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Abstract An off-line complex representation of the radiative forcing of linear contrails is
applied for the first time to monthly mean 3-D distributions. This representation assumes the same
temperature-dependent, spatially and time-varying functions of ice water content and particle size for
contrails as for natural cirrus. This complex representation is contrasted with more commonly used
simplified setups in which fixed contrail optical depth values [0.1 to 0.3] are prescribed and from which
the results show differences covering a factor of 3 assuming fixed or variable contrail layer altitudes.
This prescribed range of representative fixed altitudes resulted in differences covering a factor of 2 when
the optical depth was also fixed. Prescribing fixed particle sizes also resulted in differences covering a factor
of 2 if altitude and optical depth are also fixed. In contrast, the inclusion of the dependence of the contrail
ice water content on temperature produced differences of around 20% or less when assuming the same
ranges of altitudes and ice particle sizes, resulting in a much improved confidence in the radiative forcing
estimates and more accurate spatial and temporal representations of the radiative interaction between
contrails and the background meteorology. Assuming a contrail vertical extent of 500 m, a 9 mW m−2 annual
mean contrail radiative forcing is estimated, with an uncertainty range between 1 and 23 mW m−2 based
on the ice water content’s observed variability.

1. Introduction

Linear contrails are estimated to contribute 10 mW m−2 (Boucher et al., 2013) to the radiative forcing (RF)
from aviation, with an uncertainty range [5 to 30 mW m−2] affected not only by the difficulties involved in the
retrieval of their spatial distribution and their physical and radiative properties but also by the computational
expense of fully representing these properties in large-scale models. It has for these reasons been common for
off-line contrail studies to assume simplified representations of their physical and radiative properties; among
them is the use of fixed values to prescribe their optical depth, ice crystal particle size, altitude, and vertical
physical thickness. Most off-line contrail studies have assumed a fixed optical depth (e.g., Markowicz & Witek,
2011; Minnis et al., 1999; Myhre & Stordal, 2001; Rädel & Shine, 2008; Rap et al., 2010; Stuber & Forster, 2008;
Yi et al., 2012), with values ranging between 0.1 and 0.3. In these studies a linear dependence of the contrail
RF on their optical depth is assumed and it is therefore expected that observed optical depth time-averaged
values will emulate the RF of the varying optical depth. Fixed contrail altitudes have also been commonly
prescribed (e.g., De León et al., 2012; Markowicz & Witek, 2011; Minnis et al., 1999; Myhre & Stordal, 2001;
Yi et al., 2012), and with the exception of De León et al. (2012, DL12 hereafter) all of these studies also
prescribed fixed particle sizes.

The aim of the present work is to assess the RF uncertainties associated to such simplifications, by contrast-
ing their results with those based on temperature-dependent ice water content (IWC) and ice particle size
parameterizations applied off-line for the first time to a 3-D linear contrail cover distribution. This approach
was previously applied by DL12, but it was limited to only two representative months, a 2-D contrail cover
at fixed altitudes, and average day/night conditions. Here we extend these spatial and temporal representa-
tions by including the vertical distribution of linear contrails and the diurnal and monthly variation of traffic,
allowing the reference case to incorporate a realistic dependence of the radiative properties of contrails on
altitude, which was not possible in the DL12 setup.
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Contrail cover fields can be calculated within a climate model (online) or be based on a prescribed back-
ground meteorology (off-line). The results of these two approaches tend to differ in the spatial and temporal
correlation of contrail and natural cloud formation, as shown by Rap et al. (2010), and therefore in their ver-
tical overlap. While online calculations are considered more realistic, climate models also present limitations
in their meteorology and in the radiative representation of ice clouds (Waliser et al., 2009). For these reasons
we also include in the present study sensitivity simulations for diurnal traffic variation and assumed overlap,
in order to assess their associated uncertainties from a purely radiative perspective.

2. Model Setup

The model setup is similar to the one described in DL12, in which persistent contrails and natural cirrus were
assumed to have the same IWC and particle size dependence on ambient temperature. This approach was
applied in an early study by Ponater et al. (1996) and has more recently been supported by measurements
such as those from the midlatitude field campaign CIRRUS III (Schäuble et al., 2009) showing that the IWC
in cirrus and aged contrails is similar under the same atmospheric conditions, as well as from Krämer et al.
(2016), who found slightly higher contrail IWCs at 210 K. The assumption is also supported by observations
by Chauvigné et al. (2017), who reported that the optical properties, including extinction coefficients and
phase functions, of old contrails and natural cirrus resemble each other. They also observed similarities in the
particle size distributions (PSDs) of natural cirrus and contrails aged 290 s or less. The focus of the present
study does not include the theoretical basis of contrail IWC evolution, but a description of the development
of IWC measurements with respect to temperature can be found in Krämer et al. (2016).

2.1. Contrail Radiative Parameterizations
A radiative parameterization in terms of the contrails’ IWC and particle size was derived by integrating the
long-wave (LW) and short-wave (SW) single scattering properties of randomly oriented hexagonal prisms,
developed by Baran et al. (2001) and Yang et al. (2000), respectively, over a set of bimodal PSDs taken from
a parameterization developed by McFarquhar and Heymsfield (1997). In order to confirm that the PSDs were
not affected by ice shattering contamination, DL12 showed that the total number of ice crystals from this
parameterization matched quality-checked number concentrations reported in Krämer et al. (2009) at a rep-
resentative range of latitudes. The PSD parameterization covered a representative range of temperature and
IWC values taken from the climatology compiled by Schiller et al. (2008). These same PSDs were used in the
simulations to prescribe the contrails’ IWC and particle size, represented in the model by the generalized
diameter (Dge) defined in Fu (1996) as

Dge =
∫ Lmax

Lmin DDLN(L)dL

∫ Lmax
Lmin

(
DL +

√
3D2

4

)
N(L)dL

, (1)

in which N(L) denotes the number density per unit volume, Lmin and Lmax define the range of the maximum
dimension of the particles present in the distribution, and D is the length of the diagonal of the hexagonal face.

The radiative databases currently available for single ice crystal shapes tend to incorporate size-dependent
aspect ratios (D∕L) only in the cases of pristine habits. It is for this reason that the volumes and projected
areas of hexagonal prisms produced a better match to McFarquhar and Heymsfield (1997) measurements in
the small and the large modes of their PSD retrievals, when compared to more complex shapes, for which
fixed aspect ratios are normally assumed. For this reason hexagonal cylinders were the only habit considered
in the simulations. This match ensured that the representation of the physical and radiative properties was
physically consistent both in the parameterizations and in the prescribed IWC and Dge combinations (De León
& Haigh, 2007). These aspects are normally neglected when fixed optical depth or ice particle size values
are prescribed.

The instantaneous RF, defined as the difference at the top of the atmosphere of the radiative fluxes with and
without contrails, was calculated using the Edwards-Slingo two-stream radiative transfer code (Edwards &
Slingo, 1996). Solar zenith angles and day lengths at the middle of the month were used to represent the
monthly mean SW fluxes with a five-point Gaussian integration. The background meteorology for the radia-
tive calculations used monthly mean values for temperature, water vapor, ozone, and surface albedo, from
European Centre for Medium-Range Weather Forecasts ERA40 reanalysis data (Simmons & Gibson, 2000) and
monthly mean cloud fields from the International Satellite Cloud Climatology Project D2 data set. Liquid water
clouds consisted of spherical droplets with an effective radius of 10 μm, and all cloud layers were assumed to
randomly overlap.

RODRÍGUEZ DE LEÓN ET AL. 2
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2.2. Contrail Cover
The contrail cover distribution was generated using the Contrail Modeling and Analysis tool (Lim et al., 2006),
which is based on the contrail parameterization and the off-line methodology described in Appendix A
of Sausen et al. (1998). The aircraft movements were based on the aircraft emissions data set used in the
European research project REACT4C (Reducing Emissions from Aviation by Changing Trajectories for the ben-
efit of Climate). The aircraft movements from the REACT4C base case (Søvde et al., 2014) were incorporated
into the Future civil Aviation Scenario software Tool (FAST) emissions model to calculate the distance trav-
eled for the year 2006. The global distance traveled, from ground level up to 44,000 ft (13.5 km) on 2,000 ft
(600 m) intervals, was approximately 38.9 billion kilometers, with 87% occurring above 500 hPa. The diur-
nal distance traveled over four time bands (00, 06, 12, and 18 UTC) was coupled with European Centre for
Medium-Range Weather Forecasts ERA-Interim meteorological data sets (regular grid, 2.5∘ ×2.5∘) for the same
year. The cloud cover from ERA-Interim was used by Contrail Modeling and Analysis tool to calculate the crit-
ical relative humidity for cloud formation (Lim et al., 2015). The specific humidity and temperature were then
used to determine the potential and actual contrail coverage, assuming an aircraft fleet propulsion efficiency
of 0.36 that resulted in an annual global contrail cover of 0.10%.

3. Simulations

The contrails’ IWC parameterization was defined as a function of local ambient temperature, based on the
mean IWC fit for nonconvective conditions from the IWC climatology compiled by Schiller et al. (2008). These
combinations of IWCs and temperatures were incorporated into the PSD parameterization of McFarquhar and
Heymsfield (1997) to prescribe the contrail’s Dge, resulting in a range between 14 and 41 μm when applied to
the contrail cover, and IWCs between 0.015 and 10 mg/m3 (3.7 mg/m3 at 222 K).

Given the restriction in their radiative transfer model to single IWC and particle size values in each cell, in their
sensitivity simulations DL12 emulated the contrails’ IWC by rescaling the contrail layer’s horizontal extent in
cells that already contained natural cirrus, but this approximation tended to amplify the contrail RF depen-
dence on the IWC’s variation. For this reason in the present study the sensitivity simulations were performed
under clear-sky conditions. A first set of simulations included natural clouds (all skies) and kept the model’s
original vertical layer resolution, which at relevant contrail altitudes was approximately 1,500 m. In the sec-
ond set of simulations the contrails’ IWC was modified in order to emulate a more realistic contrail thickness
of approximately 750 m or to prescribe fixed contrail optical depth values. These simulations were performed
under clear-sky conditions.

3.1. Sensitivity to Macrophysical Parameters
The simulations to assess the sensitivity to the assumptions on macrophysical aspects are described in Table 1,
including the calculated annual mean RFs for each case and their percentage differences (shown in paren-
theses) with respect to the reference case. The corresponding monthly mean differences from Table 1 are
presented in Figure 1.

The annual traffic case (reference case), which excluded the monthly variation of traffic, produced a net
(SW + LW) RF of 24.9 mW m−2, which is likely an overestimate linked to the 1,500 m contrail vertical thickness
assumed in this set of simulations. The monthly traffic case, which incorporated not only the diurnal but also
the monthly variability of traffic, showed negligible change in the annual mean net RF compared to the refer-
ence case and monthly mean differences within 10% (see Figure 1). In contrast, the no-diurnal case, in which
the diurnal variation of traffic was neglected, produced a 21% net RF increment, caused by the increased
nighttime traffic contribution from 38% to 50%. As a consequence of this increment, the corresponding night-
time contrail cover and net RF contribution changed from 35% to 47% and from 84% to 86%, respectively.
Despite the limitations in the off-line contrail coverage approach, mentioned in section 1, a similar nighttime
contrail net RF contribution (92%) to the one found here was reported by Chen and Gettelman (2013), based
on online simulations in which a linear contrail lifetime of 30 min was assumed. In contrast, a previous off-line
study by Stuber and Forster (2008) found a contribution of 60% despite reporting a similar net RF increment
(20%) to the one found here, while Frömming et al. (2011) reported a net RF increment of only 6%.

The clear-sky case resulted in a 7% net RF reduction on the global mean despite some areas with low surface
albedos showing enhanced net RFs. Previous contrail studies have reported enhanced RFs in their clear-sky
simulations, but reductions can be expected from contrails with sufficiently large optical depths, as shown by
Markowicz and Witek (2011) for fixed 𝜏 > 0.3 (see their Figure 7).

RODRÍGUEZ DE LEÓN ET AL. 3
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Table 1
Description of the Contrail and Natural Cloud Cover Sensitivity Cases and Their Global Annual Mean RFs

Case Description

Annual traffic (Ref ) Reference case. Complex representation (IWC and Dge are functions of

temperature with variable altitude) under all skies with random cloud overlap,

and diurnal but no monthly variation of traffic. The vertical thickness at

representative contrail altitudes is approximately 1,500 m.

Monthly traffic (monthly cover) Same as Ref but including monthly variation of traffic.

Daily mean traffic (no diurnal) Same as Ref but excluding diurnal variation of traffic.

Clear sky (clear sky) Same as Ref but excluding natural clouds.

Maximum overlap (max overlap) Same as Ref but assuming maximum random cloud overlap.

Radiative forcing (mW m−2)

NET LW SW

Annual traffic (Ref ) 24.9 55.2 −30.3

Monthly traffic (monthly cover) 24.9 (0%) 55.3 (0%) −30.4 (0%)

Daily mean traffic (no diurnal) 30.1 (21%) 53.8 (−2%) −23.9 (−21%)

Clear sky (clear sky) 23.1 (−7%) 70.1 (27%) −47.0 (55%)

Maximum overlap (max overlap) 21.7 (−13%) 48.7 (−12%) −27.0 (−11%)

Note. The numbers in parentheses show the percentage differences with respect to the reference case. All cases assume
a contrail vertical thickness of approximately 1,500 m. Solar zenith angles and day lengths at the middle of the month
are used to represent the month’s SW mean RF based on a five-point Gaussian integration. RF = radiative forcing;
IWC = ice water content; LW = long wave; SW = short wave.

Figure 1. Selected cases of global monthly mean (January–December) contrail net radiative forcing differences (as percentages) with respect to their
corresponding reference cases described in Tables 1 and 2 (see Tables 1 and 3 for annual means). IWC = ice water content.

RODRÍGUEZ DE LEÓN ET AL. 4
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Table 2
Description of the Contrail Radiative Representation Sensitivity Cases

Case Description

Reference case (Ref ) Same as the reference case in Table 1 (IWC and Dge are functions

of temperature with variable altitude) but under clear-sky conditions

and assuming a vertical thickness of approximately 750 m

Minimum IWC (min IWC) Same as Ref but using Schiller et al.’s minimum IWC fit of most

frequent (>5%) IWC and their corresponding Dge

Maximum IWC (max IWC) Same as Ref but using Schiller et al.’s maximum IWC fit of most

frequent (>5%) IWC and their corresponding Dge

Minimum Dge (min Dge) Same as Ref but prescribing the same variable Dge as in the min

IWC case

Maximum Dge (max Dge) Same as Ref but prescribing the same variable Dge as in the max

IWC case

Fixed Dge (Dge = 23 μm) Same as Ref but assuming Dge = 23 μm

Fixed Dge (Dge − 50%) Same as Ref but assuming Dge = 12 μm

Fixed Dge (Dge + 50%) Same as Ref but assuming Dge = 35 μm

Fixed vertical thickness (Z = 220 m) Same as Ref but with a fixed vertical thickness of 220 m

Fixed vertical thickness (Z = 1,500 m) Same as Ref but with a vertical thickness of 1,500 m

Fixed altitude (30 kft) Same as Ref but at a fixed altitude of 30,000 ft (9,100 m)

Fixed altitude (34 kft) Same as Ref but at a fixed altitude of 34,000 ft (10,400 m)

Fixed altitude (38 kft) Same as Ref but at a fixed altitude of 38,000 ft (11,600 m)

Fixed optical depth (𝜏 = 0.1) Same as Ref but with 𝜏 = 0.1 and Dge = 23 μm

Fixed optical depth (𝜏 = 0.2) Same as Ref but with 𝜏 = 0.2 and Dge = 23 μm

Fixed optical depth (𝜏 = 0.3) Same as Ref but with 𝜏 = 0.3 and Dge = 23 μm

Fixed Z and 𝜏 (38 kft 𝜏 = 0.1) Same as case 38 kft but with 𝜏 = 0.1 and Dge = 23 μm

Fixed Z and 𝜏 (38 kft 𝜏 = 0.2) Same as case 38 kft but with 𝜏 = 0.2 and Dge = 23 μm

Fixed Z and 𝜏 (38 kft 𝜏 = 0.3) Same as case 38 kft but with 𝜏 = 0.3 and Dge = 23 μm

Fixed 𝜏 and altitude (𝜏 = 0.3, 30 kft) Same as case 𝜏 = 0.3 but at a fixed altitude of 30 kft

Fixed 𝜏 and altitude (𝜏 = 0.3, 34 kft) Same as case 𝜏 = 0.3 but at a fixed altitude of 34 kft

Fixed 𝜏 and altitude (𝜏 = 0.3, 38 kft) Same as case 𝜏 = 0.3 but at a fixed altitude of 38 kft

Fixed Z and Dge (38 kft Dge − 50%) Same as case 38 kft but with Dge = 12 μm

Fixed Z and Dge (38 kft Dge − 50%) Same as case 38 kft but with Dge = 35 μm

Fixed ZDge and 𝜏 (38 kft Dge − 50% 𝜏 = 0.3) Same as case 38 kft 𝜏 = 0.3 but with Dge = 12 μm

Fixed ZDge and 𝜏 (38 kft Dge − 50% 𝜏 = 0.3) Same as case 38 kft 𝜏 = 0.3 but with Dge = 35 μm

Note. IWC = ice water content.

The maximum random overlap case, in which a maximum overlap is assumed between vertically contiguous
cloudy layers while a random overlap is assumed otherwise, produced a net RF reduction (−13%) similar to
the one reported in Yi et al. (2012) (−13.9%) despite the fact that their simulations assumed a fixed altitude.

3.2. Sensitivity to Microphysical Parameters
The simplified contrail representations were assessed by prescribing fixed values for the contrail layer’s alti-
tude, vertical thickness, optical thickness (𝜏), and Dge, one at a time and in combinations. A new reference case
for these simulations, described in Table 2, assumed the complex contrail radiative representation described
in the methodology and a likely more realistic contrail vertical thickness of around 750 m. All the simulations
in Table 2, with the exception of the ones with a fixed 𝜏 or other specified fixed vertical thickness, assumed this
value. For reasons explained previously, these simulations were performed under clear-sky conditions, which
was expected to have a modest effect on the calculated net RF compared to other simplifications assessed
in the present section. The results of these sensitivity cases are presented in Table 3 and in Figure 1 and can
be compared to the monthly mean RFs of the new reference case shown in Figure 2, which produced LW, SW,
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Table 3
Global Annual Mean Contrail Radiative Forcing Assuming a Contrail Vertical Thickness of Approximately 750 m Under
Clear-Sky Conditions

Radiative forcing (mW m−2)

Case NET LW SW

Reference case (Ref ) (Z = 750 m) 13.5 41.2 −27.7

Minimum IWC (min IWC) 0.7 (−95%) 3.1 (−92%) −2.5 (−91%)

Maximum IWC (max IWC) 39.5 (194%) 143.4 (248%) −103.9 (274%)

Minimum Dge (min Dge) 14.0 (5%) 65.9 (60%) −51.9 (87%)

Maximum Dge (max Dge) 12.6 (−6%) 34.2 (−17%) −21.6 (−22%)

Fixed Dge (Dge = 23 𝜇m) 13.7 (2%) 44.4 (8%) −30.7 (11%)

Fixed Dge (Dge − 50%) 13.2 (−2%) 71.2 (73%) −58.0 (109%)

Fixed Dge (Dge + 50%) 12.1 (−9%) 32.1 (−22%) −20.0 (−28%)

Fixed vertical thickness (Z = 220 m) 4.6 (−66%) 16.1 (−61%) −11.5 (−59%)

Fixed vertical thickness (Z = 1,500 m) 23.1 (72%) 70.1 (70%) −47.0 (69%)

Fixed h (30 kft) 13.2 (−1%) 67.7 (64%) −54.5 (96%)

Fixed h (34 kft) 13.8 (3%) 44.0 (7%) −30.2 (9%)

Fixed h (38 kft) 12.7 (−6%) 34.9 (−15%) −22.3 (−20%)

Fixed optical depth (𝜏 = 0.1) 4.3 (−68%) 13.5 (−67%) −9.2 (−67%)

Fixed optical depth (𝜏 = 0.2) 8.3 (−38%) 26.0 (−37%) −17.7 (−36%)

Fixed optical depth (𝜏 = 0.3) 12.2 (−9%) 37.5 (−9%) −25.3 (−9%)

Fixed h and 𝜏 (38 kft 𝜏 = 0.1) 4.8 (−62%)a 13.9 (−60%)a −9.1 (−59%)a

Fixed h and 𝜏 (38 kft 𝜏 = 0.2) 9.3 (−27%)a 26.7 (−24%)a −17.4 (−22%)a

Fixed h and 𝜏 (38 kft 𝜏 = 0.3) 13.5 (7%)a 38.5 (10%)a −25.0 (12%)a

Fixed 𝜏 and h (𝜏 = 0.3, 30 kft) 6.6 (−45%)b 32.0 (−15%)b −25.4 (0%)b

Fixed 𝜏 and h (𝜏 = 0.3, 34 kft) 10.9 (−10%)b 36.1 (−4%)b −25.2 (−1%)b

Fixed 𝜏 and h (𝜏 = 0.3, 38 kft) 13.5 (11%)b 38.5 (3%)b −25.0 (−1%)b

Fixed h and Dge (38 kft Dge − 50%) 14.1 (11%)a 61.9 (77%)a −47.8 (115%)a

Fixed h and Dge (38 kft Dge + 50%) 11.2 (−12%)a 26.9 (−23%)a −15.7 (−29%)a

Fixed h Dge and 𝜏 (38 kft Dge − 50% 𝜏 = 0.3) 7.9 (−41%)c 35.2 (−9%)c −27.3 (+9%)c

Fixed h Dge and 𝜏 (38 kft Dge + 50% 𝜏 = 0.3) 16.6 (24%)c 39.8 (3%)c −23.2 (−7%)c

Note. The numbers in parentheses show the percentage differences with respect to the reference case. 𝜏 = 0.3. IWC = ice
water content.
aRefers to differences with respect to case 38 kft. bRefers to differences with respect to case 𝜏 = 0.3. cRefers to
differences with respect to case 38 kft.

and net RF global annual mean values of 41.2,−27.7, and 13.5 mW m−2, respectively, and showed a strong sea-
sonal and regional variability, depicted in the geographical distribution of the monthly mean RFs for May and
September in Figure 3. Around these months the magnitudes of the calculated SW, LW, and net RFs reached
their maximum and minimum global mean values, respectively (see Figure 2). The regional net RF showed
seasonal differences between Europe and the United States, with the United States following the global sea-
sonal trend, with its minimum in September and maximum in May, while Europe showed its peak around
January and its minimum around July. Locally, the maximum net RF in May was obtained within the United
States, where it exceeded 900 mW m−2 compared with 450 mW m−2 in September, while the local maximum
in Europe reached around 600 mW m−2 in May and 350 mW m−2 in September. On the annual mean, Europe
and the United States showed similar local maxima exceeding 500 mW m−2. Similar annual maxima were also
obtained by Minnis et al. (1999), for a similar contrail cover (0.09%), by assuming a fixed optical depth of 0.3,
despite their global annual RF (20 mW m−2) being larger than the one found here.

The sensitivity to the contrail IWC variability in the complex representation was initially assessed by prescrib-
ing the minimum and maximum IWC fits from Schiller et al. (2008) for the most frequent (>5%) IWC measured
values in their database, while allowing Dge to vary with the prescribed IWC. Prescribing the minimum IWC fit
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Figure 2. Global monthly mean (January–December) contrail short-wave
(SW), long-wave (LW), and NET radiative forcings (RFs) for the reference case
described in Table 2.

resulted in a net RF reduction of 95%, with respect to the reference case,
while the maximum IWC produced a 194% increase, compared to differ-
ences of only +5% and −6% when prescribing mean IWC values and the
corresponding minimum and maximum Dge. These differences, and their
monthly means, shown in Figure 1, confirmed the preponderant role of
the contrails’ IWC in the complex representation, but given that extreme
values from local measurements are not likely to be representative on a
global scale, more realistic cases of IWC and Dge variability ranges were
also simulated.

The fixed particle size simulations incorporated a commonly assumed con-
trail PSD, given in Strauss et al. (1997), for which the calculated Dge = 23 μm
was prescribed, while the IWC was allowed to vary. This case showed a
net RF difference of only +2% with the reference case, while increasing/
decreasing this fixed Dge value by 50% (cases Dge +50% and Dge − 50%)
produced annual mean forcing differences of −2% and +9%, respectively.
This uncertainty is similar to the one obtained when the minimum and
maximum variable Dge fits were prescribed. The monthly mean net RF dif-
ferences in Figure 1 for the minimum Dge case show changes of sign that
can be explained by the fact that bimodal PSDs tend to show small or even
negative net RFs for both very small and very large effective particle sizes

     May LW RF   mean = 52.0 mW/m2

90°W 0°E 90°E 90°W 0°E 90°E

90°W 0°E 90°E

90°W 0°E 90°E90°W 0°E 90°E

90°W 0°E 90°E

45
° S

45
° N

45
° S

45
° N

45
° S

45
° N

45
° S

45
° N

45
° S

45
° N

45
° S

45
° N

September LW RF   mean = 27.9 mW/m2

     May SW RF   mean = -34.8 mW/m2 September SW RF   mean = -18.8 mW/m2

     May NET RF   mean = 17.2 mW/m2 September NET RF   mean = 9.1 mW/m2

-3000

-2000

-1000

-500

-250

-100

-25

0

25

100

250

500

1000

2000

3000

R
F

 (
m

W
/m

2 )

Figure 3. May and September monthly mean short-wave (SW), long-wave (LW), and net (NET) contrail radiative forcings
(mW m−2) for the reference case in Tables 2 and 3, assuming a contrail vertical thickness of approximately 750 m, under
clear-sky conditions. Solar zenith angles and day lengths at the middle of the month are used to represent the month’s
SW mean radiative forcing (RF) based on a five-point Gaussian integration.
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Figure 4. Cumulative probability density functions of clear-sky contrail
radiative forcing (RF) (mW m−2) for three assumed contrail vertical thickness
values, based on ice water content probability distributions at temperatures
between 220 and 224 K.

(see Figure 6 in Zhang et al., 1999) and also by the fact that small effective
particle sizes show an already strong SW RF that is enhanced during the
longer days during the boreal summer months.

In order to emulate different contrail vertical thickness values, the pre-
scribed IWC was scaled to reduce the ice water path of the original
model layer’s vertical thickness (∼1,500 m). Two assumed values (220 and
1,500 m) produced a RF range [5, 23 mW m−2] with differences between
−66% and +72% with respect to the reference case, in which a thickness
of 750 m was assumed. The global annual mean optical depth for the
relevant contrail layers, at altitudes between approximately 25,000 and
45,000 ft (7,600 m and 13,700 m) in our model, was 0.35 when assuming
a vertical thickness of 750 m, scaling linearly with vertical thickness. The
relationship between the calculated contrail RF and the contrails’ vertical
thickness is better depicted in Figure 4 by cumulative distribution func-
tions for four contrail vertical thickness values (220, 500, 750, and 1,500 m).
These functions, based on probability distributions of the IWC at a rep-
resentative contrail temperature range [220 to 224 K], can be used to
estimate the likelihood of the calculated contrail RFs for different vertical
thickness assumptions in our model. There are currently no climatologi-
cal data available on contrail vertical thickness. Freudenthaler et al. (1995)

reported a range for contrails persistent for up to 60 min, consistent with our two smaller chosen values (220
and 750 m), which produced contrail RFs of 5 and 13 mW m−2, respectively. The RF estimate reported by Lee
et al. (2009) for the year 2005 (11.8 mW m−2) falls at the higher end of this range, and in our model setup this
RF would imply a contrail thickness of around 700 m. A probably more representative 500 m thickness in our
setup resulted in a RF of 9 mW m−2. From Figure 4, assuming a 500 m thickness and a 2/3 likelihood on the
IWC’s variability implies a contrail RF range between 1 and 23 mW m−2, which provides a more conservative
estimate of the RF dependence on IWC variability than the one based on minimum and maximum IWC fits.

In the altitude sensitivity simulations a vertically integrated single layer contrail cover was allocated at fixed
altitudes, covering a range of values commonly used in contrail studies. These altitudes were defined by three
specified model pressure levels (300, 250, and 200 hPa) with their base at roughly 30,000 ft, 34,000 ft, and
38,000 ft (9,100 m, 10,400 m, and 11,600 m), respectively. This setup allowed the dependence of the contrail
radiative properties on altitude to be isolated from those of contrail formation. The global mean net RFs of
the fixed altitude cases showed a modest sensitivity, with the monthly differences in Figure 1, reflecting the
competition between the enhanced/reduced LW RF at high/low altitudes and the enhanced/reduced SW RF
contribution during the boreal summer/winter.

The fixed 𝜏 sensitivity simulations comprised a range of values commonly assumed in contrail studies [0.1 to
0.3], which produced a contrail RF range [4 to 12 mW m−2] and differences between −68% and −9% with the
reference case. The same range of fixed optical depths combined with a fixed altitude (38,000 ft) produced a
similar net RF range [5 to 13 mW m−2] and uncertainty, with differences between−62% and +7% with respect
to the case that assumed the same fixed altitude and a complex representation (case 38 kft).

Combining the prescribed altitude range with a fixed optical depth of 0.3 resulted in differences between
−45% and +11% with respect to case 𝜏 = 0.3, in which altitude was allowed to vary. In contrast, relatively
modest differences, between −6% and +3%, were obtained in the complex representation by, instead of
prescribing a fixed optical depth, allowing the IWC and Dge to vary with altitude.

The particle size sensitivity was also assessed at a fixed altitude of 38,000 ft (cases 38 kft Dge +50% and 38 kft
Dge − 50% in Tables 2 and 3, not shown in Figure 1) which resulted in differences, with respect to case 38 kft,
of −12% and +11%, respectively, but the largest differences from the fixed particle size simulations occurred
when the optical depth was also fixed (case 38 kft Dge −50% 𝜏 = 0.3 and case 38 kft Dge +50% 𝜏 = 0.3), which
produced differences with case 38 kft 𝜏 = 0.3 of −41% and +24%, respectively. These results confirmed the
large uncertainty reported by Yi et al. (2012), who found differences between −5.4% and 45.9% with a similar
setup. In contrast, the three cases in which only the particle size was fixed, despite covering the same Dge

range, produced an uncertainty of only around 10% if the IWC’s dependence on temperature is accounted for.
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4. Discussion and Conclusions

Simplified representations of the radiative properties of persistent linear contrails in large-scale applica-
tions can offer important advantages, such as providing more transparent setups for model intercompar-
ison studies (e.g., Myhre et al., 2009), but when estimating their RF and associated uncertainties, it is of
paramount importance to understand the effect of these simplifications. With this aim in mind, a complex
temperature-dependent parameterization of the radiative properties of persistent contrails was implemented
and compared to simplified setups in which the complex representation was replaced by fixed values for the
relevant variables. This representation was applied to a diurnally resolved 3-D linear contrail cover, assum-
ing the same dependence of contrail properties on temperature as for natural cirrus, and in which only the
contrails’ vertical extent, for which there is currently no climatological data available, was assumed constant.

The complex representation setup showed a contrail net RF enhancement by natural clouds over regions
with low albedo, but on the global mean a 7% net RF reduction was obtained. The assumed cloud overlap
resulted in an uncertainty of 13%, similar to a previous study by Yi et al. (2012). The inclusion of the monthly
traffic variability produced negligible differences. In contrast, a 21% reduction resulted from neglecting its
diurnal variability, which increased the nighttime net RF contribution from 84% to 86%, and confirmed the
disproportional contribution of nighttime traffic reported by Chen and Gettelman (2013) (92%) despite only
representing 38% of the total distance in our study.

Prescribing fixed 𝜏 values resulted in differences covering a factor of 3, and similar differences were obtained
when combining the same range of optical depths with a fixed altitude. The prescribed range of fixed alti-
tudes produced differences of only around 10% in the complex representation, compared to a factor of 2 when
prescribing a fixed 𝜏 = 0.3. Similarly, fixing the ice particle diameter between 12 and 35 μm resulted in differ-
ences of only around 10% in the complex representation, compared to differences of more than 20% when
also fixing altitude. Much larger differences, covering a factor of 2, were obtained when also fixing 𝜏 = 0.3.
Previous off-line contrail RF estimates based on these fixed variable assumptions may be similarly affected
by these simplifications, contributing or adding to the uncertainty reported by Myhre et al. (2009) in their
model intercomparison.

Assuming minimum/maximum values for the contrails’ Dge and IWC in the complex representation confirmed
the IWC’s preponderant role in determining the range of contrail RFs. A 2/3 likelihood on the IWC’s variability
resulted in a contrail RF range between 1 and 23 mW m−2 when prescribing a contrail vertical thickness of
500 m. This range provided an estimate of the contrail RF uncertainty associated to the IWC’s variability in
our model setup, as well as context from the perspective of the complex representation to the uncertainties
reported by Lee et al. (2009) [5.4 to 25.6 mW m−2] and by Boucher et al. (2013) [5 to 30 mW m−2]. The RF range
[4 to 12 mW m−2] that resulted from prescribing commonly assumed fixed optical depths (0.1 to 0.3) fell in
the lower end of these published uncertainties. From these results it was concluded that the dependence of
the IWC on temperature provided a much improved representation of the radiative properties, reducing the
dependence of their estimated RF on the uncertainties linked to contrail altitude and ice particle size.
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