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Abstract 

This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. 

We employed density functional theory to investigate hydrogen diffusion through the (100), 

(110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for 

hydrogen adsorption were established for each plane, as well as a minimum energy pathway 

for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ~4.06, 

~3.92 and ~4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and 

(111) surfaces are ~0.6, ~0.5 and ~0.7 eV, respectively. We compared these calculated barriers 

with previously obtained experimental data in an Arrhenius plot, which indicates reasonable 

agreement between experimentally measured and theoretically predicted activation energies. 

Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at 

the cleavage planes may be a possibility to reduce hydrogen embrittlement. 

Keywords:  gamma iron, hydrogen embrittlement, hydrogen diffusion, potential energy 

surface, surface relaxation, density functional theory 
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1. Introduction 

Hydrogen embrittlement (HE) is a process critical to the degradation of materials as it affects 

the integrity of a range of structural materials such as steels [1, 2] and nickel-based alloys [3, 

4]. The HE process can lead to premature failure in those structures, which can have 

catastrophic consequences across a range of practical applications such as in the nuclear 

industry and steel oil/gas pipelines. The cost of material failure can be significant, such as the 

failure of steel bolts due to HE in a single high-rise office block, costing over £6M [5]. In the 

HE process, hydrogen enters the bulk structure of metals via diffusion, which leads to the 

gradual accumulation of hydrogen and a resulting increase in the brittleness of the material. 

There are two main mechanisms proposed for the HE phenomenon, namely the HELP 

(hydrogen enhanced localised plasticity) and HEDE (hydrogen enhanced decohesion) 

mechanisms. In HELP, hydrogen lowers the activation energy for dislocation motion, which 

allows the rapid initiation and propagation of a crack tip and thus enhances plastic deformation 

[6, 7]. In HEDE, the hydrogen favours the cleavage of planes along grain boundaries [8, 9]. 

Prior to hydrogen atoms entering the bulk structure, the atoms typically adsorb at specific 

lowest energy sites above the surface. They can subsequently diffuse into the bulk, and are 

likely to travel on or close to the minimum energy path (MEP), depending on the available 

energy. However, since a complete mechanistic understanding of the entire HE process has not 

yet been developed [10], we attempted to calculate this MEP to shed more light on the diffusion 

process in austenitic steels. 

In this research project, we investigate the hydrogen adsorption and sub-surface 

diffusion through the (100), (110) and (111) surfaces of the face-centred cubic (fcc) phase of 

γ-Fe. This phase is the base in austenitic steels used in e.g. nuclear reactor applications, in the 

pipelines of reactors [11], and also (ultra-)high strength steels for the automotive industry [12, 
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13]. At above 1000 K, the γ phase crystallises [14], or at lower temperatures using -stabilising 

alloying elements such as manganese, nickel or carbon [15]. Most of the previous work focuses 

on hydrogen diffusion through bulk γ-Fe and along defects such as dislocation lines [16], 

stacking faults [17] and grain boundaries [18]. Also, the majority of the past studies concerned 

with hydrogen diffusion on and through iron focus on the body-centred cubic α-phase [19, 20]. 

Density functional theory (DFT) has previously been shown to efficiently model 

diffusion of hydrogen [21], which is a critical step in the HE process [22]; therefore, we have 

chosen to apply DFT to model hydrogen diffusion in γ-Fe to elucidate the early stages of HE 

in this phase relevant to austenitic steels. The investigation of the potential energy surface 

(PES) that governs diffusion provides critical insight into the energetics of the process and 

affords a detailed understanding of the on-surface adsorption and diffusion process through γ-

Fe. 

A PES is a multidimensional map of the energy of a chemical system as a function of 

the degrees of freedom in that system. Higher-dimensional PESs become increasingly difficult 

to represent graphically. However, an insight into any process can be derived by limiting the 

degrees of freedom that are considered. In the diffusion process treated here, this entails tracing 

the energy of a hydrogen atom diffusing through a metallic slab as a function of the x and y 

coordinates, as well as the depth within the slab, i.e. below the surface. To calculate the PES 

for the present process, the energy of a single H atom is calculated at a number of points on a 

regularly-spaced 3D grid of our metal slab, beginning with a plane above the surface, and 

inwards towards the bulk. At each depth, a 2D (reduced-dimensionality) PES produced, which 

yields the minimum energy site towards which the hydrogen atom would preferentially move 

within that plane. Above the surface, the 2D map yields the preferential site for H atom 

adsorption. Connecting each minimum energy point along the slab for each 2D map 

approximates a MEP for H diffusion from the surface into the bulk. 
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2. Computational Method 

The potential energy surfaces for hydrogen diffusion on the surface and into sub-surfaces of γ-

Fe were calculated for the (100), (110) and (111) surfaces, using density functional theory 

(DFT). All calculations were conducted using the Vienna ab initio simulation package (VASP) 

[23], which uses a plane-wave basis set and 3D periodic boundary conditions to describe 

electronic interactions. The exchange and correlation effects were included using the 

generalised-gradient approximation (GGA), via the Perdew-Burke-Erzenhof (PBE) functional 

[24]. The projector augmented-wave (PAW) approximation describes the interaction between 

the ionic core and valence electrons [25]. 

A seven layer slab model was used to model surfaces and bulk of γ-Fe. The lattice parameter, 

a, for γ-Fe was calculated to be 3.43 Å, with c/a = 1, which is in reasonable agreement with 

previous calculations (3.45 Å [26-28], 3.49 Å [29]) and the experimental value of 3.56 Å [30]. 

A (2×2) cell was applied in all calculations. A cutoff energy of 400 eV and a vacuum spacing 

of 20 Å were found to sufficiently converge the total energy of the system. The Methfessel 

Paxton method of order N = 1 with width 0.1 eV was used to apply electronic smearing [31]. 

The slabs were minimised using the conjugate gradient method [32], until forces were within 

10−5 eV/Å. The three bottom layers were ionically constrained. The energies of all atoms were 

converged to within 10−6 eV. 

The Monkhorst-Pack algorithm [33] was used with a grid size of 7×7×1 for the (100), (110) 

and (111) surfaces. 

A mesh grid was used to sample various hydrogen positions within the slab. A large number 

of points was used to create a tight mesh, which would accurately describe the potential energy 

surface. The mesh constituted of a 6×6 uniform grid in the x-y plane, sampling only a quarter 

of the surface unit cell due to symmetry considerations, i.e. sampling on the domain x,y ∈ 
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[0,0.5], in fractional coordinates; however, this domain was expanded by appropriate mirroring 

to yield 144 point on the surface unit cell. This mesh was then repeated along the z direction of 

the slab (i.e. into the bulk) in uniform intervals at 9 depth; there are four 2D meshes at the first 

four Fe layers, there are four further 2D meshes centrally in between these Fe layers, and finally 

one mesh above the surface to simulate adsorption. The mesh is illustrated in  

Figure 1 for each surface. For each point of the mesh, a single H atom was placed, with all 

coordinates constrained, and the energy of the slab was minimised by allowing all Fe atoms in 

the first four layers to relax. The energies at each point, E, were calculated via the relation 

𝐸 = 𝐸slab+H − (𝐸slab + 𝐸H) (1) 

where 𝐸slab+H is the energy of the slab with H incorporated, 𝐸slab is the energy of the H-free 

slab and 𝐸H is the ground state energy of a single free H atom in a 10 × 10 × 10 Å3 box. The 

energies were then calculated relative to the global minimum of the entire slab, which was set 

to 0 eV. 

3. Results and Discussion 

3.1 Surface adsorption on Fe (100), (110) and (111) surfaces 

The adsorption of hydrogen on the (100), (110) and (111) surfaces of γ-Fe was investigated to 

find the preferred site of adsorption. A 6 × 6 mesh grid was placed above each surface and the 

energy was minimised at each point. The adsorption energy was then calculated via Eq. 1. The 

results are illustrated in Table 1. For the (100) surface, it was found that the H prefers to reside 

at the fourfold hollow (4f) site, where the Fe atoms are equidistant to one another, with an 

adsorption energy of 4.06 eV per H atom relative to a free H atom. For the (110) surface, the 

H atom prefers to reside at the short-bridge (sb) site, which is the shortest distance between 

two Fe atoms, with an adsorption energy of 3.92 eV per H atom. On the (111) surface, the H 

atom prefers to adsorb on the three-fold (3f) site, which, similar to the (100) surface, is the 

point where the Fe atoms are equidistant from one another; the corresponding adsorption 
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energy is 4.05 eV per H atom. Thus, H atoms bind most tightly to the (100) surface, however 

the energies are very close to one another between all three surfaces, with a mere 0.01 eV 

difference between the (100) and (111) surfaces. This negligible difference is within the error 

of our method. More importantly, for a polycrystalline sample of -Fe, this means that H is 

almost equally likely to adsorb no matter which surface is exposed, i.e. the initial step of HE, 

the adsorption of H to the surface, is almost independent of the crystalline structure of -Fe. 

3.2 Subsurface diffusion of hydrogen through gamma-Fe surfaces 

The process of diffusion from the surface to the sub-surfaces was modelled by investigating 

the potential energy surface of the whole slab. A series of calculations was conducted by 

creating a 2D 6×6 mesh grid at nine uniformly spaced points along the depth of the slab, starting 

from above the surface through to the fourth layer. Hydrogen was placed at each of those 324 

points and the energy of the slab minimised by letting the Fe atoms relax in all three 

dimensions. For each of the (100), (110) and (111) surfaces, the MEP for diffusion was found 

by connecting the (energy) minima at each of the nine sampled depths. A reduced cell was 

considered for sampling, as illustrated in Figs. 2(c), 3(c) and 4(c), because of symmetry 

considerations. Important subsurface sites such as the octahedral and tetrahedral sites were 

sampled using the mesh method for each surface. 

For all three surfaces considered, it was found that a potential barrier needs to be overcome in 

order for the hydrogen to penetrate the γ-Fe slab. This barrier is ~1.4 eV for the (100) surface, 

~1.2 eV for the (110) surface and ~1.7 eV for the (111) surface, see Figures 2(b), 3(b), and 

4(b). Therefore, most energy is required to drive the hydrogen into the (111) surface; this has 

deeper implications, namely that a first consideration for preventing HE would be to consider 

producing a textured material, such that the most exposed surface is the (111) plane parallel to 

the surface of the material. 
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The H trajectory for diffusion perpendicular to the three surfaces does not follow a linear path 

into the bulk, but instead the hydrogen diffuses to trapping sites along the way, moving between 

local maxima and minima along this pathway, see Figures 2, 3, and 4, (b) and (c), respectively. 

For the (100) surface, we found that the local hydrogen minima are located in the plane of Fe 

atoms for all sub-surfaces, and these local minima are located at the octahedral sites. The 

energetics of this process indicate that near the surface, there is a distinct trajectory that is 

traversed by the hydrogen atom, as compared to the trajectory of the H atom in the region closer 

to the bulk layers. Similarly, for the (110) surface, there are local minima in each of the sub-

surface planes containing Fe atoms; these local minima are at the high-symmetry sites, namely 

alternatively the long and short-bridge sites. Due to the non-orthogonal unit cell structure for 

the (111) surface, and the ABCABC packing structure, the trajectory and respective energetics 

for the (111) surface is most complex. In contrast to the (100) and (110) surfaces, however, we 

observe the local minima for the H atoms to be in-between the planes containing Fe atoms, and 

the local maxima in the planes containing Fe atoms.  

We have hence calculated the MEP of hydrogen atoms moving from the surface into the bulk, 

and can estimate from the local minima and maxima the barriers for absorption of the H from 

the surface into the bulk, and the barriers for diffusion from one sub-surface layer to the next. 

The activation energies, Ea, obtained can then be compared to experimentally measured 

diffusion energies from previous investigations. The Arrhenius equation relates the reaction 

rate – or in this case the diffusion coefficient of hydrogen atoms, D - to the temperature T 

𝐷 = 𝐷0 exp (−
𝐸a
𝑘𝑇

) (3) 

where 𝐷0 is the diffusion coefficient at infinite temperature (in m2 s−1), and k is the Boltzmann 

constant (in eV K−1). Hence plotting ln D against 1/T allows a quantitative comparison of the 

experimental data from literature, as shown in Fig. 5. We compared the activation energies 
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obtained in our calculations with those measured in austenitic stainless steels; these typically 

contain alloying elements, of course, while we investigated pure -Fe. However, our simulation 

box contained 28 Fe atoms only, but we only followed the MEP through the first ten Fe atoms, 

hence a 10% alloy would only replace one Fe atom on average, and we hereby make the 

assumption that low-concentration alloying elements would only have a small effect on the 

overall energetics of diffusion; however, we stress that this is an approximation only. It was 

found that in the experiments, using a range of techniques such as thermal desorption and 

hydrogen permeation testing, Ea was ~0.5 – 0.7 eV [34-42]. In our investigation, we calculated 

two activation energies, namely the total activation energy and the bulk-like activation energy 

for diffusion. The total activation energies were ~1.4 eV for the (100) surface, ~1.2 eV for the 

(110) surface and ~1.7 eV for the (111) surface, whilst the bulk-like activation energies were 

~0.6, 0.5 and 0.7 eV for the (100), (110) and (111) surfaces, respectively. Whilst the total 

energy barrier is approximately twice the barrier as measured in the experiments, the bulk-like 

activation energy fits the experimental values closely. These activation energies indicate that 

it takes a large amount of energy to initially embed the hydrogen into each given surface, whilst 

it takes relatively lower amounts of energy to then continue the diffusion in the bulk element. 

The experiments measured the energies for the diffusion of hydrogen in the bulk, lending to 

the understanding that our bulk energies. It is worth noting that the activation energies for all 

three surfaces are quite close in the bulk-like region, with the (110) surface having the lowest 

activation energy. Thus the hydrogen may have a particular preference for passing through the 

(110) surface whilst diffusing in a polycrystalline system, it is possible that the hydrogen may 

also penetrate via the other surfaces. However, a larger total barrier must be overcome for the 

hydrogen to penetrate through the other surfaces. 

The overall agreement between our values and experimental values shows our methodology 

produces a reasonable approximation of the barrier of diffusion, and delivers a diffusion 



10 
 

trajectory through bulk Fe. While adsorption to the three different surfaces considered is 

energetically similar, the barrier for diffusion is highest for the (111) surface, such that 

diffusion could be limited even in a polycrystalline sample of a textured surface were produced 

which preferentially exposes grains with the (111) surface to the hydrogen source. 

4. Conclusions 

In this study, we applied density functional theory to investigate hydrogen diffusion through 

the three major planes in γ-Fe, namely the (100), (110) and (111) surfaces. This study is relevant 

for an understanding of the most critical stages of hydrogen embrittlement, namely the 

adsorption and diffusion stages. The adsorption sites for H on the surface were found for each 

given plane, along with the adsorption energy. A minimum energy pathway for diffusion was 

approximated by conducting a series of energy minimisations, where H atoms were placed in 

a 6×6 mesh and at nine depths along the slab, starting from above the surface and including the 

fourth layer. It was found that for the (100) surface, the H atom preferentially adsorbs at the 

fourfold site, with an adsorption energy of ~4.06 eV. On the (110) surface, the H atom prefers 

to adsorb at the short-bridge site, with an adsorption energy of ~3.92 eV. Finally, on the (111) 

surface, the H atom prefers to reside at the threefold site, with an adsorption energy of ~4.05 

eV. Thus, the H atom is most tightly bound to the (100) and the (111) surface. For the (100) 

surface, there is a ~0.6 eV barrier for bulk-like diffusion into the sub-surfaces, whilst for the 

(110) surface there is a ~0.5 eV barrier for bulk-like diffusion into the sub-surfaces. For the 

(111) surface, there is a barrier of ~0.7 eV. These barriers are in reasonable agreement with 

experimental data, which is shown via Arrhenius plots comparing our calculated and previous 

experimental data. It appears that one way to reduce hydrogen embrittlement in -Fe would be 

to produce textured austenitic materials with the (111) surface exposed. 
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Figures 

 

Figure 1: The calculation mesh for the (a) (100), (b) (110), and (c) (111) surfaces. Only three 

of the nine calculation meshes are displayed for each surface for clarity. 

 

Figure 2: (a) The 2D potential energy surface at local minima for hydrogen diffusion through 

the (100) surface. (b) The energy profile for hydrogen diffusion through the surface. (c) The 

diffusion pathway from the surface through towards the bulk. The dotted line between 

stationary points is only a guide to the eye. 
 

 

Figure 3: (a) The 2D potential energy surface at local minima for hydrogen diffusion through 

the (110) surface. (b) The energy profile for hydrogen diffusion through the surface. (c) The 

diffusion pathway from the surface through towards the bulk. The dotted line between 

stationary points is only a guide to the eye. 
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Figure 4: (a) The 2D potential energy surface at local minima for hydrogen diffusion through 

the (111) surface. (b) The energy profile for hydrogen diffusion through the surface. (c) The 

diffusion pathway from the surface through towards the bulk. The dotted line between 

stationary points is only a guide to the eye. 

 

Figure 5: Arrhenius plot of the diffusion coefficients as a function of temperature, comparing 

experimental literature data with our calculations for the (100), (110) and (111) surfaces. The 

activation energy, Ea is labelled for each dataset. The graphs are offset for clarity. 
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Tables 

Table 1: Relative minimum energies, E-Emin, for H in each layer, i, considered in this work for 

all three surfaces; see also Fig. 2, 3, and 4. Each energy is calculated relative to the minimum 

energy for a particular surface. Brackets behind the zero values in the table indicate the 

preferential adsorption site on the surface. 

Layer index, i 

Surface index 

(100) (110) (111) 

E-Emin/eV 

1 0.40 0.00 (sb) 1.00 

2 0.00 (4f) 0.02 0.00 (3f) 

3 0.37 0.32 1.0 

4 1.12 1.11 0.90 

5 0.96 0.86 1.67 

6 1.23 1.16 0.30 

7 0.78 0.71 1.52 

8 1.34 1.22 0.79 

9 0.87 0.76 1.55 

 


