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Abstract 

Surface energy increase of polymers with plasma treatment is an industrially significant 

process. The mechanisms behind this process are little understood, with work addressing the 

water contact angle decrease with treatment and changes in surface chemistry. Work 

presented here addresses the mechanism of this surface energy increase, by using crystalline 

biaxially orientated polypropylene (BOPP) films to identify plasma induced structural 

changes.  Increased crystallinity of the BOPP films were observed by ATR-FTIR 

spectroscopy, indicating preferential oxidation of amorphous regions of the BOPP films by 

the plasma. This crystal structure change correlates with XRD peak shifts, implying relaxation 

of crystal regions into regions previously occupied by amorphous BOPP. The trend in surface 

energy increases also correlates with the effective increase in crystallinity. 

1 Introduction 

Surface functionalisation of biaxially orientated polypropylene films is of industrial 

significance due to the added value of improved dye adhesion that such treatments provide. 

Typically surface functionalisation is carried out through the use of an atmospheric pressure 

plasma, either corona or dielectric barrier discharge. The aim of such treatments is to increase 
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the surface energy of the polypropylene film such that it is above that of the surface tension of 

typical water based inks, maximising adhesion of these inks to the polypropylene surface.
[1]

 

The increase in surface energy is generally attributed to an increase of oxygen or nitrogen 

based functional groups at the surface due to reactions with oxygen or nitrogen species 

generated within the plasma. Some work has been carried out to elucidate the mechanisms of 

surface modification of BOPP films by non-thermal atmospheric pressure plasmas, the most 

extensive being that of Dorai and Kushner
[2] 

on air corona treatments of polypropylene. In this 

case, there tends to be rapid reaction of the polypropylene surface with atomic oxygen and 

hydroxide radicals generated in the plasma, leaving alcohol or carbonyl functional groups 

present at the surface.  The rate of reaction of atomic nitrogen with polypropylene is also 

stated to be negligible in comparison with atomic oxygen.
[2]

  Increasing concentrations of 

oxygen also act to limit atomic nitrogen formation in nitrogen plasmas due to preferential 

formation of NOx.
[3] 

Recent work by Shaw et al highlights a direct link between atomic 

oxygen formation in helium atmospheric pressure plasma jets and the modification of 

polypropylene surfaces, in contrast to surface reactions with singlet delta oxygen and ozone.
[4] 

Polypropylene undergoes scission of its constituent chains either due to reactions with 

reactive oxygen species, or due to being subjected to ultraviolet light of particular 

wavelengths, leaving the polypropylene radicals free to react with oxygen and reactive 

oxygen species in their proximity.
[5] 

These scissions of the polypropylene chains also lead to 

the formation of low molecular weight oxidised materials (LMWOM), which can cause poor 

adhesion of inks to the surface.
[6]

 

Dielectric barrier discharges allow for treatments of large surface areas,
[7] 

which is of great 

importance for industrial systems. There are indications that dielectric barrier discharges in 

nitrogen minimise LMWOM formation, compared to standard corona treatments in air.
[8]

. The 

literature suggests that oxygen concentration is key to reducing the formation of LMWOM no 
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matter the type of plasma, with dielectric barrier discharges in air also exhibiting LMWOM 

formation.
[9] 

This is in contrast to helium and argon based discharges, which do not exhibit the 

same LMWOM formation.
[10]

  Increased formation of atomic oxygen with a significant 

increase in oxygen concentration is perhaps the reason for increased LMWOM formation with 

air based plasmas, with the atomic oxygen causing excess scission of the polypropylene 

chains and hence LMWOM formation.
[2]

  

Atmospheric pressure nitrogen plasmas formed in dielectric barrier discharges tend to be 

filamentary, but under certain conditions can form a uniform Townsend discharge.
[11] 

With 

trace amounts of other gases, the stability criteria for nitrogen plasmas is broken,
[12] 

leaving a 

filamentary discharge. The vast majority of industrial treatments in nitrogen are likely carried 

out in the filamentary mode, and this does not seem to have any negative impact on the 

quality of the films treated. Even so, questions do remain over the spatial variation of the 

treatments, and there have been extremely limited attempts to address this. 

We intend to examine the process of nitrogen dielectric barrier discharge surface treatment 

of BOPP films in depth, analysing the overall mechanism by looking at changes in 

crystallinity, surface functional groups and surface energy. The variability of the treatment 

will also be examined considering the potential for filamentary discharges to cause damage to 

the polymer surface. 

2 Experimental Part 

2.1 Equipment and materials 

A dielectric barrier discharge operating in the filamentary regime is formed from two alumina 

plates measuring 240 by 50 mm, with 6 µm thick copper coatings measuring 230 by 40 mm 

sputtered onto the back of the plates acting as electrodes. The dielectrics were spaced 1 mm 
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apart, with the BOPP film resting on the bottom dielectric which in turn is connected to the 

grounded electrode. The dielectrics are encased within Perspex, with Perspex also sealing the 

sides of the reactor.  A baffled mixing chamber supplied the gases evenly over the 240 mm 

width of the dielectric, the exit of the reactor was open to atmosphere.  The power supply 

consists of a signal generator (TTi TG1000), audio amplifier (ProSound 1600) and a custom 

built high voltage transformer (Amethyst Designs). Current and voltage measurements were 

made with a Pearson 4100 current monitor and a Tektroniks 1000:1 voltage probe, recorded 

on a Tektronix DPO 3014 digital oscilloscope. Applied power was calculated from the current 

and voltage measurements. 99.999 % purity nitrogen (BOC) was introduced at a total flow 

rate of between 1 and 10 SLM using MKS G Series mass flow controllers, connected a 647C 

control box. Treatments were carried out over 5 to 60 seconds on 50 μm thick, highly 

crystalline C50 BOPP film provided by Innovia Films, no significant heating of the BOPP 

was measured over these treatment times.  These films were stored in ambient air prior to 

plasma treatment.  Four replicates at each condition were made. 

2.2 Surface measurements 

Films were analysed pre and post treatment with a Thermo Nicolet 380 FTIR with a single 

pass diamond ATR Smart iTR attachment. Each spectra was averaged over 16 scans, with a 

resolution of 4 cm
−1

. Particular interest was paid to the peaks at 997 cm
−1

, 973 cm
−1 

and 840 

cm
−1

, the ratio of which has been shown to be indicative of the degree of crystallinity of the 

polypropylene.
[13] 

Measurements were made ten times across the width of each 240 by 50 mm 

sample to account for spatial variation in treatment. Depth of penetration of the infrared beam 

was estimated to be 1 µm into the surface, using the standard depth of penetration calculation. 

A PanAnalytical X’Pert Powder X-ray diffractometer was used to collect the diffraction 

patterns, enabling the analysis of the effects of plasma treatment on the crystal structure in the 



 

- 5 - 

near surface region. Scans were made from 10 to 40 2θ at a step size of 0.0002
◦
, and diffracted 

X-rays were collected with a PIXcel detector. 

Surface topology changes were assessed using a ZeGage Optical Profilometer. A 50 times 

objective was used, with a scan range of 50 µm using a rigorous scan. Scans were 

subsequently corrected for any tilt in the collected results, and a fourier filter was applied to 

remove any ripples due to the film not lying flat prior to the measurement. Samples were also 

scanned ten times across the width of the surface. Roughness values are the standard 

arithmetic average values, typically denoted as Sa. 

Contact angles (θ) of sessile drops of HPLC grade water, ethylene glycol and diiodomethane 

(Sigma Aldrich) were all measured with a Krüss MobileDrop goniometer. Without the ability 

to measure advancing and receding contact angles, measurements of ten sessile drops of each 

liquid type were performed across the width of the samples. The method of Van Oss et al,
[14] 

was used for calculating the surface energy (γS) of the films from these measurements, 

according to the following equation: 

 (1 + 𝛾𝑙) cos𝜃 = 2(√𝛾𝑠
𝐿𝑊𝛾𝑙

𝐿𝑊 +√𝛾𝑠
𝐴𝛾𝑙

𝐵 +√𝛾𝑠
𝐵𝛾𝑙

𝐴) (1) 

Where the subscripts l and s denote the surface energy of the solid and liquid respectively. 

The superscript LW denotes the Lifshitz-van der Waals components of the surface energy, and 

the superscripts A and B denote the Lewis acid and Lewis base parameters of the surface 

energy. The acid and base terms can be combined into the Lewis acid base (superscript AB) 

component of the surface energy: 

 𝛾𝑖
𝐴𝐵 = √𝛾𝑖

𝐴𝛾𝑖
𝐵 (2) 
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and subsequently the overall surface energy can be calculated as the sum of the Lifshitz van 

der Waals and Lewis acid base components: 

 𝛾𝑖 = 𝛾𝑖
𝐿𝑊 + 𝛾𝑖

𝐴𝐵 (3) 

The components of the surface energy can then be used to assess the hydrophobicity, or Gibbs 

free energy of attraction between the surface and water (surface energies of which are denoted 

by subscript w),
[15] 

can be calculated by the following: 

∆𝐺𝑠𝑤 = −2((√𝛾𝑆
𝐿𝑊 −√𝛾𝑊

𝐿𝑊)
2

+ 2(√𝛾𝑠
𝑎𝛾𝑠

𝑏 +√𝛾𝑤
𝑎𝛾𝑤

𝑏 −√𝛾𝑠
𝑎𝛾𝑤

𝑏 −√𝛾𝑤
𝑎𝛾𝑠

𝑏))                   (4) 

3 Results and Discussion 

 

Figure 1: ATR-FTIR spectra comparing untreated and treated BOPP film, with band 

assignments.
[16] 

The plasma treatment was at a power of 0.9 W, frequency of 5 kHz and flow 

rate of 10 slm over a period of 1 minute. 

ATR-FTIR spectra for both untreated and treated BOPP films are presented in Figure 1, with 

key band assignments indicated. After plasma treatment, bands in the FTIR spectra start to 

come up at between 1500 to 1800 cm
−1

, as seen in figure 1. This indicates increased 

functional groups due to either C=O stretches from carbonyl and amide functional groups, or 
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N-H deformations within secondary amide functional groups. The absorption peaks due to 

these stretches tend to increase with plasma treatment time, indicating an increase of these 

particular functional groups on the surface of the polypropylene with increasing exposure 

time to the plasma. Figure 2 shows the increase in the intensity of the amide C=O band at 

1660 cm
−1 

with time for different operating flow-rates, frequencies and powers. Figure 2a 

shows that there is a tendency for the peak to plateau with time, indicating a maximum 

increase in functionality for a given set of frequencies and powers. Figure 2b demonstrates 

that higher flow rates of nitrogen produce similar results in terms of amide C=O formation on 

the surface of the BOPP film, however the reduction in flow causes a greater formation rate of 

the carbonyl groups. This is due to an increase in the residence time of more oxidising 

species, and hence the amide groups form at an increased rate. 

Upon treatment with atmospheric pressure plasma, the ratios of band positions at 997 cm
−1

, 

973 cm
−1 

and 840 cm
−1 

shifted in relation to each other, indicative of changes in the crystal 

structure.
[11] 

These ratios were calculated for the spectra produced at the differing powers and 

flow rates, and these can be seen in Figure 3. Both Figure 3a and 3b indicate that there is an 

overall increase in the crystallinity of the material being measured. The suggestion is that the 

amorphous regions in between crystalline lamella are being oxidised preferentially due to the 

porous nature of these regions, whilst only the outer surface of the lamellae are able to react 

with atomic oxygen formed in the plasma. This effect plateaus out very quickly, perhaps due 

to the amorphous regions being consumed rapidly, with the outer edges of the lamellae 

reacting at a slower rate.  The electrodes were not active long enough to heat up, both alumina 

and BOPP are poor conductors of heat, and the nitrogen flow aided convection, therefore any 

thermal contributions to crystal structure changes are thought to be negligible.   
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 (a) (b) 

Figure 2: Peak height at 1660 cm
−1

, corresponding to maxima of carbonyl peak coming up 

with increased plasma treatment at different (a) powers and frequencies (nitrogen flow rate 5 

slm), and (b) flow rates of nitrogen (frequency 5 kHz, power 1.1 W). 

 

 
 (a) (b) 

Figure 3: Peak ratios at 997 cm
−1 

and 973 cm
−1 

with processing time, indicating changes in 

crystallinity of the sample with plasma modification at different (a) powers and frequencies 

(nitrogen flow rate 5 slm), and (b) flow rates of nitrogen (frequency 5 kHz, power 1.1 W). 

 

The BOPP films themselves tend to be highly crystalline, made up of interlocking lamella 

approximately 5 nm in diameter, with amorphous polypropylene chains linking the overall 

structure.
[17] 

 The amorphous regions are porous to gas,
[18] 

and so will tend to retain oxygen as 

they are stored in ambient air prior to treatment by atmospheric pressure plasmas.
[19]

 When 

exposed to the plasma, oxygen and nitrogen within these amorphous regions will react within 

the polymer surface, acting as a localised oxidising mechanism reacting with polypropylene 
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within these amorphous regions, whilst leaving oxidised functional groups in recessed 

crevices. 

 It perhaps indicates why there is also a plateau in Figure 2a and 2b, as the amorphous regions 

react rapidly, leaving the outer surfaces of the lamellae to react more slowly, reducing the rate 

of formation of carbonyl and amide groups vastly. Although the adsorbed oxygen is likely to 

be rapidly used up in the initial scission process within the amorphous regions, previous work 

by the authors has shown that trace amounts of oxygen present in the gas from possible leaks 

or impurities in the gas will form reactive oxygen species,
[20] 

which will react with the surface 

of the BOPP film and provide the source of oxygen for the functional groups on the surface. 

 

Figure 4: XRD patterns recorded for BOPP films at increasing plasma treatment times at a 

power of 0.9 W, frequency of 5 kHz and flow rate of 10 slm. 

The changes in the crystal structure of the BOPP films are also shown in the XRD patterns 

displayed in Figure 4. The diffraction pattern shows the polypropylene film to be in the β 

form
[21]

. Figure 4 also demonstrates that the position of the XRD peaks show an increase in 

angular position with treatment time, indicating a definite reduction in d-spacing. This would 
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suggest that the crystalline lamella are relaxing into the space that is left as the amorphous 

regions within the BOPP film is preferentially oxidised. 

The optical profilometry measurements show limited surface topology changes for most 

conditions studied, down to flow rates of 1 slm, at which point the roughness increases 

markedly at a higher power, Figure 5 demonstrates this for selected conditions.  This is 

believed to be due to the deposited energy density increasing in combination with a drop in 

flow rate, leading to more active species production producing more oxidation and scission of 

the BOPP. The roughened nature of the surface after treatment in this regime can be seen in 

Figure 5b and how the roughness at these conditions changes with respect to time can be seen 

in Figure 6. The linear increase in the roughness seen in Figure 6 would imply that there is 

greater oxidation of the surface due to the increased concentration of atomic oxygen within 

the plasma at these conditions.  There is also potentially greater back diffusion of ambient air 

into the plasma at this lower flow rate.   

 

(a)   (b)           (c) 

Figure 5: Optical surface profilometry of (a) untreated BOPP film, (b) nitrogen plasma 

treated BOPP film, nitrogen flow rate 1 slm, treatment time 1 minute, (c) nitrogen plasma 

treated BOPP film, nitrogen flow rate 5 slm, treatment time 1 minute. 
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Figure 6: Roughness values measured for BOPP films at increasing plasma treatment times, 

flow rate 1 slm 

 

Surface energy results for different flow-rates, powers and driving frequencies are presented 

in Figure 7. The surface energy increases with treatment time, with the polar component 

tending to increase while the dispersive component remains constant. Higher power to the 

plasma also marginally increases the surface energy, with frequency also displaying a slight 

effect. The same plateau as seen in Figure 3b and Figure 2a can be seen in Figure 7a, again 

implying that the crystal structure of the BOPP film is the controlling factor in an increase in 

functional groups with plasma treatment, and hence any surface energy increase. The surface 

energy at differing nitrogen flow rates are displayed in Figure 7b.  Contact angles were also 

measured up to a fortnight after treatments were made, but no significant changes were 

measured. 
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(a)                                                                                  (b) 

Figure 7: Surface energy with time at different (a) powers and frequencies (nitrogen flow rate 

5 slm), and (b) different flow rates (frequency 5 kHz, power 1.1 W) 

Figure 8 shows the increase in Gibbs Free Energy with plasma treatment exhibited under all 

conditions, showing an increase in the hydrophilic nature of the surface of the BOPP films 

after plasma treatment. The plateau with treatment time can again be seen in figure 8a, 

showing an effective maximum dependant on the crystalline structure of the BOPP film. 

 

 (a) (b) 

Figure 8: Gibbs free energy with time at different (a) powers and frequencies (nitrogen flow 

rate 5 slm), and (b) different flow rates (frequency 5 kHz, power 1.1 W) 
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4 Conclusion 

After a comprehensive study of the modification of BOPP films by nitrogen DBDs, it is 

evident that the crystal structure of the film itself is a key parameter in improving the surface 

functionality of BOPP films. The changes in the chemistry, crystal structure and topology of 

the BOPP surface have been studied with regards to the plasma process parameters, and the 

effects of the changes are not overwhelmingly strong on the overall increase in surface energy 

of the film. However, there is a plateau seen in the number of functional groups formed on the 

surface, and a plateau of the change in crystal structure, that corresponds with a plateau in the 

surface energy at about 60 mJ m
−2

. This may imply the crystal structure of the film is the 

limiting factor for the increase of surface energy, and hence adhesion. Attempts to overcome 

this by increasing the effective energy density of the plasma start to cause intensive oxidation 

and scission of the BOPP as can be seen in Figure 5 and 6 when the flow rate is dropped and 

power increased, which roughens the surface of the film greatly, having implications for the 

optical properties. The treatments were carried out in the filamentary regime, and this has 

seemed to have shown no issues in terms of consistency of the treatment. 
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