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Abstract—Measurement of the semantic and syntactic 

similarity of human utterances is essential in developing language 

that is understandable when machines engage in dialogue with 

users. However, human language is complex and the semantic 

meaning of an utterance is usually dependent on context at a given 

time and also based on learnt experience of the meaning of the 

perception based words that are used.  Limited work in terms of 

the representation and coverage has been done on the development 

of fuzzy semantic similarity measures. This paper proposes a new 

measure known as FUSE (FUzzy Similarity mEasure) which 

determines similarity using expanded categories of perception 

based words that have been modelled using Interval Type-2 fuzzy 

sets. The paper describes the method of obtaining the human 

ratings of these words based on Mendel’s methodology and applies 

them within the FUSE algorithm. FUSE is then evaluated on three 

established datasets and is compared with two known semantic 

similarity algorithms. Results indicate FUSE provides higher 

correlations to human ratings.   

Keywords—fuzzy semantic similarity measures, fuzzy natural 

language, fuzzy words, interval type-2 

 

I.  INTRODUCTION  

The dream of humanoid robots with intelligence is becoming 
more of a reality than science fiction [1]. One area of intensive 
research is in the communication and understanding of human 
language between humans and machines.  For a machine to truly 
understand a human language, it must be understood in the 
context of the conversation in a timely manner and the response 
provided by the machine must also relate to the context so the 
human understands. Goal orientated conversational agents 
(GCA) [2] are one such example where machines support 
humans in achieving a goal, but to do so each human utterance 
– in the form of a simple statement or question, must be 
interpreted, analysed and an appropriate response conducted. In 
the context of GCA, semantic similarity measures [3] can be 
used to supplement pattern-matching approaches enabling user 
utterances to be analysed, both in the syntactic and semantic 
content, thus improving robustness, etc.  There is very limited 

work on developing these measures for understanding a fuzzy 
utterance in a timely context. In this work, a fuzzy utterance is 
defined as a short text or sentence, which comprises of at least 
one fuzzy word. A fuzzy word is a word that has a subjective 
meaning, and is characteristically used in everyday human 
natural language dialogue. Fuzzy words are often ambiguous 
and in meaning, since they are based on an individual’s 
perception [4].   

Computing with Words (CWW) [5] relates to developing 
intelligent systems that are able to receive as input, words, 
perceptions, and propositions drawn from natural language and 
can then produce a decision or output based on these words. 
CWW becomes a necessary tool when the available information 
is perception-based or not precise enough to use numbers, as is 
the case of most real world applications involving humans. 
CWW adds to conventional modes of computing the capability 
to compute with interpreted words and propositions drawn from 
natural language [6].  Type-1 fuzzy sets were originally used to 
construct fuzzy sets to model words [6, 7]. Zadeh first 
introduced Type-1 fuzzy sets, where membership is non-binary 
and concepts are subjective [8]. According to Mendel [9], words 
can mean different things to different people and this causes 
linguistic uncertainty when modelling perception based words.  
Therefore, Mendel states that using a Type-1 fuzzy set to model 
a word is scientifically incorrect, because a word is uncertain 
whereas a Type-1 fuzzy set is certain, therefore, Type-1 cannot 
cater for linguistic uncertainties [9]. For this reason, Mendel 
concluded that Type-2 fuzzy sets should be used to model words 
instead.  The 3D nature of Type-2 allows uncertainties to be 
better modelled. Type-2 fuzzy sets are computationally intensive 
because Type-reduction is very intensive, and for this reason, 
Mendel later proposed the use of Interval Type-2 fuzzy. Interval 
Type-2 is simpler to use because the membership functions are 
interval sets, and therefore the secondary memberships will 
either be zero or one [10, 11]. Thus, concepts from CWW 
provide an ideal platform for handling uncertainties in natural 
language in the context of semantic similarity measures.  

Fuzzy Sentence Similarity Measures (FSSM) are algorithms 
that are able to compare two or more short texts which contain 
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human perception based words and return a numeric measure of 
similarity of meaning between them. The Fuzzy Algorithm for 
Similarity Testing (FAST) [12], is the only current FSSM to 
date, that uses concepts of CWW to allow for the accurate 
representation of fuzzy based words. Through human 
experimentation, fuzzy sets were created for six categories of 
words using Type-1 fuzzy sets (Size & Distance, Age, 
Goodness, Frequency, Temperature and Completeness). The 
application of Type-1 fuzzy sets caused a weakness within 
FAST; since these words are not a true representation of each 
category, because the rating of the words is still the subjective 
opinion of those individuals [9]. This adversely affected the 
accuracy of the defuzzified values in each category by the 
potential bias of an individual’s views in experiments to quantify 
fuzzy words. 

This research investigates and develops a new algorithm 
called FUSE (FUzzy Similarity mEasure). FUSE is an ontology 
based similarity measure that uses Interval Type-2 fuzzy sets to 
model relationships between categories of human perception 
based words. The proposed algorithm is more suited to 
modelling intra-personal (the uncertainty a person has about the 
word) and inter-personal (the uncertainty that a group of people 
have about the word) uncertainties, which are intrinsic to natural 
language; because the membership grade of an Interval Type-2 
fuzzy set is an interval instead of a crisp number as in Type-1 
fuzzy sets [10].  In addition, Type-1 fuzzy sets have been shown 
to not provide the flexibility for simultaneously incorporating 
both kinds of linguistic uncertainties [13]. Therefore, the key 
research question addressed in this paper is; can a Type-2 fuzzy 
set be used to represent an individual’s perception within a 
FSSM?  

FUSE identifies fuzzy words in a human utterance and 
determines their similarity in context of both the semantic and 
syntactic construct of the sentence. There are a number of key 
differences between FUSE and FAST. First of all a larger 
vocabulary of fuzzy words are included in FUSE [12] giving a 
57.65% increased coverage of perception based words. 
Secondly, a new set of fuzzy ontologies has been developed for 
these categories in FUSE. Thirdly where FAST only modelled 
words in Type-1, FUSE models words within the category and 
deduces the fuzzy membership using Interval Type-2 fuzzy sets. 
The paper also presents the methodology for collecting people’s 
subjective values of fuzzy words using the Hao-Mendel 
Approach (HMA) [11], for estimating words as Interval Type-2 
fuzzy sets which are then defuzzified. 

    This paper is organised as follows; Section II provides an 
overview of Type-2 fuzzy sets within CWW, reviews word and 
short text similarity measures and looks at the challenges 
associated with using humans to gather similarity ratings. 
Section III describes how Mendel’s HMA method was applied 
to the task of rating words for the purpose of constructing 
ontologies of fuzzy words.  Section IV introduces the FUSE 
algorithm and Section V describes the experimental design and 
results that show that FUSE gives better correlation to human 
results compared with other known similarity measures. Finally, 
Section VI presents the conclusions and future work. 

 

II. RELATED WORK 

A) Type-2  Fuzzy Sets within CWW 

Zadeh first introduced Computing with words (CWW) in 
1996, where he explained CWW as a methodology for 
reasoning, computing and decision-making with information 
described in natural language. In CWW, words are modelled 
using fuzzy sets [5, 11].  There are three main principles to 
CWW according to Zadeh [7]. The first, recognized that human 
knowledge is often described using words and phrases 
associated in natural language. Secondly, that when using 
natural languages, words are used when exact amounts or 
numbers are unknown and therefore allow less precise meaning 
to be conveyed. Zadeh also stated, “Precision carries a cost. If 
there is a tolerance for imprecision, it can be exploited through 
the use of words in place of numbers” [7].  The first step in using 
fuzzy logic for CWW is to construct fuzzy sets to model words. 
Since words can mean different things to different people 
according to Mendel [9], this can cause linguistic uncertainty, 
which is involved in CWW. Therefore using Type-2 fuzzy sets 
to model words allows for this uncertainty to be catered for. 
Hence, Mendel concludes that one should use Interval Type-2 
fuzzy models in order to model first-order word uncertainties 
[14]. 

When people rate words in terms of their similarity, it is still 
the subjective opinion of those individuals. Groups of people 
rate words to either belong in a set or not belong in a set; this 
generally leads to gaps and noise, such as large differences in 
opinions or missing information. An example of this may be: 
‘Today is such a hot day, I’m roasting!’; different people will 
have different opinions of how hot the day is to them depending 
on their heat tolerance, the geographical location etc.  therefore, 
will rate the concept of “hot” and hence the word hot differently.  
This is why Type-1 sets are not able to directly model such 
uncertainties because their membership functions are totally 
crisp and two-dimensional. However, Type-2 fuzzy sets are able 
to model such uncertainties because their membership functions 
are fuzzy and three-dimensional [15]. By being three 
dimensional, Type-2 fuzzy sets provide additional degrees of 
freedom that make it possible to directly model uncertainties.  

 

B) Word and Semantic Similarity Measures 

A general issue in linguistic, AI and cognitive science is the 
measurement of semantic similarity for a given pair of 
words/sentences. Therefore, the performance of applications can 
be greatly improved with a proper metric for measurement. 
Metrics are usually divided into two classes: Path Based Metrics 
and Information Content (IC) Based Metrics [16]. Semantic 
similarity has been successfully applied in [17, 18, 19, 20, 21].  

Path based metrics proceed from the position of each concept 
in the taxonomy to obtain semantic similarity and assess 
semantic similarity by computing geometric distance separating 
two concepts, such as the number of edges. It is based on the 
assumption that the similarity of two concepts is related with the 
path length between two concepts and depth of each concept in 
the taxonomy respectively. Wu and Palmer presented a scaled 
metric for measuring the similarity between a pair of concepts 
[22]. Rada et al. utilized the minimum path length connecting 



the concepts containing the compared words as a measure for 
calculating the similarity of words [23]. In 1998, Leacock and 
Chodorow proposed a similar method for measuring word 
similarity [24]. They used the WordNet taxonomy to compare 
words and calculated the shortest path between the words taking 
into account the maximum depth of the WordNet taxonomy. 

The notion of information content of the concept is directly 
related to the frequency of the term in a given document 
collection. The frequencies of terms in the taxonomy are 
estimated using noun frequencies in some large collection of 
texts. The idea behind semantic similarity information content 
metrics is that each concept includes information in WordNet. It 
assumes that the similarity of two concepts is related to 
information they share in common. The more common 
information two concepts share, the more similar the concepts 
are. In 1995, Resnik first proposed an information content (IC) 
based similarity metric [25]. Resnik assumed that for a concept 
c:   

                          𝐼𝐶 =  − log 𝑝 (𝑐)           (1) 

Where p(c) is the probability of encountering an instance of 
concept c [16]. 

Jiang and Conrath presented an approach for measuring 
semantic similarity/distance between words and concepts in 
1997 [26]. The proposed measure is a combined approach that 
inherits the edge-based approach of the edge-counting scheme, 
which is then enhanced by the node-based approach of the 
information content calculation. If the compared concepts share 
a lot of information, then the IC will be high and the semantic 
distance between the compared concepts will be smaller [26]. 

The edge based approach is a more natural and direct way of 
evaluating semantic similarity in a taxonomy. It estimates the 
distance (e.g. edge length) between nodes, which correspond to 
the concepts/classes being compared. Given the 
multidimensional concept space, the conceptual distance can 
conveniently be measured by the geometric distance between the 
nodes representing the concepts. Obviously, the shorter the path 
from one node to the other, the more similar they are [26]. 

Li et al., uses multiple information sources to calculate the 
semantic similarity of concepts and proposes a metric based on 
the assumption that information sources are infinite to some 
extent while humans compare word similarity with a finite 
interval between completely similar and nothing similar [27]. 
Intuitively, the transformation between an infinite interval to a 
finite one is non-linear [16, 27]. Li et al define local semantic 
density as a monotonically increasing function of wsim (w1, w2): 

 𝑓3(𝑤𝑠𝑖𝑚) =  
𝑒𝜆.𝑤𝑠𝑖𝑚(𝑤1,𝑤2)− 𝑒−𝜆.𝑤𝑠𝑖𝑚(𝑤1,𝑤2)

𝑒𝜆.𝑤𝑠𝑖𝑚(𝑤1,𝑤2)+ 𝑒−𝜆.𝑤𝑠𝑖𝑚(𝑤1,𝑤2)(2) 

Where λ > 0. If λ → ∞, then the information content of words in 
the semantic nets is not considered [16, 27].  

The only known FSSM is FAST (Fuzzy Algorithm for 
Similarity Testing) [12], which is an ontology based similarity 
measure that uses concepts of fuzzy and computing with words 
to allow for the accurate representation of fuzzy based words. 
FAST is designed to be able to represent the effect fuzzy words 

have in the semantic meaning of a human utterance on the level 
of semantic similarity. In FAST, levels of similarity between sets 
of fuzzy words can be calculated by examining the position of 
the word (based on its Type-1 fuzzy set defuzzified values 
derived from human ratings) through calculating the similarity 
between pairs of fuzzy words. FAST has shown an improvement 
over existing algorithms STASIS and LSA (Latent Semantic 
Analysis) which do not take into consideration fuzzy words 
when computing semantic sentence similarity [12]. 
Furthermore, the improvement that both FAST and STASIS 
showed over LSA indicates that it is necessary for an ontology 
to be used in conjunction with a corpus, rather than a corpus 
alone in terms of determining the level of similarity between 
sentences with fuzzy words. The results have shown that an 
increased number of fuzzy words in sentences do have an effect 
on the performance of SSM. This is demonstrated through the 
improvement that FAST had over STASIS and LSA [4] but this 
depends on the domain and coverage of fuzzy words. 

 

C) Challenges in Gathering Human Ratings 

There are several challenges that arise when creating a 

dataset that will be used for measuring semantic similarity 

which were identified by O’Shea et al. [28] in developing his 

gold standard dataset known as STSS-131.  Firstly, obtaining a 

valid sample that is representative of the domain - this may 

either be words or in this research, utterances in the English 

language. Next is the task of collecting valid human ratings of 

similarity between the words/utterances. In the case of the 

research proposed in this paper, native English speakers were 

used to collect ratings to ensure that words did not have 

meanings that were too far apart, lessening the risk of distorting 

the results. It was noted in [28] that regional dialect might also 

interfere with the ratings given by participants in an experiment, 

however in this research, these experiments were conducted in 

the UK and ratings obtained from participants from the 

Manchester region. The third challenge is in knowing what 

statistical measures are needed to measure fuzzy similarity. The 

Pearson correlation coefficient [29] is a long-established 

measure of agreement used in semantic similarity that assumes 

a linear relationship between the two variables being compared 

and will be applied as the statistical measure in this work to 

evaluate FUSE. 

 

III. METHOD FOR OBTAINING HUMAN RATINGS OF WORDS 

A) Data  Collection  

FUSE uses six fuzzy categories to hold fuzzy words 
(Size/Distance, Temperature, Age, Frequency, Worth, Level of 
Membership). It was recognized that the coverage on words in 
the first FSSM, FAST, was very limited, with just 196 words 
over the six categories. In order to expand the categories, the 
Oxford English Synonyms Dictionary was used. The words that 
already existed in FAST were taken and, using the dictionary, 
all the one word synonyms for the existing words were also 
added to each category.  Only one-word synonyms were added, 
such as ‘hot’ or ‘cold’, and 2 word synonyms such as ‘fairly-
hot’, were not added [11]. Once all the categories had been  



 

updated with the additional words, the total increased to 309 
words, giving a 57.65% increase over FAST (Table I shows full 
breakdown below).   

B) Methodology 

 The method for obtaining human ratings of words to be used 
to construct fuzzy ontologies (similar to those constructed for 
the lexical database WordNet [30]) for FUSE is based on 
Mendel’s Hao-Mendel Approach (HMA) using Interval Type-2 
fuzzy sets [11].  

 In [11], Mendel used 50 intervals to obtain the person 
Footprint of Uncertainty (FOU) for the word. He did this by 
asking one participant to rate words on a scale of l-r giving the 
left (xL,yL) and right (xR,yR) endpoints, this scale can be [1..4], 
[0..10] etc. Using the one rating Mendel obtained from the one 
person, he then went on to generate 100 random numbers (L1, 
L2,…,L50; R1, R2,…,R50) and used these to generate 50 endpoint 
interval pairs [(L1, R1), (L2, R2),…,(L50,R50)]. In Mendel’s 
approach [11], he used only one participant rating to generate 
variants as it reduces the time required to collect ratings. In this 
research, an approach utilized from the field of semantic 
similarity was adopted and n actual participants were used to 
provide ratings.  In obtaining human ratings for words in FUSE  

 

categories, each category had a minimum of 32 participants 
whose ratings per word were obtained; therefore, the person 
FOU was not used, however the HMA approach was used to 
collect data from group participants.  

 Data was collected for the six categories using an online 
questionnaire and participants were asked to rate the words in 
each category on a scale of [0-10]. A full list of participant’s 
demographics is shown in Table I.   

 For example given the word ‘Hot’ belonging to the category 
‘Temperature’ the question would be as follows: “Rate the word 
HOT as a measure of Temperature on a scale of 0 to 10. (You 
can go up to one decimal place). PLEASE ONLY WRITE YOUR 
ANSWERS IN THE FORMAT "x to y" WHERE x AND y ARE 
THE NUMBERS YOU HAVE CHOSEN”. Each category had in 
excess of 32 participants. This meant that even after removing 
noise, each category was still left with 32 participants. Each 
participant was asked to rate a selection of words belonging to a 
category. Each question asked the user to give a range of where 
they felt the word would be placed on this scale of [0-10]. Users 
were permitted to use numbers up to one decimal place for 
precision (e.g. 3.4). A generic example was provided in each 
question to ensure users understood what range meant and to 
ensure they gave a start point and end point [11].  

 In order to not exhaust the users and potentially affect the 
quality of the results, each user was asked to fill in one 
questionnaire relating to only one category at one sitting. The 
criteria for the candidates was that they had to be native English 
speakers. Volunteers were emailed a link, which would direct 
them to the questionnaire. Each questionnaire required a 
minimum of 32 respondents to make it valid. Once all six 
categories were complete, cleaning and analysis of the results 
took place. Due to each category having 32 responses or more, 
this helped in ensuring that after cleaning and removing any bad 
or incorrect results, each category was still left with a minimum 
of 32 responses. Table II shows the percentage increase of words 
for each category in FUSE compared to that of FAST. 

Using Mendel’s statistics and probability theory, the 
following steps below were adapted to remove noise [11].  

1. Remove bad data – in this step all nonsensical results were 
removed; in this case, it was any results that fell outside the 
[0-10] range requested.   

2. Remove outliers - using Box and Whisker tests [31] 
outliers are removed simultaneously from the results. Only 
the data intervals that are within an acceptable two-sided 
tolerance limit were kept. According to Mendel, a 

Categories 
Words Per 
Category 

Percentage 
Increase on FAST 

Size/Distance 91 102.22% 

Temperature 36 16.13% 

Age 42 31.25% 

Frequency 48 84.62% 

Worth 61 48.78% 

Level of Membership 31 47.62% 

Category 
Before 

Cleaning 
Gender Age Education 

Size / 

Distance 
38 

M 

F 

26 

6 

 

(18-23) 
(24-29) 

(30-35) 

(36-41) 
(42-47) 

( 54 + ) 

 

18 
6 

5 

1 
1 

1 

(A-Levels) 

(Undergraduate) 
(Postgraduate) 

(PhD) 

(Other) 

11 

10 
8 

2 

1 

Temperature 32 
M 

F 

25 

7 

(18-23) 

(24-29) 
(30-35) 

(36-41) 

( 54 + ) 

 

24 

4 
2 

1 

1 
 

(GCSE) 
(A-Levels) 

(Undergraduate) 

(Postgraduate) 
(PhD) 

(Other) 

1 
18 

5 

6 
1 

1 

Age 41 
M 

F 

26 

6 

(18-23) 

(24-29) 
(30-35) 

(42-47) 

(48-53) 

 

22 

7 
1 

1 

1 
 

(Below GCSE) 
(A-Levels) 

(Undergraduate) 

(Postgraduate) 
(PhD) 

(Other) 

1 
13 

12 

3 
1 

2 

Frequency 35 
M 

F 

25 

7 

 

(18-23) 
(24-29) 

(30-35) 

 

25 
4 

3 

(GCSE) 

(A-Levels) 
(Undergraduate) 

(Postgraduate) 

(Other) 

1 

20 
7 

3 

1 

Worth 37 
M 
F 

26 
6 

 

(18-23) 

(24-29) 
(30-35) 

(48-53) 

( 54 + ) 

 

22 

6 
2 

1 

1 

(A-Levels) 
(Undergraduate) 

(Postgraduate) 

(PhD) 
(Other) 

16 
9 

3 

1 
3 

Level Of 
Membership 

37 
M 

F 

26 

6 

(18-23) 

(24-29) 

 
26 

6 

 

(A-Levels) 
(Undergraduate) 

(Postgraduate) 

(Other) 

15 
12 

2 

3 

TABLE II.    PERCENTAGE INCREASE OF WORDS FOR FUSE 

 

TABLE I.     FULL LIST OF PARTICIPATION BREAKDOWN 

 



tolerance interval is a statistical interval within which, with 
some confidence level 100 (1- 10)%, a specified proportion 
(1-0) of a sampled population falls.  

3. Remove data intervals that have no overlap or too little 
overlap with other data intervals. If it overlaps with another 
data interval, then Mendel and Wu [32] state that it is 
reasonable.  

When all noise has been removed, each category is now left 
with 32 clean data because of the questionnaires. Once the 
process of removing noise is complete, the original n data 
intervals have been reduced to a set of m data intervals where 
m≤ n. This now results in m = 32 for each of the six categories.  

Once cleaned data was ready for analysis, each category was 
analysed word by word. This was achieved by finding the upper 
FOU and lower FOU for each word; from this, the COG (Centre 
of Gravity) was calculated as defined in eq.(3): 

   𝐶𝑂𝐺 =  
((

𝑎+ 𝑏

2
)+(

𝑐+ 𝑑

2
))

2
           (3) 

Where: 

 a = upper left FOU 
 b = lower left FOU 
 c = lower right FOU 
 d = upper right FOU 
 

 Tables III and IV show defuzzified examples for the words 
‘Regular’ and ‘Nearby’ from the category ‘Size/Distance’ 
respectively on a scale of [0-10]. The values are calculated using 

the triangular membership function. ‘x’ is the scale of [0-10], 
‘lower’ represents the lower boundaries, and ‘upper’ represents 
the upper boundaries. ‘t-norm(prod)’ is the multiplication of lower 
and upper, and ‘t-norm(min)’ is the minimum boundary from the 
lower or upper. Figures 1 and 2 show the Type-1 defuzzified 
graphical representation of the word ‘Regular’ and the word 
‘Nearby’ respectively in the category Size/distance that has 
resulted from the triangular membership calculation. The values 
of ‘t-norm(min)’ have been used to plot the graphs.  

The results (y) were then scaled on a scale of [-1 to +1] using 
eq.(4).   

                 𝑦 =  𝑎 +
(𝑥−𝐴)(𝑏−𝑎)

𝐵−𝐴
           (4) 

Where  

 A = smallest number in dataset 
 B = largest number in dataset 
 a = minimum normalised value (-1) 
 b = maximum normalised value (+1) 
 x = value we want to scale (in this case the COG) 
 
 This now meant that every category contained words with 
values ranging from [-1 to +1].  This scale was selected to allow 
representation of defuzzified word values in each fuzzy category 
ontology, required to obtain measurements in FUSE (described 
in Section IV). 

 

IV. FUSE (FUZZY SIMILARITY MEASURE) 

This section first defines how the fuzzy category ontologies 
are constructed and then defines the proposed FUSE algorithm.  

x Lower Upper T-norm(prod) T-norm(min) 

0 0.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 

2 0.00 0.27 0.00 0.00 

3 0.36 0.53 0.19 0.36 

4 0.73 0.80 0.58 0.73 

5 0.89 0.94 0.84 0.89 

6 0.44 0.71 0.31 0.44 

7 0.00 0.47 0.00 0.00 

8 0.00 0.24 0.00 0.00 

9 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 

x Lower Upper T-norm(prod) T-norm(min) 

0 0.00 0.00 0.00 0.00 

1 0.00 0.29 0.00 0.00 

2 0.40 0.57 0.23 0.40 

3 0.80 0.86 0.69 0.80 

4 0.80 0.86 0.69 0.80 

5 0.40 0.57 0.23 0.40 

6 0.00 0.29 0.00 0.00 

7 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 

Fig. 1. Defuzzified Figure for ‘Regular’ Fig.2. Defuzzified Figure for ‘Nearby’ 

 
Fig.2. Defuzzified Figure for ‘Nearby’ 

TABLE  III.     SCALE FOR WORD ‘REGULAR’ 

 

TABLE IV.     SCALE FOR WORD ‘NEARBY’ 

 

 

x Lower Upper T-norm(prod) T-norm(min) 

0 0.00 0.00 0.00 0.00 

1 0.00 0.29 0.00 0.00 

2 0.40 0.57 0.23 0.40 

3 0.80 0.86 0.69 0.80 

4 0.80 0.86 0.69 0.80 

5 0.40 0.57 0.23 0.40 

6 0.00 0.29 0.00 0.00 

7 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 

TABLE I.   SCALE FOR WORD ‘NEARBY’ 

 



A) Fuzzy Ontology Representation 

 To show how words in a category are introduced on a scale 
of [-1, +1] it was necessary to construct an ontology. Each 
category is treated as a concept. Words within each concept are 
treated as instances. Each concept has a taxonomy that arranges 
the words as a binary tree so that the root node always takes the 
value 0. The defuzzified value of words are equally placed into 
nodes in intervals of ± 0.2, which was an empirically determined 
threshold. This approach allows calculation of the path length 
and depth  of the Lowest Common Subsumer (LCS) to be 
calculated for fuzzy words in a category which could not be done 
using traditional resources such as WordNet, due to lack of 
coverage of fuzzy words.  Figure 3 below, shows the words in 
the category ‘Level of Membership’ represented in an ontology 
structure. The numbers next to each word represent the 
defuzzified value of that word obtained from the human rating 
experiment described in Section III. Each partition contains 
words up to a certain fixed value, with the negative values on 
one side and the positive values on the other; this allows path 
length to be calculated. 

 

B) FUSE Algorithm  

FUSE utilizes a crisp word sentence similarity STASIS, 
when computing word similarity between nouns and verbs; 
when it encounters perception based words within an utterance, 
word similarity is calculated through determining the path 
length, l, and the length of the shortest path from the associated 
fuzzy category ontology. 

Input: Let U1 and U2 be two fuzzy utterances, which the semantic similarity 
is to be calculated.  

Output: Similarity measure of U1 and U2 

1. For  i = 0 to n in U1 and U2 where n is the total of words (w1…wn) in 
U1 and U2 

2.    Tag every tokenized word (w1…wn)  in U1 and U2  [ADJ (adjective), 

ADP (adposition), ADV (adverb), CONJ (conjunction), DET 
(determiner), NOUN (noun), NUM (numeral), PRT (particle), PRON 

(pronoun), VERB (verb )] [33]  

3. Wordbag  U1 [w1…wn] ∪ U2[w1…wn] 
4. Pair every combination of tagged words {wp1…wpm} where  

                             𝑚 =  
𝑛!

(𝑛−𝑤𝑛)!𝑤𝑛!
                                          (1) 

5.    For every word pair {wp1…wpm } calculate word similarity: 

6.         If {wpm } are both fuzzy words then 
7.             If {wpm} are in the same fuzzy category, C where C = 

{Size/Distance, Temperature, Age, Frequency, Worth, Level of 

Membership}  then 
8.                 Calculate Lowest Common Subsumer depth, d, from 

associated fuzzy category ontology. 

9.                 Calculate path length, l, and the length of the shortest path 
between {wpm} from the associated fuzzy category ontology 

10.                 Calculate word similarity, S between {wpm} 

                      𝑆(𝑤𝑝𝑚) = 𝑒−𝛼𝑙 ∙
𝑒𝛽ℎ−𝑒−𝛽ℎ

𝑒𝛽ℎ+𝑒−𝛽ℎ
                                     (2) 

where 𝛼 and 𝛽 were empirically determined as 0.15 and   0.85 

respectively 

11.               Else 

12.                        Apply original STASIS word similarity measure (2), 

calculating Lowest Common Subsumer depth, d and path length, l, 
from the WordNet ontology.   

13.               End If 

14.           Else        

Apply original STASIS word similarity measure(1), 

calculating Lowest Common Subsumer depth, d and path 
length, l, from the WordNet ontology.   

Apply fuzzy word association algorithm [12] to determine 

presence of fuzzy words and associated with the non-fuzzy 
words  

15.                  If Associated Fuzzy Words are Present then  

Calculate new Lowest Common Subsumer, d and length, 
l modifications 

16.                      Recalculate Word Similarity using (1) 

17.                  Else 
18.                      Return level of word similarity for {wpm} 

19.                  End If 

20.                 Return level of word similarity for {wpm} 

21.            End If 

   Calculate word frequency information using Browns Corpus     

   statistics [3] 

                              𝑖(𝑤) =  1 − 
log(𝑛+1)

log(𝑁−1)
                           (3) 

           where i(w) is the information weight, N is the total number of      

           words in the Corpus and n is the words frequency. 

22.        End for 
23.        Calculate overall  utterance similarity, S: 

              𝑆(𝑈1, 𝑈2) =  𝛿
𝑠1∙𝑠2

‖𝑠1‖∙‖𝑠2‖
+ (1 − 𝛿)

‖𝑟1−𝑟2‖

‖𝑟1+𝑟2‖
                          (4) 

         with S being defined as the total sum of all possible values and     
                  S1 and S2 referring to pairs of semantic similarity vectors which  

       were determined in (1) and r is a short joint word vector set    

       vector comprising of word frequency information and word    
       order 

24. End for 
 

V. EXPERIMENTAL DESIGN 

 

A) Dataset Description 

In order to test the FUSE algorithm, three published datasets 

were used. These consisted of:  

 

 Multi-Word Sentence Pair Fuzzy Dataset [MWFD] 

 STSS 65 Sentence Pair [STSS_65] 

 STSS 131 Sentence Pair [STSS_131] 

 
MWFD consists of 30 sentence pairs that have two fuzzy 

words in each sentence. Sentences were taken from the 
Gutenberg Corpus [33] and random fuzzy words from the same 
category were substituted in each sentence to create this dataset 

Fig. 3. Ontology for Level of Membership 
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[12]. STSS_65 contained 65 short text sentence pairs and 
STSS_131 contained 131 short text sentence pairs. Both datasets 
are Gold Standard [2, 28].  

 

B) Experimental Methodology 

FUSE was run against each of the three datasets (MWFD, 
STSS_65 and STSS_131) and the sentence similarity results for 
each Sentence Pair [SP] was recorded. In order to be able to test 
the improvement of FUSE, all three datasets were also run with 
FAST and STASIS algorithms and the sentence similarity 
results for each SP was again recorded. Using Pearson’s 
correlation coefficient [29], the correlation for each dataset was 
compared to the Average Human Ratings [AHR]. Pearson’s 
correlation provides statistical evidence for a linear relationship 
between two variables x and y and can be computed as follows 
[29]: 

                 𝑟𝑥𝑦 =  
cov(𝑥,𝑦)

√var(𝑥) .√var(𝑦)
                     (5) 

Where rxy is the correlation coefficient, cov(x, y) is the sample 
covariance of x and y; var(x) is the sample variance of x; and 
var(y) is the sample variance of y. 

Table V and Figure 4 show the correlation (r) of results recorded 
for the three datasets versus their AHR tested against STASIS, 
FAST and FUSE. The r-value should be between            [-1 ... 
+1]. (-1) shows a perfectly negative linear relationship, (0) 
shows no relationship, and (+1) shows a perfectly positive linear 
relationship. A negative correlation will mean a decreasing 
relationship, while a positive correlation will mean an increasing 
relationship. The magnitude of the value (how close it is to -1 or 
+1) will indicate the strength of the correlation [29, 34].  

 

 

C) Results and Discussion 

 Table V shows for MWFD, that FUSE gave a higher 
correlation (r = 0.76820) with human ratings compared to 
STASIS (r = 0.74525) and FAST (r = 0.73050). For STSS_65, 
FUSE gave a higher correlation coefficient (r = 0.69097) than 
both STASIS (r = 0.68130) and FAST (r = 0.68130), and for 
STSS_131, FUSE gave a higher correlation (r = 0.51799) than 
FAST (r = 0.51630). These can also be viewed in Figure 4. It 
was found that FUSE gave a higher correlation against both 
STASIS and FAST for the datasets MWFD and STSS_65. 

Consider the following examples of SPs.  The first is an example 
from the MWFD dataset.  

[SPa1] So would useless diminutive Harriet 

[SPb1] So would poor little Harriet 

For MWFD, the r-value was STASIS r = 0.7141, FAST r = 
0.9089, and FUSE r = 0.9647. 

The second example SP is from the STSS_131 dataset.  

 [SPa2] If you continuously use these products, I guarantee 
you will look very young. 

[SPb2] I assure you that, by using these products consistently 
over a long period of time, you will appear really young. 

For STSS_131, the r-value was STASIS r = 0.8573, FAST r = 
0.8021, and FUSE r = 0.8772. 

 From the two sentence pair examples it can be seen that 
FUSE provided better correlation (as evidenced by the r-value) 
compared to both STASIS and FAST. In addition, FUSE had 
better human ratings compared to FAST, which also helped with 
the improvement of the r-value. This can be shown using the two 
examples given. In MWFD, the words ‘useless’ and ‘poor’ had 
defuzzified values of (-0.695 and -0.65) respectively in FAST; 
however, in FUSE, those values were (-0.95862 and -0.89655) 
respectively. For STSS_131, the same also applies; the words 
‘young’ and ‘consistently’ have values of (-0.45 and 0.4) 
respectively in FAST, and values of (-0.58969 and 0.4) 
respectively in FUSE; also the word ‘continuously’ did not exist 
in FAST, but this word exists in FUSE with the value of (0.425). 
This goes to show that not only does the increased coverage of 
words in FUSE, with an almost 60% increase in words in total 
over the six categories compared to FAST, play an important 
part in giving a higher correlation; but the improved defuzzified 
values for the fuzzy words using Interval Type-2 allows better 
representation of the uncertainty of words in the context of 
FSSM and aligns to the findings that Interval Type-2 is the 
scientifically correct way to model linguistic uncertainties [35]. 

VI. CONCLUSION AND FURTHER WORK 

In conclusion, the FUSE algorithms showed better 
correlation compared to human ratings than other similar 
algorithms on human utterances. The improvement FUSE had 
over STASIS and FAST for the three datasets of MWFD, 
STSS_65 and STSS_131 is down to several factors. Firstly, the 
coverage of words is far greater, with an increase of 57.65%. 
Secondly, a new set of fuzzy ontologies has been developed for 
these categories in FUSE. Finally, the ability to represent 
uncertainty using Interval Type-2, as opposed to Type-1 has 

                  Algorithms 

Datasets STASIS FAST FUSE 

MWFD 0.74525 0.73050 0.76820 

STSS_65 0.68130 0.69080 0.69097 

STSS_131 0.52078 0.51630 0.51799 

TABLE V.     CORRELATION RESULTS FOR DATASET 

 

 

TABLE II.  CORRELATION RESULTS FOR DATASET 

 

Fig. 4. Correlation Results for Datasets 
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been shown to contribute towards a higher correlation between  
FUSE and human ratings. However, it is noted that in this kind 
of work, there is a degree of subjectivity in gathering human 
ratings. The results from FUSE are promising and will allow a 
deeper understanding of the semantic meaning, in context of 
human utterances by a machine, especially within 
Conversational Agents. 

Future work will involve the incorporation of linguistic 
hedges, such as {very, mostly, slightly} etc. [8] into FUSE. 
Currently, hedges are not utilized in FSSMs. This will help 
further with precision of utterance similarity measurement, in 
that such words will make a weighted contribution when 
calculating the overall semantic similarity.  
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