
A diversity of structures have been discovered to exhibit LpPLA2 
inhibition (30–35). The most successful drugs against LpPLA2 
are pyrimidin-4-ones of the darapladib class 1 (Figure  2) (36) 
discovered by modification of lead compounds unearthed by 
high throughput screening programs at GSK (37–39). A range 
of analogs, based on the darapladib motif have been studied 
but do not display improved activity (40, 41), although some 
imidazopyrimidine derivatives, such as 2, do exhibit improved 
bioavailability (42). Unfortunately, darapladib failed Phase III 
clinical trials due to a failure to alleviate the risk of cardiovascular 
death or stroke in coronary heart disease patients (43, 44).

Secretory phospholipase A2 (sPLA2) is an extracellular 
phospholipase catalyzing the hydrolysis of phospholipids at cell 
surfaces. The association of this enzyme with the development 
of inflammatory conditions, and even some cancers, has driven 
the development of a number of small-molecule inhibitors (45). 
Unsurprisingly, phospholipid derivatives do serve as inhibitors 
given the natural substrates for this enzyme class (46–48). For 
instance, the thioether analog 3 is a potent inhibitor (49). The 
phosphocholine group has been successfully substituted with a 

carboxylic acid moiety, which appears to function as a bioisostere 
for this group, to provide compounds with excellent anti-sPLA2 
activity (50) and substitution of the trimethylammonium group 
with an amide provides more permeable compounds with some 
inhibitory properties (51). The most successful molecules against 
sPLA2 are those based on an indole-3-acetamide structure. 
Structure-activity studies based around this central motif (52, 53), 
aided by an X-ray crystal structure of recombinant enzyme co-
complexed with a lead compound (54, 55) led to the development 
of the 3-glyoxamide derivative varespladib 4 (56). Unfortunately, 
as with darapladib, varespladib failed to negotiate Phase III trials 
due to lack of efficacy (57). Significantly, indole-based com-
pound, closely related to 4, are also potent inhibitors of group 
X sPLA2, mammalian phospholipases, which are particularly 
active pro-inflammatory members of this enzyme family (58). 
Furthermore, X-ray structures of these inhibitors bound to the 
active site have been obtained (59). Related indolizines such as 5 
also exhibit potent anti-sPLA2 activity (60) and the importance 
of a central heterocyclic aromatic core to this activity is reflected 
by the use of this information to develop potent inhibitors based 
around pyrazole fragments (61). This concept was later expanded 
to the study of amide-functionalized aromatic fragments leading 
to the development of the preclinical candidate AZD2716 6 (62). 
Compound 6 exhibits better oral bioavailability than varapladib, 
which requires deployment as a methyl ester prodrug.

In contrast to sPLA2, cPLA2 functions is an intracellular 
enzyme and specifically interacts with arachidonyl phospholip-
ids and is thus especially responsible for the formation of pro-
inflammatory arachidonic acid in addition to lysophospholipids. 
This enzyme has been identified as a key mediator of inflamma-
tion leading to a range of disease states (63). A range of relatively 
simple compounds have been found to act as potent inhibitors 
of activity. The design of these is largely based on mimicking 
the arachidonoyl phosphonate structure and a knowledge of the 
serine-based mechanism of phospholipid hydrolysis. While a 
hydrophobic chain or aromatic group acts as a replacement for the 
arachidonate moiety, an activated ketone serves to disrupt serine 
hydrolysis and, as is the case with sPLA2 inhibitors, a carboxylate 
is an effective surrogate for the phosphonate group (64). The early, 
anthranilic acid-based broad spectrum, PLA2 inhibitors such as 
N-(p-amylcinnamoyl)anthranilic acid (ACA) and ONO-RS-82 
(65), widely used as tools to probe PLA2 activity, partially fit this 
model for inhibitor design as does the selective cPLA2 inhibitor 
arachidonyltrifluoromethylketone (AA-COCF3) (66). A design 
strategy based on phospholipid binding has also led to the devel-
opment of linear 2-oxoamides (67) and 2-oxoesters (68) linked 
via nitrogen or oxygen, respectively, to aliphatic carboxylic acid 
group, and bis-aryloxypropanones, where both aliphatic groups 
around a central carbonyl group have been replaced with aromatic 
moieties (64). The disubstituted propanones serve as useful motifs 
for inhibitor design and replacement of one aromatic group with 
a thiazole (69), or suitably substituted indoles (70), have yielded 
cPLA2 inhibitors with good activity. The indole moiety has been 
identified as a suitable substitute for the arachidonate section 
of the phospholipid substrate, and this strategy has led to the 
development of the ecopladib 7 class of cPLA2 inhibitors (71). 
Structural modification of 7 led to the development of the closely 
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related efipladib (72) and giripladib (73). The latter compound 
was advanced to Phase II trials but terminated at this stage. High-
throughput screening approaches have also led to the discovery  
of potent cPLA2 inhibitors. Compound library screening yielded 
two fragments—a pyrrolidine and a thiazolidinylidene, combi-
nation of which provided a series of compounds, such as pyrro-
phenone 8, with very high inhibitory activity (74, 75).

SMALL-MOLeCULe inHiBiTORS  
OF PCRP DiSSOCiATiOn

The only small molecule demonstrated to inhibit dissociation  
of pCRP to mCRP is the bis-phosphocholine dimer 1,6-bis 
(phosphocholine)-hexane (bis(PC)-H) 9 (22). The design of this 
compound utilized a similar strategy used in the development 
of drugs targeted toward serum amyloid P component (SAP) 
which act to crosslink two SAP molecules and is based on the 
utilization of moieties chemically similar to phosphocholine head 
groups that bind to the same active site to disrupt LPC-mediated 
CRP activation. Crucially, a X-ray crystal structure of the pCRP-
bis(PC)-H drug complex was obtained revealing binding of five 
drug molecules to phosphocholine binding sites to link two 
pentamers. This interaction abrogates binding of pCRP to known 
ligands such as LDL and blocks CRP-mediated complement C1q 
activation. Additionally, bis(PC)-H was demonstrated to reduce 
CRP-mediated effects in rat models. Despite demonstration of 
some clinical efficacy in animal models bis(PC)-H suffers from 
a low half-life, low CRP affinity and other suboptimal pharma-
cokinetic parameters.

While bis(PC)-H is the only small molecule that has been 
demonstrated to effectively disrupt CRP dissociation, via direct 
binding, other compounds have been shown to undergo chemi-
cal interactions with this pentamer and thus provide potential 
blueprints for the future design of inhibitors. For instance, a 
polypeptide conjugated with the phosphocholine linker 10 is a 
high-affinity binder to CRP demonstrating that phosphocholine 
mimics, free from the cell surface, can effectively interact with 
the active sites of the pentamer (76, 77). Furthermore, effective 
binding of 10 indicates that the CRP active sites may tolerate 
phosphocholine analogs with larger, extended alkyl chains as 
has been indicated previously by the X-ray crystal structure of 
the CRP-phosphocholine complex (1). Further work in this area 
has revealed that conjugates bearing heterocycles such as 11  

also function as high-affinity binders (78). The dissimilarity 
between 11 and phosphocholine, and the competition experi-
ments, indicates that there are alternate regions on the surface 
of CRP that may provide targets for future inhibitor design. 
Finally, rosuvas tatin inhibits CRP-mediated inflammation in rat  
models expressing human CRP (79). As this treatment does not  
reduce circulating levels of CRP, effects are not solely down to 
inhibition of gene expression but rather to inhibition of CRP-
mediated pathways. Direct binding to CRP has not been estab-
lished however.

COnCLUSiOn

The dissociation of pCRP to mCRP is clearly an important event 
in the onset of inflammatory processes implicated in major  
disease states and inhibition is thus an important chemothera-
peutic goal. It is surprising that only one compound has been 
developed that successfully inhibits dissociation via direct bind-
ing to CRP and the lack of follow-up studies Thus, the use of PLA2 
inhibitors to indirectly affect dissociation is potentially the most 
promising current strategy given the range of structures avail-
able and proven efficacy. However, few have been demonstrated 
to exert effects on mCRP formation, and the failure of all anti-
PLA2 drugs evaluated in advanced trials is a cause for concern. 
Nevertheless, studies have revealed a range of well-characterized 
potential chemotherapeutic targets for inhibition of CRP dis-
sociation and, given the recent discoveries of non-natural small-
molecule binders to CRP, it is anticipated that the search for drugs 
that abrogate CRP-mediated inflammation will be a rich area of 
research in the future.
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