
Khalfay, Amy (2018)Optimisation heuristics for solving technician and task
scheduling problems. Doctoral thesis (PhD), Manchester Metropolitan Uni-
versity.

Downloaded from: http://e-space.mmu.ac.uk/619993/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Khalfay=3AAmy=3A=3A.html
http://e-space.mmu.ac.uk/619993/
https://e-space.mmu.ac.uk

OPTIMISATION HEURISTICS FOR
SOLVING TECHNICIAN AND TASK

SCHEDULING PROBLEMS

AMY KHALFAY

Ph.D. 2018

OPTIMISATION HEURISTICS

FOR SOLVING TECHNICIAN AND

TASK SCHEDULING PROBLEMS

AMY KHALFAY

SCHOOL OF COMPUTING, MATHEMATICS AND DIGITAL

TECHNOLOGY

MANCHESTER METROPOLITAN UNIVERSITY AND SERVICE

POWER

A thesis submitted in partial fullfilment of the requirements of the

Manchester Metropolitan University for the degree of Doctor of

Philosophy

February 2018

Dedication

I would like to dedicate this work to my parents and my partner, Drewe, who have

always encouraged me, given me the confidence to undertake this research, and

supported me wholeheartedly throughout my academic studies.

I would like to thank my supervisors, Dr Alan Crispin and Dr Keeley Crockett, who

have provided me with immeasurable support and guidance throughout the three years

of this research. Their determination and perseverance has ensured that I have achieved

the aims and objectives of this research. I would also like to thank my mentor, Mr Alex

Syrichas, and unofficial supervisor, Dr Kris Welsh, who have helped me develop my

technical skills and have been a key part of helping shape this research.

Lastly, my appreciation to the sponsors of this research Service Power PLC, a leading

field service scheduling provider, without whom this research would not have been

possible. Throughout undertaking this research Mr Alan Smith has continued to

provide insight into the field and the key challenges faced.

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

AMY KHALFAY

February 2018

Acknowledgements

This research is sponsored by Service Power Technologies PLC, a worldwide leader

at providing innovative mobile workforce management solutions, in cooperation with

MMU and KTP.

Abstract

Motivated by an underlying industrial demand, solving intractable technician and task

scheduling problems through the use of heuristic and metaheuristic approaches have

long been an active research area within the academic community. Many solution

methodologies, proposed in the literature, have either been developed to solve a particu-

lar variant of the technician and task scheduling problem or are only appropriate for a

specific scale of the problem. The motivation of this research is to find general-purpose

heuristic approaches that can solve variants of technician and task scheduling problems,

at scale, balancing time efficiency and solution quality. The unique challenges include

finding heuristics that are robust, easily adapted to deal with extra constraints, and

scalable, to solve problems that are indicative of the real world.

The research presented in this thesis describes three heuristic methodologies that

have been designed and implemented: (1) the intelligent decision heuristic (which

considers multiple team configuration scenarios and job allocations simultaneously),

(2) the look ahead heuristic (characterised by its ability to consider the impact of

allocation decisions on subsequent stages of the scheduling process), and (3) the greedy

randomized heuristic (which has a flexible allocation approach and is computationally

efficient).

Datasets used to test the three heuristic methodologies include real world problem

instances, instances from the literature, problem instances extended from the literature

to include extra constraints, and, finally, instances created using a data generator. The

datasets used include a broad array of real world constraints (skill requirements, teaming,

priority, precedence, unavailable days, outsourcing, time windows, and location) on

10

a range of problem sizes (5-2500 jobs) to thoroughly investigate the scalability and

robustness of the heuristics.

The key findings presented are that the constraints a problem features and the size

of the problem heavily influence the design and behaviour of the solution approach

used. The contributions of this research are; benchmark datasets indicative of the

real world in terms of both constraints included and problem size, the data generators

developed which enable the creation of data to investigate certain problem aspects,

mathematical formulation of the multi period technician routing and scheduling problem,

and, finally, the heuristics developed which have proved to be robust and scalable

solution methodologies.

Table of contents

List of figures 17

List of tables 23

1 Introduction 27

1.1 Complexity Theory . 28

1.2 Research Plan . 32

1.3 Publications . 33

1.4 Contributions to Knowledge . 34

1.5 Thesis Overview . 36

2 Literature Review and Associated Technical Background 41

2.1 Introduction . 41

2.2 Constraints . 43

2.3 Datasets . 50

2.4 Solution Approaches . 55

2.5 Metaheuristics . 59

2.6 Discussion . 66

2.7 Related Personnel Scheduling Problems 68

2.8 Conclusion . 72

3 Technician and Task Scheduling Problems 73

3.1 Introduction . 73

3.2 Problem Formulation . 75

12 Table of contents

3.3 Datasets . 78

3.3.1 Solution Visualisation . 79

3.3.2 Solution Process . 81

3.4 Intelligent Decision Heuristic . 82

3.4.1 Introduction . 82

3.4.2 Construction Phase . 83

3.4.3 Improvement Phase . 86

3.4.4 Computational Experiments 88

3.4.5 Experimental Results . 98

3.4.6 Discussion . 98

3.5 Look Ahead Heuristic . 103

3.5.1 Introduction . 103

3.5.2 Construction Phase . 104

3.5.3 Improvement Phase . 109

3.5.4 Computational Experiments 111

3.5.5 Experimental Results . 113

3.5.6 Discussion . 114

3.6 Comparison of the Intelligent Decision and Look Ahead Heuristic . . 118

4 Large Scale Technician and Task Scheduling Problems 121

4.1 Introduction . 121

4.2 Generating Large Scale Technician and Task Scheduling Problem In-

stances . 123

4.2.1 Generating Large Scale Instances 123

4.2.2 Large Scale Instances . 127

4.2.3 Dataset Analysis . 128

4.3 Heuristic Approaches . 129

4.3.1 Greedy Heuristic . 129

4.4 Improvement Phase . 130

4.5 Experimental Results . 131

Table of contents 13

4.6 Discussion . 131

4.7 Summary . 133

5 Precedence Constrained Technician and Task Scheduling Problems 135

5.1 Introduction . 135

5.2 Generating Precedence Constrained Technician and Task Scheduling

Problem Instances . 137

5.2.1 Creating Varying Precedence Levels 137

5.2.2 Dataset Generator . 139

5.2.3 Precedence Constrained Instances 139

5.3 Heuristic Approaches . 139

5.4 Metaheuristic . 141

5.4.1 Multi Start Hill Climbing . 141

5.4.2 Multi Start Tuning . 142

5.5 Experimental Results . 144

5.5.1 Equality of Means across Precedence levels 145

5.5.2 Effect of Precedence Constraints on Solution Quality 146

5.6 Discussion . 148

5.7 Summary . 149

6 Multi-Period Technician Routing and Scheduling Problem 151

6.1 Introduction . 151

6.2 Multi-Period Technician Routing and Scheduling Problem Formulation 152

6.3 Generating Multi-Period Technician Routing and Scheduling Problem

Instances . 156

6.3.1 Solution Visualisation . 158

6.4 Heuristic Approaches . 160

6.4.1 Adapted Greedy Heuristic 160

6.4.2 Adapted Intelligent Decision Heuristic 162

6.4.3 Adapted Look Ahead Heuristic 162

14 Table of contents

6.5 Improvement Phase . 163

6.6 Computational Experiments . 164

6.6.1 Simulated Annealing Tuning 165

6.7 Experimental Results . 168

6.8 Discussion . 168

6.9 Summary . 171

7 Service Technician Routing and Scheduling Problem with Time Windows 173

7.1 Introduction . 173

7.2 Problem Description . 175

7.3 Heuristic Approach . 175

7.3.1 Greedy Randomized Construction Heuristic 176

7.4 Improvement Phase . 178

7.4.1 Local Operators . 178

7.5 Metaheuristic . 180

7.5.1 Simulated Annealing with Restart 180

7.6 Computational Experiments . 182

7.6.1 Tuning the Greedy Randomized Heuristic 182

7.6.2 Tuning the Simulated Annealing with Restart Metaheuristic . 185

7.7 Experimental Results . 188

7.8 Discussion . 191

7.8.1 Performance of Greedy Randomized Heuristic on NoTeam

Instances . 191

7.8.2 Performance of Greedy Randomized Heuristic on

ReducedNoTeam Instances 192

7.8.3 Summary of Performance 192

7.9 Summary . 193

8 Discussion 195

8.1 Literature Review . 195

Table of contents 15

8.2 Technician and Task Scheduling Problem 196

8.3 Large Scale Technician and Task Scheduling Problem 197

8.4 Precedence Constrained Technician and Task Scheduling Problem . . 198

8.5 Multi Period Technician Routing and Scheduling Problem 199

8.6 Service Technician Routing and Scheduling Problem with Time Win-

dows . 200

8.7 Summary . 201

9 Conclusions and Future Work 205

9.1 Research Question . 205

9.2 Research Outcomes . 205

9.3 Objectives . 207

9.4 Review of Contributions . 211

9.5 Future Research . 213

9.5.1 Site Management . 213

9.5.2 Tools and Spare Parts . 214

9.5.3 Varying Travel Times . 214

9.5.4 Mandatory Breaks . 215

9.5.5 Individual Employee Preferences 215

9.6 Further Advice and Guidance . 215

References 217

Appendix A 227

Appendix B 235

Appendix C 247

Appendix D 257

Appendix E 269

List of figures

1.1 Diagram showing the complexity classes for decision and optimisation

problems . 29

2.1 Pseudocode showing the implementation of a hill climbing metaheuristic 60

2.2 Pseudocode illustrating an implemenation of an iterative local search

metaheuristic . 61

2.3 Pseudocode describing the implementation of the simulated annealing

metaheuristic . 63

2.4 Pseudocode illustrating the tabu search metaheuristic 64

2.5 Venn diagram showing the commonalities between three personnel

scheduling problems, the technician and task scheduling problem, the

vehicle routing problem and the home healthcare problem 71

3.1 HTML output of a solution to dataset A3 of the ROADEF 2007 chal-

lenge detailing the team configurations and job assignments over multi-

ple days . 80

3.2 Flowchart describing a solution process for solving the ROADEF 2007

challenge . 81

3.3 Pseudocode describing the implementation of the intelligent decision

heuristic . 84

3.4 Bar chart showing the mean objective results found including one

standard deviation on dataset B4 using different outsourcing strategies 91

18 List of figures

3.5 Bar chart showing the mean objective results found including one

standard deviation on dataset B8 using different outsourcing strategies 91

3.6 Bar chart showing the mean objective results found including one

standard deviation on dataset X2 using different outsourcing strategies 92

3.7 Bar chart showing the mean objective results found including one

standard deviation on dataset X7 using different outsourcing strategies 92

3.8 Bar chart showing the mean objective results found including one

standard deviation on dataset X10 using different outsourcing strategies 92

3.9 Pie chart showing the percentage improvement of the local operators

on the set A problem instances . 94

3.10 Pie chart showing the percentage improvement of the local operators

on the set B problem instances . 94

3.11 Pie chart showing the percentage improvement of the local operators

on the set X problem instances . 95

3.12 Chart describing the effects on objective function using different param-

eter settings for iterative local search experiments on dataset A7 . . . 97

3.13 Chart describing the effects on objective function using different param-

eter settings for iterative local search experiments on dataset X6 . . . 97

3.14 Flowchart illustrating the complex precedence relationships present

between jobs in dataset B6 . 104

3.15 Flow chart shwing the solution path of the look ahead construction

heuristic . 105

3.16 Figure showing the local operator decompose and rebuild change a day

within a solution . 109

3.17 Figure showing the local operator decompose and rebuild N change

multiple days within a solution . 110

3.18 Graph showing the solution value over time using a range of initial

simulated annealing temperatures for dataset B1 113

List of figures 19

3.19 Graph showing the solution value over time using a range of initial

simulated annealing temperatures for dataset X8 114

4.1 Flowchart showing the creation of the large scale technician and task

scheudling problem datasets . 125

4.2 Pseudo code illustrating the creation of multi-level precedence relation-

ships between a subset of jobs . 126

4.3 Example of multi-level precedence and successor relationships between

a set of jobs using the precedence generator algorithm 126

4.4 Pseudo code detailing the implementation of the greedy heuristic for

the large scale technician and task scheduling problem datasets 130

5.1 Diagram showing 50 % precedence relationships between a set of jobs 138

5.2 Diagram showing 100 % precedence relationships between a set of jobs 138

5.3 Flowchart describing the creation of the precedence constrained techni-

cian and task scheduling problem datasets 140

5.4 Pseudo code showing the implementation of the multi start hill climbing

metaheuristic . 141

5.5 Bar chart showing the average objective values obtained using different

values of restart on jobs with between 0-100 % on a 100 job problem

instance . 143

5.6 Bar chart showing the average objective values obtained using different

values of restart on jobs with between 0-100 % on a 400 job problem

instance . 143

5.7 Bar chart showing the average objective values obtained using different

values of restart on jobs with between 0-100 % on a 800 job problem

instance . 144

5.8 Graph showing the mean value produced for each dataset using each

level of precedence exhibiting a positive correlation 147

20 List of figures

6.1 HTML output showing a solution to dataset T5, which has 50 jobs and

a pool of 10 technicians. Jobs are colour coded to show their priority

levels. 159

6.2 Scatter plot showing the distribution of the customer’s locations in

dataset T5, each job is randomly located 160

6.3 Pseudo code showing the adapted greedy construction heuristic used to

solve the multi-period technician routing and scheduling datasets . . . 161

6.4 Pseudo code describing the adapted look ahead construction heuristic

used to solve the multi-period technician routing and scheduling datasets162

6.5 Graph showing the average objective value over time using different

initial starting temperatures for dataset T10 166

6.6 Graph showing the average objective value over time using different

initial starting temperatures for dataset T13 166

6.7 Graph showing the average objective value over time using different

initial starting temperatures for dataset T28 167

6.8 Barchart showing the average objective values found for the adapted

greedy, adapted look ahead and the adapted intelligent decision heuristic

part 1 . 168

6.9 Barchart showing the average objective values found for the adapted

greedy, adapted look ahead and the adapted intelligent decision heuristic

part 2 . 169

7.1 Figure showing the pseudo code for the greedy randomized construction

heuristic used to solve the service technician routing and scheduling

problems with time windows . 178

7.2 Figure showing the implementation of the simulated annealing with

restart metaheuristic on the service technician routing and scheduling

problems with time windows . 181

7.3 Graph showing temperature over time using different starting tempera-

tures and decrement rates . 186

List of figures 21

7.4 Chart showing the main and interaction effects of the StepSize, Temperature

and Decrement parameters on datasets C101_5×4_NoTeam and C103_5×

4_NoTeam . 187

8.1 Chart showing the problems studied in this research, the problem sizes,

number of instances and complexities 203

List of tables

2.1 Table showing the technician and task scheduling problems and varia-

tions that have been studied in the literature part 1 51

2.2 Table showing the technician and task scheduling problems and varia-

tions that have been studied in the literature part 2 52

2.3 Table illustrating the solution approaches applied for solving technician

and task scheduling problems . 56

3.1 Table showing the seven different outsourcing strategies used in the

outsourcing experiments . 90

3.2 Table showing the datasets used for the outsourcing experiments . . . 90

3.3 Table showing the chi-square statistics calculated for set A, B and X

datasets . 95

3.4 Table showing the parameter settings for the iterative local search

experiments . 96

3.5 Table showing the priority permutations used for the ROADEF 2007

challenge datasets . 99

3.6 Table showing the computational results on the ROADEF 2007 chal-

lenge datasets for the intelligent decision heuristic part 1 100

3.7 Table showing the computational results on the ROADEF 2007 chal-

lenge datasets for the intelligent decision heuristic part 2 101

3.8 Initial temperatures for the simulated annealing tuning experiments on

the ROADEF 2007 challenge datasets 112

24 List of tables

3.9 Computational results found on the ROADEF 2007 challenge datasets

using the the look ahead heuristic part 1 115

3.10 Computational results found on the ROADEF 2007 challenge datasets

using the the look ahead heuristic part 2 116

4.1 Table showing the large scale technician and task scheduling problem

instances that were generated using the data generator 128

4.2 Table showing the analysis of a subset of the large scale technician and

task scheduling problem instances against some the ROADEF 2007

challenge datasets . 128

4.3 Computational results for the intelligent decision, greedy and look

ahead heuristic on the large scale technician and task scheduling prob-

lem instances . 132

5.1 Table showing the average objectives achieved using the intelligent

decision, greedy and look ahead heuristic on the precedence constrained

problem instances . 145

5.2 Table showing the calculated values for the one sided T Test on the

equality of means . 147

6.1 Table showing the multi-period technician routing and scheduling prob-

lem data instances, T1 to T30 . 157

6.2 Table showing the set of initial temperatures for the simulated annealing

metaheuristic experiments . 165

7.1 Table showing the datasets chosen for tuning the greedy randomized

heuristic . 183

7.2 Table showing the tuning experiment results for the greedy randomized

heuristic on the chosen datasets . 184

7.3 Table showing the parameter settings for the implementations of the

simulated annealing with restart metaheuristic 185

List of tables 25

7.4 Table showing the minimum, maximum and average objective re-

sults for the service technician routing and scheduling problem on

the NoTeam instances . 189

7.5 able showing the minimum, maximum and average objective results for

the service technician routing and scheduling problem on the ReducedNoTeam

instances . 190

A.1 Table showing the ROADEF 2007 technician and task scheduling prob-

lem instances . 228

A.2 Table describing the precedence constrained technician and task schedul-

ing problem instances . 229

A.3 Table showing the service technician routing and scheduling problem

NoTeam instances including the number of available technicians . . . 230

A.4 Table showing the service technician routing and scheduling problem

ReducedNoTeam instances including the number of available technicians231

A.5 Table summarising the simulated annealing with restart performance

metrics on the NoTeam problem instances 232

A.6 Table summarising the simulated annealing with restart performance

metrics on the ReducedNoTeam problem instances 233

Chapter 1

Introduction

The right person, in the right place, at the right time. This simply-articulated goal

underpins a variety of real-world and academic optimisation problems. These problems,

commonly referred to as "technician and task scheduling problems", are intractable,

no polynomial time algorithm is known to find the globally optimal solution. Efficient

solution methodologies are needed for the discovery of high quality solutions in short

computational times. Optimised scheduling has the potential to; reduce incurred labour

costs, increase customer satisfaction, ensure repeat business, provide a fair workload

for employees, and reduce the environmental impacts of vehicles used.

A technician and task scheduling problem in the simplest form requires a workforce

to be allocated to complete a set of jobs that each require skills. An example of a

technician and task scheduling problem solved in this thesis is the ROADEF 2007

challenge problem. This problem requires a set of jobs to be completed, where each job

has skill requirements. The technician or team who services the job must possess the

necessary levels of skills to complete it. The process of creating a team to service a job

is referred to as "teaming" throughout this research. In addition, each job has a duration,

the time it takes the technician or team to complete it. Jobs also have priority levels

which is a numerical value that represents how important it is to serve this job early. A

complicating factor of this problem is that there are some days when technicians are

not available. There are also relationships present between jobs. These relationships

are called precedence relationships where one job may not begin until another has been

28 Introduction

completed. Lastly, this problem also includes outsourcing. Outsourcing means giving

a job to a third party to complete which incurs a financial cost. In some datasets of

the ROADEF 2007 challenge an outsourcing budget is given which must be utilised.

Choosing which jobs to outsource is itself an NP hard optimisation problem.

The sponsor of this research, Service Power PLC, is a leading field service schedul-

ing provider. The aim of this research is to determine the complexities associated with

technician and task scheduling problems and find efficient ways to handle them. Cur-

rently, research in the field is focusing on solving small scale problems for which exact

solution methodologies may be used. In addition, many of these solution methodologies

proposed have been tested on a single problem framework with no investigation into

how well the heuristic could be adapted to solve closely related problems or the same at

scale, such as industrially sized problems.

However, the research undertaken in this thesis is purely focused on heuristic

solution methodologies, which can be used to solve real world problems of a realistic

size and varying nature, in order to implement the findings into commercial software.

This research aims to investigate the most common and complex aspects of technician

and task scheduling problems, designing robust and scalable heuristic methodologies to

find high quality solutions, whilst balancing time efficiency.

It is important to note that all experiments performed have used a HP Z210 Work-

station, with an i7-2600 CPU with 3.4 GHZ and 12GB of RAM. As hardware becomes

more powerful, the number of iterations performed will increase, this can make it

difficult to compare algorithms on a like for like basis. Where possible the issue of

hardware and processing power has been addressed, by using an appropriate run times,

and running heuristics on the same machinery.

1.1 Complexity Theory

The design and development of solution methodologies to solve optimisation/decision

problems are inherently related to the complexity of the problem under consideration.

Alan Turing proved that some problems are so hard they are “undecidable” (Turing,

1.1 Complexity Theory 29

1936). The example was “given a computer program and an input, could a polynomial

time algorithm decide whether this code would terminate?”. It concluded that there was

no such algorithm known and therefore this problem is classified as “intractable”.

It is important to note, that the complexity classifications are based on decision

problems, not optimisation problems, which have a natural representation, where the

answer is a “yes” or “no” outcome (Lenstra et al., 1977). However, each optimisation

problem can be reduced to a decision problem which can then be classified using the

complexity classes. There are four complexity classifications based on the assumption

that P ̸= NP, as shown in Figure 1.1.

Figure. 1.1 Diagram showing the complexity classes for decision and optimisation
problems

P

The complexity class, P, denotes the set of decision problems that can be solved within

polynomial time on a deterministic Turing machine (Cook, 2006). An example of

three problems which fall into this category, P, are: 1) finding the greatest common

denominator between two or more values, 2) deciding whether a number N is prime

or not and, finally, 3) finding the shortest path between two nodes. No matter the size

30 Introduction

of the problem under consideration, it can be solved to optimality when phrased as a

decision problem.

The shortest path problem requires the shortest path between two nodes, A and B

to be found, where the objective function is the sum of all traversed nodes. There are

polynomial time algorithms to solve this problem such as Dijkstra’s algorithm (Dijkstra,

1959) and improvements on the efficiency by Ahuja et al. (1990), Abraham et al. (2016),

and Jain et al. (2016). The time it takes to solve these problems is a polynomial function

of the problem size N. Both versions of the shortest path problem are presented, as an

optimisation/search problem and as a decision problem.

Optimisation Problem : "Find the shortest path between nodes A and B"

Decision Problem : "Does there exist a feasible path between A and B of length X?"

NP

The class NP denotes the set of decision problems that are solvable on a nondeterministic

Turing Machine (Szelepcsényi, 1988) within some polynomial function of the problem

size N. A problem that is NP is also verifiable on a yes instance, a feasible solution, by

a deterministic polynomial time algorithm (Weisstein, 2017).

The implications of the complexity classes P and NP being equivalent is far reaching.

If it could be shown that any problem belonging to NP can be solved to optimality using

a deterministic polynomial time algorithm, then this would prove that any problem

belonging to NP can also be solved, and indeed any problem belonging to the class NP

complete could be solved also. This would mean that all problems would have efficient

solution methodologies that could be implemented allowing for faster computation of

solutions as the scale of problem increases. As expected, there has been much effort to

both prove and disprove this theory with neither yet achieved.

NP hard

A problem x is only NP hard if there exists a decision problem y belonging to NP that

is reducible to x in polynomial time. Therefore, any problem belonging to the class

1.1 Complexity Theory 31

NP hard is at least as hard as any problem belonging to NP. Optimisation problems

which are NP hard have decision problems that are NP complete. It has been shown

that the travelling salesman problem is an NP hard problem (Bonomi and Lutton,

1984). This problem requires a salesman to visit a set of N cities, each at different

geographical locations in the shortest distance possible (Hoffman et al., 2013). The

vehicle routing problem can be seen as a generalisation of the travelling salesman

problem (Eksioglu et al., 2009), where a set of vehicles (salesmen) travel to visit a set

of customers in the shortest cumulative distance (Laporte, 1992). Therefore, the vehicle

routing problem is also an NP hard problem (Lenstra and Kan, 1981). The vehicle

routing problem was first studied by Clarke and Wright (1964) and has been studied

extensively throughout the past decades (Beasley (1983), Fisher (1994), Montané and

Galvao (2006), and Lalla-Ruiz et al. (2016)). Additionally, the technician and task

scheduling problem is a generalisation of the vehicle routing problem where the set of

technicians is heterogeneous in terms of skill and is therefore also NP hard. An example

of both the optimisation problem and the decision problem for the travelling salesman

problem is given.

Optimisation Problem : "Find the shortest tour for the salesman visiting all cities"

Decision Problem: "Does there exist a feasible tour of length X?"

NP complete

The set of NP complete problems is the set of problems, which belong to NP, for which

it is possible to reduce any other problem belonging to NP to this problem. The set

of problems belonging to NP complete is both NP and NP hard i.e. the intersection.

Problems which have been shown to be NP complete are the graph colouring problem

(Jensen and Toft (2011) and Titiloye and Crispin (2011a)), 3 SAT (Gu et al., 1999), and

the Hamiltonian problem (Garey et al., 1976). The graph colouring problem aims to

find the smallest number of colours to colour a graph such that no two adjacent vertices

are the same (Lewis, 2016). Again, both the decision and optimisation versions of the

graph colouring problem are stated.

32 Introduction

Optimisation Problem : "Find the smallest K colouring"

Decision Problem : "Does there exist a feasible colouring where k=3?"

The complexity classifications are based on the assumption that P ̸= NP. If P = NP,

this means that NP problems can be solved to optimality within polynomial time on a

deterministic Turning Machine. This concept was first introduced by Stephen Cooke in

1971, who won the Alan Turing award in 1982 for significant contribution to the field

of complexity theory (Cook, 1983) and subsequently a prize of $1,000,000 dollars as

part of the Millennium problems (Carlson et al., 2006), has been offered for a correct

proof on this matter (Cook, 2003).

In fact, most scheduling problems are NP-hard combinatorial optimisation problems,

such as nurse rostering (Qu and He (2009) and Asta et al. (2016)), job shop scheduling

(Hoogeveen et al. (1996) and Panwalkar et al. (2016)), and unmanned aerial vehicle

scheduling (Drucker et al., 2010). This means that there are no known polynomial time

algorithms that can solve these problems to optimality within a discrete time period

(Krishnamoorthy et al., 2012). In the literature, exact techniques which examine every

possible configuration, are used to solve technician and task scheduling problems that

contain scheduling up to 29 jobs. For this reason, exact techniques are prohibitive

for many real world and large scale scheduling problem instances and approximate

techniques must be used (Blum and Roli, 2003). Approximate techniques have no

guarantee of finding the optimal solution, but generally are able to find quality solutions

in short computational times (Rabadi, 2016).

1.2 Research Plan

Research Aim

What are the complexities associated with technician and task scheduling problems and

how can they be dealt with effectively?

1.3 Publications 33

Objectives

The research question will be answered by completing the following objectives.

Objective 1: Undertake a review of approaches for solving technician and task schedul-

ing problems with an emphasis on problem definition, available datasets, heuristic, and

metaheuristic methodologies.

Objective 2: Design and develop heuristic methodologies to solve the technician and

task scheduling problem and evaluate the performance of the heuristics against other

approaches in the literature.

Objective 3: Investigate the constraints and complexities commonly associated with

technician and task scheduling problems and strategies to overcome them.

Objective 4: Implement a range of trajectory metaheuristics to solve variants of the

technician and task scheduling problem and devise approaches for parameter tuning.

Objective 5: Develop multi-period technician routing and scheduling problem instances

and implement the heuristic methodologies developed to test their robustness handling

extra constraints. Empirically evaluate all of the heuristic implementations.

Objective 6: Develop a set of large scale technician and task scheduling problem

instances to test the scalability of the heuristics developed.

1.3 Publications

The following papers have been published/submitted in connection with this research,

full papers can be found in Appendix A-D.

1. Khalfay A., Crispin A., Crockett K. (2016) Solving Technician and Task Schedul-

ing Problems with an Intelligent Decision Heuristic. In: Czarnowski I., Caballero

A., Howlett R., Jain L. (eds) Intelligent Decision Technologies 2016. Smart

34 Introduction

Innovation, Systems and Technologies, vol 56. Springer, Cham, Awarded Best

Student Paper, https://doi.org/10.1007/978-3-319-39630-9-6.

2. "A Review of Technician and Task Scheduling Problems, Datasets and Solution

Approaches" Amy Khalfay, Alan Crispin and Keeley Crockett, In: Intelligent

Systems Conference, IntelliSys September 7th-8th 2017, London. In Press

3. Khalfay A., Crispin A., Crockett K. (2018) Applying the Intelligent Decision

Heuristic to Solve Large Scale Technician and Task Scheduling Problems. In:

Czarnowski I., Howlett R., Jain L. (eds) Intelligent Decision Technologies 2017.

IDT 2017. Smart Innovation, Systems and Technologies, vol 72. Springer, Cham,

https://doi.org/10.1007/978-3-319-59421-7-7

4. "Solving the Service Technician Routing and Scheduling Problem with Time

Windows" Amy Khalfay, Alan Crispin and Keeley Crockett, Submitted To: Oper-

ations Research, Springer, April 2017. Under Review

1.4 Contributions to Knowledge

1. A review of the constraints, datasets and solution approaches used in the

field of technician and task scheduling problems (Chapter 2). The review

highlights the need to design and develop approximate solution approaches that

are both robust and scalable to solve these real world problems that occur in

a range of industrial settings. The review demonstrates that previous solution

approaches have not been applied to multiple problems, of varying nature and size,

in order to prove their efficiency/ability to be applied in commercial settings.

2. The intelligent decision heuristic characterised by its ability to consider

multiple seed jobs and possible team configurations simultaneously (Chap-

ters 3 to 6). The heuristic considers the utilisation of each possible team by

considering the potential further allocations, before making an allocation decision.

This heuristic has been used to solve a diverse range of problems in this research

1.4 Contributions to Knowledge 35

such as the technician and task scheduling problem, the large scale technician

and task scheduling problem, the precedence constrained technician and task

scheduling problem and, lastly, the multi-period technician routing and schedul-

ing problem. The heuristic has produced competitive results on each set of data

tested and proved its validity as a solution approach.

3. A look ahead heuristic that has a preprocessing phase to calculate the un-

derlying indirect precedence relationships present between jobs (Chapters

3 to 6). This heuristic considers the subsequent impact of an allocation deci-

sion to the scheduling process in regards to the idle teams which are left and

the allocations they may be given. This heuristic has also been applied to a

range of problems: the technician and task scheduling problem, the large scale

technician and task scheduling problem, the precedence constrained technician

and task scheduling problem and, lastly, the multi-period technician routing and

scheduling problem. The look ahead heuristic has proved to be both a robust

(handling extra constraints such as location and travel time) and scalable (problem

size) solution approach and has generally outperformed the intelligent decision

heuristic.

4. A data generator which has been designed and developed in order to gen-

erate technician and task scheduling problems (Chapters 4 to 6). In this

research, novel datasets have been generated in order to explore certain aspects of

the problems, which occur in the real world but are not featured within datasets

available in the literature. In this thesis, 12 new large scale technician and task

scheduling problems, 25 technician and task scheduling datasets containing vary-

ing levels of precedence constraints and 30 multi-period technician routing and

scheduling problem instances have been created. These datasets have addressed

the problems highlighted in Chapter 2, the need for more datasets featuring

a range of constraints and problem sizes available publicly to researchers, for

further investigation into the field.

36 Introduction

5. New mathematical formulation of the multi-period technician routing and

scheduling problem (Chapter 6). Due to the extension of the ROADEF 2007

challenge problem which now contains location and travel time constraints, the

mathematical formulation had to be updated to account for the extra complexities

added. In this thesis, a mathematical formulation for the multi-period technician

routing and scheduling problem is described. This is a novel problem in the field

as it most importantly includes scheduling over multiple days, constructing teams

subject to technician unavailability, and scheduling over a geographical area. This

problem also includes other constraints such as priority levels, skill requirements,

and outsourcing.

6. The greedy randomized heuristic which is a flexible scheduling approach

with multiple allocation criteria (Chapter 7). This heuristic is the first se-

quential heuristic to be tested on the service technician routing and scheduling

problem with time windows Kovacs et al. (2012), a single day problem extended

from vehicle routing instances. This heuristic was able to find new best known

results in 18% of the 72 data instances tested. This is an impressive result due

to the complexity of the problems under consideration which include routing,

skills, time windows and outsourcing, and the datasets are subject to very short

computational run times of less than 90 seconds.

1.5 Thesis Overview

Chapter 2

In Chapter 2, a literature review is presented based on the field of technician and task

scheduling problems. This chapter focuses on three key areas; the problem definitions

that have been proposed and constraints which were included, the datasets that have

been studied and the solution approaches applied. The current gaps in the field are

also identified, which form the foundation of this thesis, which includes solving large

scale problems, multi day problems, precedence constrained problems, and routing with

1.5 Thesis Overview 37

medium scale datasets. Lastly, the effectiveness of proposed heuristics solving a single

type of technician and task scheduling problem has been undertaken numerous times,

however, there has been no research conducted that investigates how well the heuristic

approach can be adapted in order to solve closely related problems or the same problem

at scale. Therefore, the main aim of this research is to explore the common constraints

associated with technician and task scheduling problems but also to analyse how well

heuristic approaches can be adapted to solve problems with varying frameworks, or

sizes.

Chapter 3

Chapter 3 introduces the ROADEF 2007 challenge problem, which is a technician and

task scheduling problem, from real world data. The datasets come from a telecommu-

nications company, named France Telecom, who wished to limit the growth of their

workforce, whilst providing a high quality service, and reducing their operational costs.

Two approaches were developed and applied to solve the 30 datasets, the intelligent

decision heuristic, and the look ahead heuristic. The first approach, the intelligent

decision heuristic, characterised by its ability to evaluate multiple scenarios, performed

well on the majority of datasets but did struggle on datasets with a high level of prece-

dence relationships and skill sparsity amongst technicians. A second approach was

then designed, the look ahead heuristic, which focused on the impact/consequences

of decisions made during the scheduling process. The look ahead heuristic performed

well on all instances, matching the performance of other heuristic approaches in the

literature and outperforming the intelligent decision heuristic overall.

Chapter 4

Chapter 4 focuses on solving a set of large scale technician and task scheduling problems.

Large organisations, such as the sponsor of this research, Service Power PLC, face

scheduling problems where there are hundreds of employees to schedule and thousands

of jobs to allocate. For this reason, scalable solution approaches are needed that

38 Introduction

can tackle large problems efficiently in time constrained scenarios. A set of large

scale instances has been created, using the data generator (which was designed), as

there is a lack of large scale data available in the literature to test the performance of

heuristics. These datasets have been generated under the framework of the ROADEF

2007 challenge, and contain scheduling up to 2500 jobs whilst adhering to many

constraints. The intelligent decision and look ahead heuristic, featured in the previous

chapter, Chapter 3, were then implemented to solve these large scale problems in order

to ascertain whether the heuristics developed are scalable approaches when compared

to a simple greedy heuristic (created for comparative purposes).

Chapter 5

Using the data generator, developed in Chapter 4, another set of technician and task

scheduling problems were created, the precedence constrained technician and task

scheduling problems. Precedence constraints arise in many sectors where tasks must be

performed in a certain sequence, such as the housing development trade, utility repair

services, and telecommunications. However, the occurrence of precedence constraints

within technician and task scheduling problems has remained largely unstudied. The

aim of this chapter is to investigate the effect that precedence constraints have on the

quality of solution that can be obtained using different heuristic approaches and use

the results for forecasting and predictions. The datasets developed contain varying

percentages of precedence levels within the same set of jobs. To do this, a precedence

algorithm was developed that made multi-level precedence relationships between jobs.

Again, the approaches discussed in previous chapters are implemented, the intelligent

decision, the look ahead and the greedy heuristic to test the robustness of the heuristics.

Chapter 6

A constraint that has not yet been featured in the problems studied so far was location

and travel time. These are important considerations since most organisations, including

the sponsor of this research, are required to send out their employees to the client to

1.5 Thesis Overview 39

complete the job. To generate problems that include location, this constraint was added

on to the ROADEF 2007 challenge problem as it is a multi-day problem with up to

800 jobs to allocate with many other constraints to satisfy. Chapter 6 introduces the

multi-period technician routing and scheduling problem and provides the mathematical

formulation of this problem. Each job was randomly given a location and a depot was

created that technicians depart from and return to. To solve these datasets, a modified

look ahead heuristic, intelligent decision heuristic, and greedy heuristic have been

implemented, providing a performance analysis and an assessment of the robustness of

the heuristics.

Chapter 7

The last stage of this research solved a technician and task scheduling problem from the

literature, the service technician routing and scheduling problem with time windows in

Chapter 7. This problem was adapted from vehicle routing instances by Kovacs et al.

(2012) and is concerned with scheduling 100 jobs over a single day. This problem

included not only the complexity of location and travel time but also time windows in

which customers must be visited, an emerging constraint in the field of technician and

task scheduling problems. Due to the short computational times, a greedy randomized

heuristic, with a flexible allocation criterion, was developed which was coupled with a

simulated annealing with restart metaheuristic. The heuristic performed well on these

datasets finding new best known results in 18% of data instances.

Chapter 8

Chapter 8 provides a discussion of each of the problems presented, solution approaches

implemented and tuning experiments performed in Chapters 3 to 7. This research has

focused on five problems; the technician and task scheduling problem, the large scale

technician and task scheduling problem, the precedence constrained technician and

task scheduling problem, the multi-period technician routing and scheduling problem

and, lastly, the service technician routing and scheduling problem with time windows.

40 Introduction

Some of the problems have been taken from the literature, others adapted to increase

the problem complexity and others developed with a data generator due to a lack of

available datasets in the literature. A wide range of constraints has been included in

the problems studied in this research, which commonly arises in real world settings.

For each problem featured, a comparative analysis of the heuristic performance on

the datasets is presented, as well as insight into the robustness and scalability of the

heuristic approach.

Chapter 9

Lastly, Chapter 9 provides an overall conclusion about the research undertaken in this

thesis. The original aim of this research was to investigate the complexities which

arise in the field of technician and task scheduling problems. This research has shown

there is an infinite list of complexities that arise in this area due to the real world

nature of the problems under consideration. This research has studied some of the most

common constraints and complexities featured by studying a range of technician and

task scheduling problems and indicates directions for further research. In addition,

three new sets of data have been generated, available publicly to researchers, which

address some of the key challenges faced. The main challenges that have been identified

and explored in this thesis are; solving large scale problems, problems including

precedence constraints, problems including location and travel time, problems which

involve teaming, and scheduling over multiple days subject to unavailability. Further

areas for investigation are also identified such as the inclusion of mandatory breaks and

tools and spare parts.

Chapter 2

Literature Review and Associated

Technical Background

2.1 Introduction

This chapter presents a review of the current literature based in the field of technician

and task scheduling problems. These problems are types of personnel scheduling

problems (Castillo-Salazar et al., 2016), characterised by a heterogeneous workforce,

and tasks with varying requirements. These problems approximate a number of real-

world personnel scheduling problems faced by large organisations (Van den Bergh

et al., 2013), with previous research effort studying personnel scheduling problems

faced by Sears (Weigel and Cao, 1999), France Telecom (Fırat and Hurkens, 2012), and

British Telecom (Lesaint et al. (2000) and Reid et al. (2016)). In addition, there has

been some investigation of problems inspired by industry sectors rather than specific

companies: Rasmussen et al. (2012) and Rest and Hirsch (2016) reported on work

targeted at the home health care sector and Cortés et al. (2014) studied a problem based

on maintenance technician dispatching.

Technician and task scheduling problems, as mentioned above, differ from classical

personnel scheduling problems in both the available workforce and the tasks to be

scheduled. Individual employees in the workforce possess quantified levels of skill

42 Literature Review and Associated Technical Background

across a set of domains (areas of expertise). Tasks impose specific requirements in

the number of employees needed with specific skill levels in the same domains. Thus,

problem instances may exhibit significant skill shortages or overabundances. Technician

and task scheduling problems have been identified in: utility services (Chen et al., 2017),

security patrols (Mısır et al. (2015) and Leigh et al. (2016)), gas and electrical services,

and general maintenance (Castillo-Salazar et al., 2012).

These problems are NP hard combinatorial optimisation problems. Finding even a

feasible solution is a complex task, let alone controlling navigation through the search

space to find optimal solutions. In fact, these problems are actually composed of several

optimisation subproblems, such as task assignment and tour scheduling (Alsheddy

and Tsang, 2011), with overall optimal solutions requiring trade-offs between the

subproblems. Typically, the problems’ objective is to schedule all tasks in the most

time-efficient and least costly manner.

Efficient handling of technician and task scheduling problems has many benefits to

the organisations that face them, such as reduced operational costs and improved client

satisfaction. Research in the field has focused on many different problem formulations

(Fırat and Hurkens (2012), Pillac et al. (2012), and Mathlouthi et al. (2016)) and both

exact and heuristic approaches have been used to solve them (Hashimoto et al. (2011)

and Zamorano and Stolletz (2017)). However, to date, there has been little research

effort in identifying common constraints in these problems, quantifying the complexity

added by these constraints, or exploring efficient techniques for handling them.

Research in the field is somewhat fragmented, with most work reporting on the

suitability of a single approach to solving a single problem (Castillo-Salazar et al.,

2012). Typically, the data used in demonstrating the suitability of the approaches are

small scale (Mathlouthi et al. (2016)), and it remains unclear whether the results of

experiments using the reported approaches are similar on closely-related problems, or

even larger datasets on the same problem. As a result, industries or companies faced

with technician and task scheduling problems remain dubious as to the applicability

2.2 Constraints 43

of approaches from the literature to solve their wide ranging real-world problems and

more generalised solution methodologies are needed (Ernst et al., 2004).

This remainder of this chapter is structured as follows; section 2.2 describes the

constraints that are usually associated with technician and task scheduling problems

in order highlight which constraints are used most frequently, and which constraints

need further investigation. Section 2.3 presents the technician and task scheduling

problem datasets available in the field to identify if there are any additional constraints

to be considered or constraints that have not been studied simultaneously. Section 2.4

discusses the solution approaches used to solve technician and task scheduling problems

to highlight promising solution approaches that have been applied to solve technician

and task scheduling problems and discusses their scalability and robustness. Next,

section 2.5 describes the metaheuristics used and section 2.6 identifies the current gaps

and limitations within the literature. Section 2.7 discusses related scheduling problems

in the literature, and lastly, section 2.8 concludes on key areas for research in the field

of technician and task scheduling problems to benefit not only the research community

but industry also.

2.2 Constraints

Many constraints have been featured in technician and task scheduling problems. The

following subsections will explain each of the constraints included throughout the

literature in the variations of the technician and task scheduling problem that have been

studied.

Skill Requirements

A significant feature of technician and task scheduling problems are the occurrence of

skill requirements. Usually, tasks will impose specific demands of skill that must be

met in order to be completed. In most scheduling problems in the literature, there are

domains, which are areas of expertise, and levels within the domains which classify

44 Literature Review and Associated Technical Background

proficiency. Skills are usually hierarchical, if a technician is skilled to level 3 in a

particular domain, then the technician is also skilled at levels 1 and 2 as well. The set

of technicians is heterogeneous, includes members who have varying skill levels, i.e.

highly skilled and lower skilled workers.

Most technician and task scheduling problems studied in the literature include skill

requirements such as Society (2007), Kovacs et al. (2012), Pillac et al. (2012). Pillac,

Gueret and Medaglia (2013), Cortés et al. (2014), Mathlouthi et al. (2016), Chen et al.

(2016), and Zamorano and Stolletz (2017). One problem that does not include skill

requirements as hard constraints is a problem studied by Xu and Chiu (2001).

Routing

The complexity of routing is an important aspect of many technician and task scheduling

problems. In most settings, the set of customers will each have a location, and so skilled

personnel must travel to these locations to service customers. The occurrence of routing

also usually implies that there is a central depot, from which skilled personnel depart

from and return to at the beginning and end of each day. The travel times are accounted

for between these locations and the depot, and are usually calculated as Euclidean

distance. However, in many practical situations, travel time can be variable dependent

on the day of the week or the time of the day that the journey between two customers

is made. In addition, the use of a SAT NAV can also estimate the journey time which

takes into account traffic incidents, roadworks, and congestion.

Problems featuring the complexity of routing in the literature include Pillac, Gueret

and Medaglia (2013), Mathlouthi et al. (2016), and Chen et al. (2016) who studied

technician routing and scheduling problems, Kovacs et al. (2012) who studied a service

technician routing and scheduling problem, Tricoire et al. (2013) who studied the multi-

period field service routing problem, and Zamorano and Stolletz (2017) who studied

the multi-period technician routing and scheduling problem.

Pillac, Gueret and Medaglia (2013) studied instances extended from Solomon (1987)

that included scheduling up to 100 jobs, which was validated using vehicle routing

2.2 Constraints 45

instances. The heuristic performed well achieving an average gap from optimal results

of 0.23% on the vehicle routing instances and provided a set of benchmark results on the

proposed instances. Smaller instances were studied in Tricoire et al. (2013), Mathlouthi

et al. (2016), Chen et al. (2016), and Zamorano and Stolletz (2017) emphasizing the

inability of exact methods to solve realistic sized problems which occur in the real world.

In addition, Kovacs et al. (2012) also extended vehicle routing instances by Solomon

(1987), containing 100 jobs, meaning the problem only consisted of scheduling a crew

over a single day, but did include the complexity of teaming.

Teaming

Building teams is also an important constraint, particularly in the utility and service

maintenance sector. Some jobs require skills which cannot be fulfilled by a single

skilled worker. In addition, in some industries such as the building trade, it is prohibited

that workers work alone on a site because of the Management of Health and Safety at

Work Regulations 1999. Therefore, a team must be made where the cumulative skills of

the team satisfy the job’s skill requirements. In most problems featuring the complexity

of teaming in the literature, the team is configured at the beginning of the working day

and will stay together for the whole day.

For this reason, team formation decisions require much consideration in order to

make sure the team’s skills are utilised. In the real world, a manual planner may also

take into account other information such as knowing which technicians work well

together. There are few problems in the existing literature featuring the complexity of

teaming, but some works include the ROADEF 2007 challenge (Society, 2007) which

included real world problem instances and a service technician routing and scheduling

problem studied by Kovacs et al. (2012) adapted from vehicle routing problem data.

Single Period/ Multi-Period

There are also differences in the size of the scheduling horizon, the number of working

days available used in technician and task scheduling problems. Some problems in

46 Literature Review and Associated Technical Background

the literature have been adapted from vehicle routing problems and so, have only one

scheduling day, because in the vehicle routing problem the objective is to minimise

the total distance travelled on a single day whilst serving all customers. However,

there are some multi-period problems in the field of technician and task scheduling,

where typically the schedule can cover over a month of working days (Society, 2007).

Consequently, consideration must then be given to the acceptable amount of time

allowed to find feasible and high quality solutions. Typically, a schedule that will cover

a month should be given more computational time than a single day problem as the

impact of a bad solution will be more costly to the organisation.

Single day problems have been studied by Pillac, Gueret and Medaglia (2013) and

Kovacs et al. (2012) as the instances were adapted from vehicle routing problems. The

ROADEF 2007 challenge problem was a multi-period problem (Dutot et al., 2006)

including scheduling up to 800 jobs. Multi-period problems were also studied by Math-

louthi et al. (2016) and Zamorano and Stolletz (2017) although on small scale instances

containing no more than 30 jobs to schedule due to the exact solution approaches used.

Time Windows

Time windows are an emerging constraint within the field of technician and task

scheduling problems. Service providers are seeking to differentiate themselves from

each other in a competitive market to maintain market share. Allowing a customer to

choose their own preferred time slot may result in a better customer experience, higher

rates of customer satisfaction, and in turn produce repeat business.

Time windows have been included in technician and task scheduling problems

studied by Pillac, Gueret and Medaglia (2013), Kovacs et al. (2012), Tricoire et al.

(2013), Mathlouthi et al. (2016), and Zamorano and Stolletz (2017). The size of the

time window can vary depending on the industry. Time windows may span half a day, a

few hours or, in some cases, a single hour. In addition, there may be different levels of

time windows present within a set of jobs, in Kovacs et al. (2012) the datasets contained

either 50% or 100% time windows.

2.2 Constraints 47

Precedence Relationships

Precedence and successor relationships are also a common occurrence in many indus-

tries. A precedence relationship between jobs i and i′ implies that job i′ may not begin

until job i has been completed. A job i′ is a successor of i, and i precedes i′. Precedence

and successor constraints occur in sectors such as utilities, electrical maintenance, and

housing projects. For example, in housing projects, the decorations may not begin until

all the plastering is completed, which cannot be done until the brickwork is complete,

which is dependent on the ground work being ready. In addition, in utility services

fixing a fault may not begin until the road has been dug up and pipes can be accessed,

which cannot be done until the correct equipment is on the site. Furthermore, chains of

precedence relationships can develop between a set of jobs which adds to the complexity

of the scheduling problem.

Precedence constraints have been used in technician and task scheduling problems

such as the ROADEF 2007 challenge, which was tackled by Korteweg (2007) and Fırat

and Hurkens (2012), and in Zamorano and Stolletz (2017). There is has been little

investigation into the effect that precedence constraints have on the quality of solution

that can be obtained. Precedence constraints have also featured in related scheduling

problems, such as unmanned aerial vehicle scheduling (Park et al., 2016).

Priority Levels

Priority levels are also included in some technician and task scheduling problems. A

priority level quantifies how important it is to service a job as early as possible in

comparison to other jobs. These scenarios can arise where there are customers who

place a lot of orders to a business and so they will be seen as more important than

customers with smaller orders. Priority levels can also be used to classify the seriousness

of a fault in the maintenance sector, for example, the water being off in a town or city

compared to a minor leak in a single customer’s house.

Priority levels have been included in the ROADEF 2007 challenge (Society, 2007)

and research by Mathlouthi et al. (2016). Priority levels usually infer that the objective

48 Literature Review and Associated Technical Background

function will be a weighted sum of priority group end times. In addition, priority levels

occur in other industries such as the emergency services: ambulances, police, and fire

(Defraeye and Van Nieuwenhuyse, 2016).

Tools and Spare Parts

Tools and spare parts are an important complexity in the maintenance and repair sector.

Generally, there will be a finite number of tools that must be shared between the

technicians. A complicating factor is that the tools are usually located at a central

depot, and so may need to be collected and returned. Furthermore, spare parts are non-

replenishable, and therefore consideration must be given to stock levels at the central

depot and perhaps even nearby DIY shops. A problem where technicians began their

routes with a set of tools and spare parts was studied by Pillac, Gueret and Medaglia

(2013). Furthermore, an aviation problem also included the collection and drop off of

equipment needed to complete tasks (Erkoc and Ertogral, 2016).

Technician Unavailability

In some problems, there are also days or times when some technicians may not be

available for work. This is also an emerging constraint in the wider field of personnel

scheduling problems, as in law proper consideration must now be given to people

with special circumstances in relation to the working patterns and hours, under the

Employment Rights Act 1996 and Flexible Working Regulations 2014.

Unavailability of resources particularly affects the process of building a team as

all members must be available and there may be a trade off between sending someone

over qualified against waiting for a technician to become available. Most work does

not consider the unavailability of resources (Van den Bergh et al., 2013), however, the

ROADEF 2007 challenge does (Estellon et al., 2009).

2.2 Constraints 49

Dynamic Arrivals

Dynamic arrivals is another situation that occurs in some industries. A dynamic job is a

job that will need to be fitted into the schedule and arrives in real time. It is common

in the water, telecommunications, electricity, and gas services, where there are faults

that must be fixed quickly as there may be hundreds, perhaps thousands, of customers

affected. In addition, the emergency services is also a sector where jobs continually

arrive and must be allocated. When emergency jobs arrive in real time, any jobs that

have begun are fixed in position. Only jobs that have not yet begun can be moved

in order to fit in the emergency job. A dynamic scheduling problem was studied by

(Lesaint et al., 2000) and by Pillac et al. (2012) on a telecommunications problem.

Pillac et al. (2012) demonstrated that when new requests appear it is better to con-

struct a new schedule rather than try to reoptimise and fit in the dynamic job, 56 problem

instances were tested, again adapted from Solomon (1987). In addition, research by

Lesaint et al. (2000) which studied the BT scheduling problem, included scheduling

over a large geographical area and has saved significant amounts of operational costs

since implementation.

Summary

Section 2.2 has described the individual constraints that are usually associated with

technician and task scheduling problems. As demonstrated, there are many constraints

some of which are interdependent. For example, the constraint of technician unavailabil-

ity occurs only in multi day problems. Time windows and tools usually occur alongside

routing constraints as the technician may have to travel to collect the tool.

It seems sensible to focus research on the key constraints that arise simultaneously

in the real world and to focus on solving problems with constraints or properties that

have not been studied before. It appears there have been no problems investigated in

the literature studied which include routing, unavailability and teaming in multi day

scheduling problems. In addition, there has been no investigation into the effect of

precedence constraints on solution quality.

50 Literature Review and Associated Technical Background

2.3 Datasets

In this section, the datasets available in the literature that are based on variations

of the technician and task scheduling problem are presented. Some of the datasets

for technician and task scheduling have actually been adapted from vehicle routing

problem datasets proposed by Solomon (1987). Each problem contains a different set

of constraints. For example, some problems include the complexity of teaming, routing,

job relationships, priority levels, and tools and spare parts. Tables 2.1 and 2.2 show the

datasets that have been studied in this field, along with the constraints each problem

featured, the size of the problems, and the number of problem instances studied.

Technician and Task Scheduling Problem

A technician and task scheduling problem was the basis of the ROADEF 2007 challenge.

The ROADEF challenge is a biennial competition proposed by the French Operational

Research Society (Dutot et al., 2006), that invites researchers to compete to find efficient

ways of solving combinatorial optimisation problems. In 2007, the problem was a

technician and task scheduling problem and used real world datasets provided by France

Telecom, containing 30 data instances ranging from 5 to 800 jobs to schedule and 5 to

150 technicians. The aim of the problem is to allocate a set of jobs over a scheduling

horizon to a set of teams. Teams are made up of technicians, each with intrinsic skill

domain levels and days within the scheduling horizon when they are not available. Each

job has a priority level indicating how important it is to serve the job as early as possible.

In some problem instances, there is an available outsourcing budget that can be used,

which itself is an NP hard problem. Jobs can also have relationships with other jobs,

which can be precedence or successor relationships, where a job may not begin until

another has been completed. Jobs have skill requirements which must be satisfied by

the team which serves the job.

2.3 Datasets 51

Ta
bl

e
2.

1
Ta

bl
e

sh
ow

in
g

th
e

te
ch

ni
ci

an
an

d
ta

sk
sc

he
du

lin
g

pr
ob

le
m

s
an

d
va

ri
at

io
ns

th
at

ha
ve

be
en

st
ud

ie
d

in
th

e
lit

er
at

ur
e

pa
rt

1

A
ut

ho
r

Pr
ob

le
m

C
on

st
ra

in
ts

Jo
bs

In
st

an
ce

s

So
ci

et
y

(2
00

7)
Te

ch
ni

ci
an

an
d

ta
sk

sc
he

du
lin

g

Te
am

in
g

Te
ch

ni
ci

an
un

av
ai

la
bi

lit
y

Pr
io

ri
ty

le
ve

ls
O

ut
so

ur
ci

ng
Jo

b
re

la
tio

ns
hi

ps

80
0

30

Pi
lla

c,
G

ue
re

ta
nd

M
ed

ag
lia

(2
01

3)
Te

ch
ni

ci
an

ro
ut

in
g

an
d

sc
he

du
lin

g
R

ou
tin

g
Ti

m
e

w
in

do
w

s
To

ol
s

an
d

sp
ar

e
pa

rt
s

10
0

56

K
ov

ac
s

et
al

.(
20

12
)

Se
rv

ic
e

te
ch

ni
ci

an
ro

ut
in

g
an

d
sc

he
du

lin
g

Te
am

in
g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

10
0

14
4

X
u

an
d

C
hi

u
(2

00
1)

Fi
el

d
te

ch
ni

ci
an

sc
he

du
lin

g
R

ou
tin

g
Ti

m
e

w
in

do
w

s
10

00
20

Z
am

or
an

o
an

d
St

ol
le

tz
(2

01
7)

m
ul

ti-
pe

ri
od

te
ch

ni
ci

an
ro

ut
in

g
an

d
sc

he
du

lin
g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

Te
am

in
g

25
/2

7
10

2

52 Literature Review and Associated Technical Background

Ta
bl

e
2.

2
Ta

bl
e

sh
ow

in
g

th
e

te
ch

ni
ci

an
an

d
ta

sk
sc

he
du

lin
g

pr
ob

le
m

s
an

d
va

ri
at

io
ns

th
at

ha
ve

be
en

st
ud

ie
d

in
th

e
lit

er
at

ur
e

pa
rt

2

A
ut

ho
r

Pr
ob

le
m

C
on

st
ra

in
ts

Jo
bs

In
st

an
ce

s

Tr
ic

oi
re

et
al

.(
20

13
)

M
ul

ti-
pe

ri
od

fie
ld

se
rv

ic
e

ro
ut

in
g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

Te
ch

ni
ci

an
un

av
ai

la
bi

lit
y

B
re

ak
s

10
0

10

M
at

hl
ou

th
ie

ta
l.

(2
01

6)
M

ul
ti-

at
tr

ib
ut

e
te

ch
ni

ci
an

ro
ut

in
g

an
d

sc
he

du
lin

g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

To
ol

s
an

d
sp

ar
e

pa
rt

s
Pr

io
ri

ty

25
20

Pi
lla

c
et

al
.(

20
12

)
D

yn
am

ic
te

ch
ni

ci
an

ro
ut

in
g

an
d

sc
he

du
lin

g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

To
ol

s
an

d
sp

ar
e

pa
rt

s
D

yn
am

ic

10
0

56

C
or

té
s

et
al

.(
20

14
)

R
ea

ll
if

e
te

ch
ni

ci
an

di
sp

at
ch

in
g

R
ou

tin
g

Ti
m

e
w

in
do

w
s

10
0

56

2.3 Datasets 53

Technician Routing and Scheduling Problem

Technician routing and scheduling problems in the literature include studies by Kovacs

et al. (2012) and Pillac, Gueret and Medaglia (2013). The work by Kovacs et al. (2012)

extended the vehicle routing problem instances proposed by Solomon (1987) into a

service technician routing and scheduling problem with time windows. The problem

concatenated skill requirements for each job based on the skill requirements present in

some of the ROADEF 2007 challenge datasets. In this problem, teams leave the depot

and travel to service customers. This version of the problem negated some constraints

that are present in the ROADEF 2007 challenge problem, such as precedence and

successor relationships, priority levels, multiple days, technician unavailability, and

outsourcing budgets, but did contain the complexity of routing and time windows.

The work by Pillac, Gueret and Medaglia (2013) extended the instances in Solomon

(1987) by generating skills, tools and spare parts information randomly. This problem,

the technician routing and scheduling problem, did not include the complexity of

teaming or precedence relationships. However, this is the first work the author is aware

of that included the complexity of tools and spare parts, an important aspect of service

maintenance problems.

Field Technician Scheduling Problem

A field technician scheduling problem was proposed by Xu and Chiu (2001), where

jobs had to be serviced at different locations within a time window. This research did

not treat skill compatibility as a hard constraint (Paraskevopoulos et al., 2017) which

is the under pinning constraint that makes a scheduling problem a technician and task

scheduling problem. The objective was to maximise the number of served jobs with

a predefined time period whilst minimising the cost of the workforce. This research

tested problem instances with up to 1000 jobs, which is representative of the scale of

real world problems that occur in the industry.

The industrial sponsor of the research presented in this thesis Service Power PLC

faces the problem of solving large scale scheduling problems that include skill require-

54 Literature Review and Associated Technical Background

ments and many other complexities. Finding efficient ways to solve these problems

within reasonable computational times is of great importance.

Multi-period Technician Routing and Scheduling Problem

Mathlouthi et al. (2016) explored the multi-period technician routing and scheduling

problem by generating datasets. The datasets contained up to 25 jobs and CPLEX, an

industry standard software package, was used to solve the mixed integer programming

model. The problem included complexities such as skill requirements, priority levels,

time windows, breaks, and overtime. This work found that CPLEX could only solve

all instances with 10 jobs to allocate within reasonable computational times. This

paper demonstrated how the computational time rapidly increases with problem size

and complexity, and the need for approximate scalable solution approaches for use in

commercial settings.

Both artificial and real world datasets were used by Zamorano and Stolletz (2017).

The artificial datasets contained up to 25 jobs, and the real data instances contained up

to 27 jobs. This research again emphasized the difficulties faced with scalability and

robustness of exact solution approaches and the need for hybridized approaches.

Multi-Period Field Service Routing Problem

The multi-period field service routing problem studied by Tricoire et al. (2013) used

both exact and hybrid solution approaches. The datasets used in this research were

artificial and contained two sets, C4 small instances up to 40 jobs and C1 up to 100 jobs,

and contained the complexities of routing, time windows, unavailability and breaks.

This paper highlighted that even after 7 days of computational time, the branch and price

technique was not able to find the optimal solution for 2 out of 5 instances. However,

when using some heuristic techniques within branch and bound, a feasible solution can

be found for all instances within 24 hours of computational time, further highlighting

the need for heuristic solution methodologies.

2.4 Solution Approaches 55

Dynamic Technician Routing and Scheduling Problem

A dynamic technician routing and scheduling problem was studied by Pillac et al. (2012).

In this problem, new job requests appear as the schedule is implemented in real time.

This is another aspect of a real world situation faced by the industry. These datasets

were created extending vehicle routing problem instances from Solomon (1987), and so

contain scheduling 100 jobs over a single day. This paper concluded by suggesting it is

more beneficial to create a new schedule rather than to try and reoptimise the existing

schedule once a new job arrives.

2.4 Solution Approaches

Many approaches have been applied to solve the technician and task scheduling problem

and its variations. Both exact and approximate approaches have been used. Table 2.3

shows some of the most cited solution approaches that have been applied to technician

and task scheduling problems and their variants. The following subsections will describe

the most effective solution approaches that have been used in the field to solve technician

and task scheduling problems.

Approximate Mixed Integer Programming

Approximate mixed integer programming techniques have been used by Hurkens (2009)

and Fırat and Hurkens (2012) to solve the technician and task scheduling problem

proposed by the ROADEF 2007 challenge (Society, 2007). In these approaches, a

construction algorithm was designed that broke down the overall scheduling problem

into smaller sub problems. These sub problems then used the CPLEX library to solve

these smaller mixed integer programming problems. These approaches did not contain

an improvement phase, but the construction algorithm produced high quality solutions

and solved problems with up to 800 jobs in time bounded conditions. Fırat and Hurkens

(2012) outperforms other approaches on the set X problem instances of the ROADEF

2007 challenge.

56 Literature Review and Associated Technical Background

Table 2.3 Table illustrating the solution approaches applied for solving technician and
task scheduling problems

Solution Approach Author

Approximate Mixed Integer Hurkens (2009)

Programming Fırat and Hurkens (2012)

Adaptive Large Neighbourhood Cordeau et al. (2010)

Search Kovacs et al. (2012)

Greedy Randomized Adaptive Hashimoto et al. (2011)

Search Procedure

Local Search Estellon et al. (2009)

Tsang and Voudouris (1997)

Parallel Matheuristic Pillac, Gueret and Medaglia (2013)

Branch and Price Tricoire et al. (2013)

Zamorano and Stolletz (2017)

Cortés et al. (2014)

Mixed Integer Programming Mathlouthi et al. (2016)

Adaptive Large Neighbourhood Search

Adaptive large neighbourhood search heuristics have been used by both Cordeau et al.

(2010) and Kovacs et al. (2012) to solve a technician and task scheduling problem and a

service technician routing and scheduling problem with time windows. The adaptive

large neighbourhood search heuristic is based on the seminal work by Shaw (1998) with

the large neighbourhood search heuristic. The adaptive large neighbourhood search

uses several destroy and repair operators. A destroy operator removes a portion of

the current solution, and the repair operator reinserts the removed tasks back into the

solution. In adaptive large neighbourhood search, the effectiveness of each destroy

and repair operator is tracked such that operators that have performed well so far are

2.4 Solution Approaches 57

more likely to be selected, which will aid the search for quality solutions. Cordeau et al.

(2010) ranked 2nd place in the ROADEF 2007 challenge, whilst Kovacs et al. (2012)

provided a set of benchmark results on proposed problem instances.

Greedy Randomized Adaptive Search Procedure

A greedy randomized adaptive search procedure was used by Hashimoto et al. (2011)

to solve the ROADEF 2007 challenge (Society, 2007). This approach proved to be a

successful one, as Hashimoto et al. (2011) won 1st place in the student category of the

ROADEF 2007 challenge. The greedy randomized adaptive search procedure comprises

of two components, a greedy heuristic and then a local search phase. A solution is made

using a greedy algorithm, iteratively selecting the best decision at each stage of the

scheduling process. Local search is then used to try to improve the solution for a short

amount of computational time. This process is run multiple times and the best solution

found is recorded.

Local Search

Local search has been used by Estellon et al. (2009) to solve the ROADEF 2007

challenge. This heuristic came joint 2nd place with the adaptive large neighbourhood

search used by Cordeau et al. (2010). In this heuristic, an initial solution is constructed

using a greedy heuristic. Next, in the improvement phase, operators are iteratively

applied in order to reduce the objective function, which is priority weighted. This

approach was coupled with a hill climbing metaheuristic.

Mathheuristic

The mathheuirtsic is a novel heuristic proposed by Pillac, Gueret and Medaglia (2013).

The heuristic was created in order to solve a technician routing and scheduling problem

that included many constraints. The mathheuirtsic is composed of three phases, a con-

struction algorithm, a parallel adaptive large neighbourhood search and a mathematical

programming post optimisation phase. The parallel adaptive large neighbourhood search

58 Literature Review and Associated Technical Background

takes advantage of the parallel architectures which result in a significant computational

speed up.

Branch and Price

Branch and price is an exact solution technique. This method has proved popular as

many authors have used this technique: Tricoire et al. (2013), Cortés et al. (2014), and

Zamorano and Stolletz (2017). Branch and price combines branch and bound with

column generation techniques in order to solve large integer programming problems.

However, exact solution approaches are only suitable for small sized problems, medium

and large scale problems must be solved using approximate approaches due to the

complexity and the need to solve these problems within reasonable computational time.

MIP Programming

Mixed integer programming has been used by Mathlouthi et al. (2016) to solve a multi

skill technician routing and scheduling problem. Again, this solution approach is only

suitable on small sized problems and so would not be suitable on an industrial scale. In

mixed integer programming, variables are restricted to take integer values, and can be

solved using commercial software such as CPLEX.

Summary

This section has discussed some of the solution approaches that have been applied to

solve technician and task scheduling problems. It is obvious that exact techniques such

as MIP programming or branch and price are only suitable approaches for solving small

scale problems, which is problematic, as the situation that arises in the real world will

be of a realistic size, and so these approaches would not be suitable. It is difficult to

compare approaches against each other as not all solution approaches have been applied

to solve the same problems. For example, research by Kovacs et al. (2012), Pillac et al.

(2012), and Pillac, Gueret and Medaglia (2013) proposed new problem instances and so

their approaches provided benchmark results. As the ROADEF 2007 challenge problem

2.5 Metaheuristics 59

instances have been solved by multiple researchers, the results here can be compared.

The approximate MIP approaches by Fırat and Hurkens (2012) and Hurkens (2009)

performed overall best on the instances especially in the set X instances which are the

most complex. Competitive results have also been achieved on these instances with

Estellon et al. (2009), Cordeau et al. (2010), and Hashimoto et al. (2011). The research

in this thesis will focus on designing and developing heuristic solution approaches,

that are robust and are able to solve realistically sized problems whilst balancing time

efficiency.

2.5 Metaheuristics

Most approximate solution approaches to solving technician and task scheduling prob-

lems are two phase. In the first phase, the construction phase, an initial solution is

generated. In the second phase, the improvement phase, local operators are applied

which perturb the current solution generating a neighbouring solution. This neighbour-

ing solution has to be evaluated, using a cost function. According to Blum and Roli

(2003), "metaheuristics are high level strategies for exploring search spaces by using

different methods". It is important to note that metaheuristics are not problem specific

like heuristics are, they are tools. The following subsections will describe four popular

trajectory metaheuristics: hill climbing, iterative local search, simulated annealing,

and tabu search. The use of trajectory metaheuristics is popular in time constrained

environments in such complex solution space. Each of these metaheuristics has been

used successfully to solve a range of combinatorial optimisation problems.

Hill Climbing

Hill climbing is the most simple and easy to implement metaheuristic as there are

no input parameters to tune. Figure 2.1 illustrates the hill climbing metaheuristic as

descirbed in Minsky (1961). First, the initial solution generated using the construction

heuristic is recorded as the best solution, SBest , on line 1. On each iteration, a local

60 Literature Review and Associated Technical Background

operator o is selected randomly and applied to solution S which generates a neighbouring

solution S′ on line 4.

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O:
the set of local operators

1: SBest ← S
2: while termination criteria not met do
3: randomly choose o ∈ O
4: S′← o(S)
5: if S′ ≤ S then
6: S← S′

7: if S≤ SBest then
8: SBest ← S
9: end if

10: end if
11: end while
12: return SBest

Figure. 2.1 Pseudocode showing the implementation of a hill climbing metaheuristic

If solution S′ is of better quality than solution S, has a lower objective value, then it is

accepted and becomes the new current solution S on line 6. If solution S is now of better

quality than the best solution SBest , then it replaces it on line 8. Once the termination

criterion has been met, the best solution is output. Hill climbing has been proven to be

successful in solving a range of combinatorial optimisation problems and was used by

Estellon et al. (2009). One of the drawbacks of the hill climbing metaheuristic is that it

does not incorporate an escape mechanism, it never accepts a worse solution. For this

reason, it can get stuck in local optima.

Iterative Local Search

Iterative local search can be considered as an extension to the hill climbing metaheuristic

as it does include an escape mechanism. Iterative local search is classed as a multi

start technique, first proposed by (Lourenço et al., 2003) and contains a diversification

quality (Martí et al., 2010). There are two parameters associated with this metaheuristic,

the step size N and the kickoperator.

2.5 Metaheuristics 61

The implementation of iterative local search is shown in Figure 2.2. Again, the

initial solution is saved as SBest on line 1 and the variable count is assigned the value

0 on line 2. On each iteration, a local operator o is randomly selected and applied to

solution S which generates neighbouring solution S′ on line 5. If solution S′ is of better

quality than solution S then it is accepted and becomes the current solution S on line 7.

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O:
the set of local operators, N: maximum steps before restarting from best solution,
count: counter of iterations

1: SBest ← S
2: count← 0
3: while termination criteria not met do
4: randomly choose o ∈ O
5: S′← o(S)
6: if S′ ≤ S then
7: S← S′

8: if S≤ SBest then
9: SBest ← S

10: count← 0
11: end if
12: else
13: count← count +1
14: end if
15: if count = N then
16: S′← kickop(S)
17: S← S′

18: count← 0
19: end if
20: end while
21: return SBest

Figure. 2.2 Pseudocode illustrating an implemenation of an iterative local search meta-
heuristic

If solution S is now of better quality than the best solution, then it replaces SBest on

line 9, and the count variable is reset to 0 as an improving move has been found. If the

neighbouring solution is not of better quality then the variable count is incremented by

one. On line 15 a check is performed, if the number of non improving moves, i.e. count

is equal to the maximum step size N, then a kickoperator is applied to S generating S′

on line 16. The solution S′ then replaces S on line 17 to become the current solution (no

62 Literature Review and Associated Technical Background

matter the quality of the new solution) and the search will continue from this point in

the solution space. Once the termination criterion has bet met the best solution is output

on line 21. This feature of the iterative local search metaheuristic allows the algorithm

to escape local minima when it becomes stuck in a non-improving loop. However,

much care must be taken to control the strength of the kickoperator and the number of

non improving moves permitted. Iterative local search can help ensure that previously

unvisited regions of the solution space are searched, and that computational time is not

wasted progressing towards local optima.

Simulated Annealing

Simulated annealing is one of the most widely used metaheuristic techniques. This

metaheuristic was first proposed by Kirkpatrick et al. (1983) and has shown to be able to

produce quality results not only in the field of technician and task scheduling problems

(Cordeau et al., 2010) but in other optimisation problems.

The process of annealing comes from the field of physics and involves the heating

and controlled cooling of a metal in order to reduce its imperfections and form a smooth

lattice structure. This concept was brought into the field of combinatorial optimisation

to help guide heuristics through the search space to find global minima.

This metaheuristic has two parameters, the temperature T and the decrement δT .

Simulated annealing has the ability to escape local optima, through the ability to accept

a worse quality solution. The chance of accepting a worse quality solution is controlled

by the temperature parameter. The simulated annealing metaheuristic is shown in Figure

2.3. On each iteration, a local operator is randomly selected and applied to solution S

which generates S′. If S′ is of better quality then it replaces S on line 6. If solution S is

better than the best-found solution so far then it replaces SBest on line 8. However, if

solution S′ is of worse quality than solution S then a probability p is calculated on line

12. The probability p is the negative exponential of the difference in solution quality

divided by the temperature parameter. If the probability p is greater than a random

number generated on the interval {0,1} then S′ is accepted and replaces S on line 14.

2.5 Metaheuristics 63

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O:
the set of local operators, T : multi-period technician routing andmperature, δT : the
cooling rate

1: SBest ← S
2: while termination criteria not met do
3: randomly choose o ∈ O
4: S′← o(S)
5: if S′ ≤ S then
6: S← S′

7: if S≤ SBest then
8: SBest ← S
9: end if

10: else
11: r← random(0,1)
12: p← exp(S′−S)/T
13: if p≥ r then
14: S← S′

15: end if
16: end if
17: T ← T ·δT
18: end while
19: return SBest

Figure. 2.3 Pseudocode describing the implementation of the simulated annealing
metaheuristic

After each iteration the temperature parameter is decremented using δT , reducing the

likelihood of accepting a worse quality solution. Once the termination criterion has

been met the best solution is output.

Tabu Search

Tabu search is another powerful trajectory metaheuristic and has been applied to many

combinatorial optimisation problems. The main feature of tabu search is adaptive

memory (Glover and Taillard, 1993). This heuristic approach was first used by Glover

(1986) but since has included many adaptations and improvements to solve problems

such as the vehicle routing problem (Gendreau et al., 1994), multi depot vehicle routing

problem (Cordeau et al., 1997) and the travelling salesman problem (Gendreau et al.,

1998).

64 Literature Review and Associated Technical Background

The aim of this heuristic is to force the search into previously unvisited areas of the

search space. A list of restricted solutions, usually the past N visited solutions, is kept

which restricts the allowable moves to unvisited areas.

Variables: S: current solution, S′: chosen neighbouring solution, SBest : the best
solution, RestrictedList: the list of previously visited moves, sNeighbourhood: list of
possible moves, CandidateList list of allowable moves

1: SBest ← S
2: RestrictedList= null
3: while termination criteria not met do
4: CandidateList=null
5: for sCandidate ∈ sNeighbourhood do
6: if sCandiate! ∈ RestrictedList then
7: CandidateList← sCandiate
8: end if
9: end for

10: S′← bestsol(CandidateList)
11: if S′ ≤ SBest then
12: SBest ← S′

13: end if
14: Update RestrictedList
15: end while
16: return SBest

Figure. 2.4 Pseudocode illustrating the tabu search metaheuristic

Figure 2.4 demonstrates a tabu search metaheuristic. On line 1, the solution gener-

ated by the construction heuristic is stored as SBest , and the RestrictedList is set to null.

Whilst there is computational time remaining a CandidateList is constructed, for each

candidate solution in the neighbourhood of possible solutions, a check is performed on

line 6. If the solution is not a member of the RestrictedList then it is permitted join the

CandidateList. On line 10, the best solution amongst the candidate solutions is selected

as S′. If S′ is better than SBest then it replaces it on line 12. On line 14, the restricted list

is updated, and once the computation time has been reached the best solution is output

on line 16.

2.5 Metaheuristics 65

Comparison of Metaheuristics

The aim of a metaheuristic is to guide the lower level heuristic and so it seems natural

that an analysis is made on the relative freedom and convergence properties of the

techniques. One of the important qualities of a metaheuristic is the ability to escape

local optima. In such complex problems, the solution space is full of peaks and troughs.

It can be easy to end up in a trough and so, there is a need to be able to navigate

through the solution space by accepting a worse solution in the hope of being able to

find a better quality one. However, as is clear in the literature the amount of freedom

given to exploring worse quality solutions must be weighed up against the amount

of computational time remaining, the formulation of the objective function and the

complexity of the problem under investigation.

For example, simulated annealing contains a probability at all times of accepting

a worse quality solution that decreases over time. Iterative local search however at

times transports the search space to another area when a period of non-improvement

has occurred. Tabu search contains a memory aspect that forces the search away from

previously visited solutions and towards unvisited solution space.

Some trajectory metaheuristic approaches have been discussed, however, there

has been no mention of population based approaches such as genetic algorithms or

quantum annealing. There are a few reasons for this, one of the characteristics of genetic

algorithms is the cross over function, where two parent solutions join to form a child

solution. The child solution will have some information from each parent. In the context

of two scheduling solutions over a multi day horizon, with different team formations and

job distributions, it would be extremely difficult to perform this (Aickelin and Dowsland,

2004). Often problem specific knowledge is needed to successfully implement a genetic

algorithm on a complex optimisation problem, such as the use of a repair function

(Aickelin and Dowsland, 2000). It has been attempted in the nurse rostering problem,

where a repair function was used to ensure the child solution was valid, however, this

research concluded that the computational expense outweighed its benefits (Kundu et al.,

66 Literature Review and Associated Technical Background

2008). Furthermore, using a population based approach is computationally expensive,

especially on large scale problems (Tanomaru, 1995).

Quantum annealing has been used successfully in related optimisation problems

such as the travelling salesman problem (Martoňák et al., 2004), graph colouring

problem (Titiloye and Crispin, 2011b), and the vehicle routing problem (Crispin and

Syrichas, 2013). In order to implement quantum annealing on the technician and task

scheduling problem, a binary solution representation would have to be designed in order

to perform the interactions, stating the team formations, job allocations and job order,

across each day.

2.6 Discussion

As demonstrated, the field of technician and task scheduling problems is a vast research

field that needs continuing investigation. There are a wealth of industrial applications

which means that breakthroughs in this field have the potential to make both environ-

mental and financial impacts in this and other closely related fields. Furthermore, as

demonstrated in Burke et al. (2010) there is a need to develop solution approaches that

"work well, not only across different instances of the same problem but also across

different problem domains".

The complexity of teaming has been studied on relatively small problem sizes, for

example in Pillac, Gueret and Medaglia (2013) and Kovacs et al. (2012) the problem

instances contain at most 100 jobs that were adapted from vehicle routing problems.

Additionally, work by Gérard et al. (2016) concluded on the need to solve realistic

problems that include teaming constraints. The ROADEF 2007 challenge does deal

with teaming with larger instances, up to 800 jobs, but routing is not part of the problem

definition. The complexity of routing has been studied in many problems, with usually

up to 100 jobs. Routing was considered in Xu and Chiu (2001) with 1000 jobs, but skill

compatibility was not treated as a hard constraint, a fundamental property of technician

and task scheduling problems.

2.6 Discussion 67

Precedence constraints are featured in the ROADEF 2007 challenge but are absent

from many other problems that have been studied. Precedence constraints can occur in

many other application areas such as home health care. In the field of technician and

task scheduling problems, precedence constraints are featured in service maintenance,

housing developments, utility, and electrical services problems. Precedence constraints

add significant complexity to the problem and may influence the design of a solution

approach. It is vital that research is undertaken that considers precedence constraints

because they can occur in many sectors and pose significant challenges when designing

a solution approach.

Furthermore, the largest problems studied have included up to 1000 jobs in Xu and

Chiu (2001) although skill was not treated as a hard constraint. A problem with up to

800 jobs was studied in Society (2007). However, in most problems up to 100 jobs

are considered due to the datasets which have been developed from single day vehicle

routing problems. In many industrial scenarios, there will be many jobs to schedule over

a larger geographical area and realistically sized problem instances are needed in order

to validate solution approaches and assess their suitability for commercial purposes.

The lack of multi-period problems has also meant that the complexity of the unavail-

ability of resources needs further research and investigation. Typically many technician

and task scheduling problems and their variants are either adapted from vehicle rout-

ing problem instances or are artificial. The use of exact solution approaches has also

prohibited the use of multi-period problems as the problem size has had to be kept

relatively small for computational time. The unavailability of resources is also directly

linked to the complexity of teaming, as all team members must be available to join the

team. In large organisations, it is necessary to schedule a workforce over multiple days,

accounting for technician unavailability and, in some organisations, create teams to

complete jobs.

It appears that research in the field would benefit from being focused on multi-period

problems, large scale problems, technician unavailability, teaming and precedence

constraints.

68 Literature Review and Associated Technical Background

2.7 Related Personnel Scheduling Problems

The field of personnel scheduling is an interrelated one. There are many types of

problems, which can be classified into groups such as technician and task, travelling

salesman (Barketau and Pesch, 2016), vehicle routing (Bektaş et al., 2016), nurse

rostering (Santos et al., 2016) and home healthcare (Castillo-Salazar et al., 2016).

Within each of these groups, there are many variations of each problem, including

different collections of constraints/complexities. There are many commonalities and

differences between the groups of scheduling problems, which are discussed in further

detail in the following subsections.

Travelling Salesman Problem

The travelling salesman problem is one of the most widely studied combinatorial

optimisation problems since first being studied by Dantzig et al. (1954). It requires a

tour to be designed for a salesman such that all cities are visited in the shortest distance

possible (Held and Karp, 1970). Many solution approaches have been applied to this

problem: guided local search (Voudouris and Tsang, 1999), branch and cut (Fischetti

et al., 1997), ant colony optimisation (Dorigo and Gambardella, 1997), tabu search

(Li and Alidaee, 2016), genetic approaches (Kang et al., 2016), and hybrid heuristic

(Hernández-Pérez et al., 2016). The travelling salesman problem in comparison to the

other groups of problems is less complex, as it includes scheduling one salesman, over

a single day, with the objective function being calculated as the total distance travelled

(usually Euclidean).

Vehicle Routing Problem

The most notable problem related to the technician and task scheduling problem is the

vehicle routing problem, which evolved from the truck dispatching problem studied by

Dantzig and Ramser (1959) in the 1950’s. This problem has been studied extensively

throughout the decades (Lenstra and Kan (1976), Golden and Yee (1979), Christofides

et al. (1981), Paessens (1988), Osman (1993), Taillard et al. (1997), Golden et al. (2008),

2.7 Related Personnel Scheduling Problems 69

Szeto et al. (2011), and Bouzid et al. (2017)). The vehicle routing problem requires

scheduling a fleet of vehicles to serve a set of customers (Crispin and Syrichas, 2013).

Each vehicle leaves the depot and visits a subset of customers before returning to the

depot. The constraints of the problem are that each customer is visited exactly once. The

objective of the vehicle routing problem is to minimise the sum of the distance travelled

by the vehicles (Baker and Ayechew, 2003). Usually, the Euclidean distance between

customers is used. The vehicle routing problem is a generalisation of the travelling

salesman problem, where instead of single salesman there are multiple vehicles and

instead of serving all customers, each vehicle will serve a subset.

The vehicle routing problem has also been studied with various side constraints.

Constraints such as the capacity of the vehicles (Fukasawa et al., 2006), multiple

depots (Cordeau et al., 1997), and time windows in which customers must be visited

(Solomon, 1987). The technician and task scheduling problem can be thought of

as a generalisation of the vehicle routing problem. The main differences between

these scheduling problems are the homogeneousness of the vehicles (capacity) in the

vehicle routing problem compared to heterogeneousness of the workers (skill set) in

the technician and task scheduling problem. The vehicle routing problem is usually

concerned with making a schedule for a single day, whereas some technician and task

scheduling problems require scheduling for multiple days. Many solution approaches

have been applied to solve the vehicle routing problem such as tabu search (Badeau

et al., 1997), bee colony optimisation (Szeto et al., 2011), variable neighbourhood

search (Todosijević et al., 2017), and column generation (Desrochers et al. (1992) and

Mahvash et al. (2017)). Comprehensive reviews based on vehicle routing problems and

dynamic vehicle routing problems were undertaken by Lenstra and Kan (1981) and

Pillac, Gendreau, Guéret and Medaglia (2013) respectively.

Nurse Rostering

The nurse rostering problem also belongs to the set of personnel scheduling problems.

Unlike the other problems discussed, this problem typically includes various hard and

70 Literature Review and Associated Technical Background

soft constraints (Asensio-Cuesta et al., 2012). A hard constraint is one that must be

satisfied in order for the solution to be feasible (Shi and Landa-Silva, 2016). A soft

constraint is one which if possible is desirable to satisfy but if not a penalty cost may be

incurred. One feature of the nurse rostering problem which makes it different from other

scheduling problems is its cyclicness (Baker and Magazine, 1977), where solutions

can be reapplied since the demand of a hospital is stable and known. Comprehensive

surveys in this field have been undertaken by Sitompul and Randhawa (1989), Cheang

et al. (2003), Burke et al. (2004), Wright et al. (2017), and Gartner and Padman (2017).

Home Healthcare Problem

Another related scheduling problem is the home healthcare problem. The home health-

care problem requires the scheduling of skilled personnel to travel to patients based

in different locations to administer medication or provide care. This problem can

be thought of as a generalisation of the vehicle routing problem with time windows,

multiple depots, and compatibility constraints (Cheng and Rich, 1998). This problem

is becoming more prevalent in society as the population ages and private companies

begin to work in this area (Bertels and Fahle (2006) and Fikar and Hirsch (2017)). In

fact, some local authorities outsource as much as 100% of home care (Akjiratikarl

et al., 2007) and it is a rapidly growing industry (Rest and Hirsch, 2016). The main

purpose of this problem is to allow elderly patients to be treated in their own homes for

as long as possible (Rasmussen et al., 2012). The care given can be anything between

cleaning and making food, to changing bandages and dressings, and administering

medication. There are also many side constraints to be considered such as patient

preference on the nurses who visit (Braekers et al., 2016) and travel time between visits

dependent on the mode of transportation (walking, cycling, bus, tram, or car) (Hiermann

et al., 2015). Recent approaches such as variable neighbourhood search (Pinheiro et al.,

2016) have been implemented which provided a set of benchmark results on generated

instances, genetic algorithms (Shi et al., 2017) which were tested on literature instances

2.7 Related Personnel Scheduling Problems 71

performing efficiently, and branch and price (Rasmussen et al., 2012) which used both

real world and generated problem instances.

Summary

Figure 2.5 shows the commonalities between three of the personnel scheduling prob-

lems discussed: technician and task scheduling problems, vehicle routing problems

and the home healthcare problem. It is evident that there are many shared con-

straints/complexities between these problems and also some notable differences. One

of the notable differences between the vehicle routing problem and the other problems

is that the vehicle routing problem is concerned with a single day rather than multiple

days and contains a homogeneous workforce.

Figure. 2.5 Venn diagram showing the commonalities between three personnel schedul-
ing problems, the technician and task scheduling problem, the vehicle routing problem
and the home healthcare problem

As demonstrated in section 2.7 the technician and task scheduling problem is related

to many other personnel scheduling problems. There are shared constraints between

problems such as skill compatibility (assigning a worker/nurse who can perform/serve

the job/patient), travel time (between locations of jobs/patients) and time windows

(in which to serve a job or administer medication/care). It is, therefore, reasonable to

assume that approaches to solving a technician and task scheduling problem could be

adapted in order to solve the vehicle routing problem or the home healthcare problem

72 Literature Review and Associated Technical Background

since problems share common constraints and so research in the field of technician and

task scheduling problems have the potential to impact other industries.

2.8 Conclusion

This chapter has given a comprehensive study of the field of technician and task

scheduling problems and related personnel scheduling problems. A review of the

constraints that have been associated with the technician and task scheduling problems

and variants has been presented, and an analysis of which constraints have been studied

simultaneously and which constraints need further investigation.

This review has also discussed the datasets used in the field which has highlighted

some the limitations in the datasets available: such as the size of the scheduling problem

(many problems have studied up to 100 jobs), the number of scheduling days (some

datasets consider a single scheduling day only) and the source of the data (some

problems have been adapted from vehicle routing problem instances).

In addition, the literature has illustrated that exact techniques are only appropriate

for small scale problem instances. There is a need to develop heuristic approaches to

solve industry sized problems that arise in the real world. The use of metaheuristics has

also been discussed, it seems that most research in the field relies on trajectory methods

for computational efficiency in time constrained environments.

In the next chapter the first scheduling problem addressed in this research is intro-

duced, the technician and task scheduling problem, a real world problem, proposed by

the ROADEF 2007 challenge.

Chapter 3

Technician and Task Scheduling

Problems

3.1 Introduction

In this chapter, a technician and task scheduling problem is solved using two novel

heuristic procedures designed and developed, the intelligent decision heuristic and the

look ahead heuristic. A technician and task scheduling problem in the simplest form

requires a set of technicians, each with different skills, to be assigned to complete jobs,

which each require skills. As illustrated in chapter 2, there are many different variations

of technician and task scheduling problems that have been studied. In this chapter, the

technician and task scheduling problem chosen for investigation is the ROADEF 2007

challenge problem, as the datasets are from the real world and other researchers have

already studied this problem.

The ROADEF 2007 challenge, organised by the French Operational Research

Society, encouraged researchers to compete to find efficient ways of solving France

Telecom’s optimisation problem (Society, 2007). The aim of the ROADEF 2007

challenge problem is to construct a set of teams to service a set of jobs over a scheduling

horizon K = [1...k]. A scheduling horizon is a collection of days that make up a solution.

One of the interesting features of this problem is that it requires the workforce to be

74 Technician and Task Scheduling Problems

scheduled over multiple days. France Telecom wished to protect their market share and

maintain a high level of customer service whilst limiting the growth of their workforce

(Dutot et al., 2006). Characteristics featured in the ROADEF 2007 challenge problem

are still applicable to the problems faced today in many organisations (Montoya et al.,

2015).

The ROADEF 2007 challenge problem can be summarised as follows: each job has

domain skill requirements that need a team to be built in order to satisfy the demand.

A domain may be a particular area of expertise and a skill level will represent the

proficiency within that domain. Teams are made up of technicians who have intrinsic

skill domain levels and days where they are unavailable. In addition, there are also

dependency relationships between jobs, prohibiting some jobs being started until others

have been completed. Jobs also have a priority level, representing how important it is

to serve the job as early as possible. Jobs have a completion time and must be started

and finished on the same day. Furthermore, in some instances, there is an outsourcing

budget available (outsourced jobs do not contribute to the objective function).

Technician and task scheduling problems are classified as NP-hard problems, there

are no polynomial time algorithms known that can solve the problems optimally within

reasonable computational time. Therefore, the ROADEF 2007 challenge problem is

also NP hard, in fact even the sub problem of outsourcing jobs has been shown to be NP

hard (Estellon et al., 2009). For this reason, the approaches proposed in the literature

to solve the ROADEF 2007 challenge are all approximate approaches. The ROADEF

2007 challenge attracted a lot of research attention and a number of solution approaches

such as; adaptive large neighbourhood search (Cordeau et al., 2010), approximate

mixed integer programming (Fırat and Hurkens, 2012; Hurkens, 2009), local search

heuristics (Dongala, 2006; Estellon et al., 2009), greedy algorithms (Jaskowski and

Wasik, 2007; Pokutta and Stauffer, 2009), and greedy randomized adaptive search

algorithms (Hashimoto et al., 2011) have been proposed.

Two new heuristic approaches have been designed in this research to solve the

ROADEF 2007 challenge problem. The first approach, the intelligent decision heuristic

3.2 Problem Formulation 75

can be categorised by its ability to assess multiple team configurations and job alloca-

tions at once before making a decision. The look ahead heuristic is the second approach

that has been applied, that contains a preprocessing phase and considers the impact of

an allocation decision on the idle teams and subsequent allocations that can be made.

The remainder of this chapter is organised as follows, section 3.2 presents the formu-

lation of the ROADEF 2007 challenge problem and section 3.3 describes the real world

datasets. Section 3.4 introduces the intelligent decision heuristic and computational

experiments undertaken. Section 3.5 presents the look ahead heuristic and computa-

tional experiments. This chapter sets the foundation for the exploration of constraints

associated with technician and task scheduling problems and shapes the design and

development of heuristic approaches.

3.2 Problem Formulation

The mathematical formulation of the ROADEF 2007 challenge problem is given, this has

already been stated in the literature but is given here just for completeness. Equations

3.1 to 3.20 describe the ROADEF 2007 challenge problem.

The aim of the ROADEF 2007 challenge problem is to construct a set of teams to

service a set of jobs over a scheduling horizon K = [1...k], where k is a day belonging

to the scheduling horizon. Each day is of length 120 time units. Each job i belonging to

set N has certain properties, a priority level p where p ∈ [1...4], an execution time di, a

domain skill requirement matrix si
δα (where δ is the domain and α is the skill level),

an outsourcing cost ci and a set of successor jobs σi. The set of teams is denoted by

M = [1...m], which are made up of technicians T = [1...t].

The objective function set in the challenge is shown in Equation 3.1. The objective

function is a weighted sum of the latest ending times, ep, of each priority group where

wp = [28,14,4,1] for p = [1,2,3,4].

Minimize
4

∑
p=1

wp ∗ ep (3.1)

76 Technician and Task Scheduling Problems

The start times of jobs are denoted as bi. Equation 3.2 ensures that the latest ending

time for each priority group, p ∈ [1...3], must be greater than, or equal to, the start time

of every job plus the duration of the job.

ep ≥ bi +di ∀p ∈ 1,2,3, i ∈ Np (3.2)

In addition, Equation 3.3 ensures the latest ending time overall e4, is greater than, or

equal to, the start time of every job plus the duration of every job belonging to the entire

set of jobs.

e4 ≥ bi +di ∀i ∈ N (3.3)

Let xt,k,m = 1 if technician t belongs to team m on day k. Equation 3.4 guarantees that

if a technician is available to work, belongs to the set Tk, then the technician may only

be a member of one team that day.

∑
m∈M

xt,k,m ≤ 1 ∀k ∈ K, t ∈ Tk (3.4)

Conversely, Equation 3.5 confirms if a technician may not work, does not belong to the

set Tk, then the technician is not a member of any team on that day.

∑
m∈M

xt,k,m = 0 ∀k ∈ K, t /∈ Tk (3.5)

Let yi,k,m = 1 if job i is assigned to team m on day k. Equation 3.6 states that every job

belonging to the set of jobs N, must be either outsourced, zi = 1, or scheduled during

the scheduling horizon.

zi + ∑
k∈K

∑
m∈M

yi,k,m = 1 ∀i ∈ N (3.6)

Equation 3.7 ensures that if a team is assigned a job, yi,k,m = 1, then the collective skill

levels of the team are greater than or equal to the skill requirements needed to complete

3.2 Problem Formulation 77

the job.

yi,k,m ∗ si
δα ≤ ∑

t∈Tk

vt
δα ∗ xt,k,m ∀i ∈ N,k ∈ K,m ∈M,α ∈ A,δ ∈ D (3.7)

Equation 3.8 deals with the precedence relationships between jobs, so that if job i′ is a

successor of job i, belongs to the set σi, i′ may not begin until i has been completed.

bi +di ≤ b′i ∀i ∈ N, i′ ∈ σi (3.8)

Equations 3.9 and 3.10 deal with the working hours of the day. Equation (9) ensures

that if a job is scheduled to begin on day k, then the start time of the job is greater than

or equal to the beginning of that day. Equation (10) states that if a job is scheduled to

be completed on day k then the job must be completed before the working day ends.

120(k−1)∗ ∑
m∈M

yi,k,m ≤ bi ∀i ∈ N,k ∈ K (3.9)

120(k)∗ ∑
m∈M

yi,k,m ≥ bi +di ∀i ∈ N,k ∈ K (3.10)

Let ui,i′ = 1 if jobs i and i′ are assigned to the same team on the same day and i′

begins after i is completed. Equation 3.11 ensures time continuity, if two jobs happen

sequentially then the end time of job i is less than or equal to the start time of the job i′.

Here, G is a large number to satisfy the constraint when jobs do not happen sequentially.

bi +di−G(1−ui,i′)≤ b′i ∀i, i′ ∈ N, i ̸= i′ (3.11)

Equation 3.12 ensures the correct ordering of jobs. If two jobs happen sequentially,

then they must both be allocated to the same team and one must be scheduled before

the other.

yi,k,m + yi′,k,m−ui,i′−ui′,i ≤ 1 ∀i, i′ ∈ Ni ̸= i′,k ∈ K,m ∈M (3.12)

78 Technician and Task Scheduling Problems

In some problem instances of the ROADEF 2007 challenge problem there is an out-

sourcing budget available, C. Jobs that are outsourced do not contribute to the objective

function, therefore utilisation of this budget is important. Let zi = 1 if job i is outsourced.

Equation 3.13 ensures that the outsourcing budget is not exceeded.

∑zi ∗ ci ≤C ∀i ∈ N (3.13)

The set of jobs that are outsourced must adhere to precedence constraints, so if a job is

outsourced then so are all successor tasks, Equation 3.14.

|σi| ∗ zi ≤ ∑
i∈σi

z′i ∀i ∈ Nσ (3.14)

Equations 3.15-3.18 show that variables; xt,k,m , yi,k,m, ui,i′ and zi are binary.

xt,k,m = [0,1] ∀k ∈ K,m ∈M, t ∈ T (3.15)

yi,k,m = [0,1] ∀k ∈ K,m ∈M, i ∈ N (3.16)

ui,i′ = [0,1] ∀i, i′ ∈ N, i ̸= i′ (3.17)

zi = [0,1] ∀i ∈ N (3.18)

Lastly, Equations 3.19 and 3.20 show that the start and end times of jobs are non-

negative.

ep ≥ 0 ∀i ∈ Np (3.19)

bi ≥ 0 ∀i ∈ N (3.20)

3.3 Datasets

The ROADEF challenge is a biennial competition set by the French Operational Re-

search Society. Each competition proposes a combinatorial optimisation problem and

researchers compete to find the most efficient solution techniques within time con-

3.3 Datasets 79

strained environments. In 2007, the problem was a technician and task scheduling

problem. This problem was based on France Telecom’s optimisation problem and 30

real world datasets were used. France Telecom wished to maintain their market share

whilst optimising their workforce.

The ROADEF 2007 challenge comprised of three sets of data; A, B and X, each

increasing in complexity, see Appendix A. Each set of data contained 10 data instances.

There are no outsourcing budget in the Set A instances and the size of the instances

range from 5 to 100 jobs. Additionally, there are at most 20 domain skill levels (number

of domains × number of levels), and up to 20 technicians available in these datasets.

The Set A instances were the first to be released in the competition.

The Set B instances contain outsourcing budgets for each dataset. When there is an

outsourcing budget, the outsourcing budget is utilised before scheduling begins. Jobs

that are outsourced may not enter the schedules, and scheduled jobs may not enter

the outsourcing list. Furthermore, if a job is outsourced then so are all successor jobs.

Instances in Set B range from 120 to 800 jobs. There are between 15 and 120 domain

skill levels in these datasets and between 20 to 150 technicians available.

The Set X instances are the most complex instances in the ROADEF 2007 challenge

and were the last to be released. These instances range from 100 to 800 jobs, contain

outsourcing budgets and many domain skill levels, 36 to 105.

Interestingly, during analysis performed in this research of the datasets it was noted

that there are similarities between certain datasets. For example, datasets B9 and B10

contain the same set of jobs, however the set of available technicians for dataset B9 is

larger and dataset B10 has a larger outsourcing budget. This pattern was also observed

for datasets X9 and X10.

3.3.1 Solution Visualisation

A visual representation of a solution is important, an employer who needs to know

who is working, where they are, which jobs they are doing and who are they with. In

industrial software, these charts are often interactive. This allows a manager to make

80 Technician and Task Scheduling Problems

Figure. 3.1 HTML output of a solution to dataset A3 of the ROADEF 2007 challenge
detailing the team configurations and job assignments over multiple days

changes to a solution according to local knowledge that is not present in the datasets.

For example, removing or adding a team member to improve the working dynamics of

the team.

Figure 3.1 shows a HMTL output of a solution to dataset A3, an instance of 20 jobs

in the ROADEF 2007 challenge problem. The solution shown is the best known, with

an objective value of 11880 (Cordeau et al., 2010). Figure 3.1 shows that this solution is

made up of three days. On the first day, there are four teams (team6, team2, team3 and

team4,5,7), and each team has job assignments. The colouring of the jobs corresponds

to the priority set that the job belongs to.

As the length of a working day is 120 time units, it can be deduced that on day one

team6 is allocated two jobs, jobs 13 and 7, both priority one jobs, and each is 60 time

units. Due to the way the objective function is calculated, priority one jobs are the most

costly, followed by priority two jobs, and so on.

.

3.3 Datasets 81

Figure. 3.2 Flowchart describing a solution process for solving the ROADEF 2007
challenge

3.3.2 Solution Process

Solving technician and task scheduling problems is usually a multi stage process. The

first stage is the input of the data which describes the problem instance that is being

solved. The second stage is the scheduling stage where a solution is created and explored.

Lastly, the solution will be output, perhaps to a text file, a visual representation of the

solution or both.

For the ROADEF 2007 challenge problem, each instance comprises of three input

files, an instance file, a job file and a technician file as shown in 3.2. The instance file

contains the dataset name, the number of technicians, number of jobs, and available out-

sourcing budget. The technician file contains all the information about the technicians,

their skills and days on which they are not available. Lastly, the job file contains all the

information about the jobs, their skill requirements, priority levels, outsourcing costs,

and precedence relationships.

Next, this information is passed to the scheduler. The scheduler creates an initial

solution using the heuristic approach and tries to improve it with the metaheuristic.

Once the computational time has been reached, a HTML file is output as well as a text

82 Technician and Task Scheduling Problems

file. The HTML file is a pictorial representation of the solution that can be used by a

manager to disseminate the schedule to technicians, as shown in Figure 3.1. The text

file is used for verification, where the solution is put through an additional checker to

ensure feasibility and quality.

3.4 Intelligent Decision Heuristic

In this section the first of two approaches that have been designed to solve the ROADEF

2007 challenge problem is introduced.

3.4.1 Introduction

The intelligent decision heuristic is unlike other approaches that have previously been

applied to solve the ROADEF 2007 challenge problem instances. Other approaches

construct a team based on which job a scoring mechanism perceives to be the most

important job to allocate. A team is then created to service the job and if the team can

be allocated more jobs, then more jobs are allocated. The previous approaches in the

literature do not consider the utilisation of a team before it is created, for example, a

team could be created to service a job but then could be allocated additional low skilled

jobs and their collective skills would be wasted. The intelligent decision heuristic is a

new approach, which at each stage of the scheduling process evaluates many team and

job configuration scenarios.

The intelligent decision heuristic begins by selecting multiple seed jobs. For each

seed job a dummy team is then created which is able to service the job. Next, for each

dummy team, a check is then performed which finds which other jobs could also be

allocated to the dummy team if it was formed. A utility score is then calculated for

each dummy team, which represents the quality of the possible job assignments to the

team. The highest scoring scenario is then selected, the team is configured and the job

assignments are made. This continues until all jobs are allocated.

3.4 Intelligent Decision Heuristic 83

In other research based on the ROADEF 2007 challenge, team configurations have

been rigid and difficult to alter. New operators presented in this research were developed

to provide flexibility in team configurations using the intelligent decision heuristic;

remove a team, remove N teams, remove N jobs, decompose and rebuild, and decompose

and rebuild N. These operators allow distant solutions to be evaluated as they have the

ability to change not only team configurations but also the allocation position of a job

or the distribution of a set of jobs.

In addition, experiments into strategies for outsourcing have previously not been

carried out in the evaluation of other heuristics to determine whether the quality of the

solution produced is dependent on the choice of outsourcing strategy. It was also of

interest to measure the effectiveness of each local operator over each set of data to see

if there are any patterns. For example, if the chance of finding an improvement is equal

or unequal, or if the performance is the same across each set of data.

The intelligent decision heuristic is coupled with an iterative local search meta-

heuristic. Iterative local search has not been applied previously to the ROADEF 2007

challenge problem. During the improvement phase, when N non-improving moves have

been performed the search is moved to another area of the solution space, through the

use of local operators, in the hope of discovering new solutions.

3.4.2 Construction Phase

Figure 3.3 shows the pseudocode for the intelligent decision construction heuristic. The

variables associated with the intelligent decision heuristic are; the scheduling horizon

K, which holds all schedules and is an entire solution and a schedule k that represents a

single day within the scheduling horizon K. There is also a set of technicians Tk who

are available for schedule k, an array called Hypoteams which contains a list of dummy

teams that could be made to service jobs and a team T 1 which is the team chosen.

There is an array AllJobs containing all jobs that need to be scheduled, an array P jobs

containing jobs of priority p that are under consideration for allocation, an array called

84 Technician and Task Scheduling Problems

OtherJobs which contains further allocations that could be made to each Hypoteams

and, lastly, a PrecedenceArray, which contains jobs that may not yet be allocated.

On line 1, a scheduling horizon K is initialised, which holds individual schedules

and makes up an entire solution to the technician and task scheduling problem instance.

The intelligent decision heuristic iterates through all jobs until they have been allocated

to teams (i.e. the AllJobs array is empty).

Variables: K: scheduling horizon, k: a schedule, AllJobs: array of jobs, Tk: set of
technicians available on day k, P jobs: array of jobs of priority p, PrecedenceArray:
array containing jobs that cannot be scheduled

1: Initialise scheduling horizon K
2: while AllJobs > 0 do
3: Create schedule k
4: Initialise technicians Tk
5: while p≤ 4 do
6: P jobs← AllJobs(p)
7: Hypoteams←MakeTeams(P jobs)
8: if Hypoteams! = null then
9: Other jobs← f ind jobs(Hypoteams)

10: T 1← HighestUtility(Hypoteams)
11: MakeTeam(T 1)
12: AddJobs(P jobs)
13: U pdatePrecedenceArray
14: else
15: p← p+1
16: end if
17: end while
18: end while
19: Return K

Figure. 3.3 Pseudocode describing the implementation of the intelligent decision heuris-
tic

A new day schedule k is created on line 3, and all available technicians are initialised

as single technician teams on line 4. The inner while loop is entered on line 5 and the

set of jobs with priority p is found and stored in an array P jobs on line 6. For each

job belonging to P jobs, a hypothetical team is made if possible and added to an array

Hypoteams, which, if constructed, has the time and skills to complete the job. In this

heuristic, teams are made in a greedy fashion, at each step, the team member who covers

3.4 Intelligent Decision Heuristic 85

the most skill and wastes the least skill is added as the next member of the team until

the job requirements are fulfilled or no members can be added to the team.

A check is performed on line 8, if no teams can be created for any job belonging

to the P jobs, then p is incremented and the loop is iterated through again. However,

if at least one team can be created for any job belonging to the set P jobs of jobs with

priority p, then the heuristic proceeds to line 9. The heuristic then checks which other

jobs from P jobs could also be added onto each job list belonging to each hypothetical

team.

On line 10, a utility score is calculated for each possible team belonging to

Hypoteams, as seen in Equation 3.21. The utility function is made up of two compo-

nents, the average overskill of the team to the jobs they would be allocated, Equation

3.22, and the slack time that would be left after job allocations, Equation 3.23. The

highest scoring utility function is selected; the best hypothetical team is recorded as T 1

on line 10. Team T 1 is constructed on line 11 and added to the schedule k.

Utility =
Skill

Slacktime
(3.21)

Skill =
1

size
∗

size

∑
i

1
Max(Overskill(hypoteam, i),1)

(3.22)

Slacktime = 120−
size

∑
i

di (3.23)

All available job assignments from P jobs are made to the team on line 12 and the

heuristic then checks whether any jobs are now eligible for allocation due to satisfied

precedence constraints on line 13. Once no more jobs can be allocated to the current

schedule, the heuristic checks whether AllJobs have now been allocated, if not another

schedule k is created and the heuristic continues. The construction heuristic terminates

once all jobs have been allocated, and an initial solution has been created. The intelligent

decision heuristic is used for the initial solution construction and it is also used in the

86 Technician and Task Scheduling Problems

improvement phase. The intelligent decision heuristic is used by the local operators

which are discussed further in subsection 3.4.3.

3.4.3 Improvement Phase

In this section, the improvement phase of the intelligent decision heuristic is described.

An initial solution has been constructed and now the search to improve it begins. To

do this, local operators are used, which perturb the current solution to generate a

neighbouring solution, which can then be evaluated.

A variety of local operators were used in this research, some from other combi-

natorial optimisation work (Estellon et al. (2009) and Cordeau et al. (2010)) such as;

move a job, swap two jobs, shuffle, and swap 1 with N. The following operators were

designed and developed for this research; remove a team, remove N teams, remove

N jobs, decompose and rebuild, and decompose and rebuild N. These operators were

designed in order to provide flexibility not only in the distribution of the jobs but also

the configurations of the teams.

• Move a job: a single job belonging to a team on a day within the scheduling

horizon is chosen. This job is then removed from its current position, and

reallocated to a different team on a day within the scheduling horizon.

• Swap two jobs: two teams within the scheduling horizon are selected and a

single job belonging to each team is removed. The jobs are then reallocated to

the opposite team, if skill and time constraints allow.

• Shuffle: this operator randomly selects a team within the scheduling horizon, and

reorders the order of the jobs that have been allocated to the team.

• Swap 1 with N jobs: a job is randomly chosen belonging to a team, and the

heuristic tries to swap the job with multiple jobs belonging to another team.

• Decompose and rebuild: a single day within the scheduling horizon is selected,

and all jobs that have been allocated to this day are removed, and all team

3.4 Intelligent Decision Heuristic 87

configurations are also removed. The set of jobs is then reallocated, using the

construction heuristic allowing for new team configurations to form.

• Decompose and rebuild N: multiple days within the scheduling horizon are

chosen, removing all jobs and team configurations. The construction heuristic

is then used to reallocate the set of jobs allowing for new team configurations to

form.

• Remove N jobs: a value N is randomly chosen and the heuristic removes this

number of jobs belonging to the scheduling horizon. The construction heuristic is

then used to reallocate the set of removed jobs.

• Remove a team: this operator randomly selects a team and removes all jobs be-

longing to the team. The removed jobs are then reallocated using the construction

heuristic.

• Remove N teams: a value N is chosen and this number of teams is removed from

the scheduling horizon. All jobs are then removed from the teams and reallocated

using the construction heuristic.

Iterative Local Search

Once a neighbouring solution has been created using a local operator, the solution must

be evaluated using a metaheuristic. Blum and Roli (2003) provide a comprehensive

review of metaheuristics used in the field of optimisation, concluding that there are many

research opportunities into the application of metaheuristics due to the “importance of

combinatorial optimisation problems for the scientific as well as the industrial world”.

Most metaheuristic techniques incorporate a strategy to escape local minima and

perform a robust search of the solution space (Martí et al., 2010). In this research,

iterative local search is used which is an extension of hill climbing that incorporates an

escape mechanism. Iterative local search can be classified as a multi start technique and

is conceptually simple (Lourenço et al., 2003).

88 Technician and Task Scheduling Problems

On each iteration, an operator is randomly selected and applied to the current

solution s, generating neighbour s′. If the s′ solution has a lower objective value (better

quality) then s′ is accepted as the current solution s. If the neighbouring solution s′ has

a lower objective than the best solution, the best solution is updated to s′. However, if

the neighbouring solution s′ is worse, then the variable count is incremented by one. If

the count is equal to the step size N, a kick is performed. The kick selects an operator

and applies it to the current solution s, generating s′. The solution s′ is always accepted

and the iterations continue. When implementing iterative local search many decisions

are left to the researcher within regards to the step size N used and the type of kick to

be performed (Lourenço et al., 2003).

3.4.4 Computational Experiments

In this section, the experiments undertaken on the ROADEF 2007 challenge problem

instances in order to utilise the performance of the intelligent decision heuristic are

described. Four sets of experiments were performed: (1) outsourcing experiments, (2)

local operator experiments, (3) iterative local search tuning, and (4) priority permutation

experiments.

1. Outsourcing: experiments into the best outsourcing strategies for the ROADEF

2007 challenge problem datasets have not previously been performed. It is

expected that a single outsourcing strategy will not be best suited to all datasets

due to the variations within the data. Jobs that are outsourced do not contribute to

the objective function, and so utilisation of the outsourcing budget is important.

A series of experiments are performed examining the average objective values

produced and standard deviations across a subset of problem instances, with

different characteristics, to ascertain the best strategies for outsourcing.

2. Local Operators: the probability of selecting a local operator to perturb a solution

is equal, but the success rate (finding a better quality solution) of each local

operator may not be equal. For example, an operator may be particularly suited

to a certain type of dataset, or equally, unsuited. A hypothesis test will be carried

3.4 Intelligent Decision Heuristic 89

out to ascertain whether the success rates across each local operator is equal on

each set of data A, B and X.

3. Iterative Local Search: due to the variations within the datasets in terms of

problem size (the size of the problems range from 5 to 800 jobs), the number

of iterations performed is not equal across the different datasets. One of the

parameters associated with the iterative local search metaheuristic is the step size

N, the number of non improving moves before applying the kick operator. It is

reasonable to assume that on the larger scale problems the step size N will be

smaller than the step size for smaller problem instances as fewer iterations are

performed overall.

4. Priority Permutations: the objective function for the ROADEF 2007 challenge

problem is a weighted sum of the latest ending job time for each priority class.

However, scheduling with the priority permutation 1234 may not always lead to

the best quality results. At times, it may be more beneficial to schedule lower

priority groups first, for example, if there is a particular job which requires

in demand skills. A range of priority permutations have been tested on each

dataset and the mean results recorded for each dataset to find the best priority

permutations for each dataset.

Outsourcing Experiments

Experiments into the choice of outsourcing strategies have previously not been per-

formed in the literature to the author’s knowledge, and therefore the strategies featured

in this research are “best guess” strategies, which use factors identified that the author

believes will most strongly affect the quality of solution that can be obtained. The

strategies contain features such as the duration of a job (strive to reduce the time taken

to perform all jobs), the skill requirements (technicians who make up the teams have

finite skills), and outsourcing cost (use this budget as efficiently as possible). Multiple

outsourcing strategies were designed as shown in Table 3.1.

90 Technician and Task Scheduling Problems

Table 3.1 Table showing the seven different outsourcing strategies used in the outsourc-
ing experiments

Strategy Number Outsourcing Strategy

1 Duration
2 Skill Requirements
3 Outsourcing Cost
4 Duration, Skill Requirements
5 Duration, Skill Requirements, Outsourcing Cost
6 Duration, Outsourcing Cost
7 Skill Requirements, Outsourcing Cost

Multiple datasets from the Set B and Set X datasets (as the Set A datasets do not

contain the complexity of outsourcing) were chosen for the outsourcing experiments,

as one unifying outsourcing strategy may not be suitable for all datasets. The datasets

chosen are shown in Table 3.2, the datasets were chosen because they contain a varying

number of jobs, available technicians, and skill domain levels.

Table 3.2 Table showing the datasets used for the outsourcing experiments

Dataset Jobs Technicians

B4 400 30
B8 800 150
X2 800 100
X7 300 50

X10 500 40

For each dataset, each outsourcing strategy was tested (1-7), using ten runs with

each run lasting 20 minutes. The final solution obtained for each run was recorded. The

average objective value obtained and the standard deviations have been calculated and

are shown in Figures 3.4 to 3.8.

Figure 3.4 displays the mean objective values and standard deviations obtained by

the intelligent decision heuristic for dataset B4. It appears that dataset B4 is heavily

influenced by the choice of outsourcing strategy used, as there is a large variation in the

objective values produced. It appears that the best strategies are 2, 4 and 5 which have

lower means and smaller standard deviations than the other strategies. These results

3.4 Intelligent Decision Heuristic 91

Figure. 3.4 Bar chart showing the mean objective results found including one standard
deviation on dataset B4 using different outsourcing strategies

imply that the most important factors when choosing jobs to outsource are the skill

requirements followed by the duration of a job.

Figure. 3.5 Bar chart showing the mean objective results found including one standard
deviation on dataset B8 using different outsourcing strategies

Conversely, Figure 3.5 illustrates that dataset B8 is not as sensitive to changes in

outsourcing strategy. The results indicate that regardless of outsourcing strategy, the

performance seems to be consistent in terms of the mean objective value produced and

standard deviations. This implies that the quality of the solution produced using the

intelligent decision heuristic is independent of the outsourcing strategy chosen.

The results for outsourcing strategy testing for dataset X2 are displayed in Figure

3.6, which demonstrates that this dataset is not heavily influenced by the choice of

outsourcing strategy. Most strategies appear to have a large standard deviation and

the most promising strategy appears to be strategy 1, which is job duration. On closer

inspection of the dataset it is observed that this dataset has many jobs of short durations.

92 Technician and Task Scheduling Problems

Figure. 3.6 Bar chart showing the mean objective results found including one standard
deviation on dataset X2 using different outsourcing strategies

Figure. 3.7 Bar chart showing the mean objective results found including one standard
deviation on dataset X7 using different outsourcing strategies

Dataset X7 illustrates that like dataset B4, it is also heavily influenced by that choice

of outsourcing strategy. Figure 3.7 shows the mean objective values found appear to be

of better quality when using strategies 5 and 6, which both include duration time and

the outsourcing cost. Interestingly, each strategy tested appears to have a small standard

deviation.

Figure. 3.8 Bar chart showing the mean objective results found including one standard
deviation on dataset X10 using different outsourcing strategies

3.4 Intelligent Decision Heuristic 93

Lastly, Figure 3.8 illustrates that the results on dataset X10, like B8 and X2, are

not heavily influenced by the choice of outsourcing strategy used. However, the lowest

mean objective value is produced by strategy 2, suggesting skill requirements are the

most critical factor.

The outsourcing experiments performed have demonstrated that there is variability

amongst the datasets which influence the quality of solutions that can be obtained when

using different outsourcing strategies. Some datasets, B4 and X7, are heavily influenced

by the choice of outsourcing strategy used, and others are less influenced such as B8,

X2 and X10. These results infer that a single outsourcing strategy is not suitable for all

datasets as expected.

Local Operator Performance Experiments

In this section, experiments are conducted to ascertain the successfulness of the local

operators used. The test considers whether each local operator finds the same number of

improving moves, or whether there are differences. A hypothesis test has been carried

out for each set of data in the ROADEF 2007 challenge problem, sets A, B, and X. The

hypotheses are that either the chance of success is equal, shown in Equation 3.24, or

that the chance of success is unequal across the local operators, shown in Equation 3.25.

H0 : π1 = π2...= πn (3.24)

H1 : π1 ̸= π2... ̸= πn (3.25)

For each set of data, 100 runs were performed across ten datasets, with each run

lasting 20 minutes, and the number of improving moves per local operator was recorded.

Figures 3.9, 3.10, and 3.11 show the percentage improvement achieved by each local

operator across each set of data, A, B and X respectively.

Figures 3.9, 3.10, and 3.11 appear to illustrate that hypothesis H1 is correct, that the

improvement proportion is not the same across all operators. In order to prove this a

goodness of fit test must be carried out. The test calculates whether the difference in

94 Technician and Task Scheduling Problems

Figure. 3.9 Pie chart showing the percentage improvement of the local operators on the
set A problem instances

Figure. 3.10 Pie chart showing the percentage improvement of the local operators on
the set B problem instances

expected values and observed values can be attributed down to randomness or whether

there are significant differences. A chi-square statistic is the sum of the differences

squared divided by the expected values.

X2 =
n

∑
i=1

(obi− exi)
2

exi
(3.26)

The chi-square statistic calculated for each set of data, A, B and X, as shown in

Table 3.3.

3.4 Intelligent Decision Heuristic 95

Figure. 3.11 Pie chart showing the percentage improvement of the local operators on
the set X problem instances

Table 3.3 Table showing the chi-square statistics calculated for set A, B and X datasets

Set X2

A 7137.14
B 459.97
X 379.04

The chi-square statistic compared with the critical value from the chi-square tables

on (n-1) (11-1) 10 degrees of freedom on a 95% confidence interval. The critical value

at 95% confidence on 10 degrees of freedom is 18.307. As all of the chi-square statistics

are significantly greater than 18.307, there are strong grounds to reject H0 and accept

the alternate hypothesis H1, the local operators have varying levels of success.

Iterative Local Search Experiments

In this section, the implementation of the iterative local search metaheuristic is examined.

This metaheuristic has two parameters the step size N and the kick operator k. The step

size N controls how many non-improving moves will be performed before applying

the kick operator k, as discussed in subsection 3.4.3. The kick operator k is applied

to the solution modifying it, and the search continues. This allows worse solutions to

be accepted after a period of non-improvement in the hope of finding better quality

solutions by exploring another area of the search space.

96 Technician and Task Scheduling Problems

Two levels for each parameter have been tested as shown in Table 3.4. The step

size N is either 2500 or 5000 non-improving moves. The KickType has two levels, the

first level consisting of a pool of local operators that make small changes to the current

solution i.e. move a job. The second level consists of a pool containing all operators

from the lower level and operators which make large changes such as decompose and

rebuild.

Table 3.4 Table showing the parameter settings for the iterative local search experiments

Experiment Step Size N KickType

1 2500 1
2 2500 2
3 5000 1
4 5000 2

Two datasets have been chosen to demonstrate that the variations amongst the

datasets may require different step sizes to be used in order to utilise the performance

of the metaheuristic. The datasets chosen are A7 and X6. Dataset A7 has 100 jobs to

schedule amongst 20 technicians with 20 domain skill levels, and dataset X6 has 200

jobs to schedule amongst 20 technicians with 36 domain skill levels.

Each dataset was tested 10 times using a 20 minute run time for each of the tuning

experiments. The mean objective value obtained was then calculated and the main

effects of each of the parameters were examined. The results are shown in Figures 3.12

and 3.13. Parameter A corresponds to the step size N and parameter B corresponds to

the kick type.

Figure 3.12 illustrates that dataset A7 produces better quality results when using a

larger step size and a kick that is able to alter the current solution significantly. This

is in line with the original assumptions that smaller datasets will require a larger step

size as there are more iterations performed, and so the operators provide additional

searching power.

Figure 3.13 conversely demonstrates that it is more beneficial to use a smaller step

size. This can be explained by the fact larger datasets perform fewer iterations and

therefore using a smaller step size prevents the metaheuristic from behaving like a hill

3.4 Intelligent Decision Heuristic 97

Figure. 3.12 Chart describing the effects on objective function using different parameter
settings for iterative local search experiments on dataset A7

Figure. 3.13 Chart describing the effects on objective function using different parameter
settings for iterative local search experiments on dataset X6

climber. Furthermore, in the larger datasets, there are more combinations and a larger

search space, frequently moving the search may assist in finding high quality solutions.

Additionally, using a small pool of local operators that are computationally inexpensive

also aids the search for high quality solutions.

Priority Permutations

The objective function of a solution to any dataset from the ROADEF 2007 challenge

problem is calculated as a weighted sum of the latest ending time of each job belonging

to each priority group. The weights for priority groups [1, 2, 3, 4] is [28, 14, 4, 1].

However, the ordering of "1234" may not always lead to the best quality solutions.

98 Technician and Task Scheduling Problems

There may be times when it is more beneficial to schedule lower priority groups first,

perhaps due to the skill requirements, duration, or predecessor relationships.

A series of experiments were performed which evaluated different priority permu-

tations to ascertain the best one that leads to the lowest objective values. Table 3.5

shows the priority permutations and outsourcing strategies chosen for each dataset of

the ROADEF 2007 challenge. Column one shows the dataset, column two displays

the priority permutation used, and column three shows the outsourcing strategy chosen

(shown to be the best in section 3.4.4). "1234" indicates that jobs are allocated in the

order of priority 1 then 2 and then 3 and finally 4. The outsourcing strategies are either

"1" uses a combination of skill requirements, duration and outsourcing cost, or "2" just

the skill requirements of the job.

3.4.5 Experimental Results

Tables 3.6 and 3.7 display the results obtained by applying the intelligent decision heuris-

tic to the ROADEF 2007 challenge problem instances compared with the heuristics

previously applied in the literature. Column 1 represents the dataset name and column 2

shows the best result (BKS) obtained in the literature. Columns 3 to 5 show the results

obtained by Hurkens (2009)(Hu), Cordeau et al. (2010) (C) and Estellon et al. (2009)

(E). Columns 6 to 10 display the results found by other researchers, Fırat and Hurkens

(2012) (F), Dongala (2006) (D), Jaskowski and Wasik (2007) (J), Pokutta and Stauffer

(2009)(P), Korteweg (2007) (K), and Hashimoto et al. (2011) (Ha). Lastly, Column 11

displays the result found by the intelligent decision heuristic. The heuristic was tested

using the competition rules, which limits the run time to 20 minutes, with 5 runs and the

best found score recorded. The intelligent decision heuristic was programmed in Java

and tested on an HPZ230 tower workstation with an i7 processor and 16 GiB RAM.

3.4.6 Discussion

This section 3.4 has presented the intelligent decision heuristic which can be categorised

as an ’intelligent’ approach because it considers multiple scenarios before making an

3.4 Intelligent Decision Heuristic 99

Table 3.5 Table showing the priority permutations used for the ROADEF 2007 challenge
datasets

Dataset Permutation Outsourcing

A1 1234 -
A2 1234 -
A3 2134 -
A4 1234 -
A5 2134 -
A6 2134 -
A7 1234 -
A8 2134 -
A9 2134 -

A10 1234 -

B1 1234 1
B2 1234 1
B3 1234 1
B4 2134 2
B5 1234 2
B6 1234 1
B7 1234 1
B8 1234 1
B9 2134 1

B10 2134 1

X1 1234 2
X2 1234 1/2
X3 1234 1/2
X4 1234 1
X5 1234 2
X6 2134 1/2
X7 1234 1
X8 1234 1
X9 1234 2

X10 1234 2

allocation or team configuration decision. The heuristic considers the utilisation of a

possible team before deciding to create the team. Utilisation is measured in terms of

skill and time.

This intelligent heuristic was tested on 30 technician and task scheduling problems

that were taken from the ROADEF 2007 challenge and was compared against other

heuristic approaches featured in the literature. The heuristic behaved well on the Set

A instances finding 5 out of 10 best known results as shown in Table 3.6. However,

100 Technician and Task Scheduling Problems

Ta
bl

e
3.

6
Ta

bl
e

sh
ow

in
g

th
e

co
m

pu
ta

tio
na

lr
es

ul
ts

on
th

e
R

O
A

D
E

F
20

07
ch

al
le

ng
e

da
ta

se
ts

fo
rt

he
in

te
lli

ge
nt

de
ci

si
on

he
ur

is
tic

pa
rt

1

D
at

as
et

B
K

S
H

u
C

E
F

D
J

P
K

H
ID

A
1

23
40

23
40

23
40

23
40

23
40

23
40

24
90

23
40

23
40

23
40

23
40

A
2

47
55

55
80

47
55

47
55

47
55

47
55

47
55

47
55

47
55

47
55

47
55

A
3

11
88

0
12

60
0

11
88

0
11

88
0

11
88

0
13

06
8

12
60

0
11

88
0

11
88

0
11

88
0

11
88

0

A
4

13
45

2
13

62
0

13
45

2
14

04
0

13
45

2
13

62
0

14
04

0
14

76
0

13
45

2
13

45
2

13
45

2

A
5

28
84

5
30

15
0

29
33

5
29

70
0

29
33

5
31

23
6

32
40

0
33

48
0

29
33

5
28

84
5

29
04

0

A
6

18
79

5
20

28
0

18
79

5
18

79
5

20
00

5
21

57
6

21
12

0
22

38
0

19
93

5
18

87
0

18
79

5

A
7

30
54

0
32

52
0

30
54

0
30

54
0

30
96

0
40

11
6

32
52

0
33

36
0

31
05

0
30

84
0

30
66

0

A
8

16
92

0
18

96
0

17
70

0
20

10
0

17
33

5
23

11
5

19
38

0
21

18
0

17
58

7
17

33
5

20
10

0

A
9

27
34

8
29

32
8

27
69

2
28

02
0

28
28

0
34

05
6

28
28

0
30

00
0

28
02

8
27

69
2

28
02

0

A
10

38
29

6
40

65
0

38
63

6
38

29
6

39
30

0
52

34
8

41
58

0
42

74
0

40
35

0
40

02
0

39
00

0

B
1

33
90

0
34

71
0

37
20

0
34

39
5

34
57

5
58

96
8

46
99

5
44

02
5

43
62

0
43

86
0

34
41

0

B
2

15
87

0
17

97
0

17
07

0
15

87
0

16
77

5
28

98
9

19
89

0
21

24
0

20
01

0
20

66
5

18
60

0

B
3

16
00

5
18

06
0

18
01

5
16

02
0

16
27

5
34

36
8

20
34

0
20

28
0

19
57

5
20

56
5

18
21

0

B
4

23
77

5
26

11
5

23
77

5
25

30
5

23
92

5
56

38
2

29
46

0
31

81
5

35
38

5
26

02
5

45
85

5

B
5

88
68

0
94

20
0

11
75

40
89

70
0

88
92

0
N

/A
10

00
80

12
27

60
11

91
60

12
08

40
11

98
20

3.4 Intelligent Decision Heuristic 101

Ta
bl

e
3.

7
Ta

bl
e

sh
ow

in
g

th
e

co
m

pu
ta

tio
na

lr
es

ul
ts

on
th

e
R

O
A

D
E

F
20

07
ch

al
le

ng
e

da
ta

se
ts

fo
rt

he
in

te
lli

ge
nt

de
ci

si
on

he
ur

is
tic

pa
rt

2

D
at

as
et

B
K

S
H

u
C

E
F

D
J

P
K

H
ID

B
6

26
95

5
30

45
0

27
39

0
27

61
5

28
78

5
N

/A
24

33
0

37
96

5
32

76
0

34
21

5
37

77
5

B
7

31
62

0
33

30
0

33
90

0
38

20
0

31
62

0
N

/A
36

06
0

38
82

0
41

22
0

35
46

0
37

14
0

B
8

33
03

0
35

49
0

33
24

0
37

44
0

35
52

0
N

/A
35

55
0

34
44

0
39

24
0

33
03

0
36

00
0

B
9

28
08

0
28

20
0

29
76

0
32

70
0

28
08

0
N

/A
29

46
0

33
36

0
30

00
0

29
55

0
33

36
0

B
10

34
68

0
34

68
0

35
64

0
41

28
0

35
04

0
N

/A
36

96
0

44
64

0
38

04
0

34
92

0
40

68
0

X
1

14
62

20
15

11
40

15
93

00
18

85
95

14
62

20
N

/A
N

/A
N

/A
N

/A
18

15
75

17
85

60

X
2

72
60

90
90

82
80

83
70

77
40

N
/A

N
/A

N
/A

N
/A

72
60

32
92

5

X
3

48
72

0
50

40
0

50
40

0
50

10
0

48
72

0
N

/A
N

/A
N

/A
N

/A
52

68
0

52
92

0

X
4

64
60

0
65

40
0

66
78

0
68

12
0

64
60

0
N

/A
N

/A
N

/A
N

/A
72

86
0

74
88

0

X
5

14
47

50
14

70
00

15
78

00
18

37
00

14
47

50
N

/A
N

/A
N

/A
N

/A
17

25
00

18
28

20

X
6

94
80

10
32

0
99

00
10

44
0

96
90

N
/A

N
/A

N
/A

N
/A

94
80

13
02

0

X
7

32
04

0
33

24
0

47
76

0
37

20
0

32
04

0
N

/A
N

/A
N

/A
N

/A
46

68
0

40
32

0

X
8

23
22

0
23

46
0

24
06

0
25

48
0

23
22

0
N

/A
N

/A
N

/A
N

/A
29

07
0

27
42

0

X
9

12
28

00
13

47
60

15
24

00
15

96
60

12
28

00
N

/A
N

/A
N

/A
N

/A
16

82
40

15
96

00

X
10

12
03

30
13

70
40

14
05

20
15

20
40

12
03

30
N

/A
N

/A
N

/A
N

/A
17

85
60

16
08

60

102 Technician and Task Scheduling Problems

as the datasets became more complex the heuristic could not match the performance

of other approximate approaches such as Cordeau et al. (2010); Estellon et al. (2009);

Hashimoto et al. (2011). The intelligent decision heuristic did find competitive solutions

in 23 out of 30 datasets.

The intelligent decision heuristic particularly struggled with data instance X2 due to

the high number of jobs and small average job durations. This is because the heuristic,

when deciding to make a team, looks at which jobs could be allocated to the team, and

because of the short job durations, there are many combinations to consider.

The intelligent decision heuristic was coupled with an iterative local search meta-

heuristic to solve the technician and task scheduling problem instances. Other meta-

heuristics previously applied to this problem include hill climbing and simulated an-

nealing.

Overall, it can be concluded that the intelligent decision heuristic is a reasonable

approach to use on the technician and task scheduling problem instances but the author

does suggest that results could be improved by using the precedence and successor

relationship information to drive the algorithm.

Summary

The intelligent decision heuristic has matched some of the best known solutions to the

ROADEF 2007 challenge problem. In 23 out of 30 datasets, the intelligent decision

heuristic has produced a competitive solution with regard to solutions found by other

researchers.

This research has highlighted that there are many complexities in the ROADEF 2007

datasets which arise due to the real world nature of the technician and task scheduling

problem, especially relating to the constraints and their relationships.

The next section of this chapter will investigate the precedence relationships within

the datasets to ascertain if results can be improved in instances which have a high number

of precedence and successor relationships, by designing a new heuristic approach.

3.5 Look Ahead Heuristic 103

3.5 Look Ahead Heuristic

3.5.1 Introduction

In the previous section, 3.4, an intelligent decision heuristic was proposed to tackle

the ROADEF 2007 challenge instances. It was concluded that the precedence and

successor relationships between jobs were not fully understood or exploited in the

solution approach. The precedence and successor relationships between jobs cause tree

like structures which subsequently create indirect precedence and successor relation-

ships between jobs. The additional complexity that precedence constraints introduce

to a combinatorial optimisation problem is discussed in Lenstra and Rinnooy Kan

(1978). Recent papers deal with precedence constraints in application areas such as

machine production line scheduling (Davari et al. (2013) and Carrasco et al. (2013))

and warehouse scheduling (Park et al., 2016).

For this reason, a new heuristic approach, called the look ahead heuristic, has been

developed to solve the ROADEF 2007 challenge problem instances, which will account

for these multi level precedence and successor relationships present within the datasets.

Relationships within the ROADEF 2007 challenge datasets

Figure 3.14 highlights the complexity of the precedence and successor relationships

between a set of jobs in dataset B6 of the ROADEF 2007 challenge. In this example,

jobs 346 and 347 are very important jobs to allocate because there are many jobs (348,

349, 350, 351, 352, 353, 354, 355, 356 and 357) that cannot begin until they have been

completed, due to direct and indirect precedence and successor relationships. This

characteristic in the datasets can be problematic, especially in low priority groups that

are typically not scheduled until later, as it will elongate the makespan of the scheduling

horizon, resulting in a higher objective value. The look ahead heuristic proposed in this

section has a preprocessing phase, where the indirect relationships between jobs are

calculated, which aids the heuristic during the construction and improvement phase.

104 Technician and Task Scheduling Problems

Figure. 3.14 Flowchart illustrating the complex precedence relationships present be-
tween jobs in dataset B6

3.5.2 Construction Phase

The look ahead heuristic is a novel approach to solving the ROADEF 2007 challenge

problem. The main feature of the look ahead is to consider the impact a job allocation

decision will have on subsequent stages of the scheduling process, thereby making

smarter allocation decisions. This is the first look ahead heuristic that has been applied

to a technician and task scheduling problem. A two phase approach is proposed to solve

the ROADEF 2007 challenge problem; construction and improvement.

Look ahead heuristics have been used by Atkinson (1994) and Ioannou et al. (2001)

to solve related scheduling problems such as the vehicle routing problem with time

windows. In this work, the impact of an allocation decision was measured by metrics

relating to distance and time measures. In this implementation, proposed in this thesis, to

solve the technician and task scheduling problem, the impact of an allocation decision

3.5 Look Ahead Heuristic 105

is measured by the skill wastage of the idle teams that would be left without job

assignments.

The construction phase of the look ahead heuristic can be split into four main

components as shown in Figure 3.5.2. The components of the construction heuristic

are; job selection, team construction, team utilisation and team extension.

Figure. 3.15 Flow chart shwing the solution path of the look ahead construction heuristic

The construction heuristic begins by initialising a scheduling horizon, which is a

collection of schedules that make up a solution. A schedule is then initialised and all

available technicians on this day are added to the schedule as single technician teams.

When allocating jobs to a schedule, the heuristic iterates through the priority classes of

the jobs. While allocations can still be made to the schedule, the heuristic selects a job,

constructs a team, makes further job allocations to the team and uses team extension.

Once all jobs have been allocated an initial feasible solution has been created.

106 Technician and Task Scheduling Problems

Job selection

At each stage of the scheduling process, the current priority set under consideration is

found. A validity check on this priority set is then performed, where jobs not eligible

for allocation are removed. Jobs are not eligible for allocation if a job’s predecessors

have not been completed or if the combined skill levels of the idle teams are less than

the skill levels required by the job. The look ahead is then performed on the remaining

set of jobs that are eligible for allocation. The look ahead heuristic refines the set of

remaining jobs, removing jobs that will negatively impact subsequent stages of the

scheduling process.

The look ahead feature examines the combined skill set of the current idle teams in

relation to each job’s skill requirements. An estimate of the remaining combined skill

set of the idle teams left after allocation of this job is calculated, and the resulting set

of feasible moves is found. Decisions that will leave idle teams without assignments

are discarded as this would result in high amounts of skill waste. The look ahead step

produces a list of jobs that are intelligent allocation decisions in terms of the way they

will affect/shape subsequent stages of the scheduling process.

As shown in subsection 3.5.1, there are complex relationships between jobs in

some of the ROADEF 2007 challenge datasets. In these scenarios, it is important to

recognise how these relationships can constrain the quality of solution found. Jobs

that appear in complex relationship trees, like jobs 346 and 347 from Figure 3.14,

are important to allocate early in the scheduling horizon. Scheduling these jobs will

allow their successors to be eligible for allocation, reducing the scheduling horizon

makespan. The look ahead heuristic uses direct and indirect precedence and successor

relationship information between jobs to help calculate which job from the set of

intelligent allocation decisions should be allocated next, shown in Equation 3.27. The

importance of a job can be calculated as; the job’s duration multiplied by its priority

weight plus the sum of all indirect successors i′ belonging to the set indirecti durations

multiplied by their corresponding priority weight wp.

3.5 Look Ahead Heuristic 107

Impi = di ∗wpi + ∑
i′∈indirecti

d′i ∗wpi′ (3.27)

In addition, the difficulty of a job is also an important consideration especially in

the more complex data instances of the ROADEF 2007 challenge. There are some

datasets that contain jobs where there are fewer technicians who possess certain domain

skill levels (sparse skill distribution). This means that it is more difficult to find a team

configuration because there are fewer technicians to choose from who cover the required

skills of the job. This is also further complicated by the fact that technicians are not

available every day. The difficulty of a job can be calculated as the sum of the domain

skill requirements, si
δ ,α , divided by the combined total skill levels of the technicians

Tδ ,α , as described in Fırat and Hurkens (2012) and shown in Equation 3.28.

Di f fi = ∑
δ∈D

∑
α∈A

si
δ ,α

Tδ ,α
(3.28)

Team construction

Once a job has been selected for allocation, a team must be built to service the job.

The team must collectively possess all the skills necessary to service the job and the

time available. The skill domain requirements of the job are stored in a matrix, which

is reduced accordingly as members are added to the team. During team construction,

all teams who have no job assignments are considered. In this approach, teams are

built iteratively adding a member at a time. On each iteration, the heuristic calculates

the skill cover and skill waste of each eligible team to the remaining uncovered skill

requirements of the job. The team with the highest skill cover and lowest skill waste is

selected as the next team member. When a member is added to the team, the matrix

containing the uncovered skill requirements of the job is reduced. When all elements in

the requirements matrix are zero, a team τ has been built to service the job.

108 Technician and Task Scheduling Problems

Job list utilisation

Once a job has been selected for allocation and a team has been constructed to service

the job, the rest of the team’s available time and skill can be utilised. In the ROADEF

2007 challenge problem, the length of a working day is limited to 120 time units, and

this cannot be exceeded. Jobs in the ROADEF 2007 challenge problem generally have

durations that are multiples of 15 time units i.e [15, 30, 45, 60, 75, 90, 105 and 120].

In the look ahead heuristic, a sequential add on approach is used so that the heuristic

can recognise when jobs become available for allocation due to fulfilled precedence

constraints. The look ahead heuristic calculates which jobs from the current priority

set are eligible to be scheduled to the team (in terms of skill requirements, precedence

relationships and the slack time of the team) at this time t. From this list of feasible job

allocations Fi, the heuristic calculates the over skill of the team τ to each job i and the

lowest scoring is selected as Ui, the job i which most utilises the team’s skill shown in

Equation 3.29.

Ui = min
∀i∈Fi

Overskill(τ, i) (3.29)

Team extension

The last component of the look ahead construction heuristic is team extension. This

happens when no jobs from the current priority set, Np, can be scheduled by creating

a new team to service the job. This situation may happen when there is a lack of skill

amongst the available teams or unfulfilled precedence constraints between jobs. First, a

check is performed to see whether any of the teams who already have job assignments

have the slack time available to service any of the jobs from the current priority set. If

any team has the time available, a validity check on precedence constraints must be

performed. The heuristic checks whether precedence constraints would be violated

if the job was added to the end of the team’s job list. If precedence constraints are

not violated, the last step is to check whether this team can be extended (add a team

3.5 Look Ahead Heuristic 109

member) in order to satisfy the job’s skill requirements. If an idle technician can be

added, the member is added to the team and the job is allocated.

3.5.3 Improvement Phase

Once an initial solution has been created, the improvement phase begins. The heuristic

tries to iteratively improve this solution by randomly applying an operator from the set

of local operators. Each local operator is a transformation, which modifies the current

solution to a neighbouring solution that can be evaluated. The aim of the improvement

phase is to find the least costly feasible solution. The local operators featured are the

same as the previous section, 3.4.2. In addition, a more sensitive objective function

will be used as in Cordeau et al. (2010) in order to guide the metaheuristic. The look

ahead heuristic has been coupled with simulated annealing metaheuristic, a widely

used metaheuristic in the field of combinatorial optimisation and in particular personnel

scheduling problems.

Improved operators

Two operators have been enhanced from the previous section. These operators are;

decompose and rebuild shown in Figure 3.16 and decompose and rebuild N shown in

Figure 3.17. Previously, these operators selected a schedule or N schedules, removed

all jobs and all teaming configurations and used the construction heuristic to reallocate

the set of jobs to the existing empty schedule/schedules.

Figure. 3.16 Figure showing the local operator decompose and rebuild change a day
within a solution

110 Technician and Task Scheduling Problems

Figure. 3.17 Figure showing the local operator decompose and rebuild N change
multiple days within a solution

In this work, these operators have been modified to behave more intelligently. If a

job is selected to be removed then so are all indirect successor jobs, using the indirect

precedence and successor relationship information generated during the preprocessing

phase, which should make the reallocation of jobs easier. For operator decompose and

rebuild N, sequential schedules are removed in order to make more local changes to the

solution and maximise the chance of finding a feasible solution. Reallocation of these

jobs to the schedule/schedules is performed using the look ahead construction heuristic.

Objective function

The objective function provided in the ROADEF 2007 challenge problem description

was not very responsive to changes in the solution landscape. This is because only four

jobs’ end times are included within the objective function calculation. This is the case

whether there are 50 or 800 jobs to schedule, which means that many solutions will have

the same objective function value but may be very different in terms of composition.

For this reason, the look ahead heuristic uses a modified objective function, similar

to Cordeau et al. (2010). In Cordeau et al. (2010), the last ε job’s end times contributed

to the objective function calculation . In this implementation, shown in Equation (3.30),

3.5 Look Ahead Heuristic 111

the additional term added on to the original objective function is a weighted priority sum

of all job’s end times. This term aims to help identify promising solution configurations.

The additional term ensures that every job’s end time makes a contribution to the

objective function. Each job’s end time, ei, is multiplied by an ordered priority weight

owi that corresponds to the position of the job within the scheduling horizon, thereby

helping differentiate between different solution states.

Ob jective =
4

∑
p=1

wp ∗ ep +
N

∑
i=1

ei ∗owi (3.30)

Simulated annealing

Simulated annealing was first introduced by Kirkpatrick et al. (1983) to solve combinato-

rial optimisation problems. The simulated annealing metaheuristic has two parameters,

the temperature T and the cooling rate δT . If a better quality solution is found then it is

always accepted, however, if a worse solution is found the Metropolis criterion is used.

The Metropolis criterion, shown in Equation (3.31), calculates a probability, which is

the negative exponential of the difference in the current and candidate solution, δE,

divided by the current temperature, T .

p = e
−δE

T (3.31)

This probability, p, is compared to a random number generated on the interval {0,1},

and, if larger, the candidate solution is accepted. As the algorithm iterates, the tempera-

ture parameter is decremented thus decreasing the likelihood of accepting worse quality

solutions.

3.5.4 Computational Experiments

Simulated annealing tuning

In order to implement simulated annealing effectively, the optimal starting temperature

for the metaheuristic must be found. Using a temperature that is too low, will make

112 Technician and Task Scheduling Problems

the metaheuristic behave more like a hill climber, and a high temperature may cause

the search to diverge towards low quality solutions. Finding the balance between a

search that is too constrained and a search that is too free can be a difficult task. Other

considerations are the variations amongst the dataset in terms of the size of the ROADEF

2007 challenge problem instances. Therefore, each dataset or set of data may need

a different starting temperature value. This is to ensure the metaheuristic reaches its

ground state (convergence) before the computational time limit has been reached. In

this implementation of simulated annealing, the decrement factor has been fixed in

order to minimise the number of computational experiments that need to be performed.

The aim of these tuning experiments is to find an optimal starting temperature for the

metaheuristic which achieves convergence within the computational run time. Due to

the variations amongst the datasets, it is not expected that a single temperature will suit

all datasets, as the number of iterations performed is not uniform. For this reason, two

datasets were used to demonstrate the need for different starting temperatures within

the implementation of the look ahead heuristic. Datasets B1 and X8, have been trialled

with a range of starting temperatures, as shown in Table 3.8, which were chosen to

ensure the metaheuristic reaches ground state before the run is over.

Table 3.8 Initial temperatures for the simulated annealing tuning experiments on the
ROADEF 2007 challenge datasets

Temperature

10
20
40
80

100

Figures 3.18 and 3.19 show the average objective function value obtained over 10

runs for each dataset for the range of temperatures tested. Figure 3.18 illustrates that

for dataset B1 the best starting temperature appears to be 100, suggesting that this

dataset is better suited to a higher starting temperature. It appears that using a lower

temperature results in a larger objective value, and a curve that is less steep (finds less

3.5 Look Ahead Heuristic 113

Figure. 3.18 Graph showing the solution value over time using a range of initial simu-
lated annealing temperatures for dataset B1

improvement). The graph also suggests that the algorithm converges much quicker

using a higher starting temperature.

Conversely, Figure 3.19 illustrates that the best starting temperature for dataset X8

is 20 or 40. Unlike the previous graph, higher temperatures appear to provide to free

a search in the early iterations and find less improvement. Using a lower temperature

results in a much faster convergence speed in the early iterations of the algorithm. These

results are in line with the assumptions that due to the varying nature of the problem

datasets a range of simulated annealing temperatures are optimal.

3.5.5 Experimental Results

The ROADEF 2007 challenge allowed 20 minutes computational time for each dataset,

however, the look ahead heuristic approach was allowed a 5 minute run time to prove

its effectiveness as a solution approach. The look ahead heuristic was programmed

in Java and tested on an HPZ230 tower workstation with an i7 processor and 16 GiB

RAM. Each dataset was tested 5 times, as in the ROADEF 2007 challenge, and the

best results obtained are shown in Tables 3.9 and 3.10. The look ahead heuristic is

compared to the mixed integer programming approaches by Fırat and Hurkens (2012)

114 Technician and Task Scheduling Problems

Figure. 3.19 Graph showing the solution value over time using a range of initial simu-
lated annealing temperatures for dataset X8

(MIP-1) and Hurkens (2009) (MIP-2). The look ahead heuristic is also compared to

heuristics that include an improvement phase; Cordeau et al. (2010) with an adaptive

large neighbourhood search (ALNS), Estellon et al. (2009) with a local search (LS)

algorithm and Hashimoto et al. (2011) with a greedy randomized adaptive search

algorithm (GRASP). The results for the look ahead heuristic (LA) are displayed in the

last column of each of the tables.

3.5.6 Discussion

Section 3.5 has demonstrated that the ROADEF 2007 challenge problem is a complex

combinatorial optimisation problem. Section 3.5.1 showed that there are many indirect

precedence and successor relationships between jobs which cause chain like structures,

increasing the importance of allocating these jobs early in the scheduling horizon. These

types of relationships occur in many sectors such as housing projects and production

line assembly.

The look ahead heuristic has been coupled with a simulated annealing metaheuristic.

Due to the run time used in these experiments, 5 minutes, considerations about the

number of iterations had to be made. For example, in the more complex and larger

3.5 Look Ahead Heuristic 115

Ta
bl

e
3.

9
C

om
pu

ta
tio

na
lr

es
ul

ts
fo

un
d

on
th

e
R

O
A

D
E

F
20

07
ch

al
le

ng
e

da
ta

se
ts

us
in

g
th

e
th

e
lo

ok
ah

ea
d

he
ur

is
tic

pa
rt

1

D
at

as
et

B
K

S
M

IP
-1

M
IP

-2
A

L
N

S
L

S
G

R
A

SP
L

A

A
1

23
40

23
40

23
40

23
4

0
23

40
23

40
23

40

A
2

47
55

47
55

47
55

47
55

47
55

47
55

47
55

A
3

11
88

0
11

88
0

11
88

0
11

88
0

11
88

0
11

88
0

11
88

0

A
4

13
45

2
13

45
2

13
62

0
13

45
2

14
04

0
13

45
2

13
45

2

A
5

28
84

5
29

33
5

29
33

5
29

33
5

29
70

0
28

84
5

30
66

0

A
6

18
79

5
20

05
5

20
28

0
18

79
5

18
79

5
18

87
0

18
79

5

A
7

30
54

0
30

96
0

32
52

0
30

54
0

30
54

0
30

84
0

30
96

0

A
8

16
92

0
17

35
5

18
96

0
17

70
0

20
10

0
17

33
5

17
40

0

A
9

27
34

8
28

28
0

28
32

0
27

69
2

28
02

0
27

69
2

27
79

6

A
10

38
29

6
39

30
0

40
65

0
38

63
6

38
29

6
40

02
0

39
00

0

B
1

33
90

0
34

57
5

35
46

0
37

20
0

34
39

5
40

02
0

33
90

0

B
2

15
87

0
16

75
5

18
30

0
17

07
0

15
87

0
20

65
5

17
70

0

B
3

16
00

5
16

27
5

16
97

5
18

01
5

16
02

0
20

56
5

17
82

0

B
4

23
77

5
23

29
5

27
01

5
23

77
5

25
39

5
26

02
5

27
36

0

B
5

88
68

0
88

92
0

94
20

0
11

75
40

89
70

0
12

08
40

10
81

20

116 Technician and Task Scheduling Problems

Ta
bl

e
3.

10
C

om
pu

ta
tio

na
lr

es
ul

ts
fo

un
d

on
th

e
R

O
A

D
E

F
20

07
ch

al
le

ng
e

da
ta

se
ts

us
in

g
th

e
th

e
lo

ok
ah

ea
d

he
ur

is
tic

pa
rt

2

D
at

as
et

B
K

S
M

IP
-1

M
IP

-2
A

L
N

S
L

S
G

R
A

SP
L

A

B
6

26
95

5
28

78
5

30
51

0
27

39
0

27
61

5
34

21
5

32
50

0

B
7

31
62

0
31

62
0

33
06

0
33

24
0

37
44

0
35

46
0

32
94

0

B
8

32
16

0
35

52
0

32
16

0
33

24
0

37
44

0
33

03
0

33
48

0

B
9

28
08

0
28

08
0

28
08

0
29

76
0

32
70

0
29

55
0

29
76

0

B
10

34
68

0
35

04
0

35
04

0
35

46
0

41
28

0
34

92
0

36
84

0

X
1

14
62

20
14

62
20

15
19

80
15

93
00

18
85

95
18

15
75

15
85

20

X
2

72
60

77
40

90
90

82
80

83
70

72
60

95
40

X
3

48
72

0
48

72
0

50
40

0
50

40
0

50
10

0
52

68
0

52
20

0

X
4

64
60

0
64

60
0

65
64

0
66

78
0

68
12

0
72

86
0

68
56

0

X
5

14
47

50
14

47
50

14
70

00
15

78
00

18
37

00
17

25
00

15
82

80

X
6

94
80

96
90

10
44

0
99

00
10

44
0

94
80

11
14

0

X
7

32
04

0
32

04
0

33
12

0
47

76
0

37
20

0
46

68
0

39
36

0

X
8

23
22

0
23

22
0

23
58

0
24

06
0

25
48

0
29

07
0

25
14

0

X
9

12
27

00
12

27
00

13
60

30
15

24
00

15
96

60
16

82
40

14
43

60

X
10

12
03

30
12

03
30

13
17

00
14

05
20

15
20

40
17

85
60

14
17

20

3.5 Look Ahead Heuristic 117

problem instances, fewer iterations are performed due to the computationally expensive

operators such as decompose and rebuild and decompose and rebuild N. For this reason,

it was necessary to find the optimal starting temperatures to ensure convergence within

the run time.

Tables 3.9 and 3.10 show the results obtained using the look ahead heuristic. On

the Set A instances the look ahead heuristic performs well with regards to the solutions

found by other researchers. In 5 out of 10 datasets the look ahead heuristic finds the best

known score. Additionally, the look ahead performs third best on these instances with

an average gap of 1.4% to best known solutions. These instances are small compared

to the datasets in the Set B and X instances and they do not contain the complexity of

outsourcing.

In the Set B instances the look ahead heuristic has an average gap of 10% to the best

known score and performs fifth best. In data instance B1 the look ahead finds the best

known score, 33900. The look ahead performs particularly well on data instance B7

which contains 50 domain skill levels and 500 jobs. The look ahead approach struggled

with data instance B6, which may be attributed to a large number of indirect precedence

and successor relationships in low priority groups coupled with jobs that have short

durations.

In the Set X instances the look ahead heuristic performs fourth best out of all the

approaches. The heuristic performs particularly well on the larger instances in terms of

the scheduling horizon size X1, X5, X9 and X10. The look ahead heuristic performs

least well on the smaller scheduling horizon instances X2 and X6 which contain jobs

which have very short durations and therefore contain many combinations of solutions.

Section 3.5 has shown that competitive results can be achieved on the ROADEF 2007

instances using the look ahead heuristic. The look ahead heuristic also significantly

outperformed the intelligent decision heuristic on these problem instances.

118 Technician and Task Scheduling Problems

Summary

This section has presented a look ahead heuristic to solve the technician and task

scheduling problem presented by the ROADEF 2007 challenge. The look ahead heuristic

is characterised by its pre-processing phase where indirect precedence and successor

information is collected and mapped into the problem, the look ahead element within

the heuristic where the "state" of the scheduling process is considered, the flexibility in

team configurations through improved operators and team extension tools.

The results presented in this section illustrate that the look ahead heuristic is an

appropriate solution approach and has highlighted the complexity of these types of

problem. The look ahead heuristic has shown that competitive results can be produced

in complex ROADEF 2007 challenge data instances (B1, B7, X9 and X10). The look

ahead heuristic can outperform the intelligent decision heuristic on these technician and

task scheduling problem instances, except on problem instances A5 and A7.

3.6 Comparison of the Intelligent Decision and Look

Ahead Heuristic

In this chapter two heuristic procedures have been designed and developed to solve 30

instances of technician and task scheduling problems of varying complexity and problem

size. The results demonstrate that the look ahead heuristic is a superior approach to

the intelligent decision heuristic. Although the intelligent decision heuristic in most

cases can produce a competitive result, it struggled on the set X problem instances, the

most complex instances. In particular, the intelligent decision heuristic did not perform

well on X2 or X6, these datasets include jobs that have short durations, this may be

attributed to the multi allocation decision making property of the heuristic.

The look ahead heuristic performed well on all instances, matching the performance

of the adaptive large neighbourhood search and local search heuristic who ranked 2nd

in the competition and outperformed the greedy randomized adaptive search procedure.

The look ahead could not beat the performance of the mixed integer programming

3.6 Comparison of the Intelligent Decision and Look Ahead Heuristic 119

approaches, who consistently found superior solutions in the set X problem instances,

through the efficient exploitation of problem structure solving small MIP problems.

The contributions to the field in this chapter are; (1) intelligent decision heuristic

which considers the impact of a team configuration decision in regards to the utilisation

of the team, considering slack time and further allocations, (2) look ahead heuristic

characterised by its preprocessing phase and by considering the subsequent impacts

of allocation decisions to the scheduling process and (3) novel operators designed and

developed to provide flexibility in team configurations and job distributions.

These problem instances studied have contained up to 800 jobs to allocate, however,

in the real world often there are many more jobs to schedule to a large workforce.

For this reason, the next chapter, chapter 4, will focus on designing some large scale

problems that are indicative of the scale of problem faced in industry and apply the

heuristics developed in this chapter (the intelligent decision heuristic and the look ahead

heuristic) to test their scalability.

Chapter 4

Large Scale Technician and Task

Scheduling Problems

4.1 Introduction

In this chapter, a set of large scale technician and task scheduling problems are created

using a data generator and solved using the previous heuristic approaches, described

in chapter 3. As illustrated in chapter 2, there is a lack of large scale data available to

researchers and for this reason heuristic approaches used to solve smaller problems

have not had their scalability tested on larger problem instances. It is necessary to test

heuristic procedures not only to assess scalability but robustness too, in order to apply

them to real world scenarios, therefore new datasets have been generated to address this

issue.

The ROADEF 2007 challenge problem includes the most relevant features of the

problems studied in the literature. However, the problems featured range from 5 to

800 jobs. There is no current literature that includes solving large scale (1000+ jobs)

scheduling problems that have precedence relationships, skill requirements, and teaming.

There is a great need to solve these large scale problems that occur in industrial settings,

a fundamental problem faced by the sponsor of this research Service Power PLC.

122 Large Scale Technician and Task Scheduling Problems

In this chapter, large scale technician and task scheduling problems (created under

the ROADEF 2007 challenge problem definition) have been generated using a novel

data generator. The datasets contain all aspects of the ROADEF 2007 datasets such as

priority, precedence, outsourcing, and skill requirements. 12 new large scale datasets

have been generated ranging from 1000-2500 jobs to schedule. The scalability of

heuristic procedures; the intelligent decision heuristic, look ahead heuristic and the

greedy heuristic on the datasets have been examined to see which heuristic is the most

suitable and could be used to solve real world industrial problems.

The lower and upper bound on the number of jobs has been carefully chosen

for several reasons. Firstly, to test the scalability of the heuristics developed the

problems must be larger than the ROADEF 2007 instances, which contain up to 800

jobs. Furthermore, work by Xu and Chiu (2001) contained up to 1000 jobs (with

skill not treated as a hard constraint), and so this was chosen as the lower bound. In

addition, research in the literature on a shift scheduling problem by Krishnamoorthy

et al. (2012) containing up to 2105 jobs, reported that in some problem instances, even

a heuristic algorithm could not find a feasible solution in 30 minutes of computational

time. For this reason, constrained by the ROADEF 2007 competition rules of using 20

minutes computational time, it was decided that 2500 would be the upper limit on the

number of jobs to schedule. In addition, the size of the scheduling horizon had to be

given due consideration. Although there is no number of scheduling days given in the

problem description, the objective is to complete all jobs as quickly as possible. In the

ROADEF 2007 challenge datasets, the scheduling horizon spans up to 58 days in the

more complex instances. For this reason, in the large scale datasets, it was expected

that the scheduling horizon would span from 20-250 days depending on the problem

size and the number of available technicians. It may seem like this is a rather large

scheduling period that may not be practical in some situations, such as repair work, but

in the field of yearly maintenance checks of appliances, this is acceptable. Furthermore,

the purpose of this chapter is to push the heuristics developed to solve difficult problem

instances in short computational times.

4.2 Generating Large Scale Technician and Task Scheduling Problem Instances 123

The rest of this chapter is structured as follows; section 4.2 describes the large

scale technician and task scheduling problem datasets that have been generated and

section 4.3 describes the three heuristics, an intelligent decision heuristic, the look

ahead heuristic and a greedy heuristic that have been used to test the large scale data

instances. Section 4.4 outlines the improvement phase and Section 4.5 presents the

experimental results. Lastly, section 4.6 discusses the results presented and section 4.7

concludes on the research undertaken in this chapter.

4.2 Generating Large Scale Technician and Task Schedul-

ing Problem Instances

The datasets created in this research are novel, they involve solving a large scale multi-

period scheduling problem, with an outsourcing budget, respecting unavailability of

resources and teaming. It is believed that only one piece of research exists that has

generated technician and task scheduling problem datasets independently, which was by

Krishnamoorthy et al. (2012). This work included scheduling up to 2105 jobs, but jobs

had to be performed on a particular day, and the objective is to minimise the number

of staff used. Two other works extended existing vehicle routing datasets (100 jobs),

Kovacs et al. (2012) and Pillac et al. (2012), by concatenating skill requirements from

other scheduling problems or generating them randomly. There is a need to be able

to test heuristic procedures on large scale and complex problems to ascertain whether

solution approaches that work well on small scale problems could be implemented in

the real world.

4.2.1 Generating Large Scale Instances

Each data instance was made up of three files, an instance file (containing the dataset

name, number of jobs, number of technicians, number of domains, number of levels,

and the available outsourcing budget), a technician file (containing the name of each

technician, their domain skill levels, and days on which they are unavailable), and a

124 Large Scale Technician and Task Scheduling Problems

job file (containing each job’s name, outsourcing cost, priority level, duration, skill

requirements, and predecessors).

Figure 4.1 shows how the large scale datasets have been generated. Firstly, the

instance file was created which specifies the parameters of the problem. Next, the set of

technicians can be created. Each technician is randomly given a level of expertise in

each of the domains and assigned days off within the scheduling horizon. Lastly, the

job file is created. In the ROADEF 2007 challenge problem, the length of a working

day is limited to 120 time units. In the original problem instances, the job durations

ranged from 15 time units to 120 time units, in 15 time unit intervals. Therefore, the job

durations in the new datasets have been randomly assigned to be of a length that is a

multiple of 15 time units and not greater than 120 time units [15, 30, 45, 60, 75, 90, 105,

120]. An outsourcing cost is randomly assigned and a priority level between 1 and 4.

However, the jobs also have two other important attributes, domain skill requirements

and precedence and successor relationships.

Generating Domain Skill Requirements

The total number of technicians skilled in each domain skill level is recorded. When it

comes to generating the skill domain requirements of a job, for the first level in each

domain a random number is selected from 0 to 5 or 0 to the maximum number of

technicians who possess this area of expertise, shown in Equation 4.1.

domainskill(i) =





random[0,5], if numtech(i)>= 5

random[0,numtech(i)], otherwise
(4.1)

For each subsequent level of expertise in a domain, shown in Equation 4.2, a random

number is selected between 0 and the previously required level of expertise. This is to

ensure that skill levels are hierarchical i.e if four technicians are required to be skilled

in domain 2 to level 3, then the next level, i.e domain 2 level 4 must require four or

fewer technicians.

4.2 Generating Large Scale Technician and Task Scheduling Problem Instances 125

Figure. 4.1 Flowchart showing the creation of the large scale technician and task
scheudling problem datasets

domainskill(i) = random[0,domainskill(i−1)] (4.2)

Generating Precedence and Successor Relationships

Generating precedence and successor relationships between jobs was a complex task.

In the ROADEF 2007 challenge problem, there were multi layered precedence and

successor relationships that contained many layers and many jobs. In order to generate

these types of constraints, an algorithm had to be designed shown in Figure 4.2.

This algorithm on line 1 randomly selects a set of jobs S from the set of all jobs N.

On line 2, the set of jobs is ordered in terms of their priority levels in descending order

of importance [1...4]. This is to ensure that jobs of priority group p are dependent on

jobs that are priority p or higher, as this is the way the objective function is calculated,

a weighted sum of priority end times.

126 Large Scale Technician and Task Scheduling Problems

Variables: N: set of all jobs, S: subset of jobs from N, L: set of levels

1: S⊆ N
2: Priority Order (S)
3: while S >0 do
4: create a level l
5: add jobs from S to level l
6: end while
7: for l ∈ L do
8: for job ∈ l do
9: Build Connections

10: end for
11: end for

Figure. 4.2 Pseudo code illustrating the creation of multi-level precedence relationships
between a subset of jobs

The algorithm then enters a while loop on line 3, and while there are jobs remaining

in S a level l is created. This level l is given a random subset of jobs from S. This

continues until all jobs belonging to S have been assigned a level l. Next on line 7, for

each level belonging to l, and for each job belonging to l the algorithm ensures each job

has at least one connection to another layer; either upwards (successor) or downwards

(precedence).

Figure. 4.3 Example of multi-level precedence and successor relationships between a
set of jobs using the precedence generator algorithm

4.2 Generating Large Scale Technician and Task Scheduling Problem Instances 127

As this algorithm has a random nature the following relationship trees, as shown in

Figure 4.3, have been created using the same set of jobs. In Figure 4.3a, the relationship

tree has four layers. On the first layer are jobs 1 and 2, on the second, job 3 (which is a

successor of jobs 1 and 2), the third layer contains jobs 4 and 5 (which are successors

of job 3), and lastly, on the fourth layer, jobs 6 and 7 (both dependent on job 4, and one

dependent on job 5).

In Figure 4.3b, the relationship tree has 5 layers, with one initial job node and one

end job node. This figure depicts that jobs can be a member of the relationship tree

without having to have both a successor and predecessor (jobs 3 and 5), reiterating

the complexity of job relationships within the ROADEF 2007 challenge problem

framework.

4.2.2 Large Scale Instances

Table 4.1 shows the large scale technician and task scheduling problems that have been

designed for this research. Column one shows the name of each dataset created, column

two (Jobs) shows the number of jobs to be scheduled, column three (Techs) displays

the number of available technicians and column four (Budget) displays the outsourcing

budget available. Lastly, columns five and six (Domains and Levels) show the number

of domains and levels.

There are twelve data instances that have been designed which range from schedul-

ing 1000 to 2500 jobs. The size of the scheduling problems was chosen with help from

the industrial sponsor with relation to the size of the scheduling problems which they

face daily. These new datasets can be split into four groups; L1-L3, L4-L6, L7-L9

and L10-L12. Each group of data contains the same set of jobs (skill requirements,

outsourcing cost, priority, precedence and duration) to be scheduled, but contains a

varying number of available technicians, thus altering the size of the scheduling horizon.

128 Large Scale Technician and Task Scheduling Problems

Table 4.1 Table showing the large scale technician and task scheduling problem instances
that were generated using the data generator

Dataset Jobs Techs Budget Domains Levels

L1 1000 25 500 3 3
L2 1000 50 500 3 3
L3 1000 100 500 3 3

L4 1500 25 1000 4 4
L5 1500 50 1000 4 4
L6 1500 100 1000 4 4

L7 2000 25 1500 3 3
L8 2000 50 1500 3 3
L9 2000 100 1500 3 3

L10 2500 25 2000 4 4
L11 2500 50 2000 4 4
L12 2500 100 2000 4 4

4.2.3 Dataset Analysis

The datasets created, L1-L12, have been studied and the mean job length, as well as the

priority proportions, are shown in Table 4.2. The mean job length and priority propor-

tions are also shown for datasets A7, B1 and X3 from the ROADEF 2007 challenge

problem. It is important to note that there are many variations within the ROADEF

2007 challenge datasets in terms of both mean job length and priority proportions.

Table 4.2 Table showing the analysis of a subset of the large scale technician and task
scheduling problem instances against some the ROADEF 2007 challenge datasets

Dataset Job Length Priority 1 Priority 2 Priority 3 Priority 4

1-3 67.35 0.0214 0.244 0.288 0.254
4-6 65.91 0.246 0.246 0.261 0.247
7-9 66.23 0.2445 0.245 0.242 0.267
10-12 68.47 0.243 0.255 0.238 0.263

ROADEF- A7 61.71 0.69 0.19 0.12 0
ROADEF- B1 72.52 0.25 0.235 0.265 0.25
ROADEF- X3 108.4 0.193 0.29 0.24 0.276

4.3 Heuristic Approaches 129

4.3 Heuristic Approaches

The heuristics featured in chapter 3, the intelligent decision heuristic and the look ahead

heuristic are applied to solve the large scale technician and task scheduling problems.

On the ROADEF 2007 challenge instances both heuristics found competitive results

but overall the look ahead heuristic had better performance particularly on the Set X

instances. It is, therefore, reasonable to assume that on the large scale instances the

look ahead will again outperform the intelligent decision heuristic. To compare these

approaches a simple heuristic approach, a greedy heuristic, has also been designed to

provide a more in depth comparison.

4.3.1 Greedy Heuristic

In order to benchmark the intelligent decision and look ahead heuristic, a greedy

heuristic is also implemented to ascertain the performance of an unsophisticated and

computationally efficient solution approach. There was no need to implement the greedy

heuristic on the ROADEF 2007 challenge datasets as there are already benchmark results

from the literature using a range of solution approaches.

On line 1 the scheduling horizon K is created, and while jobs are left to allocate a

schedule k is created on line 3 and all available technicians are initialised on line 4. On

line 5 each priority class is iterated through, the current priority set of jobs is obtained

on line 6 and stored as Pjobs. On line 7 a job j is selected from Pjobs which is the job

chosen to allocate. The heuristic then tries to make a team T 1 on line 8. If team T 1 is

not null, i.e. has the expertise to serve job j, then j is allocated to the team. Next, on

line 11 the heuristic continues to add jobs to T 1. On line 12, the PrecedenceArray is

updated. This process continues until each job has been allocated and an initial solution

has been found and output on line 18. The greedy heuristic is far less computationally

expensive than the other heuristics.

130 Large Scale Technician and Task Scheduling Problems

Variables: K: scheduling horizon, k: a schedule, AllJobs: array of jobs, Tk: set of
technicians available on day k, P jobs: array of jobs of priority p, PrecedenceArray:
array containing jobs that cannot be scheduled

1: Create scheduling horizon K
2: while AllJobs > 0 do
3: Create schedule k
4: Initialise technicians Tk
5: while p≤ 4 do
6: P jobs← AllJobs(p)
7: j← SelectJob(P jobs)
8: MakeTeam(T 1)
9: if T 1! = null then

10: AddJob(T 1, j)
11: AddOtherJobs(T 1)
12: Update PrecedenceArray
13: else
14: p← p+1
15: end if
16: end while
17: end while
18: Return K

Figure. 4.4 Pseudo code detailing the implementation of the greedy heuristic for the
large scale technician and task scheduling problem datasets

4.4 Improvement Phase

Once an initial solution has been generated by the construction heuristic, the improve-

ment phase begins. During the improvement phase, a local operator is applied generating

a neighbour that can be evaluated using a metaheuristic. As the problems are large scale,

a subset of the local operators featured in sections 3.4 and 3.5 were chosen: Decompose

and rebuild, Decompose and rebuild N, Remove N jobs, Remove a team, and Remove N

teams. These operators were chosen, as the local operator experimentation in section

3.4.4 indicated that in complex instances, set X datasets, these operators accounted for

94.8% of all improvements found.

In addition, these operators are able to change multiple parts of a solution rather

than a single part. For example, these operators can change the distribution of the jobs

and the configuration of the teams. Due to the flat objective function, and the size of the

4.5 Experimental Results 131

problems, operators that can provide significant change are needed. For the large scale

technician and task scheduling problem instances a hill climbing metaheuristic is used.

It can be thought of as the simplest metaheuristic procedure, as there are no parameters

and therefore no tuning experiments to be performed.

4.5 Experimental Results

Under the competition rules of the ROADEF 2007 challenge, each run of the heuristic

is allowed a 20 minute computational time limit and so in this research, a 20 minute

run time is used. The heuristics were programmed in Java and tested on an HP Z210

Workstation, with an i7-2600 CPU with 3.4 GHZ with 12GB of RAM. Table 4.3 presents

the best result obtained over five runs for each heuristic. In columns two, three and

four the best results found are displayed for the intelligent decision heuristic, the greedy

heuristic and the look ahead heuristic respectively. The experimental aim is to find

which heuristic procedure is the most effective when solving industrial sized scheduling

problems.

4.6 Discussion

This chapter has presented a methodology for creating large scale technician and task

scheduling problems. The data generator has been used to develop 12 large scale novel

problem instances that will allow researchers to test the scalability of their solution

approaches. These datasets are available from https://akhalfay.wordpress.com/large-

scale-ttsps.

In section 4.5, the results obtained for each heuristic approach on the large scale

technician and task scheduling problem instances is presented. It is clear that overall

the intelligent decision heuristic outperforms the greedy heuristic in all problem in-

stances, and the look ahead heuristic outperforms both heuristics in all but one of the

problem instances. As the number of jobs to allocate increases the gaps between the

heuristics increase with respect to the number of available technicians. For example

132 Large Scale Technician and Task Scheduling Problems

Table 4.3 Computational results for the intelligent decision, greedy and look ahead
heuristic on the large scale technician and task scheduling problem instances

Dataset Intelligent Decision Greedy Look Ahead

L1 192810 203850 184440

L2 97725 103440 93690

L3 48330 50700 46380

L4 296940 315210 296295

L5 147480 156960 147930

L6 76110 80880 75660

L7 420660 445335 396015

L8 198900 207405 187170

L9 97080 102870 92160

L10 574465 607890 553560

L11 280260 290745 271020

L12 140970 144840 133800

Average 214311 225844 206510

when evaluating the heuristics scheduling 1000, 1500, 2000 and 2500 jobs amongst

100 technicians (L3, L6, L9 and L12) the gap between the worst performing and best

performing heuristic increases (4320, 5220, 10710 and 11040) as the number of jobs to

allocate increases.

As the number of technicians available increases within the same set of jobs to

allocate, the gap in solution quality generally decreases. This can be expected because

as the number of available technicians on each day increases, there are fewer shortages

of skills, and therefore less consideration needs to be made for team configurations.

Overall, the intelligent decision heuristic finds a solution that is on average 5%

better than the quality of solution found by the greedy heuristic. A saving of 5%

in personnel costs has the potential to save significant amounts of money in large

businesses. Furthermore, the look ahead outperforms the intelligent decision heuristic

finding a solution on average that is 3.7% better quality in terms of cost.

4.7 Summary 133

This research has demonstrated that although the intelligent decision heuristic is

far more computationally expensive than the greedy heuristic, it can produce better

quality results in the same computational time limit. In addition, it has shown that in

these instances, the look ahead is a better solution approach than the intelligent decision

heuristic by consistently producing superior results. The chapter has shown that both

the intelligent decision and look ahead heuristic are both scalable approaches to solving

large scale technician and task scheduling problems within strict computational time

limits.

4.7 Summary

This chapter has illustrated the need to solve large scale technician and task scheduling

problems that arise in real world industrial settings. As there are no large scale datasets

available in the literature, which include the scale of complexities featured within the

ROADEF 2007 challenge, the data has been generated in order to allow researchers to

assess the scalability of solution approaches.

The benefits of finding efficient ways to solve large scale technician and task

scheduling problems in time constrained conditions using the large scale data instances

have been shown. In these large scale problems, finding a better quality solution of even

1% can result in large financial savings. The contributions to the field in this chapter

are; (1) a methodology for creating large scale technician and task scheduling problem

instances (which can be adapted in order to create other scheduling problems), (2)

twelve novel large scale technician and task scheduling problems that can be used to test

the scalability and suitability of heuristic approaches on realistically sized scheduling

problems and (3) a comparative analysis of the greedy heuristic, intelligent decision

heuristic, and the look ahead heuristic, which has provided a set of benchmark results

on the large scale technician and task scheduling problem instances.

In this chapter, a precedence generating algorithm has been designed in order to

add the complexity of precedence and successor relationships into the datasets. These

constraints affect the quality of solution that can be obtained and arise in many practical

134 Large Scale Technician and Task Scheduling Problems

situations such as housing development. However, no research has addressed the effect

of precedence constraints on solution quality and the ability of forecasting. Therefore,

in the next chapter, the complexity of precedence relationships across different scales

of data instances is discussed.

Chapter 5

Precedence Constrained Technician

and Task Scheduling Problems

5.1 Introduction

The purpose of work described in this chapter is to assess the complexity of precedence

constraints within the field of technician and task scheduling problems. The problems

studied so far in this thesis have included the complexity of precedence constraints,

which arise in many application areas. To the author’s knowledge, there has been no

research undertaken in the field that specifically focuses on the complexity of precedence

or its effect on the quality of solution that can be obtained. In this chapter, a set of

precedence constrained technician and task scheduling problems are presented that have

been created with the data generator, described in the previous chapter, which created

the large scale problem instances.

The datasets generated have used the definition of the ROADEF 2007 challenge

(Society, 2007) problem, where skilled workers must service jobs that require certain

skill levels and includes the complexity of teaming, priority levels, precedence and an

outsourcing budget. Research in this area aims to aid the task of accurately forecasting

and predicting the expected objective value for a given level of precedence constraints

between jobs and to understand the algorithmic performance of the heuristics developed

136 Precedence Constrained Technician and Task Scheduling Problems

so far, as the problems become more constrained as the level of precedence constraints

between jobs increases.

Many organisations face the complex problem of scheduling staff to complete a set

of jobs in the least costly way (Castillo-Salazar et al., 2012). Precedence constraints

occur in industries such as maintenance and repair, for example, the need to collect

a tool or spare part before going to complete a job (Pillac, Gueret and Medaglia,

2013). Additionally, in the housing development trade, there must be coordination

of many different types of skilled workers, for example, plumbers, plasterers, roofers

and scaffolders, and certain tasks must be completed before others may commence.

Similarly, in the home health care industry, which is growing due to the number of

private health care services and an ageing population. Many people prefer to be cared

for in their own home and rely on third parties to administer care, such as medications,

that have strict guidelines (Hiermann et al., 2015). More recent work, by Park et al.

(2016), required scheduling unmanned aerial vehicles to perform tasks within the

manufacturing sector. This problem included precedence constraints between tasks that

must be completed. This work also included constraints such as travel time, recharge

time of the unmanned aerial vehicle and time windows in which the task must be

completed.

As shown in Chapter 2, there are limited problems in the literature that have included

the complexity of precedence relationships, even though it is a common complication

in many sectors. One of the most notable problems that include precedence constraints

is the ROADEF 2007 challenge. Although this work included precedence constraints,

there was no comparison made against the complexity that is added or the effect on the

quality of solution that can be obtained.

This chapter is focused on the occurrence of precedence constraints within the

field of technician and task scheduling. It is believed that this is the first research that

specifically focuses on the impact that precedence relationships have on the quality of

solution that can be obtained. In this research, 25 precedence constrained technician

and task scheduling datasets, split into 5 groups that include scheduling between 100

5.2 Generating Precedence Constrained Instances 137

and 1000 jobs have been created. Within each group, the percentage of precedence

relationships between the jobs varies from 0% to 100%, in order to measure the effects

of precedence relationships.

The remainder of this chapter is structured as follows, section 5.2 discusses how the

varying levels of precedence relationships were created using the data generator and

presents the datasets created, and section 5.3 describes the three heuristic approaches

used, featured in Chapters 3 and 4. Section 5.4 describes the metaheuristic used to

guide the lower level heuristics, a multi start hill climbing metaheuristic, and section

5.5 shows the computational results obtained on the precedence constrained technician

and task scheduling problems. Lastly, section 5.6 discusses the results presented and

section 5.7 concludes on the research undertaken in this chapter.

5.2 Generating Precedence Constrained Technician and

Task Scheduling Problem Instances

5.2.1 Creating Varying Precedence Levels

In order to create datasets which contain varying levels of precedence constraints within

the same set of jobs (in terms of skill requirements, priority levels, and outsourcing

costs) a methodology for dataset creation had to be designed. The methodology had to

ensure that every dataset, containing the same number of jobs, of precedence level p

has all the precedence relationships present in the datasets of precedence levels lower

than p. For example, dataset P2 has 100 jobs to allocate and contains 25% precedence

relationships, therefore dataset P3, contains all the precedence relationships contained

in dataset P2, plus another 25% of precedence relationships.

Figure 5.1 illustrates the precedence relationships present within a small scale

dataset that has 30 jobs to schedule. This dataset contains 50% precedence relationships,

meaning that half of the jobs have at least one connection to another job (precedence

or successor). It is clear there are four sets of precedence relationships. In one set of

138 Precedence Constrained Technician and Task Scheduling Problems

Figure. 5.1 Diagram showing 50 % precedence relationships between a set of jobs

precedence relationships, containing jobs 1, 17, 18, 21 and 24, there are three levels.

On the first level are jobs 18 and 21. On the second level are jobs 1 and 24, and finally

on the third level is job 17. In this relationship tree, job 17 is dependent on job 1 and

job 24. Both Job 1 and 24 are dependent on job 21. Lastly, job 1 is also dependent on

job 18. Scheduling jobs 18 and 21 early in the scheduling horizon is of high importance,

as jobs 1 and 24 may not be scheduled until these jobs have been completed.

Figure. 5.2 Diagram showing 100 % precedence relationships between a set of jobs

In Figure 5.2, there are 100% precedence relationships between the set of jobs,

meaning that all of the jobs have at least one connection to another job (precedence or

successor). This dataset contains all of the relationships that were present in Figure 5.1.

5.3 Heuristic Approaches 139

5.2.2 Dataset Generator

Figure 5.3 illustrates how the precedence constrained datasets were generated under

the framework of the ROADEF 2007 challenge problem. Firstly, the instance file

is generated containing information about the problem. Next, the set of technicians

is created and each is assigned skills and days off. The jobs are then created and

assigned skill requirements, durations, priority levels, and outsourcing costs. The

precedence algorithm then begins which creates multi layered relationships between

jobs. Precedence levels to 25% are created and an output file is written, then the

precedence relationships are built to 50% and again an output file is written. This

continues until the precedence levels have reached 100%.

This data generator differs from the data generator featured in the previous chapter

in Figure 4.1 because for each run 5 job files will be created. The first will contain no

precedence constraints i.e 0%, then 25%, 50%, 75% and finally 100%. This will enable

the complexity of precedence relationships to be understood and help ascertain which

heuristic procedures work well on datasets of varying size and complexity.

5.2.3 Precedence Constrained Instances

The data can be separated into 5 groups, P1-P5, P6-P10, P11-P15, P16-P20 and P21-25

with 100, 200, 400, 800 and 1000 jobs to schedule respectively. Within each group,

the percentage of precedence constraints vary, 0%, 25%, 50%, 75% and 100%. Within

each group of data, the remaining characteristics of the datasets are the same, number

of technicians, domains and levels, and outsourcing budgets, in order to evaluate the

effect of precedence constraints on the quality of solution that can be achieved. A table

showing each datasets characteristics can be found in Appendix A Table A.2.

5.3 Heuristic Approaches

In order to provide a performance comparison, the three heuristic procedures, the

intelligent decision heuristic, the look ahead heuristic, and the greedy heuristic, which

140 Precedence Constrained Technician and Task Scheduling Problems

Figure. 5.3 Flowchart describing the creation of the precedence constrained technician
and task scheduling problem datasets

were also applied to the large scale problems in Chapter 4, are applied to precedence

constrained technician and task scheduling problem instances to test performance and

provide a comparative analysis. Once an initial solution has been generated, local

operators are used to try and find better quality solutions. The operators featured in

Chapter 4 are used on the precedence constrained problem instances. The operators

used are Decompose and rebuild, Decompose and rebuild N, Remove N jobs, Remove a

team, and Remove N teams.

5.4 Metaheuristic 141

5.4 Metaheuristic

In this chapter, a multi start hill climbing metaheuristic to guide the lower level heuristics

has been implemented. Multi start techniques have proved popular strategies in many

combinatorial optimisation problems (Blum and Roli, 2003).

5.4.1 Multi Start Hill Climbing

The multi start hill climbing metaheuristic presented in this chapter repeatedly takes an

initial solution generated by the heuristic (intelligent decision, greedy, or look ahead),

and then uses a pre-defined amount of computational time to try and improve it. The

best solution found is updated as better quality results are discovered. This process

continues, until the total amount of computational time has been reached.

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O:
the set of local operators

1: Initialise SBest
2: while total time not met do
3: S← Generate initial solution using heuristic
4: while improvement time not met do
5: o← O
6: S′← S(o)
7: if S′ ≤ S then
8: S← S′

9: if S≤ SBest then
10: SBest ← S
11: end if
12: end if
13: end while
14: end while
15: return SBest

Figure. 5.4 Pseudo code showing the implementation of the multi start hill climbing
metaheuristic

Figure 5.4 shows the implementation of the multi start hill climbing metaheuristic.

On line 1, the best solution is initialised, which will keep track of the best quality

solution found over the whole run. Whilst the algorithm’s total run time has not been

met, an initial solution is generated on line 3 using the heuristic procedure (either

142 Precedence Constrained Technician and Task Scheduling Problems

intelligent decision, greedy, or look ahead). Next, while there is improvement time

remaining, a local operator is selected and then applied to the current solution, which

generates the neighbouring solution S′ on line 6. If solution S′ is of better quality than

S then it replaces S on line 8. If the new solution S is of better quality than the best

solution found then SBest is updated. The algorithm continues to iterate, generating

initial solutions, and then trying to improve them until the total run time has been used.

Once the total run time has been used, the best solution found over the whole run is

output.

5.4.2 Multi Start Tuning

In order to use multi start hill climbing, the frequency of restart had to be specified. The

experiments use 10 minute runs in total and so, four time intervals for restarts were

initially proposed. The restarts ranged from 15 to 60 seconds in 15 second increments.

The parameter is powerful as it dictates the amount of search the heuristic does before

beginning the search again. This approach differs from iterative local search in the

following ways, (1) when a restart is triggered a new initial solution is created and (2)

the triggering of a restart is time dependent not search dependent. Each experiment was

run 5 times on each of the datasets tested and the mean objective value was recorded.

Figures 5.5, 5.6 and 5.7 show the results obtained for problem instances with 100, 400,

and 800 jobs.

Figure 5.5 indicates there are differences in the expected solution value dependent

on the value of the restart. Each level of precedence has been tested from 0 to 100%.

On analysis of the mean results produced across the different restart values, using 30

seconds seems to produce on average higher quality objective values.

Figure 5.6 illustrates that these datasets are suited to a smaller restart time, with the

lower objective values found using a 15 second restart. These results may be justified by

the size of the problem which means there are many more combinations and therefore

frequent searches from different starting points may lead to better quality solutions. .

5.4 Metaheuristic 143

Figure. 5.5 Bar chart showing the average objective values obtained using different
values of restart on jobs with between 0-100 % on a 100 job problem instance

Figure. 5.6 Bar chart showing the average objective values obtained using different
values of restart on jobs with between 0-100 % on a 400 job problem instance

Figure 5.7 demonstrates that these datasets generally find lower objective values

using a 30 second restart. These results, again, may be explained by the size of the

problem being solved. For example, in such a large problem frequent restarts may be

needed but coupled with some search time to navigate towards quality solutions.

144 Precedence Constrained Technician and Task Scheduling Problems

Figure. 5.7 Bar chart showing the average objective values obtained using different
values of restart on jobs with between 0-100 % on a 800 job problem instance

5.5 Experimental Results

The precedence constrained datasets have been tested using the following experimental

framework. For each run, a 10 minute computational time is allowed, in order to

accurately assess heuristic performance in reasonable computational times. Each

heuristic was run 5 times and the best solution found was recorded. The algorithms

were written in Java, and tested on an HP Z210 Workstation, with an i7-2600 CPU

with 3.4 GHZ with 12GB of RAM, to be able to compare the results achieved for each

heuristic tested. The aim of these experiments is to (1) obtain a measure of how solution

quality is affected by precedence relationships and (2) provide a comparative analysis

of the heuristics developed in this research and their robustness dealing with precedence

constraints.

Table 5.1 shows the results obtained using the three heuristic procedures, the intel-

ligent decision, the greedy heuristic, and the look ahead heuristic. It is clear that the

greedy heuristic does not perform as well as the intelligent decision or the look ahead

heuristic, finding the highest objective value in each of the datasets tested.

5.5 Experimental Results 145

Table 5.1 Table showing the average objectives achieved using the intelligent decision,
greedy and look ahead heuristic on the precedence constrained problem instances

Name Intelligent Decision Greedy Look Ahead

P1 31500 33960 31650
P2 32340 36240 32700
P3 35040 38220 36180
P4 35580 39150 37560
P5 36240 40440 37890

P6 52200 54480 51990
P7 53730 54630 52440
P8 57510 59400 57240
P9 62520 63750 60450

P10 65220 66330 63960

P11 46290 49680 45690
P12 46290 49770 46515
P13 46410 49770 46080
P14 46670 49800 47820
P15 48600 54060 48480

P16 53310 63840 54720
P17 54270 63960 54720
P18 55320 64950 54840
P19 56220 68235 54855
P20 58530 69180 58020

P21 48840 51720 49095
P22 49830 51720 49740
P23 51180 56880 51120
P24 51210 56850 51120
P25 51450 57480 51120

Average 49052 53779.8 49039.8

5.5.1 Equality of Means across Precedence levels

This research has been conducted based on the belief that precedence constraints impact

the quality of solution that can be obtained. If two datasets are taken, for example, P1

and P2, which contain the same set of 100 jobs, but P1 has no precedence constraints

whereas P2 has 25% precedence constraints. It is expected that the mean objective

function value on each of these datasets will not be equal.

146 Precedence Constrained Technician and Task Scheduling Problems

To test this, a hypothesis test has been carried out. The null hypothesis, shown in

Equation 5.1, h0 claims there is no difference in the mean objective value between the

groups. Conversely, the alternate hypothesis described in Equation 5.2, h1 specifies that

there is a difference in the mean objective value obtained, such that the mean value of

group 1, x1 is less than the mean objective of group 2, x2.

h0 : x1− x2 = 0 (5.1)

h1 : x1− x2 < 0 (5.2)

A series of experiments were conducted, the look ahead heuristic was run 20 times

on each dataset, P1 and P2, with the objective values recorded. The mean value obtained

for each was calculated along with the standard deviation. Next, the standard error

between both groups was calculated as well as the degrees of freedom. A T statistic was

calculated, 14.47, which is compared to a T value, in a one tailed test on 37/38 degrees

of freedom. A T value is calculated and compared to the T statistic. In this case, with

a significance level of α = 0.01, on a one tail test, the T Value is 2.431 which is less

than 14.747. This confirms that there are significant grounds to reject h0 and accept

the alternate hypothesis, that the mean objective of group 2 is higher than the mean

objective of group 1.

5.5.2 Effect of Precedence Constraints on Solution Quality

The purpose of this research is to estimate the effect of precedence constraints within

the field of technician and task scheduling. Within each set of data, varying levels of

precedence constraints were used and the effect that it has on the quality of solution can

be examined, across different scales of the problem. The mean score obtained for each

scale of the problem across varying levels of precedence constraints has been plotted.

The regression line which has been calculated, shown in Figure 5.8, demonstrates how

the quality of the solution is affected by the percentage of precedence constraints within

the datasets.

5.5 Experimental Results 147

Table 5.2 Table showing the calculated values for the one sided T Test on the equality
of means

Group 1 Group 2

Sample Size 20 20

Mean 36493.5 37700.25

Standard Deviation 251.276 266.03

T Statistic
(37700.25−36493.5)

81.827
= 14.747

T Value 2.431

Figure. 5.8 Graph showing the mean value produced for each dataset using each level
of precedence exhibiting a positive correlation

Figure 5.8 illustrates that as the level of precedence constraints increases, a larger

objective value should be expected. This is due to the extra complexity precedence

constraints bring. Using this plot, an estimate of the expected objective value given a

precedence level of x% can be made. For example, using a dataset with 100 jobs, with a

precedence level of 40% will result in an expected objective value of 35000.

148 Precedence Constrained Technician and Task Scheduling Problems

This power of estimation may aid the industrial world. In the building/housing

development industry large projects are often forecasted or estimated both in terms

of time and cost without mathematical aid. Naturally, it is common for projects to

overrun both in terms of time and cost which can be attributed to the knock on effects a

single point delay can have on the rest of the schedule. This work may help reduce the

difference between the forecasted and actual costs incurred, thereby saving money.

5.6 Discussion

This chapter has been focused on creating a set of precedence constrained technician

and task scheduling problems and solving the datasets with the heuristic procedures

featured in the previous chapters. A set of 25 instances was created ranging from

100-1000 jobs to allocate. The instances can be split into 5 sets, in each set the level of

precedence constraints ranges from 0% to 100%.

The results presented showed that the greedy heuristic did not perform as well as

the look ahead or the intelligent decision heuristic, and consistently found the highest

objective values in all datasets. This is because the greedy heuristic makes the locally

optimal choice at each stage without considering how this may affect the current team or

subsequent teams that may form or future allocations. Furthermore, as the problem size

increases, the gap between the performance of the greedy and other heuristic increases

indicating that the greedy heuristic is not a scalable approach.

With regards to the performance of the intelligent decision heuristic and the look

ahead heuristic, they both achieve a similar average objective value overall. When

considering each level of precedence there is a notable difference. On every set of data,

except 0% precedence constraints, the look ahead heuristic finds a lower objective value

than the intelligent decision heuristic.

5.7 Summary 149

5.7 Summary

This chapter has shown that precedence relationships are an important consideration

for many personnel scheduling problems that arise in multiple sectors, such as; service

maintenance, housing developments, and home health care.

This chapter has: (1) presented 25 precedence constrained technician and task

scheduling problem datasets that include varying levels of precedence constraints avail-

able to other researchers at https://akhalfay.wordpress.com/precedence-constrained-

technician-and-task-scheduling, (2) a precedence constrained data generator and prece-

dence algorithm, (3) provided a set of benchmark results on the datasets for future

comparative analysis, and (4) a comparison of the effects of precedence relationships

across three heuristic procedures, the intelligent decision heuristic, the greedy heuristic,

and the look ahead heuristic.

The next chapter will consider location and travel time constraints, an important

consideration in technician and task scheduling problems, that is not featured in the

ROADEF 2007 challenge.

Chapter 6

Multi-Period Technician Routing and

Scheduling Problem

6.1 Introduction

In this chapter, a set of novel multi-period technician routing and scheduling problems

are solved. Multi-period means that the problem covers more than one scheduling day.

So far, the problems studied in this thesis have included some of the most important

considerations within the field of technician and task scheduling (priority, teaming,

precedence, and outsourcing), however routing and travel time have not yet been

considered. The aim of this chapter is to add another dimension (location) to the

ROADEF 2007 challenge problem. By adding the complexity of location and travel time,

a set of novel problem instances have been created, which are available to researchers.

These datasets have been used to test the robustness of the heuristics developed so far in

this thesis to understand how easily they can be adapted to changing problem definitions

and constraints to ascertain their applicability in commercialised scenarios.

The aim of this problem is to construct a set of teams over multiple days to complete

a set of jobs. Each job has a set of skill domain requirements that must be satisfied by

the team which services the job, a priority level indicating the importance of the job,

and an outsourcing cost. On each day, teams (made up of technicians) must depart from

152 Multi-Period Technician Routing and Scheduling Problem

and return to a central depot. The travel time between jobs and the depot is accounted

for and is calculated as the Euclidean distance. Euclidean distance was chosen as it is

the most common way used in the literature of calculating the distance, refer to Pillac,

Gueret and Medaglia (2013) and Kovacs et al. (2012).

In some cases, there is also an outsourcing budget which may be used. Outsourced

jobs do not contribute to the objective function so utilisation of this budget is of

paramount importance. This multi-period technician routing and scheduling problem is

a novel problem as it requires scheduling a workforce over multiple days, includes the

unavailability of resources, teaming, priority levels, and solves problems ranging from 5

to 800 jobs, with a workforce of 5 to 150 technicians, and comes from real world data.

The remainder of this chapter is structured as follows, section 6.2 presents the

mathematical formulation of the multi-period technician routing and scheduling problem

and section 6.3 discusses the datasets that have been creating by adapting the ROADEF

2007 challenge instances. Section 6.4 describes each of the heuristics implemented;

a greedy heuristic, intelligent decision heuristic, and a look ahead heuristic. Section

6.5 provides a brief description of the local operators used and acceptance criteria

and section 6.6 presents the computational experiments performed. Lastly, section 6.7

displays the experimental results and section 6.8 discusses the results presented.

6.2 Multi-Period Technician Routing and Scheduling

Problem Formulation

In this chapter, the problem definition of the ROADEF 2007 challenge problem has been

extended to include the complexity of location and travel time. However, the complexity

of precedence and successor relationships has been removed from the datasets as

early computational experiments showed that they conflicted with the optimisation

of minimising the routing costs. Th mathematical formulation of this multi-period

technician routing and scheduling problem is one of the contributions of this research.

6.2 Multi-Period Technician Routing and Scheduling Problem Formulation 153

This problem is novel due to the complexity of the problem instances that are

used, the planning period is multi day, adapted from real world problems, scheduling a

large number of jobs, building teams, and includes the complexity of unavailability of

resources. Other works in the literature are generally based on solving single period

problems that contain up to 100 jobs, for example, Kovacs et al. (2012) and Pillac,

Gueret and Medaglia (2013). In most real world applications, the workers will be

scheduled over a planning period, for example, a week or a month etc. with many jobs

to allocate, therefore focusing on solving realistically sized problems (with hundreds of

jobs) will have the most benefit to the industrial world.

The multi-period technician routing and scheduling problem can be defined as a

complete directed graph G = {V,A}, where V is the set of all vertices i.e the set of

jobs, and A a set of arcs between the jobs. Once some jobs have been outsourced the

set V is reduced to V ′. The solution comprises of a scheduling horizon, a set of days

K = {1, . . . ,k}. There is a set of technicians T = {1, . . . , t}, and the set of available

technicians on day k is denoted as Tk. On each day k there is also a set of teams τk,

made up of technicians. The budget for outsourcing is denoted as C. The length of a

working day is Maxday. The starting depot on each day is denoted as 0k and the ending

depot as Nk.

Technicians have intrinsic skills s ∈ S and varying levels l ∈ L within each area

of skill. A technician’s skill can be represented by an L× S [0,1] matrix where pt
l,s

denotes the level of expertise the technician has in skill area s to level l. Skill levels are

hierarchical so if pt
l,s = 1 then, pt

l′,s = 1 for l′ < l.

Jobs have a service time denoted by di, and an outsourcing cost oi. Each job also

has a priority level pi where pi ∈ {1, . . . ,4} describing how important it is to serve the

job as early as possible. Each job i has a skill requirement matrix, of size L×S, denoted

as qi.

The problem can now be represented as;

min
4

∑
p=1

wp ·mp (6.1)

154 Multi-Period Technician Routing and Scheduling Problem

The objective function is a weighted sum of the latest ending times, mp, of each priority

group for p = {1 . . .4} where w = [28,14,4,1].

Subject to;

mp ≥ Eτ
i ∀p = [1, ...,3] i ∈V ′p (6.2)

Equation 6.2 states that the latest ending time of jobs of priority p where p = {1 . . .3},

must be greater than or equal to the ending time of all jobs of that priority level, V ′p .

m4 ≥ Eτ
i ∀ i ∈V ′ (6.3)

Equation 6.3 states that m4 must be greater than or equal to the ending time of all jobs

belonging to the set V ′.

∑
τ∈τk

vτ
t,k ≤ 1 ∀ t ∈ Tk, k ∈ K (6.4)

Equation 6.4 ensures that if a technician is available to work on day k then the technician

may belong to one team only.

∑
τ∈τk

vτ
t,k = 0 ∀ t /∈ Tk, k ∈ K (6.5)

Equation 6.5 guarantees that if a technician is not available to work on day k then the

technician may not belong to any team.

∑
k∈K

∑
τ∈τk

yτ
ik + zi = 1 ∀ i ∈V (6.6)

Equation 6.6 ensures that each job is either outsourced or it is allocated to a team during

the scheduling horizon.

∑
j∈V ′

xτ
0k, j,k = 1 ∀ k ∈ K, τ ∈ τk (6.7)

∑
i∈V ′

xτ
i,Nk,k = 1 ∀ k ∈ K, τ ∈ τk (6.8)

6.2 Multi-Period Technician Routing and Scheduling Problem Formulation 155

Equations 6.7 and 6.8 ensure that on each day the teams depart from and return to the

central depot.

∑
j∈V ′

xτ
j,i,k = yτ

i,k ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.9)

∑
j∈V ′

xτ
j,i,k− ∑

j∈V ′
xτ

i, j,k = 0 ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.10)

Equations 6.9 and 6.10 ensure that if a job is assigned to a team on day k then the team

enters and leaves the job’s location.

∑
i∈V

zi ·oi ≤C (6.11)

Equation 6.11 states that the total costs incurred by outsourcing jobs do not exceed the

maximum budget permitted.

Bτ
j ≥ (Eτ

i + ci, j) · xτ
i, j,k ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.12)

Equation 6.12 states that if two jobs happen sequentially, the start time of j must be

equal to or greater than the ending time of i plus the travel time between i and j.

Bτ
0k
= (k−1) ·Maxday ∀ k ∈ K τ ∈ τk (6.13)

Equation 6.13 sets the beginning time of each day within the scheduling horizon.

Bτ
Nk
≤ (k) ·Maxday ∀ k ∈ K τ ∈ τk (6.14)

Equation 6.14 ensures that each team arrives back at the depot before the end of the

working day.

yτ
i,k ·qi

l,s ≤ ∑
t∈Tk

pt
l,s · vτ

t,k ∀ i ∈V ′, l ∈ L, s ∈ S, k ∈ K (6.15)

Equation 6.15 ensures that if a job is allocated to a team, the team collectively has the

required expertise to service the job.

156 Multi-Period Technician Routing and Scheduling Problem

Eτ
i ≥ (Bτ

i +di) · yτ
i,k ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.16)

Equation 6.16 sets the ending time of each job belonging to V ′ as the beginning time of

the job, plus the duration of the job.

Ei · yτ
i,k ≤ (k−1) ·MaxDay ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.17)

Bi · yτ
i,k ≥ (k−1) ·MaxDay ∀ i ∈V ′, k ∈ K, τ ∈ τk (6.18)

Lastly, equations 6.17 and 6.18 ensure that the start and end times of jobs are within the

working day. With variables;

Bτ
i ≥ 0 ∀ i ∈V ′ (6.19)

Eτ
i ≥ 0 ∀ i ∈V ′ (6.20)

xτ
i, j,k = {0,1} ∀(i, j) ∈ A,τ ∈ τ,k ∈ K (6.21)

yτ
i,k = {0,1} ∀i ∈V ′,τ ∈ τ,k ∈ K (6.22)

vτ
t,k = {0,1} ∀t ∈ T,τ ∈ τ,k ∈ K (6.23)

zi = {0,1} ∀ i ∈V (6.24)

6.3 Generating Multi-Period Technician Routing and

Scheduling Problem Instances

In the ROADEF 2007 challenge problem, there were three sets of data; A, B and X, that

increased in complexity. Complexity can be measured in terms of the number of jobs to

allocate, the number of technicians available, outsourcing budget and the number of

domains and skill levels. Within each set of data, there were 10 datasets. Each dataset

had a set of jobs, a set of technicians, an outsourcing budget, and skill domain levels.

6.3 Generating Multi-Period Technician Routing and Scheduling Problem Instances 157

The aim of the multi-period technician routing and scheduling problem is to utilise the

outsourcing budget and serve the remaining jobs by travelling to service them in the

least costly manner.

Table 6.1 Table showing the multi-period technician routing and scheduling problem
data instances, T1 to T30

Dataset Jobs Techs Budget Domains Levels

T1 5 5 0 3 2
T2 5 5 0 3 2
T3 20 7 0 3 2
T4 20 7 0 4 3
T5 50 10 0 3 2
T6 50 10 0 5 4
T7 100 20 0 5 4
T8 20 0 5 4 4
T9 100 20 0 5 4

T10 100 15 0 5 4

T11 20 300 400 4 4
T12 300 30 300 5 3
T13 400 40 500 4 4
T14 400 30 300 40 3
T15 500 50 900 7 4
T16 30 300 800 3 3
T17 500 100 500 10 5
T18 800 150 500 10 4
T19 120 60 100 5 5
T20 120 40 500 5 5

T21 600 60 50 15 4
T22 800 100 500 6 6
T23 300 50 1000 20 3
T24 800 70 50 15 4
T25 600 60 50 15 4
T26 200 20 500 6 6
T27 300 50 1000 20 3
T28 100 30 150 15 7
T29 500 50 50 15 4
T30 500 40 500 15 4

158 Multi-Period Technician Routing and Scheduling Problem

Table 6.1 shows the ROADEF 2007 challenge problem datasets that have been

extended to become multi-period technician routing and scheduling problem datasets.

Each dataset from the ROADEF 2007 challenge has been extended to include the

complexity of location and travel time. In each instance, the customers’ locations

are randomly generated to be contained within the grid which is of size [100, 100].

The depot, which teams depart from and return to, is centrally located on the grid at

coordinates [50, 50]. In order to add the complexity of location and travel time, the

length of a working day also had to be modified from the ROADEF 2007 challenge

problem formulation. Originally, the maximum day length was 120 time units, it is now

500 time units. The cost of travelling between customers i and j is calculated as the

Euclidean distance between the points, as shown in Equation 6.25.

c(i, j) =
√

(xi− x j)2 +(yi− y j)2 ∀i, j ∈V ′ (6.25)

6.3.1 Solution Visualisation

Figure 6.1 shows a solution to dataset T5, generated by the adapted look ahead heuristic,

which was previously dataset A5 in the ROADEF 2007 challenge. This dataset has 50

jobs to schedule and no available outsourcing budget. A key is used to colour code,

priority one, two, three and four jobs, and travel time. On day one, it is clear that there

are four teams (Team9,2, Team6, Team3,1,7,8,10, and Team4) that each have job

allocations.

Figure 6.1 shows a tightly packed schedule. Each team returns to the depot before

the end of the working day. There appears to be a minimal amount of slack time left by

each team, meaning that the algorithm has utilised the available time. Furthermore, the

distances travelled by the teams are relatively short, meaning that the routing costs have

been minimised.

The distribution of customer locations is shown in Figure 6.2 for dataset T5. It is

evident that the depot is situated in the middle of the region at location [50,50], and that

6.3 Generating Multi-Period Technician Routing and Scheduling Problem Instances 159

Fi
gu

re
.6

.1
H

T
M

L
ou

tp
ut

sh
ow

in
g

a
so

lu
tio

n
to

da
ta

se
tT

5,
w

hi
ch

ha
s

50
jo

bs
an

d
a

po
ol

of
10

te
ch

ni
ci

an
s.

Jo
bs

ar
e

co
lo

ur
co

de
d

to
sh

ow
th

ei
r

pr
io

ri
ty

le
ve

ls
.

160 Multi-Period Technician Routing and Scheduling Problem

the customers are located randomly within the region. A random location placement

was chosen, ensuring that no customers were situated in the same place.

Figure. 6.2 Scatter plot showing the distribution of the customer’s locations in dataset
T5, each job is randomly located

6.4 Heuristic Approaches

In the previous chapters, the performance of the intelligent decision heuristic and the

look ahead heuristic has been compared using the greedy heuristic as a baseline. In

Chapters 3, 4, and 5, the look ahead heuristic has outperformed the intelligent decision

heuristic, whilst both have outperformed the greedy heuristic.

6.4.1 Adapted Greedy Heuristic

The greedy heuristic presented makes the locally optimal choice at each stage of the

scheduling process. At each stage, it selects a job for allocation and builds a team

to service the job. If the team has slack time after being allocated an initial job, jobs

6.4 Heuristic Approaches 161

are iteratively added to the team using a weighted scoring function. The weighted

scoring function takes into account the jobs the team can complete (in terms of skill),

the distance to the jobs from the team’s current location, and the slack time the team

would have if allocated the job. The greedy heuristic behaves differently to the look

ahead heuristic because it is not prohibitive (does not contain the look ahead element),

as no jobs are excluded from being selected for allocation. The pseudo code for the

adapted greedy heuristic is shown in Figure 6.3.

Variables: V : set of jobs, V ′: set of jobs that are allocated to teams, τ : the set of teams,
K: the scheduling horizon (collection of days), k: a day in the scheduling horizon, O:
outsource list, i: job selected for allocation, τi: team selected to serve job i

1: O← selectoutsourced(V)
2: while V ′ is not empty do
3: Initialise k
4: while k is not full do
5: i← select job(V ′)
6: τi← maketeam(k,τ)
7: add job(i,τi)
8: while τi canallocate do
9: τi← add job(V ′)

10: end while
11: end while
12: end while
13: return K

Figure. 6.3 Pseudo code showing the adapted greedy construction heuristic used to
solve the multi-period technician routing and scheduling datasets

On line 1 the set of outsourced jobs O is selected from the full set of jobs V leaving

V ′. The set of jobs V ′ are all the jobs that must be allocated to the teams. While there

are jobs to be scheduled, a day is created k on line 3. While this day can accommodate

more job allocations, a job i is selected to be allocated on line 5. On line 6, a team τi

is created in order to service job i, and the assignment is made on line 7. While team

τi has idle time left to service more jobs, jobs are added onto τi’s job list. Once day

k cannot be allocated any more jobs, a new day is created. This process is repeated

until all jobs belonging to v′ have been assigned to a team. The initial solution K is then

output on line 13.

162 Multi-Period Technician Routing and Scheduling Problem

6.4.2 Adapted Intelligent Decision Heuristic

To solve the multi-period technician routing and scheduling problem instances, the

intelligent decision heuristic had to be modified to consider the routing aspect of the

problem. At each stage of the scheduling process, the heuristic considers the distance to

eligible jobs and creates a hypothetical team for each. The heuristic then checks which

jobs could be allocated to the team adhering to travel time and skill requirements. A

utility score is calculated considering the travel time, utilisation of the route and the

quality of job assignments to the team.

6.4.3 Adapted Look Ahead Heuristic

In order to tackle the multi-period technician routing and scheduling problem instances,

the look ahead has also been adapted to cope with the complexity of travel time and

location. The heuristic now considers the distances to jobs and back to the depot. The

pseudo code for the adapted look ahead heuristic is shown in Figure 6.4.

Variables: V : set of jobs, V ′: set of jobs that are allocated to teams, V ′′: set of smart
allocation decisions, τ : the set of teams, K: the scheduling horizon (collection of days),
k : a day in the scheduling horizon, O: outsource list, i: job selected for allocation, τi:
team selected to serve job i

1: O← selectoutsourced(V)
2: while V ′ is not empty do
3: Initialise k
4: while k is not full do
5: V ′′← reduceset(V ′)
6: i← select job(V ′′)
7: τi← maketeam(k,τ)
8: add job(i,τi)
9: while τi canallocate do

10: τi← add job(V ′)
11: end while
12: end while
13: end while
14: return K

Figure. 6.4 Pseudo code describing the adapted look ahead construction heuristic used
to solve the multi-period technician routing and scheduling datasets

6.5 Improvement Phase 163

On line 1 the set of outsourced jobs O is selected from the full set of jobs V leaving

V ′. The set of jobs V ′ are all the jobs that must be allocated to the teams. While there

are jobs to be scheduled, a day is created k on line 3. While this day can accommodate

more job allocations, the set V ′ is reduced to V ′′, on line 5, by removing jobs that would

impact subsequent stages of the scheduling process in a negative way. A job i is selected

to be allocated from the set V ′′ on line 6. On line 7, a team τi is created in order to

service job i, and the assignment is made on line 8. While team τi has idle time left to

service more jobs, jobs are added onto τi’s job list. Once day k cannot be allocated any

more jobs, a new day is created. This process is repeated until all jobs belonging to V ′

have been assigned to a team. The initial solution K is then output on line 14.

6.5 Improvement Phase

This section outlines the local operators that have been used in order to perturb a solution

generated by the construction heuristic. Six local operators are used, all of which are

featured in the previous chapters, but they have been modified slightly to cope with the

added complexities. The computational expense of each operator varies, operators such

as Move a job, Swap two jobs and Shuffle a route are relatively inexpensive compared

to Decompose and rebuild, Decompose and rebuild N and Remove N jobs. The latter

operators provide more flexibility as they allow new team configurations to be formed.

On each iteration the chance of selecting an operator is uniform.

• Move a job: a day k belonging to the scheduling horizon is randomly selected.

A team τ is then randomly chosen belonging to day k. A job j is then chosen

belonging to τ’s route. This job is removed from its current position. The

construction heuristic then tries to reallocate the job to another team, adhering to

skill. time, and routing constraints.

• Swap two jobs: two teams belonging to the scheduling horizon are randomly

chosen, τ1 and τ2. The teams can belong to the same or different days. A job is

then chosen from each team’s route, jobs j1 and j2 respectively. The heuristic

164 Multi-Period Technician Routing and Scheduling Problem

then tries to swap the jobs between the teams such that τ1 is allocated j2 and τ2

is allocated job j1. Again, routing constraints are checked to ensure the team’s

route length does not exceed the maximum length of a working day.

• Shuffle a route: this operator randomly selects a day k belonging to the scheduling

horizon, and then a team τ belonging to k. The operator then gets the route

belonging to τ and shuffles the order of the jobs.

• Decompose and rebuild; a day k is selected within the scheduling horizon. Day k

is then destroyed by removing all jobs that were assigned to it, and removing all

team formations. The heuristic then tries to reallocate the set of jobs using the

construction heuristic. Team formations are rebuilt as jobs are allocated.

• Decompose and rebuild N days: this operator randomly selects a number of days

that will be destroyed and rebuilt. Once the number of days is chosen the heuristic

selects the days, and consecutive days are removed. All jobs belonging to the

selected days are removed and all team formations are removed. Once again,

the construction heuristic is used to reallocate the set of jobs, making new team

configurations.

• Remove N jobs: a number N is randomly chosen, which is the number of jobs to

be removed from the scheduling horizon. While u jobs have not been removed,

the operator randomly selects a day k, a team belonging to the day, τ , and a

job j from the team’s route. Job j is removed and added to the list of removed

jobs. If at any time, a team is left with no job assignments, the team is dispersed

into single technician teams. Once u jobs have been removed, the construction

heuristic is used to reallocate the set of removed jobs.

6.6 Computational Experiments

Once a solution has been modified by a local operator, it must be evaluated to see if

it is of better quality than the current solution. In this chapter, a simulated annealing

6.6 Computational Experiments 165

metaheuristic has been used due to its success in Chapter 3. A series of computa-

tional experiments have been performed in order to utilise the performance of the

metaheuristic.

6.6.1 Simulated Annealing Tuning

In this research a range of starting temperatures was used, the decrement and cooling

scheme remained the same. Equation 6.26 shows how the temperature parameter is

reduced after each iteration.

T = T ·δT (6.26)

The tuning experiments have used a range of datasets, T10, T13 and T28, previously

datasets A10, B3 and X8 from the ROADEF 2007 challenge. The initial temperatures

tested are shown in Table 6.2 and the results of the experiments are shown in Figures

6.5, 6.6, and 6.7.

Table 6.2 Table showing the set of initial temperatures for the simulated annealing
metaheuristic experiments

Initial Temperature

10
20
40
80

100

For each dataset, five initial temperatures were tested as shown in Table 6.2. These

experiments were performed in order to strike the right balance of freedom whilst still

ensuring convergence during the timed experimental runs. Each run of the algorithm

takes 300 seconds.

As an example, Figure 6.5 shows the results obtained for tuning on dataset T10. This

dataset has 100 jobs to allocate, no outsourcing budget, and 15 available technicians.

The graph shows that using a higher initial temperature leads to lower objective values.

This may be the case because there are a small number of jobs, and a relatively small

166 Multi-Period Technician Routing and Scheduling Problem

Figure. 6.5 Graph showing the average objective value over time using different initial
starting temperatures for dataset T10

pool of technicians, so fewer combinations. The freedom of a higher temperature allows

the heuristic to move through these combinations, finding high-quality solutions.

Figure. 6.6 Graph showing the average objective value over time using different initial
starting temperatures for dataset T13

Figure 6.6 shows the results obtained for tuning on dataset T13. This dataset has

400 jobs to allocate, an outsourcing budget of 500, and 40 available technicians. The

graph shows that using the lowest initial starting temperature leads to the best quality

6.6 Computational Experiments 167

solutions. This may be due to the number of jobs, which leads to more combinations

and therefore, a more focused search is necessary so that the heuristic does not diverge

into poor quality solution space.

Figure. 6.7 Graph showing the average objective value over time using different initial
starting temperatures for dataset T28

Figure 6.7 shows the results obtained for tuning on dataset T28. This dataset has

100 jobs to allocate, an outsourcing budget of 150, and 30 available technicians. The

graph illustrates that using a lower initial starting temperature leads to lower objective

values. This may be due to the large number of technicians available which means there

are more combinations than dataset T10, which has 15 technicians.

The optimal starting temperature of the simulated annealing metaheuristic can be

dependent on many factors as these experiments have shown, and there is not a single

optimal starting temperature for all datasets. For example, both T10 and T28 have

the same number of jobs, however, T10 is a much less complex dataset than dataset

T28. Dataset T10 has 20 domain skill levels whereas T28 has 105. Dataset T10 has 15

available technicians and T28 has 30. Furthermore, T28 also includes an outsourcing

budget of 150.

168 Multi-Period Technician Routing and Scheduling Problem

Figure. 6.8 Barchart showing the average objective values found for the adapted greedy,
adapted look ahead and the adapted intelligent decision heuristic part 1

6.7 Experimental Results

The multi-period technician routing and scheduling problem instances were tested under

the following experimental framework. Each heuristic was allowed a total run time of

300 seconds (5 minutes). Figures 6.8 and 6.9 shows the best results obtained over the

five runs for each of the heuristics on the multi-period technician routing and scheduling

problem datasets plotted as a bar chart. The heuristics were programmed in Java and

tested on an i7 HP Z230 Workstation with 16 GiB.

6.8 Discussion

This chapter has presented the multi-period technician routing and scheduling problem.

These datasets were created by extending the technician and task scheduling problem

instances featured in Chapter 3 by adding the complexity of location and travel time.

The results shown in Figures 6.8 and 6.9 indicate a difference in performance between

the adapted greedy, the adapted look ahead, and the intelligent decision heuristic.

6.8 Discussion 169

Fi
gu

re
.6

.9
B

ar
ch

ar
ts

ho
w

in
g

th
e

av
er

ag
e

ob
je

ct
iv

e
va

lu
es

fo
un

d
fo

rt
he

ad
ap

te
d

gr
ee

dy
,a

da
pt

ed
lo

ok
ah

ea
d

an
d

th
e

ad
ap

te
d

in
te

lli
ge

nt
de

ci
si

on
he

ur
is

tic
pa

rt
2

170 Multi-Period Technician Routing and Scheduling Problem

In the multi-period technician routing and scheduling problem instances T1-10, the

adapted look ahead heuristic finds on average the smallest gap from best known results.

Each of the heuristics finds the same solution on instances T1 and T2, which contain

scheduling just 5 jobs and so it can be assumed this is the optimal result. Each of the

heuristics also finds the same objective value on instance T5, which has 20 jobs to

allocate. For the rest of the data instances, the best result is found by either the look

ahead or intelligent decision heuristic. On instances T1-10 the look ahead significantly

outperforms both other heuristics, with the intelligent decision heuristic performing

least favourably.

Similarly, in the multi-period technician routing and scheduling problem instances

T11-T20, the adapted look ahead heuristic again outperforms the adapted greedy heuris-

tic and intelligent decision heuristic based on the average gap from best known results.

In these instances, the adapted look ahead heuristic finds the lowest objective value in 4

out of 10 instances, whilst the adapted greedy heuristic finds the lowest objective value

in just 1 instance, and the intelligent decision heuristic finds 5 of the best results. On

average, the adapted greedy heuristic achieves a gap of 2.4%, the adapted look ahead

achieves a gap of 1.4% and, lastly, the intelligent decision heuristic finds a gap of 3.6%

from best known results.

Lastly, in the multi-period technician routing and scheduling problem instances T21-

T30 the adapted intelligent decision heuristic surprisingly finds better quality results

on average than the other heuristics. In these datasets, the adapted intelligent decision

heuristic finds the lowest objective values in 8 out of 10 instances, whereas the adapted

greedy heuristic and adapted look ahead heuristic find the lowest objective values in 1

out of 10 instances each. On average the adapted look ahead has a gap from best known

results of 12% whilst the greedy heuristic has a gap of 13% and the intelligent decision

heuristic has a gap of just 1.6%.

It appears that overall the adapted intelligent decision heuristic finds the best quality

solutions, in terms of the objective value, when taking the average gap from best known

results across all datasets. This is helped largely by its superior performance on the

6.9 Summary 171

T21-30 problem instances, particularly datasets T21, T25, T29 and T30. The results

illustrate that using computationally expensive heuristic approaches has benefits in

terms of solution quality obtained when compared against a simpler heuristic approach,

such as the greedy heuristic.

6.9 Summary

This chapter has presented a set of multi-period technician routing and scheduling prob-

lem datasets. The problem has included scheduling a large set of jobs over multiple days,

by constructing teams who travel to service the jobs, subject to unavailability. In the

computational experiments, the intelligent decision heuristic outperformed the greedy

heuristic and look ahead heuristic on the multi-period technician routing and scheduling

problem instances. This suggests that using a more computationally expensive method

can in fact out perform a faster heuristic in time constrained experiments.

The contributions of this chapter are: (1) a comparative analysis of the adapted

greedy heuristic, adapted intelligent decision heuristic and the adapted look ahead heuris-

tic, (2) a mathematical formulation of the multi-period technician routing and scheduling

problem and (3) created 30 instances of multi-period technician routing and scheduling

problems which are publicly available at https://akhalfay.wordpress.com/technician-

routing-and-scheduling.

In the next chapter, instances from the literature are solved, the service technician

routing and scheduling problem with time windows, which is an important aspect of

service maintenance scheduling problems.

Chapter 7

Service Technician Routing and

Scheduling Problem with Time

Windows

7.1 Introduction

This chapter is based on solving the service technician routing and scheduling problem

with time windows. The occurrence of time windows is becoming increasingly popular

with service maintenance providers as evidenced in recent literature (Mathlouthi et al.

(2016) and Zamorano and Stolletz (2017)), and directly affects the scheduling and

routing of employees. From a customer’s perspective, knowing that a technician/skilled

worker will be arriving between time ai and bi can improve his/her customer experience.

It may allow the customer waiting for a service to take less time off work, and even

choose his/her preferred time slot, providing not only convenience but satisfaction.

In this chapter, the first sequential heuristic, the greedy randomized heuristic, to

solve the service technician routing and scheduling problem with time windows data

instances is tested. These problem instances were created by Kovacs et al. (2012)

who enhanced vehicle routing instances proposed by Solomon (1987), by combining

the datasets with skill domain information taken from the ROADEF 2007 challenge

174 Service Technician Routing and Scheduling Problem with Time Windows

(Society, 2007). The research presented in this paper studies 72 service technician

routing and scheduling problems with time windows datasets, each with 100 customers,

a varying crew size, and different proportions of jobs with time windows. The service

technician routing and scheduling problem with time windows datasets have only been

solved by Kovacs et al. (2012) who used a parallel adaptive large neighbourhood search

algorithm providing a set of benchmark results.

This problem requires tours to be designed for teams, such that all jobs are served

or outsourced. The objective of the problem is to minimise the sum of the routing and

outsourcing costs over a single day. Each team is made up of one or more technicians,

who each have intrinsic skills and levels of competency within each skill area. Each

team leaves a central depot at the beginning of the working day, travels to service

customers, and returns to the depot before the end of the working day. Each job requires

a set of skills that must be satisfied by the team who serves the job. Each job also has a

time window [ai,bi], and the beginning of service Bi must lie within the time window

such that ai ≤ Bi ≤ bi. This problem is a single period problem as the solution consists

of a single working day. Lastly, there is also the option to outsource some jobs (if they

are unable to be allocated), which incurs a penalty cost.

The greedy randomized heuristic, proposed in this chapter has some similarities

with the well known greedy randomized adaptive search procedure metaheuristic. The

greedy randomized heuristic, like greedy randomized adaptive search procedure, uses

multiple scoring criteria to decide which job should be allocated next and includes a

degree of randomness in order to avoid deterministic results. In contrast, the greedy

randomized heuristic does not generate multiple initial solutions. Instead, the greedy

randomized heuristic generates a single initial solution and the rest of the computational

time is spent trying to iteratively improve it. During the improvement phase, the chance

of selecting a local operator is uniform. A greedy randomized heuristic was chosen as

opposed to a greedy randomized adaptive search procedure heuristic due to the short run

times that were used in the initial experiments by Kovacs et al. (2012) as it is believed a

multi start heuristic procedure is better suited to longer run times.

7.2 Problem Description 175

The remainder of the chapter is organised as follows: section 7.2 presents the

mathematical formulation of the service technician routing and scheduling problem

with time windows and section 7.3 describes the greedy randomized heuristic. Section

7.4 outlines the improvement phase and section 7.5 presents the metaheuristic used.

Section 7.6 shows the results of the computational experiments performed and section

7.7 presents the computational results. Lastly section 7.8 discusses the performance of

the greedy randomized heuristic and section 7.9 concludes on the research undertaken.

7.2 Problem Description

The service technician routing and scheduling problem can be described as follows. On

a single day, a set of technicians must be assigned to complete a set of jobs. Each job

has skill requirements that must be satisfied by the technician who serves the job. The

jobs also have durations specifying how long the job takes to complete. Each technician

departs from and returns to the centralised depot before the end of the working day.

All travel time is accounted for and calculated as Euclidean distance. Each job has a

time window in which it must be served. If it is not possible to serve the job within

the time window then the job is outsourced which incurs a financial penalty. The

objective function is a sum of the distance travelled by all technicians plus any penalty

outsourcing costs incurred. Each job must either be served or is outsourced.

7.3 Heuristic Approach

The greedy randomized heuristic comprises of two parts, generating an initial feasible

solution, and secondly, iteratively trying to improve the current solution through the use

of local operators and evaluating using a simulated annealing with restart metaheuristic.

176 Service Technician Routing and Scheduling Problem with Time Windows

7.3.1 Greedy Randomized Construction Heuristic

The greedy randomized heuristic behaves in a flexible manner by changing the sorting

criteria that decides which job is next to be allocated. There are five insertion methods

that have been developed; earliest late window, minimum window size, complex jobs,

depot distance, and random. Each of these methods is described in the following

subsections. The pseudo code for the greedy randomized construction heuristic is

displayed in Figure 7.1.

• Earliest late window Each job has a time window [ai,bi], and this sorting method

orders the jobs into an increasing order of bi, the end of the time window, the

latest time the job can be started. This method tries to ensure that all jobs are

allocated before their time window has passed, as they will then be outsourced in

order to stay within the feasible solution space, which incurs a cost. By ordering

the jobs in this way, the heuristic is maximising its chance of being able to allocate

the job.

earlylatei = bi (7.1)

• Minimum window size This method sorts the set of jobs by the size of their time

window. This method aims to ensure that jobs that have a small opportunity to

be started, i.e. the difference between bi and ai is small, have a higher chance of

being allocated in favour of jobs with a larger difference between bi and ai. If the

time window is missed, the job will be outsourced which incurs a penalty thus

increasing the objective value that can be found.

minwindowi = bi−ai (7.2)

• Complex jobs The set of unallocated jobs are ordered by their difficulty. The

difficulty of a job is calculated as the sum of the total skill requirements across

each domain and skill level, as in Cordeau et al. (2010). This method aims to

allocate jobs which require lots of skill earlier, and jobs that are less difficult to

schedule are scheduled later. This method aims to prevent jobs being outsourced

7.3 Heuristic Approach 177

due to their skill requirements.

complexi = ∑
l∈L

∑
s∈S

qi
l,s (7.3)

• Depot distance The depot distance method orders the set of jobs in ascending

order of distance away from the depot. The distance between a job i located at

xi,yi, and the depot located at x0,y0 is calculated using the Euclidean distance as

shown in Equation (7.23).

depotdistancei =
√

(x0− xi)2 +(y0− yi)2 (7.4)

• Random The random sorting method orders the unallocated jobs by shuffling the

array that contains the jobs. In this research, the level of randomness, r, has been

set to 0.08. The tuning experiments for the level of randomness are explained in

Section 7.6.1.

Greedy Randomized Heuristic Pseudo Code

Figure 7.1 shows the greedy randomized construction heuristic. This algorithm takes

the following variables, a set of jobs V , a set of teams τ , a schedule S, an outsourcing list

O, the following sorting methods ELW : earliest late window, MWS: minimum window

size, CJ: complex jobs, DD: depot distance, and R: Randomly, i the job selected for

allocation, and τi the team selected to be allocated job i.

First, an empty schedule S is initialised. While jobs can be allocated to the schedule

S, a random number r is generated on the interval {0,1}. Dependent on the value of r,

a sorting method is chosen; ELW earliest late window, MWS minimum window size,

CJ complex jobs, DD depot distance, or R randomly. On line 5, the set of remaining

unallocated jobs V is sorted by the chosen sorting method, then a job i is selected

belonging to V . Job i is then assigned to a team (if one is available in terms of time

windows and skill requirements) and removed from the set of unallocated jobs. The

while loop is iterated through until no more job allocations can be made to the teams.

178 Service Technician Routing and Scheduling Problem with Time Windows

Variables: V : set of jobs, τ : the set of teams , S: the schedule, O: outsource list, ELW :
earliest late window, MWS: minimum window size, CJ: complex jobs, DD: depot
distance, R: Randomly, i: job selected for allocation, τi: team selected to serve job i

1: initialise S
2: while jobs can be allocated do
3: r← random{0,1}
4: technique←Choosesortingmethod(r,ELW,MWS,CJ,DD,R)
5: V ← method(V)
6: i← select job(V)
7: τi← selectteam(i,S)
8: assign(S,τi, i)
9: remove(V, i)

10: end while
11: O← addOutsourced(V)
12: return S

Figure. 7.1 Figure showing the pseudo code for the greedy randomized construction
heuristic used to solve the service technician routing and scheduling problems with time
windows

On line 11, any remaining unallocated jobs are added to the outsource list O. Lastly, on

line 12, the initial solution S is output.

The cost of outsourcing a job is shown in equation (7.24).

oi = 200+∑
l∈L

∑
s∈S

qi
l,s (7.5)

7.4 Improvement Phase

7.4.1 Local Operators

A variety of local operators have been used to explore the search space. Some of the

local operators used were featured in previous chapters of this thesis (Chapters 3, 4,

5 and 6): Swap two jobs, Move a job, Remove a team, Remove N jobs and Remove

N teams. Other operators used have been featured in other research by Cordeau et al.

(2010) which was based on the local operators proposed in Shaw (1998) for solving the

vehicle routing problem. In this research, only feasible solution space is explored. This

means that when an operator is applied, skill compatibility, time window constraints

7.4 Improvement Phase 179

and route length are checked to make sure the search remains within feasible solution

space.

• Swap order: two jobs j1 and j2 are randomly selected belonging to the same

team τ , with positions p1 and p2 respectively. The operator then reassigns the

jobs such that j2 is now positioned at p1 and j1 is positioned at p2 in team τ’s

route.

• Remove related jobs: a number N is randomly chosen, which represents how

many jobs that will be removed. Next, a single job is selected at random, job i,

and is removed. The remaining jobs are then ranked in terms of how similar they

are to the removed job in terms of skill requirements as in Cordeau et al. (2010).

The calculation for the relatedness of two jobs in shown in Equation (7.25). The

highest scoring job is selected and removed until N jobs have been removed, and

added to the outsourced list. The heuristic is then used to try to allocate the jobs

in the outsourced list back to the schedule.

reli,i′ = ∑
l∈L

∑
s∈S
|qi

l,s−qi′
l,s| (7.6)

• Remove close jobs: a number N is selected, which defines how many jobs will

be removed. Next, a single job is selected at random, job i, and is removed. The

remaining jobs are then ranked in terms of how similar they are to the removed

job in terms of geographical location. The closeness of two jobs is calculated

as the Euclidean distance between them, as illustrated in Equation (7.26). The

highest scoring job is selected and removed until N jobs have been removed, and

added to the outsourced list. The heuristic is then used to try to allocate the jobs

in the outsourced list back to the schedule.

closei,i′ =
√

(xi− xi′)2 +(yi− yi′)2 (7.7)

180 Service Technician Routing and Scheduling Problem with Time Windows

• Remove chains: This operator iterates through each team belonging to the

schedule. If the size of the team’s route is greater than two, then the team

becomes a candidate to have jobs removed. A number N is chosen between one

and the number of candidate teams. A portion of the each of the team’s routes

is removed and each job is added into the outsourcing list until N team’s routes

have been changed. The heuristic is then used to try and allocate the jobs from

the outsourced list back into the schedule.

7.5 Metaheuristic

7.5.1 Simulated Annealing with Restart

In this work, a simulated annealing metaheuristic with a restart mechanism has been

implemented. Simulated annealing was chosen due to its success, in terms of being

able to find high quality solutions in reasonable computational times, in other types of

combinatorial optimisation problems, (Kundu et al., 2008) and (Cordeau et al., 2010).

The implementation of this metaheuristic is shown in Figure 7.2.

The variables associated are: S the initial solution generated by the greedy random-

ized construction heuristic, S′ the neighbouring solution generated by applying a local

operator to S, SBest the best solution found, O the set of local operators which perturb

the solution S, T the initial temperature, δT the decrement rate, StepSize the maximum

number of steps before restarting from the best solution, and lastly, count which counts

the number of iterations.

The initial solution S, generated by the greedy randomized heuristic, is saved as the

best solution SBest on line 1, and count is set to 0. Whilst the termination criterion is

not met, there is computational time remaining, a local operator is selected on line 4.

This local operator o is applied to the solution S on line 5 generating a neighbouring

solution S′. On line 6 this solution S′ is evaluated. If it has a lower objective function

than S, then it replaces S. Next, on line 8 the solution S is evaluated against the best

solution SBest and if better, the best solution is updated and the count is set to zero.

7.5 Metaheuristic 181

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution,
O: the set of local operators, T : initial temperature, δT : the cooling rate, StepSize:
maximum steps before beginning from best solution, count: counter for iterations,

1: SBest ← S
2: count← 0
3: while termination criteria not met do
4: randomly choose o ∈ O
5: S′← o(S)
6: if S′ ≤ S then
7: S← S′

8: if S≤ SBest then
9: SBest ← S

10: count← 0
11: end if
12: else
13: r← random{0,1}
14: p← exp(S′−S)/T
15: if p≥ r then
16: S← S′

17: end if
18: end if
19: T ← T ·δT
20: count← count +1
21: if count = StepSize then
22: S← SBest
23: count← 0
24: end if
25: end while
26: return SBest

Figure. 7.2 Figure showing the implementation of the simulated annealing with restart
metaheuristic on the service technician routing and scheduling problems with time
windows

However, if solution S′ is not better than the current solution S, then it is evaluated

using the simulated annealing criterion and compared to a random number r generated

on the interval {0,1}. If the probability p of accepting this solution is greater than r,

then solution S is updated. After every iteration, the simulated annealing temperature is

reduced and the count is incremented by one. Once the count has reached its maximum

value, StepSize, solution S is set to SBest on line 22, and the count is set back to 0. Once

the termination criterion has been met, the best solution SBest is output on line 26.

182 Service Technician Routing and Scheduling Problem with Time Windows

7.6 Computational Experiments

A series of computational experiments have been performed using the greedy ran-

domized heuristic. The aim of these experiments is to ensure the greedy randomized

heuristic performs well on the datasets and finds competitive results. The performance

of the greedy randomized heuristic is compared against the best known, average, and

maximum scores achieved by Kovacs et al. (2012) who used a parallel adaptive large

neighbourhood search heuristic.

7.6.1 Tuning the Greedy Randomized Heuristic

The first set of experiments has been used to tune the level of randomness within the

greedy randomized heuristic. In order to minimise the number of tuning experiments

to be performed, it was decided that the chance of selecting a sorting method, other

than the random sorting method, will each have an equal probability. The experiments

range from using an equal level of random sorting in comparison to the other sorting

methods (0.2), to using no randomness (0) to find the optimal value of randomness. A

percentage gap comparison, the difference in objective values divided by the objective

value of Kovacs et al. (2012) solution, is presented and compared against the results

presented in Kovacs et al. (2012). The percentage gap has been calculated on many

criteria; average gap (across all of the datasets used), average gap from the 01 instances

(where 100% of the jobs have time windows), average gap on the 03 instances (where

50 % of the jobs have time windows), the NoTeam instances (no outsourcing needed),

the ReducedNoTeam instances (where outsourcing is needed), and lastly, a comparison

across the different numbers of domains and skills, 5×4, 6×6 and 7×4.

The 12 datasets chosen from the service technician routing and scheduling problem

with time windows instances for the tuning experiments are shown in Table 7.1. The

name of the dataset describes its characteristics. For example in R103_6×6_NoTeam,

it can be deduced that the jobs are randomly located by the R (C is clustered and RC

randomly clustered), the jobs have 50% time windows defined by the 03 (01 means

7.6 Computational Experiments 183

Table 7.1 Table showing the datasets chosen for tuning the greedy randomized heuristic

Datasets

C101_5×4_NoTeam

C103_5×4_NoTeam

C201_5×4_ReducedNoTeam

C203_5×4_ReducedNoTeam

R101_6×6_NoTeam

R103_6×6_NoTeam

R201_6×6_ReducedNoTeam

R203_6×6_ReducedNoTeam

RC101_7×4_NoTeam

RC103_7×4_NoTeam

RC201_7×4_ReducedNoTeam

RC203_7×4_ReducedNoTeam

100% time windows), there are 6 domains and 6 levels within each domain represented

by 6×6, and, lastly, the instance is a no team instance represented by NoTeam.

Table 7.2 displays the percentage gap achieved from the best known score as found

by Kovacs et al. (2012). The first column displays the level of randomness, r, in each

implementation and the second column shows the average percentage gap achieved

across all of the datasets used in the tuning experiments. The third column shows the

average gap from the best known score for the 01 datasets, and column 4 displays the

average gap from best known score for the 03 datasets. Columns 5 and 6 show the

average gap from best known score achieved across the NoTeam and ReducedNoTeam

datasets respectively. Lastly, columns 7, 8 and 9 display the average gap from the best

known score across the 5×4, 6×6 and 7×4 datasets.

The experiments have shown that the gap from best known score is minimised

overall when using a randomness level r = 0.08. Interestingly, these experiments have

also highlighted characteristics within the datasets. For example, it seems that the 01

dataset experiments produced a much smaller gap from best known score than the 03

instances. However, the average gaps from best known score seem to be equal when

184 Service Technician Routing and Scheduling Problem with Time Windows

Ta
bl

e
7.

2
Ta

bl
e

sh
ow

in
g

th
e

tu
ni

ng
ex

pe
ri

m
en

tr
es

ul
ts

fo
rt

he
gr

ee
dy

ra
nd

om
iz

ed
he

ur
is

tic
on

th
e

ch
os

en
da

ta
se

ts

r
A

ll
01

03
N

oT
ea

m
R

ed
uc

ed
N

oT
ea

m
5
×

4
6
×

6
7
×

4

0.
2

0.
06

34
0.

02
17

0.
10

52
0.

06
02

0.
06

66
0.

03
79

0.
05

75
0.

07
59

0.
16

0.
06

22
0.

02
58

0.
09

85
0.

06
74

0.
05

69
0.

03
53

0.
04

99
0.

08
37

0.
12

0.
06

05
0.

02
53

0.
09

57
0.

06
14

0.
05

95
0.

03
83

0.
05

43
0.

06
96

0.
08

0.
05

87
0.

02
06

0.
09

68
0.

05
43

0.
06

30
0.

03
70

0.
05

16
0.

06
88

0.
04

0.
05

99
0.

02
48

0.
09

49
0.

05
63

0.
06

34
0.

03
86

0.
05

21
0.

06
96

0.
00

0.
06

05
0.

02
39

0.
09

70
0.

06
1

0.
05

99
0.

03
94

0.
05

11
0.

07
12

7.6 Computational Experiments 185

comparing the ReducedNoTeam and NoTeam instances. In addition, there also seems

to be a distinction between the number of domains and skill levels, where the larger

the number of domains and skills, the larger the gap from optimal results. The tuning

experiments performed have shown it is important to have an element of randomness

within the algorithm, in order to minimise the gap from best known score.

7.6.2 Tuning the Simulated Annealing with Restart Metaheuristic

The second set of experiments aimed to find the optimal parameter values for the

simulated annealing with restart metaheuristic. The restart metaheuristic has three

parameters; the Temperature, the Decrement, and the StepSize. The Temperature

value controls how likely it is to accept a worse quality solution. Decrement controls

the rate of decrease in accepting a worse solution and, lastly, the StepSize controls how

frequently the search is reverted back to the best solution. Each parameter had two levels,

and therefore 23 tests had to be undertaken. A series of experiments has been performed

using datasets C101_5×4_NoTeam and C103_5×4_NoTeam (Kovacs et al., 2012),

using the parameter values shown in Table 7.3 to find the main and interaction effects.

Table 7.3 Table showing the parameter settings for the implementations of the simulated
annealing with restart metaheuristic

Experiment StepSize Temperature Decrement

1 10,000 25 0.9999
2 25,000 25 0.9999
3 10,000 50 0.9999
4 25,000 50 0.9999
5 10,000 25 0.99999
6 25,000 25 0.99999
7 10,000 50 0.99999
8 25,000 50 0.99999

These parameter values have been chosen with careful consideration. First, the

number of iterations performed on a timed run was calculated which ranged between

86,000 and 311,000 iterations dependent on the dataset. The initial starting temperatures

were then chosen along with decrement values to ensure that the metaheuristic would

186 Service Technician Routing and Scheduling Problem with Time Windows

reach its ground state within the number of iterations that would be performed in a run

as shown in Figure 7.3.

Figure. 7.3 Graph showing temperature over time using different starting temperatures
and decrement rates

The simulated annealing with restart metaheuristic was run 10 times for each

experiment, and the average objective value obtained was recorded. The main and

interaction effects of each parameter are explained in the following subsections for each

dataset tested.

C101_5×4_NoTeam

Figure 7.4 shows the results obtained for dataset C101_5× 4_NoTeam. The main

interactions plot illustrates that Decrement seems to have the strongest effect on solution

quality due to the steepness of the line, i.e. the higher the decrement value the lower

mean objective results that are produced. Temperature also has a significant effect on

the quality of solution obtained, as using a higher temperature produces better quality

results. StepSize has a smaller yet still significant impact, preferring a smaller step size.

From the interactions plot, shown in Figure 7.4, it seems that Decrement and

StepSize appear parallel, and therefore there is no interaction between these factors.

However, factors StepSize and Temperature do have an interaction as they intersect

each other. The most significant interaction is between Temperature and Decrement.

7.6 Computational Experiments 187

Figure. 7.4 Chart showing the main and interaction effects of the StepSize, Temperature
and Decrement parameters on datasets C101_5×4_NoTeam and C103_5×4_NoTeam

C103_5×4_NoTeam

The results for C103_5× 4_NoTeam are displayed in Figure 7.4. Again, the main

effects plot shows that each parameter, Temperature, StepSize and Decrement has an

effect on the quality of solution found. Decrement has the strongest effect on solution

quality in this dataset, but in this dataset, the lower the decrement factor the lower mean

objective results that are produced. The other parameters StepSize and Decrement have

a similar impact on solution quality evidenced from equal gradients. In this dataset,

C103_5×4_NoTeam, using a lower Temperature and StepSize leads to better quality

results.

In Figure 7.4, the interactions plot for C103_5×4_NoTeam shows again that there

is no interaction between Decrement and StepSize. The most significant interaction is

between Decrement and Temperature, although Temperature and StepSize also have

an interaction.

188 Service Technician Routing and Scheduling Problem with Time Windows

Summary of Tuning Experiments

Figure 7.4 demonstrates that the two types of datasets are affected differently by the

parameter values set. In the 01 instances, a higher temperature and decrement lead to

better objective values, whereas in the 03 datasets a lower temperature and decrement

produced better quality results. This suggests the highly constrained datasets with 100%

time windows have fewer combinations and therefore need more freedom to travel

through the solution space, whereas less constrained datasets with 50% time windows

need a more focused search as there are so many combinations to consider, indicating a

range within the datasets.

7.7 Experimental Results

The greedy randomized heuristic was programmed in Java and tested on an HP Z210

Workstation, with an i7-2600 CPU with 3.4 GHZ with 12GB of RAM. Each run on the

NoTeam instances lasted 80 seconds and each run on the ReducedNoTeam instances

lasted 60 seconds, as in Kovacs et al. (2012) for comparison purposes. The greedy

randomized heuristic was run 5 times per data instance, and the best, average and worst

results obtained are shown in Tables 7.4 and 7.5.

Column 1 shows the name of the dataset, columns 2-4 show the best, average and

maximum objective value achieved by Kovacs et al. (2012) with the parallel adaptive

large neighbourhood search (pALNS), and columns 4-7 display the best, average and

maximum objective values found by the greedy randomized heuristic. The highlighted

rows indicate where the greedy randomized heuristic has found a lower objective value

than was achieved by Kovacs et al. (2012) with the pALNS.

7.7 Experimental Results 189

Table 7.4 Table showing the minimum, maximum and average objective results for the
service technician routing and scheduling problem on the NoTeam instances

Dataset pALNS GREEDY
min avg max min avg max

C101_5×4 1098.71 1111.08 1128.02 1096.85 1135.03 1180.95
C103_5×4 1018.61 1037.33 1049.41 1075.36 1119.66 1195.76
C201_5×4 1158.97 1180.93 1228.99 1157.65 1163.1 1183.31
C203_5×4 1046.93 1049.3 1052.83 1228.23 1297.39 1337.33
R101_5×4 1678.68 1685.85 1697.2 1672.55 1682.17 1692.81
R103_5×4 1238.67 1249.91 1282.28 1288.48 1312.95 1339.13
R201_5×4 1440.3 1448.93 1462.62 1526.43 1563.53 1599.98
R203_5×4 1098 1106.12 1123.08 1281.83 1334.01 1378.83
RC101_5×4 1708.51 1716.07 1729.75 1676.57 1721.95 1760.88
RC103_5×4 1337.99 1354.11 1388.13 1454.46 1482.46 1507.06
RC201_5×4 1601.89 1607.25 1610.75 1650.66 1698.03 1727.49
RC203_5×4 1161.53 1166.5 1178.64 1373.44 1430.32 1467.19

C101_6×6 989.21 1004.82 1029.72 973.05 1002.15 1029.72
C103_6×6 893.94 897.86 907.62 1075.26 1181.12 1239.93
C201_6×6 821.55 821.55 821.55 821.55 847.22 868.72
C203_6×6 689.6 703.1 750.12 831.51 908.91 970.66
R101_6×6 1658.27 1667.43 1672.57 1662.69 1666.02 1675.24
R103_6×6 1223.63 1231.49 1243.49 1243.7 1264.54 1286.5
R201_6×6 1261.94 1270.26 1279.81 1335.66 1375.56 1417.77
R203_6×6 932.35 951.84 964.54 1104.75 1153.24 1200.86
RC101_6×6 1679.13 1683.96 1690.06 1672.85 1686.62 1693.34
RC103_6×6 1281.55 1310.95 1331.46 1354.14 1381.79 1400.85
RC201_6×6 1395.4 1403.95 1411.48 1494.14 1547.03 1613.75
RC203_6×6 1001.04 1016.71 1030.15 1176.41 1236.67 1291.41

C101_7×4 1357.05 1398.95 1462.16 1357.05 1416.19 1553.71
C103_7×4 1215.7 1239.22 1264.17 1263.67 1295.83 1335.95
C201_7×4 1256.56 1282.18 1302.56 1256.3 1264.26 1302.56
C203_7×4 1150.85 1151.27 1152.94 1288.96 1354.81 1474.64
R101_7×4 1776.46 1793.95 1813.53 1771.56 1791 1807.89
R103_7×4 1346.8 1375.09 1399.95 1402.04 1423.96 1456.49
R201_7×4 1398.14 1410.9 1427.95 1427.56 1458.63 1474.29
R203_7×4 1164.9 1166.94 1169.27 1285.35 1334.17 1407.76
RC101_7×4 1821.9 1844.37 1859.17 1832.75 1903.58 1980.33
RC103_7×4 1435.63 1455.33 1477.84 1547.33 1610.13 1679.64
RC201_7×4 1697.82 1701.25 1705.48 1771.25 1793.66 1811.06
RC203_7×4 1239.45 1241.65 1249.72 1422.35 1459.22 1527.29

190 Service Technician Routing and Scheduling Problem with Time Windows

Table 7.5 able showing the minimum, maximum and average objective results for the
service technician routing and scheduling problem on the ReducedNoTeam instances

Dataset pALNS GREEDY
min avg max min avg max

C101_5×4 5656.63 5733.75 5806.55 5572.99 5798.25 6286.36
C103_5×4 2644.65 2782.2 2869.64 2941.77 3461.57 3861.02
C201_5×4 2755.52 2755.52 2755.52 2755.52 2755.52 2755.52
C203_5×4 2389.37 2392.5 2393.62 2591.11 2680.16 2907.03
R101_5×4 5582.58 5895.38 6181.52 5663.64 6030.76 6400.05
R103_5×4 1710.25 1845.25 2020.48 2034.5 2378.57 2664.23
R201_5×4 2838.5 2854.3 2865.75 2895.78 3014.47 3250.06
R203_5×4 2332.23 2332.23 2332.23 2544.48 2595.48 2802.92
RC101_5×4 5127.79 5164.84 5262.36 5103.33 5428.46 5830.71
RC103_5×4 2170.57 2348.06 2490.12 2661.07 2984.91 3500.22
RC201_5×4 3088.23 3091.67 3093.56 3107.26 3217.95 3282.21
RC203_5×4 2516.16 2540.35 2550.62 2672.52 2761.53 2828.82

C101_6×6 7731.07 7762.94 7791.08 7660.86 7763.51 8151.45
C103_6×6 4980.7 5028.83 5136.21 5242.58 5771.19 6394.29
C201_6×6 3278.07 3299.56 3328.01 3283.84 3405.21 3603.53
C203_6×6 2460.17 2465.9 2468.71 2743.44 2923.61 3101.72
R101_6×6 5955.17 6152.29 6322.82 6174.57 6453.63 6701.15
R103_6×6 2251.64 2329.28 2404.57 2485.9 2839.6 3228.95
R201_6×6 3503.4 3536.7 3574.97 3635.03 3857.49 4072.21
R203_6×6 2437.28 2446.18 2481.77 2649.38 2806.12 2955.39
RC101_6×6 5276.34 5466.18 5771.99 5231.5 5513.1 5664.35
RC103_6×6 2263.83 2349.57 2522.71 2704.04 3212.48 3945.85
RC201_6×6 4422.86 4519.95 4656.79 4973.47 5310.02 5753.73
RC203_6×6 2649.51 2673.72 2730.78 2825.65 3239.56 3615.14

C101_7×4 5208 5257.9 5307.12 5256.49 5438.5 5732.91
C103_7×4 2020.4 2117.44 2173.39 2205.58 2569.24 2804.6
C201_7×4 2773.41 2779.37 2803.21 2773.41 2784.02 2820.23
C203_7×4 2261.37 2282.15 2301.73 2450.03 2566.85 2755.9
R101_7×4 5239.81 5381.35 5437.66 5232.6 5580.65 6018.08
R103_7×4 2104.93 2215.84 2314.3 2338.84 2427.95 2666.58
R201_7×4 2672.96 2679.38 2682.23 2706.8 2764.65 2936.23
R203_7×4 2199.1 2209.8 2229.67 2318.15 2368.62 2443.63
RC101_7×4 5531.06 5799.77 6367.47 5627.79 5959.56 6467.22
RC103_7×4 2586.03 2676.54 2820.48 3127.24 3633.13 3963.97
RC201_7×4 2919.83 2936.28 2945.46 2930.78 3033.64 3244.95
RC203_7×4 2277.62 2285.17 2301.26 2459.13 2541.01 2675.67

7.8 Discussion 191

7.8 Discussion

7.8.1 Performance of Greedy Randomized Heuristic on NoTeam

Instances

Table 7.4 displays the results found on the NoTeam problem instances. In these datasets,

the sequential greedy randomized heuristic is able to find a lower minimum objective

value than the parallel adaptive large neighbourhood search in 8 out of 36 datasets and

is able to find the same minimum objective value in two datasets C201_6×6_NoTeam

and C101_7×4_NoTeam.

The results suggest that the greedy randomized heuristic finds a smaller gap from

best known score on the 01 instances compared to the 03 instances. The difference

between these datasets is the proportion of time windows, the 01 instances are more

constrained (contain 100% time windows) compared to the 03 instances (contain 50%

time windows) and therefore, there are fewer feasible configurations. In the 5×4, 6×6,

and 7×4 datasets, the gap from minimum objective results in the 01 instances is 1.08%,

1.98% and 1.12%. This increases to 11.77%, 14.03% and 8.82% in the 03 problem

instances.

Another trend within the results occurs in the 203 datasets. These datasets achieve

the highest gap from best known score overall, regardless of the distribution of job

locations i.e C clustered, R randomly, or RC randomly clustered. This pattern occurs

across each set of instances 5×4, 6×6, and 7×4.

In the 5×4 and 7×4 datasets, the gap from best known score increases in relation

to the way the set of jobs are located, clustered (C), random (R), and randomly clustered

(RC). In the 5×4 datasets the gap is 5.75%, 6.59% and 7.03% and in 7×4 the gap is

3.98%, 4.07% and 6.86%.

192 Service Technician Routing and Scheduling Problem with Time Windows

7.8.2 Performance of Greedy Randomized Heuristic on

ReducedNoTeam Instances

Table 7.5 displays the results achieved for the ReducedNoTeam problem instances.

In these datasets, the greedy randomized heuristic is able to find a lower minimum

objective value than the parallel adaptive large neighbourhood search in 5 out of

36 datasets; and is able to find the same minimum objective value in two datasets

C201_5×4_ReducedNoTeam and C201_7×4_ReducedNoTeam.

The results again suggest that the greedy randomized heuristic finds a smaller gap

from best known score on the 01 instances compared to the 03 instances with the

minimum average gap equal to 0.36%, 3.05% and 0.7% across the 01 instances for

the 5×4, 6×6 and 7×4 problems. However, the gap from minimum objective value

results increases for the 03 instances to 12.5%, 10.33% and 10.49%.

The trend within the distribution of jobs is the same across each level of domains

and skills. In each type of dataset, 5×4, 6×6 and 7×4, the gap from minimum results

is the smallest when the distribution of jobs is clustered (C), 4.55%, 4.01% and 4.61%.

The gap is largest when the jobs are distributed in random clusters (RC), 7.24%, 9.42%

and 7.76%.

In these datasets, there is again a pattern between the 5×4 and 7×4 datasets. The

pattern occurs in the 203 datasets. These datasets achieve the highest gap from best

known score overall, regardless of the distribution of job locations i.e C clustered, R

randomly, RC randomly clustered. This could be attributed to the constrained nature of

the problems and perhaps skill sparsity amongst the workforce.

7.8.3 Summary of Performance

Overall, considering the results presented on the 72 datasets, the gap from minimum,

average and maximum results are calculated to be 6.38%, 10.07% and 14.04%. This

can be split in to the performance gap on the 01 instances as 1.39%, 3.27% and 5.82%,

and on the 03 instances as 11.36%, 16.86% and 22.27%.

7.9 Summary 193

The results presented in section 7.7 illustrate that the sequential greedy randomized

heuristic approach can in some cases, 13 out of 72, find a better quality solution than

the parallel adaptive large neighbourhood search approach presented by Kovacs et al.

(2012). This is the first time that another heuristic approach has been tested on these

datasets, allowing a comparison with the parallel adaptive large neighbourhood search

by Kovacs et al. (2012). The greedy randomized heuristic approach has not performed

as well on the 03 problem datasets which include only 50% of datasets with time

windows. It is believed that this is because the datasets are less constrained, resulting in

an increased number of configurations that are possible within these datasets, balanced

against the short computational run times that are permitted.

In addition, the parallel adaptive large neighbourhood search approach uses adaptive

operators that change their chance of selection dependent on performance so far within

the search phase. These datasets can be split by many factors such as the percentage

of time windows 01 and 03, how customers are geographically located C clustered, R

randomly, RC randomly clustered, and the number of domain skill areas 5×4, 6×6

and 7×4, which suggests that an adaptive approach would perform well.

7.9 Summary

In this chapter, the greedy randomized heuristic has been designed and implemented to

solve the service technician routing and scheduling problem with time windows datasets,

which have not been tested since Kovacs et al. (2012), with a parallel adaptive large

neighbourhood search. It has been demonstrated that the presence of time windows can

greatly affect the solution approach and that the algorithmic performance is also heavily

dependent on characteristics of the datasets tested, the proportion of time windows

within the datasets.

The contributions of this chapter are: (1) the creation of a computationally efficient

greedy randomized heuristic, (2) a comparative analysis of the greedy randomized

heuristic and the parallel adaptive large neighbourhood search, (3) the implementation

194 Service Technician Routing and Scheduling Problem with Time Windows

of a simulated annealing with restart metaheuristic with tuning experiments, and lastly,

13 new best known results have been discovered for these datasets.

The results found in this work can be readily applied to other scheduling problems

with common constraints such as the home healthcare problem. In this problem, trained

professionals (skill complexity) travel to patient locations (travel time) to administer

medications under strict guidelines (time windows). Furthermore, this work also has the

potential to make an environmental impact, since vehicles are used for transportation

between locations, and the smaller the distances travelled, the fewer emissions are

produced.

Chapter 8

Discussion

A discussion of the research undertaken throughout this thesis in Chapters 2 - 7 is now

presented. This thesis has focused on some of the key challenges that are faced by

industry, such as the sponsor Service Power PLC, in the field of technician and task

scheduling problems.

8.1 Literature Review

A review of the literature based in the field of technician and task scheduling problems

has been carried out in Chapter 2. The review highlighted the complexity of the problems

under consideration, these problems are NP hard optimisation problems for which no

polynomial time algorithm is known. The review also discussed the relatedness of

scheduling problems, such as the similarities between vehicle routing, home healthcare,

and technician and task scheduling problems. This chapter then discussed the available

datasets, problem definitions, heuristic solution approaches, and metaheuristics used in

the field. It was highlighted that the gaps in the field appear to be in the investigation and

exploration of: 1) large scale problems indicative of the problems faced in the real world

2) problems that include teaming and location since many application areas require

multiple members of a workforce to complete a job, 3) problems that include scheduling

196 Discussion

over multiple days because some problems proposed in the literature were adapted

from vehicle routing problems and 4) problems that include precedence constraints, a

common occurrence in many application areas.

8.2 Technician and Task Scheduling Problem

Chapter 3 focused on designing heuristic approaches to solve the real world technician

and task scheduling problems proposed by the ROADEF 2007 challenge. These datasets

were based on France Telecom’s optimisation problem and included three sets of

data each containing ten problem instances. This problem included a wide range

of constraints applicable to many industries such as teaming, precedence, priority,

unavailability, multiple days, and outsourcing.

Two heuristic procedures were developed to solve these problem instances, the

intelligent decision heuristic and the look ahead heuristic. The intelligent decision

heuristic considers multiple scenarios before making an allocation decision, considering

the utilisation of the teams that could be made and the feasible job assignments. This

heuristic takes a rather global view of the problem and was coupled with an iterative

local search. The intelligent decision heuristic performed well in most instances but did

struggle on the Set X instances which were the most complex.

The look ahead heuristic was then designed which outperformed the intelligent deci-

sion heuristic and matched the performance of the other approximate approaches from

the literature such as those described by Estellon et al. (2009), Cordeau et al. (2010), and

Hashimoto et al. (2011). This approach rather than considering the utilisation of a single

team that was about to be formed instead focused on the impact a team configuration

would have on the rest of the idle teams that were left and the further assignments which

could be made. This heuristic was coupled with a simulated annealing metaheuristic to

guide the search.

8.3 Large Scale Technician and Task Scheduling Problem 197

8.3 Large Scale Technician and Task Scheduling Prob-

lem

In Chapter 4, a set of large scale instances were generated due to the lack of available

large scale datasets within the literature. The sponsor of this research, Service Power

PLC, is faced with the problem of scheduling thousands of jobs to a large crew of

technicians over a multi day period. These problem instances were created, using a

data generator developed to ensure the characteristics present in the ROADEF 2007

challenge problems. The problems contain constraints such as outsourcing, teaming,

priority and precedence, but range from scheduling 1000-2500 jobs as opposed to 800

jobs.

The aim of creating these datasets was to test the scalability of the solution ap-

proaches developed in Chapter 3, the intelligent decision and look ahead heuristic. A

simple greedy heuristic approach was also created and implemented on the datasets for

comparative purposes. The experiments were conducted under the guidelines of the

ROADEF 2007 challenge using a 20 minute computational time and comparing the

best result found for each problem instance. Due to the scale of the problem, in these

instances, and the way the objective function is calculated, a hill climbing metaheuristic

was coupled with each heuristic procedure.

On these datasets, both the intelligent decision heuristic and the look ahead heuristic

outperformed the simple greedy heuristic approach on every problem instance. The look

ahead heuristic found the best result in all but one of the instances and on average found

a solution 3.7% less costly than the intelligent decision heuristic. The experimental

results illustrate that both heuristics are scalable approaches, able to solve large problems

in reasonably short computational times.

198 Discussion

8.4 Precedence Constrained Technician and Task Schedul-

ing Problem

Chapter 5 concentrated on creating some precedence constrained problem instances.

The previous chapters, 3 and 4, both contained the complexity of precedence constraints,

where a job may not begin until one or more other jobs have been completed. This

is an important consideration for many application areas such as technician and task

scheduling, utility services, housing developments, and food production. The effect of

precedence constraints has not previously been investigated in terms of the effect on

solution quality that can be obtained and the use of heuristic approaches.

The datasets were created using a data generator that was designed. Within a set

of jobs to be scheduled the level of precedence constraints varies from 0% to 100%

whilst all other attributes remain the same such as priority, outsourcing cost, and skill

requirements. The datasets created range from scheduling 100 to 1000 jobs over a multi

day scheduling period. Again the intelligent decision heuristic, greedy heuristic and look

ahead heuristic, were implemented on these datasets. Each heuristic was coupled with a

multi start metaheuristic. The datasets were tested using a 10 minutes computational

time with restarts every 30 seconds, again recording the best result obtained.

In the experiments conducted the intelligent decision heuristic and the look ahead

heuristic found better quality results than the greedy heuristic on every problem instance.

Overall, the look ahead heuristic found a lower mean objective overall, but marginally.

It appears that as the size of the problem instances increases the look ahead heuristic is

likelier to find better quality results. This chapter has confirmed that both the intelligent

decision heuristic and the look ahead heuristic are robust approaches successfully

adapting to varying levels of precedence constraints to find high quality results.

8.5 Multi Period Technician Routing and Scheduling Problem 199

8.5 Multi Period Technician Routing and Scheduling

Problem

In Chapter 6, the ROADEF 2007 challenge problem was extended to include the

complexity of location and travel time. This created a set of multi period technician

routing and scheduling problem instances. Routing is an important aspect of technician

and task scheduling problems which have not been included in the problems studied

in chapters 3, 4 and 5. However, most of the problems in the literature that feature

location and travel time have been adapted from vehicle routing problem instances and

contain scheduling up to 100 jobs over a single day. The literature review in Chapter 2

highlighted that there are no medium scale problems, scheduling up to 800 jobs, over

multiple days that contain routing and location, alongside other important constraints

such as teaming, technician unavailability, skill requirements, outsourcing, and priority

levels.

To extend the original ROADEF 2007 challenge datasets a central depot and location

for each customer had to be generated. A grid was created, which had a centralised

depot (that teams depart from and return to each day) and each customer was given

unique coordinates within the grid. The length of a working day was also increased to

accommodate travel time between locations. The objective function remained the same,

a priority weighted sum of the latest end times of jobs for each priority class.

The experiments used a 5 minutes run time, to asses the heuristic performance on

short computational run times, with the best results obtained recorded. Each heuristic

approach, the intelligent decision heuristic, the greedy heuristic, and the look ahead

heuristic had to be adapted to deal with the extra constraints added to the problem

definition. Simulated annealing was used due to its success on the technician and task

scheduling problem instances in Chapter 3.

The performance on these datasets contrasts the performance on the datasets tested

in previous chapters. On these datasets, the intelligent decision heuristic overall finds

the best results particularly due to its performance on the set X problem instances. This

200 Discussion

could be due to the more global view this heuristic takes which may benefit the solution

quality obtained due to how heavily routing influences the objective function value. The

greedy heuristic, as expected, finds the most inferior solutions overall. This chapter has

demonstrated that each of the heuristics can be adjusted to deal with extra constraints

and can find high quality results in short computational times.

8.6 Service Technician Routing and Scheduling Prob-

lem with Time Windows

The last problem studied in this thesis was the service technician routing and scheduling

problem with time windows in Chapter 7. This problem came from the literature

and was originally adapted by Kovacs et al. (2012) from vehicle routing problem

instances proposed by Solomon (1987). These datasets had only been tested by Kovacs

et al. (2012) who used a parallel adaptive large neighbourhood search heuristic. Time

windows are an important constraint within the field of technician and task scheduling.

Allowing a customer to choose a preferred time slot, can influence the customer’s

satisfaction, business reputation and can ensure repeat business.

Due to the short run times used to solve these 72 problem instances a new approach

had to be designed. The datasets were allowed a 60 or 80 second computational time

depending on whether the instance was NoTeam or ReducedNoTeam. The locations of

customers were also varied in distribution, for example, clustered, random or randomly

clustered, and the percentage of time windows varied from 50% to 100%.

A greedy randomized heuristic was designed in order to solve these instances which

have flexible allocation criteria in order to cope with the variability amongst the datasets.

This heuristic was coupled with a simulated annealing with restart metaheuristic which

was tuned to account for the differences in datasets, particularly the percentage of time

windows present, which dictated the freedom needed to travel through the search space.

The greedy randomized heuristic performed well on most of the problem instances,

8.7 Summary 201

finding high quality results on the 01 instances and new best known results in 18% of

datasets.

8.7 Summary

Table 8.1 shows the problems and constraints that have been studied throughout this

thesis. The original aim of this research was to investigate the complexities of technician

and task scheduling problems and how they can be dealt with effectively.

From the outset of this research, it was identified that one of the most significant

complexities is the sheer scale of the problem which arises in the real world in terms

of problem size. For this reason, this research has created some large scale problems,

scheduling up to 2500 jobs, available to researchers in order to test the scalability of

heuristic solution approaches to identify whether they could be used in practice.

The lack of problems available has prohibited the experimentation of applying

heuristic approaches to multiple problems with different characteristics and challenges to

overcome. This research has generated 12 large scale problems to investigate scalability,

25 precedence constrained instances to analyse the effect of precedence relationships and

30 multi period technician routing and scheduling problems to explore the robustness

of the heuristics developed.

Figure 8.1 shows that within this research 9 constraints have been studied: skill,

outsourcing, priority, precedence, location, time windows, multiple days, teaming, and

unavailability. Investigations have been made throughout the previous chapters into how

best to deal with outsourcing, how local operators perform, priority levels, precedence

constraints, routing, and time windows.

Another complexity that arises is the use of metaheuristics due to the scale of the

problem which typically requires a heuristic approach. Each of the heuristics developed,

the intelligent decision heuristic (Chapter 3), the look ahead heuristic (Chapter 3) and

greedy randomized heuristic (Chapter 7) has been two stage and tuning experiments to

control the diversification and intensification of the metaheuristics have been undertaken.

Initially, an iterative local search heuristic (Chapter 3) was implemented which moves

202 Discussion

the search at times. Next, a simulated annealing metaheuristic was implemented

(Chapters 3 and 6) which allows the search to move into worse areas of solution space

controlled by a temperature parameter. In addition, a hill climber (Chapter 4) and a

more sophisticated multi start hill climber (Chapter 5) have also been implemented.

Lastly, the most successful metaheuristic used in this research, finding new best known

results, has been implemented, simulated annealing with restart (Chapter 6). This is a

technique which composes of two key features featured in two other metaheuristics i.e.

the ability to accept a worse solution from simulated annealing, and the ability to move

the search from a multi start.

8.7 Summary 203

Fi
gu

re
.8

.1
C

ha
rt

sh
ow

in
g

th
e

pr
ob

le
m

s
st

ud
ie

d
in

th
is

re
se

ar
ch

,t
he

pr
ob

le
m

si
ze

s,
nu

m
be

ro
fi

ns
ta

nc
es

an
d

co
m

pl
ex

iti
es

Chapter 9

Conclusions and Future Work

The research presented in this thesis has focused on the design and development of

optimisation heuristics for solving technician and task scheduling problems and closely

related variations of the problem. The research has been sponsored by Service Power

PLC due to the need to find robust and scalable solution approaches to solve these

problems which arise in industrial settings in a range of application areas.

This section concludes on the research undertaken in this project, discussing the

original research question, how each of the objectives have been met, and directions for

further investigation.

9.1 Research Question

What are the complexities associated with technician and task scheduling problems and

how can they be dealt with effectively?

9.2 Research Outcomes

Numerous complexities can be associated with technician and task scheduling problems

as a direct result of their occurrence in a number of real world industrial settings.

206 Conclusions and Future Work

Finding efficient, robust, and scalable solution approaches has far-reaching benefits to

both the employer, the employee, the customer, and even the environment. The research

presented in this thesis illustrates the array of complexities and constraints that must be

considered when designing heuristic solution approaches to solve technician and task

scheduling problems in time constrained environments. Characteristics investigated

in this research include skill requirements, scheduling over multiple days, technician

unavailability, teaming, outsourcing, priority levels, precedence relationships, location

and travel time, and time windows. Other characteristics common to the field not

explored in this research include tools and spare parts and mandatory breaks which will

be addressed in further work.

The heuristics proposed in this research have been designed and developed in order

to be scalable (able to tackle problems of varying size efficiently) and robust (can be

adapted easily to solve closely related problems). One of the key challenges faced was

the availability of datasets, and so, as well as using literature problems, datasets also

had to be developed or extended. The heuristics created have been applied both to real

world data instances, instances from the literature, generated problem instances (large

scale and precedence constrained) and extended real world instances (including location

and travel time). A data generator was developed in order to generate problem instances

in order to study specific constraints and aspects of technician and task scheduling

problems outlined in the literature review. All generated datasets are available to

researchers for further experimentation and comparison.

The problems studied throughout this research have included solving small problem

instances including 5 jobs to allocate, to solving large scale industrial sized problems,

with up to 2500 jobs to allocate. Overall, this research has studied 169 technician and

task scheduling problems.

Throughout this research a range of metaheuristics have been used, to guide the

lower level heuristic procedures that were designed. Iterative local search, simulated

annealing, hill climbing, multi start hill climbing and simulated annealing with restart

have been implemented.

9.3 Objectives 207

The research presented in this thesis has demonstrated that the solution approaches

applied to solve technician and task scheduling problems are heavily influenced by the

framework and scale of the problem under consideration. When faced with satisfying

numerous constraints simultaneously, consideration must be given to not only how a

feasible solution can be constructed but also how it can be modified/manipulated with

local operators and evaluated using metaheuristics in time constrained conditions.

9.3 Objectives

The following subsections detail how each of the objectives of this research have been

achieved. Further to the initial objectives, as the research progressed two other key areas

were highlighted for exploration, the work detailed in Chapter 5 on the occurrence and

effect precedence constraints and the research presented in Chapter 7 on time windows.

Objective 1

A review of the literature based in the field of technician and task scheduling is il-

lustrated in Chapter 2, which highlights the requirement for heuristic approaches to

solve technician and task scheduling problems. There are four key areas the literature

review addresses: the varying problem definitions of technician and task scheduling

problems, the datasets currently available to researchers, the heuristic and exact solution

approaches applied, and the metaheuristics used. The review discusses the current

gaps in the field and areas for investigation in this research such as solving large scale

problems, medium scale problems with location constraints, precedence constraints,

teaming, and multi period problems.

Objective 2

Two heuristic approaches have been designed and developed to solve the ROADEF 2007

challenge problem, a technician and task scheduling problem, from real world data,

discussed in Chapter 3. The first approach, the intelligent decision heuristic, considers

208 Conclusions and Future Work

multiple seed jobs and possible team configurations before making an allocation deci-

sion, thereby making more intelligent allocation decisions. The look ahead heuristic,

the second approach, focuses on considering the consequences of an allocation decision

to the idle teams which are left after a job allocation has been made, ensuring that

decisions do not have negative consequences on subsequent stages of scheduling. Both

heuristics performed competitively in regards to the performance of other solution

approaches, however, the look ahead heuristic was superior to the intelligent decision

heuristic, finding better quality solutions in shorter computational run times.

Objective 3

Whilst studying the technician and task scheduling problems in this research it has

become clear that there are numerous complexities that can be associated with the

problems. Some of the constraints and complexities featured in the problems studied

are outsourcing, skill requirements, precedence and successor relationships, teaming,

location and travel time, routing, priority levels, technician unavailability, and time

windows. In this thesis, many individual aspects of the problems featured such as

the choice of outsourcing strategy (Section 3.4.4), the performance of local operators

(Section 3.4.4), and priority permutations (Section 3.4.4) have been investigated to

determine how they affect the scheduling process of the heuristics developed. Further-

more, the heuristics have been compared on different types of problems such as large

scale problems (Chapter 4), to assess scalability, and also tested on different problem

frameworks to examine how well they handle additional constraints such as location

(Chapter 6), or different strengths of complexities such as the percentage of precedence

constraints (Chapter 5).

Objective 4

Within each technician and task scheduling problem studied, a metaheuristic has been

implemented. A metaheuristic is used to guide the lower level heuristic during the

improvement phase. In this research a range of metaheuristics have been implemented

9.3 Objectives 209

such as: iterative local search (in Chapter 3), simulated annealing (in Chapters 3

and 6), hill climbing (in Chapter 4), multi start hill climbing (in Chapter 5), and

simulated annealing with restart (in Chapter 7) in conjunction with the heuristics

designed. The parameters for these metaheuristics have been tuned in order to improve

their performance in time constrained environments. Using factorial experimentation,

the main effects and interaction effects of parameters have been explored, as well as

empirically adjusting parameters within the implementations of simulated annealing.

Objective 5

A set of multi period technician routing and scheduling problems have been created by

extending the ROADEF 2007 challenge problem in Chapter 6. Location and travel time

is a key feature of technician and task scheduling problems not contained in the original

ROADEF 2007 challenge problem framework. To do this, location requirements have

been added on to each customer and a centralised depot was generated. A mathematical

formulation for instances is presented, the multi period technician routing and schedul-

ing problem. This problem was chosen due to the lack of medium scale multi day

problems that contain routing constraints alongside other common constraints such as

teaming, unavailability, outsourcing, and priority. Each of the heuristics, the intelli-

gent decision heuristic, the look ahead heuristic, and greedy heuristic was modified to

tackle this problem proving their robustness as a solution approach, with a comparative

analysis of performance undertaken.

Objective 6

As evidenced from the literature, the constraints that a problem features and the size

of the problems are directly related to the solution approach used. It is essential that

solution approaches are scalable, that they can tackle large as well as small scale

problems and produce competitive results whilst balancing time efficiency. For this

reason, the computational expense of heuristic solution approaches and indeed the local

operators, as the size of the problem increases, are significant. In the literature, there

210 Conclusions and Future Work

are few real world data instances or available artificial problems that are representative

of industrial scale. In addition, there has been no investigation into the scalability of

existing approaches on large scale problems that have been shown to work well on small

scale instances. A set of large scale technician and task scheduling problems has been

generated using a data generator (Chapter 4). These datasets have been solved using

the intelligent decision and look ahead heuristic, described in Chapter 4, providing a

comparative performance analysis.

Extra Objective 1

Precedence constraints are an important feature in many scheduling problems as they

arise commonly in many application areas such as housing development and utility

services etc. The occurrence of these constraints and their effect on heuristic approaches

and solution quality has not previously been studied. For this reason, 25 precedence

constrained scheduling problems were generated, described in Chapter 5, using the data

generator, containing 100-1000 jobs to schedule. Again, both the intelligent decision

and look ahead heuristic were used to solve these datasets to assess the robustness of

the heuristics and to compare their performance.

Extra Objective 2

Finally, a set of data instances from the literature, the service technician routing and

scheduling problem with time windows, featured in Chapter 7, was explored. These

datasets were originally solved by Kovacs et al. (2012) who adapted the problems from

vehicle routing problem instances. A greedy randomized heuristic was developed to

solve this problem, which has multiple allocation criteria to provide a flexible heuristic

approach, due to the short computational run times permitted. The greedy randomized

heuristic found new best known results in 18% of the 72 datasets tested.

9.4 Review of Contributions 211

9.4 Review of Contributions

1. A review of the constraints, datasets and solution approaches used in the

field of technician and task scheduling problems (Chapter 2). The review

highlights the need to design and develop approximate solution approaches that

are both robust and scalable to solve these real world problems that occur in

a range of industrial settings. The review demonstrates that previous solution

approaches have not been applied to multiple problems, of varying nature and size,

in order to prove their efficiency/ability to be applied in commercial settings.

2. The intelligent decision heuristic characterised by its ability to consider

multiple seed jobs and possible team configurations simultaneously (Chap-

ters 3 to 6). The heuristic considers the utilisation of each possible team by

considering the potential further allocations, before making an allocation decision.

This heuristic has been used to solve a diverse range of problems in this research

such as the technician and task scheduling problem, the large scale technician

and task scheduling problem, the precedence constrained technician and task

scheduling problem and, lastly, the multi-period technician routing and schedul-

ing problem. The heuristic has produced competitive results on each set of data

tested and proved its validity as a solution approach.

3. A look ahead heuristic that has a preprocessing phase to calculate the un-

derlying indirect precedence relationships present between jobs (Chapters

3 to 6). This heuristic considers the subsequent impact of an allocation deci-

sion to the scheduling process in regards to the idle teams which are left and

the allocations they may be given. This heuristic has also been applied to a

range of problems: the technician and task scheduling problem, the large scale

technician and task scheduling problem, the precedence constrained technician

and task scheduling problem and, lastly, the multi-period technician routing and

scheduling problem. The look ahead heuristic has proved to be both a robust

(handling extra constraints such as location and travel time) and scalable (problem

212 Conclusions and Future Work

size) solution approach and has generally outperformed the intelligent decision

heuristic.

4. A data generator which has been designed and developed in order to gen-

erate technician and task scheduling problems (Chapters 4 to 6). In this

research, novel datasets have been generated in order to explore certain aspects of

the problems, which occur in the real world but are not featured within datasets

available in the literature. In this thesis, 12 new large scale technician and task

scheduling problems, 25 technician and task scheduling datasets containing vary-

ing levels of precedence constraints and 30 multi-period technician routing and

scheduling problem instances have been created. These datasets have addressed

the problems highlighted in Chapter 2, the need for more datasets featuring

a range of constraints and problem sizes available publicly to researchers, for

further investigation into the field.

5. New mathematical formulation of the multi-period technician routing and

scheduling problem (Chapter 6). Due to the extension of the ROADEF 2007

challenge problem which now contains location and travel time constraints, the

mathematical formulation had to be updated to account for the extra complexities

added. In this thesis, a mathematical formulation for the multi-period technician

routing and scheduling problem is described. This is a novel problem in the field

as it most importantly includes scheduling over multiple days, constructing teams

subject to technician unavailability, and scheduling over a geographical area. This

problem also includes other constraints such as priority levels, skill requirements,

and outsourcing.

6. The greedy randomized heuristic which is a flexible scheduling approach

with multiple allocation criteria (Chapter 7). This heuristic is the first se-

quential heuristic to be tested on the service technician routing and scheduling

problem with time windows Kovacs et al. (2012), a single day problem extended

from vehicle routing instances. This heuristic was able to find new best known

9.5 Future Research 213

results in 18% of the 72 data instances tested. This is an impressive result due

to the complexity of the problems under consideration which include routing,

skills, time windows and outsourcing, and the datasets are subject to very short

computational run times of less than 90 seconds.

9.5 Future Research

This research presented in this thesis has explored some of the many research areas

within the field of technician and task scheduling. In such a vast field there will always

be areas that need further investigation. It is clear that the most important direction for

research in this field is to include more real world constraints in medium to large scale

problems solved using heuristic approaches. Solving problems that are comparable to

real world problems will inevitably aid the field.

9.5.1 Site Management

On reflection, a new challenge inspired by industry has been identified. In the con-

struction trade, often a large job such as building renovation or extension or perhaps

a housing development will actually be comprised of many hundreds of smaller jobs.

The value of the overall job may cost hundreds of thousands of pounds, in material

costs, labour costs, and equipment. A set back in the time delivery for the job will be

costly and will eat into any potential profits. For this reason, it is common to have a

site manager, a single member of the workforce to be present at all times to coordinate

the site thus reducing the chance of incurring penalties through late delivery. The site

manager will be responsible for ensuring the security of the site, keeping the site closed

off to the public and keeping costly equipment, often hired, safe, as well as coordinating

other workers on the site, and ordering materials. To the authors knowledge no such

problem, where a business is running multiple large scale jobs, comprised of many

hundreds of smaller jobs has been studied in the literature.

214 Conclusions and Future Work

9.5.2 Tools and Spare Parts

In the service maintenance sector there may be tools that are shared between the

workforce, and so must be collected from the central depot or another technician/team.

Additionally, there may also be spare parts that are needed in order to complete a job.

These resources may be stored in the technician’s/team’s vehicle but if they run out

they may need to be collected from the central depot or a nearby hardware store. Work

including these constraints has been studied by Pillac, Gueret and Medaglia (2013)

using single day problem instances adapted from Solomon (1987) containing up to 100

jobs. It is proposed that future research including tools and spare parts should use larger

scale problems, covering multiple days, indicative of industrial problems that arise in

practical settings.

9.5.3 Varying Travel Times

Furthermore, there are also aspects of real world problems that have not yet been

investigated, such as the varying time it may take to travel between two customers. It is

realistic to assume that the time it takes to travel between locations changes dependent

on: the time of day, the day of the week, time of year that the journey is made, and of

course, if there are road works or road incidents. For example, travelling during rush

hour, 7.30 am to 9 am, will usually incur a larger travel time than a journey made at

11 am. In addition, a journey made on a weekend will take less time on average than a

journey made on a weekday, which is due to the volume of traffic being decreased on a

weekend. Furthermore, journeys made in the winter months may take longer due to poor

weather conditions, decreased visibility and decreased average speed as compared to the

summer months with better weather conditions and more visibility. These conditions

may influence the decision making processes of a heuristic approach.

9.6 Further Advice and Guidance 215

9.5.4 Mandatory Breaks

An important aspect of scheduling missing from many problems studied in the literature

is the mandatory breaks that employees must receive during their shifts. The more

real world aspects/constraints that are studied and included within heuristic approaches,

the more certain researchers can be in the translation of solution approaches into com-

mercialised software. For this reason, including the allocation of breaks to employees

within the execution of their shifts seems essential for the continued effort to study more

representative scheduling problems. Breaks have been included again in some smaller

scale problems such as Tricoire et al. (2013) (containing up to 100 jobs) that have used

exact and hybrid solution approaches but their inclusion in larger scale problems solved

with heuristic methods has yet to be investigated.

9.5.5 Individual Employee Preferences

Ernst et al. (2004) recommended that research also included/focused on employees

individual preferences and needs. However, it seems that investigation into this area has

not yet begun. It is clear that across workforces there will be individuals with specific

requirements different from their fellow workers. These needs could include, starting

work later in order to drop off children at school or nursery, or finishing earlier to pick

them up, regular hospital visits for workers with preexisting medical conditions, or

providing flexibility in working patterns for those with caring responsibilities. The

inclusion of a heterogeneous workforce in terms of working patterns not just in terms

of skill is an area that has a significant impact on the contentedness of a workforce, and

may help reduce the staff turnover (as people are working in conditions that suit their

needs) which will impact training costs, vacancy advertising, and interview processes.

9.6 Further Advice and Guidance

This research has focused on solving a range of technician and task scheduling problems

using heuristic approaches coupled with metaheuristics. From the experiments per-

216 Conclusions and Future Work

formed, a list of recommendations to future researchers has been formulated depending

on the type of technician and task scheduling problem being studied.

For example when solving large scale problems the results show that using local

operators which are able to change the team configurations as well as job distributions

perform better aiding the search for high quality solutions. Conversely, when faced with

finding solutions in short computational times, simple flexible heuristic methods perform

well, as they are able to perform more iterations maximising the chance of finding

improvements. This work has also shown that the simulated annealing metaheuristic

and adapted versions perform well both in short and medium computational time

scales. Overall, it seems that the look ahead heuristic is appropriate when solving

problems with medium computational run times, and when constraints such as team

building, precedence and priority are included. The intelligent decision heuristic is more

appropriate to use when routing is included in the problem framework. Lastly, the greedy

randomized heuristic is most appropriate when faced with very short computational run

times.

Lastly, the aim of solving these problems is to find a good quality solutions in

reasonable computational times. Whilst the constraints a problem includes will shape the

solution approach, consideration must also be given as to what constitutes a reasonable

computational time. Using extra computational time must be balanced against the level

of improvement that can be made.

References

Abraham, I., Delling, D., Fiat, A., Goldberg, A. V. and Werneck, R. F. (2016), ‘Highway
dimension and provably efficient shortest path algorithms’, Journal of the ACM
(JACM) 63(5), 41.

Ahuja, R. K., Mehlhorn, K., Orlin, J. and Tarjan, R. E. (1990), ‘Faster algorithms for
the shortest path problem’, Journal of the ACM (JACM) 37(2), 213–223.

Aickelin, U. and Dowsland, K. A. (2000), ‘Exploiting problem structure in a genetic al-
gorithm approach to a nurse rostering problem’, Journal of scheduling 3(3), 139–153.

Aickelin, U. and Dowsland, K. A. (2004), ‘An indirect genetic algorithm for a nurse-
scheduling problem’, Computers & Operations Research 31(5), 761–778.

Akjiratikarl, C., Yenradee, P. and Drake, P. R. (2007), ‘Pso-based algorithm for home
care worker scheduling in the uk’, Computers & Industrial Engineering 53(4), 559–
583.

Alsheddy, A. and Tsang, E. P. (2011), ‘Empowerment scheduling for a field workforce’,
Journal of Scheduling 14(6), 639–654.

Asensio-Cuesta, S., Diego-Mas, J., Canós-Darós, L. and Andrés-Romano, C. (2012),
‘A genetic algorithm for the design of job rotation schedules considering ergonomic
and competence criteria’, The International Journal of Advanced Manufacturing
Technology 60(9), 1161–1174.

Asta, S., Ozcan, E. and Curtois, T. (2016), ‘A tensor based hyper-heuristic for nurse
rostering’, Knowledge-Based Systems 98, 185–199.

Atkinson, J. B. (1994), ‘A greedy look-ahead heuristic for combinatorial optimization:
an application to vehicle scheduling with time windows’, Journal of the Operational
Research Society 45(6), 673–684.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. and Taillard, E. (1997), ‘A parallel
tabu search heuristic for the vehicle routing problem with time windows’, Transporta-
tion Research Part C: Emerging Technologies 5(2), 109–122.

Baker, B. M. and Ayechew, M. (2003), ‘A genetic algorithm for the vehicle routing
problem’, Computers & Operations Research 30(5), 787–800.

Baker, K. R. and Magazine, M. J. (1977), ‘Workforce scheduling with cyclic demands
and day-off constraints’, Management Science 24(2), 161–167.

Barketau, M. and Pesch, E. (2016), ‘An approximation algorithm for a special case of
the asymmetric travelling salesman problem’, International Journal of Production
Research 54(14), 4205–4212.

218 References

Beasley, J. E. (1983), ‘Route first—cluster second methods for vehicle routing’, Omega
11(4), 403–408.

Bektaş, T., Demir, E. and Laporte, G. (2016), Green vehicle routing, in ‘Green Trans-
portation Logistics’, Springer, pp. 243–265.

Bertels, S. and Fahle, T. (2006), ‘A hybrid setup for a hybrid scenario: combining
heuristics for the home health care problem’, Computers & Operations Research
33(10), 2866–2890.

Blum, C. and Roli, A. (2003), ‘Metaheuristics in combinatorial optimization: Overview
and conceptual comparison’, ACM Computing Surveys (CSUR) 35(3), 268–308.

Bonomi, E. and Lutton, J.-L. (1984), ‘The n-city travelling salesman problem: Statistical
mechanics and the metropolis algorithm’, SIAM review 26(4), 551–568.

Bouzid, M. C., Haddadene, H. A. and Salhi, S. (2017), ‘An integration of lagrangian
split and vns: The case of the capacitated vehicle routing problem’, Computers &
Operations Research 78, 513–525.

Braekers, K., Hartl, R. F., Parragh, S. N. and Tricoire, F. (2016), ‘A bi-objective
home care scheduling problem: Analyzing the trade-off between costs and client
inconvenience’, European Journal of Operational Research 248(2), 428–443.

Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vázquez-
Rodríguez, J. A. and Gendreau, M. (2010), Iterated local search vs. hyper-heuristics:
Towards general-purpose search algorithms, in ‘Evolutionary Computation (CEC),
2010 IEEE Congress on’, IEEE, pp. 1–8.

Burke, E. K., De Causmaecker, P., Berghe, G. V. and Van Landeghem, H. (2004), ‘The
state of the art of nurse rostering’, Journal of scheduling 7(6), 441–499.

Carlson, J. A., Jaffe, A. and Wiles, A. (2006), The millennium prize problems, American
Mathematical Society, Providence, RI.

Carrasco, R. A., Iyengar, G. and Stein, C. (2013), ‘Single machine scheduling with job-
dependent convex cost and arbitrary precedence constraints’, Operations Research
Letters 41(5), 436–441.

Castillo-Salazar, J. A., Landa-Silva, D. and Qu, R. (2012), A survey on workforce
scheduling and routing problems, in ‘Proceedings of the 9th international conference
on the practice and theory of automated timetabling’, Citeseer, pp. 283–302.

Castillo-Salazar, J. A., Landa-Silva, D. and Qu, R. (2016), ‘Workforce scheduling and
routing problems: literature survey and computational study’, Annals of Operations
Research 239(1), 39–67.

Cheang, B., Li, H., Lim, A. and Rodrigues, B. (2003), ‘Nurse rostering problems—-a
bibliographic survey’, European Journal of Operational Research 151(3), 447–460.

Chen, X., Thomas, B. W. and Hewitt, M. (2016), ‘The technician routing problem with
experience-based service times’, Omega 61, 49–61.

Chen, Y., Cowling, P., Polack, F., Remde, S. and Mourdjis, P. (2017), ‘Dynamic
optimisation of preventative and corrective maintenance schedules for a large scale
urban drainage system’, European Journal of Operational Research 257(2), 494–510.

References 219

Cheng, E. and Rich, J. L. (1998), A home health care routing and scheduling problem,
Technical report, Technical Report TR98-04, Department of Computational And
Applied Mathematics, Rice University.

Christofides, N., Mingozzi, A. and Toth, P. (1981), ‘Exact algorithms for the vehicle
routing problem, based on spanning tree and shortest path relaxations’, Mathematical
programming 20(1), 255–282.

Clarke, G. and Wright, J. W. (1964), ‘Scheduling of vehicles from a central depot to a
number of delivery points’, Operations research 12(4), 568–581.

Cook, S. (2003), ‘The importance of the p versus np question’, Journal of the ACM
(JACM) 50(1), 27–29.

Cook, S. (2006), ‘The p versus np problem’, The millennium prize problems pp. 87–104.

Cook, S. A. (1983), ‘An overview of computational complexity’, Communications of
the ACM 26(6), 400–408.

Cordeau, J.-F., Gendreau, M. and Laporte, G. (1997), ‘A tabu search heuristic for
periodic and multi-depot vehicle routing problems’, Networks 30(2), 105–119.

Cordeau, J.-F., Laporte, G., Pasin, F. and Ropke, S. (2010), ‘Scheduling technicians and
tasks in a telecommunications company’, Journal of Scheduling 13(4), 393–409.

Cortés, C. E., Gendreau, M., Rousseau, L. M., Souyris, S. and Weintraub, A. (2014),
‘Branch-and-price and constraint programming for solving a real-life technician
dispatching problem’, European Journal of Operational Research 238(1), 300–312.

Crispin, A. and Syrichas, A. (2013), Quantum annealing algorithm for vehicle schedul-
ing, in ‘2013 IEEE International Conference on Systems, Man, and Cybernetics’,
IEEE, pp. 3523–3528.

Dantzig, G. B. and Ramser, J. H. (1959), ‘The truck dispatching problem’, Management
science 6(1), 80–91.

Dantzig, G., Fulkerson, R. and Johnson, S. (1954), ‘Solution of a large-scale traveling-
salesman problem’, Journal of the operations research society of America 2(4), 393–
410.

Davari, M., Demeulemeester, E., Leus, R. and Nobibon, F. T. (2013), ‘Exact algo-
rithms for single-machine scheduling with time windows and precedence constraints’,
Journal of Scheduling pp. 1–26.

Defraeye, M. and Van Nieuwenhuyse, I. (2016), ‘Staffing and scheduling under nonsta-
tionary demand for service: A literature review’, Omega 58, 4–25.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992), ‘A new optimization algorithm
for the vehicle routing problem with time windows’, Operations research 40(2), 342–
354.

Dijkstra, E. W. (1959), ‘A note on two problems in connexion with graphs’, Numerische
mathematik 1(1), 269–271.

Dongala, S. G. P. (2006), The problem of scheduling technicians and interventions in a
telecommunications company, Technical report, Technical report,Instituto Superior
Technico, Universidade Tecnica de Lisboa.

220 References

Dorigo, M. and Gambardella, L. M. (1997), ‘Ant colonies for the travelling salesman
problem’, biosystems 43(2), 73–81.

Drucker, N., Penn, M. and Strichman, O. (2010), Cyclic routing of unmanned air vehi-
cles, Technical report, Tech. Rep. IE/IS-2014-02, Faculty of Industrial Engineering
and Management, Technion.

Dutot, P.-F., Laugier, A. and Bustos, A.-M. (2006), Technicians and interventions
scheduling for telecommunications (roadef challenge subject), Technical report,
Technical report, France Telecom R&D.

Eksioglu, B., Vural, A. V. and Reisman, A. (2009), ‘The vehicle routing problem: A
taxonomic review’, Computers & Industrial Engineering 57(4), 1472–1483.

Erkoc, M. and Ertogral, K. (2016), ‘Overhaul planning and exchange scheduling
for maintenance services with rotable inventory and limited processing capacity’,
Computers & Industrial Engineering 98, 30–39.

Ernst, A. T., Jiang, H., Krishnamoorthy, M. and Sier, D. (2004), ‘Staff scheduling
and rostering: A review of applications, methods and models’, European journal of
operational research 153(1), 3–27.

Estellon, B., Gardi, F. and Nouioua, K. (2009), High-performance local search for task
scheduling with human resource allocation, in ‘Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics’, Springer,
pp. 1–15.

Fikar, C. and Hirsch, P. (2017), ‘Home health care routing and scheduling: A review’,
Computers & Operations Research 77, 86–95.

Fırat, M. and Hurkens, C. (2012), ‘An improved mip-based approach for a multi-skill
workforce scheduling problem’, Journal of Scheduling 15(3), 363–380.

Fischetti, M., Salazar González, J. J. and Toth, P. (1997), ‘A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem’, Operations Research
45(3), 378–394.

Fisher, M. L. (1994), ‘Optimal solution of vehicle routing problems using minimum
k-trees’, Operations research 42(4), 626–642.

Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E. and
Werneck, R. F. (2006), ‘Robust branch-and-cut-and-price for the capacitated vehicle
routing problem’, Mathematical programming 106(3), 491–511.

Garey, M. R., Johnson, D. S. and Tarjan, R. E. (1976), ‘The planar hamiltonian circuit
problem is np-complete’, SIAM Journal on Computing 5(4), 704–714.

Gartner, D. and Padman, R. (2017), Mathematical programming and heuristics for
patient scheduling in hospitals: A survey, in ‘Handbook of Research on Healthcare
Administration and Management’, IGI Global, pp. 627–645.

Gendreau, M., Hertz, A. and Laporte, G. (1994), ‘A tabu search heuristic for the vehicle
routing problem’, Management science 40(10), 1276–1290.

Gendreau, M., Laporte, G. and Semet, F. (1998), ‘A tabu search heuristic for the
undirected selective travelling salesman problem’, European Journal of Operational
Research 106(2-3), 539–545.

References 221

Gérard, M., Clautiaux, F. and Sadykov, R. (2016), ‘Column generation based approaches
for a tour scheduling problem with a multi-skill heterogeneous workforce’, European
Journal of Operational Research 252(3), 1019–1030.

Glover, F. (1986), ‘Future paths for integer programming and links to artificial intelli-
gence’, Computers & operations research 13(5), 533–549.

Glover, F. and Taillard, E. (1993), ‘A user’s guide to tabu search’, Annals of operations
research 41(1), 1–28.

Golden, B. L., Raghavan, S. and Wasil, E. A. (2008), The vehicle routing problem:
latest advances and new challenges, Vol. 43, Springer Science & Business Media.

Golden, B. L. and Yee, J. R. (1979), ‘A framework for probabilistic vehicle routing’,
AIIE Transactions 11(2), 109–112.

Gu, J., Purdom, P. W., Franco, J. and Wah, B. W. (1999), Algorithms for the satisfiability
(sat) problem, in ‘Handbook of Combinatorial Optimization’, Springer, pp. 379–572.

Hashimoto, H., Boussier, S., Vasquez, M. and Wilbaut, C. (2011), ‘A grasp-based ap-
proach for technicians and interventions scheduling for telecommunications’, Annals
of Operations Research 183(1), 143–161.

Held, M. and Karp, R. M. (1970), ‘The traveling-salesman problem and minimum
spanning trees’, Operations Research 18(6), 1138–1162.

Hernández-Pérez, H., Rodríguez-Martín, I. and Salazar-González, J.-J. (2016), ‘A
hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling
salesman problem’, European Journal of Operational Research 251(1), 44–52.

Hiermann, G., Prandtstetter, M., Rendl, A., Puchinger, J. and Raidl, G. R. (2015),
‘Metaheuristics for solving a multimodal home-healthcare scheduling problem’,
Central European Journal of Operations Research 23(1), 89–113.

Hoffman, K. L., Padberg, M. and Rinaldi, G. (2013), Traveling salesman problem, in
‘Encyclopedia of operations research and management science’, Springer, pp. 1573–
1578.

Hoogeveen, J. A., Lenstra, J. K. and Veltman, B. (1996), ‘Preemptive scheduling in a
two-stage multiprocessor flow shop is np-hard’, European Journal of Operational
Research 89(1), 172–175.

Hurkens, C. A. (2009), ‘Incorporating the strength of mip modeling in schedule con-
struction’, RAIRO-Operations Research 43(04), 409–420.

Ioannou, G., Kritikos, M., Prastacos, G. et al. (2001), ‘A greedy look-ahead heuristic
for the vehicle routing problem with time windows’, Journal of the Operational
Research Society 52(5), 523–537.

Jain, A., Datta, U. and Joshi, N. (2016), ‘Implemented modification in dijkstra’s
algorithm to find the shortest path for ‘n’nodes with constraint’, International Journal
of Scientific Engineering and Applied Science 2(2), 420–426.

Jaskowski, W. and Wasik, S. (2007), ‘Efficient greedy algorithm with hill climbing
for technicians and interventions scheduling problem, french operational research
society’.
URL: http://challenge.roadef.org/2007/files/abstractsindex.html

222 References

Jensen, T. R. and Toft, B. (2011), Graph coloring problems, Vol. 39, John Wiley &
Sons.

Kang, S., Kim, S.-S., Won, J. and Kang, Y.-M. (2016), ‘Gpu-based parallel genetic
approach to large-scale travelling salesman problem’, The Journal of Supercomputing
72(11), 4399–4414.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. et al. (1983), ‘Optimization by simulated
annealing’, Science 220(4598), 671–680.

Korteweg, P. (2007), ‘When to hire the a-team, french operational research society’.
URL: http://roadef.proj.info-ufr.univ-montp2.fr/2007/files/abstractroade f 08.pd f

Kovacs, A. A., Parragh, S. N., Doerner, K. F. and Hartl, R. F. (2012), ‘Adaptive large
neighborhood search for service technician routing and scheduling problems’, Journal
of scheduling 15(5), 579–600.

Krishnamoorthy, M., Ernst, A. T. and Baatar, D. (2012), ‘Algorithms for large scale shift
minimisation personnel task scheduling problems’, European Journal of Operational
Research 219(1), 34–48.

Kundu, S., Mahato, M., Mahanty, B. and Acharyya, S. (2008), Comparative performance
of simulated annealing and genetic algorithm in solving nurse scheduling problem,
in ‘Proceedings of the International MultiConference of Engineers and Computer
Scientists’, Vol. 1, pp. 96–100.

Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S. and Voß, S. (2016), ‘An im-
proved formulation for the multi-depot open vehicle routing problem’, OR spectrum
38(1), 175–187.

Laporte, G. (1992), ‘The vehicle routing problem: An overview of exact and approxi-
mate algorithms’, European Journal of Operational Research 59(3), 345–358.

Leigh, J. M., Jackson, L. M. and Dunnett, S. J. (2016), Police officer dynamic posi-
tioning for incident response and community presence, in ‘Proceedings of the 5th
International Conference on Operations Research and Enterprise Systems (ICORES
2016)’, INSTICC/SCITEPRESS, p. 261–270.

Lenstra, J. K. and Kan, A. (1976), ‘On general routing problems’, Networks 6(3), 273–
280.

Lenstra, J. K. and Kan, A. (1981), ‘Complexity of vehicle routing and scheduling
problems’, Networks 11(2), 221–227.

Lenstra, J. K., Kan, A. R. and Brucker, P. (1977), ‘Complexity of machine scheduling
problems’, Annals of discrete mathematics 1, 343–362.

Lenstra, J. K. and Rinnooy Kan, A. (1978), ‘Complexity of scheduling under precedence
constraints’, Operations Research 26(1), 22–35.

Lesaint, D., Voudouris, C. and Azarmi, N. (2000), ‘Dynamic workforce scheduling for
british telecommunications plc’, Interfaces 30(1), 45–56.

Lewis, R. (2016), Advanced techniques for graph colouring, in ‘A Guide to Graph
Colouring’, Springer, pp. 55–77.

Li, H. and Alidaee, B. (2016), ‘Tabu search for solving the black-and-white travelling
salesman problem’, Journal of the Operational Research Society 67(8), 1061–1079.

References 223

Lourenço, H. R., Martin, O. C. and Stützle, T. (2003), Iterated local search, Springer.

Mahvash, B., Awasthi, A. and Chauhan, S. (2017), ‘A column generation based heuris-
tic for the capacitated vehicle routing problem with three-dimensional loading con-
straints’, International Journal of Production Research 55(6), 1730–1747.

Martí, R., Moreno-Vega, J. M. and Duarte, A. (2010), Advanced multi-start methods, in
‘Handbook of metaheuristics’, Springer, pp. 265–281.

Martoňák, R., Santoro, G. E. and Tosatti, E. (2004), ‘Quantum annealing of the traveling-
salesman problem’, Physical Review E 70(5), 057701.

Mathlouthi, I., Gendreau, M. and Potvin, J.-Y. (2016), Mixed integer programming
for a multi-attribute technician routing and scheduling problem, Technical report,
Technical report, Universite of Montreal.
URL: https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2016-23.pdf

Minsky, M. (1961), ‘Steps toward artificial intelligence’, Proceedings of the IRE
49(1), 8–30.

Mısır, M., Smet, P. and Berghe, G. V. (2015), ‘An analysis of generalised heuristics
for vehicle routing and personnel rostering problems’, Journal of the Operational
Research Society 66(5), 858–870.

Montané, F. A. T. and Galvao, R. D. (2006), ‘A tabu search algorithm for the vehicle
routing problem with simultaneous pick-up and delivery service’, Computers &
Operations Research 33(3), 595–619.

Montoya, C., Bellenguez-Morineau, O., Pinson, E. and Rivreau, D. (2015), Integrated
column generation and lagrangian relaxation approach for the multi-skill project
scheduling problem, in ‘Handbook on Project Management and Scheduling Vol. 1’,
Springer, pp. 565–586.

Osman, I. H. (1993), ‘Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem’, Annals of operations research 41(4), 421–451.

Paessens, H. (1988), ‘The savings algorithm for the vehicle routing problem’, European
Journal of Operational Research 34(3), 336–344.

Panwalkar, S. et al. (2016), ‘The proportionate two-machine no-wait job shop schedul-
ing problemauthor-name: Koulamas, christos’, European Journal of Operational
Research 252(1), 131–135.

Paraskevopoulos, D. C., Laporte, G., Repoussis, P. P. and Tarantilis, C. D. (2017),
‘Resource constrained routing and scheduling: Review and research prospects’,
European Journal of Operational Research .

Park, Y., Khosiawan, Y., Moon, I., Janardhanan, M. N. and Nielsen, I. (2016), Schedul-
ing system for multiple unmanned aerial vehicles in indoor environments using the
csp approach, in ‘Intelligent Decision Technologies 2016’, Springer, pp. 77–87.

Pillac, V., Gendreau, M., Guéret, C. and Medaglia, A. L. (2013), ‘A review of dynamic
vehicle routing problems’, European Journal of Operational Research 225(1), 1–11.

Pillac, V., Guéret, C. and Medaglia, A. (2012), On the dynamic technician routing and
scheduling problem, in ‘Proceedings of the 5th International Workshop on Freight
Transportation and Logistics (ODYSSEUS 2012), Mikonos, Greece’.

224 References

Pillac, V., Gueret, C. and Medaglia, A. L. (2013), ‘A parallel matheuristic for the
technician routing and scheduling problem’, Optimization Letters 7(7), 1525–1535.

Pinheiro, R. L., Landa-Silva, D. and Atkin, J. (2016), A variable neighbourhood search
for the workforce scheduling and routing problem, in ‘Advances in Nature and
Biologically Inspired Computing’, Springer, pp. 247–259.

Pokutta, S. and Stauffer, G. (2009), ‘France telecom workforce scheduling problem: a
challenge’, RAIRO-Operations Research 43(4), 375–386.

Qu, R. and He, F. (2009), A hybrid constraint programming approach for nurse rostering
problems, in ‘Applications and innovations in intelligent systems XVI’, Springer,
pp. 211–224.

Rabadi, G. (2016), ‘Heuristics, metaheuristics and approximate methods in planning
and scheduling-2016.’, International Series in Operations Research & Management
Science (ISSN 2214-7934) 236.

Rasmussen, M. S., Justesen, T., Dohn, A. and Larsen, J. (2012), ‘The home care crew
scheduling problem: Preference-based visit clustering and temporal dependencies’,
European Journal of Operational Research 219(3), 598–610.

Reid, K. N., Li, J. and Swan, J. (2016), Variable neighbourhood search: A case study
for a highly-constrained workforce scheduling problem, in ‘IEEE SSCI 2016: IEEE
Symposium Series on Computational Intelligence’.

Rest, K.-D. and Hirsch, P. (2016), ‘Daily scheduling of home health care services
using time-dependent public transport’, Flexible Services and Manufacturing Journal
28(3), 495–525.

Santos, H. G., Toffolo, T. A., Gomes, R. A. and Ribas, S. (2016), ‘Integer program-
ming techniques for the nurse rostering problem’, Annals of Operations Research
239(1), 225–251.

Shaw, P. (1998), Using constraint programming and local search methods to solve
vehicle routing problems, in ‘International Conference on Principles and Practice of
Constraint Programming’, Springer, pp. 417–431.

Shi, P. and Landa-Silva, D. (2016), Dynamic programming with approximation function
for nurse scheduling, in ‘International Workshop on Machine Learning, Optimization
and Big Data’, Springer, pp. 269–280.

Shi, Y., Boudouh, T. and Grunder, O. (2017), ‘A hybrid genetic algorithm for a home
health care routing problem with time window and fuzzy demand’, Expert Systems
with Applications 72, 160–176.

Sitompul, D. and Randhawa, S. (1989), ‘Nurse scheduling models: a state-of-the-art
review.’, Journal of the Society for Health Systems 2(1), 62–72.

Society, F. O. R. (2007), ‘What is the roadef 2007 challenge’.
URL: http://challenge.roadef.org/2007/en/

Solomon, M. M. (1987), ‘Algorithms for the vehicle routing and scheduling problems
with time window constraints’, Operations research 35(2), 254–265.

Szelepcsényi, R. (1988), ‘The method of forced enumeration for nondeterministic
automata’, Acta informatica 26(3), 279–284.

References 225

Szeto, W. Y., Wu, Y. and Ho, S. C. (2011), ‘An artificial bee colony algorithm for the
capacitated vehicle routing problem’, European Journal of Operational Research
215(1), 126–135.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997), ‘A tabu
search heuristic for the vehicle routing problem with soft time windows’, Transporta-
tion science 31(2), 170–186.

Tanomaru, J. (1995), Staff scheduling by a genetic algorithm with heuristic operators,
in ‘Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century.,
IEEE International Conference on’, Vol. 3, IEEE, pp. 1951–1956.

Titiloye, O. and Crispin, A. (2011a), Graph coloring with a distributed hybrid quantum
annealing algorithm, in ‘KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications’, Springer, pp. 553–562.

Titiloye, O. and Crispin, A. (2011b), ‘Quantum annealing of the graph coloring prob-
lem’, Discrete Optimization 8(2), 376–384.

Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B. and Gendron, B. (2017), ‘A general
variable neighborhood search for the swap-body vehicle routing problem’, Computers
& Operations Research 78, 468–479.

Tricoire, F., Bostel, N., Dejax, P. and Guez, P. (2013), ‘Exact and hybrid methods for the
multiperiod field service routing problem’, Central European Journal of Operations
Research 21(2), 359–377.

Tsang, E. and Voudouris, C. (1997), ‘Fast local search and guided local search and their
application to british telecom’s workforce scheduling problem’, Operations Research
Letters 20(3), 119–127.

Turing, A. M. (1936), On computable numbers, with an application to the entscheidungs
problem, in ‘Proceedings of the London Mathematical Society’, Vol. 2(42), pp. 230–
265.
URL: Retrieved from https://www.cs.virginia.edu/ robins/TuringPaper1936.pd f

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E. and De Boeck, L.
(2013), ‘Personnel scheduling: A literature review’, European Journal of Operational
Research 226(3), 367–385.

Voudouris, C. and Tsang, E. (1999), ‘Guided local search and its application to the
traveling salesman problem’, European journal of operational research 113(2), 469–
499.

Weigel, D. and Cao, B. (1999), ‘Applying gis and or techniques to solve sears technician-
dispatching and home delivery problems’, Interfaces 29(1), 112–130.

Weisstein, E. W. (2017), ‘"np-problem." from mathworld–a wolfram web resource’.
URL: http://mathworld.wolfram.com/NP-Problem.html

Wright, C., McCartt, P., Raines, D. and Oermann, M. H. (2017), ‘Implementation and
evaluation of self-scheduling in a hospital system’, Journal for Nurses in Professional
Development 33(1), 19–24.

Xu, J. and Chiu, S. Y. (2001), ‘Effective heuristic procedures for a field technician
scheduling problem’, Journal of Heuristics 7(5), 495–509.

226 References

Zamorano, E. and Stolletz, R. (2017), ‘Branch-and-price approaches for the multi-
period technician routing and scheduling problem’, European Journal of Operational
Research 257(1), 55–68.

Appendix A

228

Table A.1 Table showing the ROADEF 2007 technician and task scheduling problem
instances

Dataset Jobs Techs Budget Domains Levels

A1 5 5 0 3 2
A2 5 5 0 3 2
A3 20 7 0 3 2
A4 20 7 0 4 3
A5 50 10 0 3 2
A6 50 10 0 5 4
A7 100 20 0 5 4
A8 100 20 0 5 4
A9 100 20 0 5 4
A10 100 15 0 5 4

B1 200 20 300 4 4
B2 300 30 300 5 3
B3 400 40 500 4 4
B4 400 30 300 40 3
B5 500 50 900 7 4
B6 500 30 300 8 3
B7 500 100 500 10 5
B8 800 150 500 10 4
B9 120 60 100 5 5

B10 120 40 500 5 5

X1 600 60 50 15 4
X2 800 100 500 6 6
X3 300 50 1000 20 3
X4 800 70 50 15 4
X5 600 60 50 15 4
X6 200 20 500 6 6
X7 300 50 1000 20 3
X8 100 30 150 15 7
X9 500 50 50 15 4
X10 500 40 500 15 4

229

Table A.2 Table describing the precedence constrained technician and task scheduling
problem instances

Dataset Jobs Precedence Techs Domains Levels Budget

P1 100 0% 15 3 2 100
P2 100 25% 15 3 2 100
P3 100 50% 15 3 2 100
P4 100 75% 15 3 2 100
P5 100 100% 15 3 2 100

P6 200 0% 25 2 3 200
P7 200 25% 25 2 3 200
P8 200 50% 25 2 3 200
P9 200 75% 25 2 3 200
P10 200 100% 25 2 3 200

P11 400 0% 50 3 3 400
P12 400 25% 50 3 3 400
P13 400 50% 50 3 3 400
P14 400 75% 50 3 3 400
P15 400 100% 50 3 3 400

P16 800 0% 80 4 2 800
P17 800 25% 80 4 2 800
P18 800 50% 80 4 2 800
P19 800 75% 80 4 2 800
P20 800 100% 80 4 2 800

P21 1000 0% 100 3 4 1000
P22 1000 25% 100 3 4 1000
P23 1000 50% 100 3 4 1000
P24 1000 75% 100 3 4 1000
P25 1000 100% 100 3 4 1000

230

Table A.3 Table showing the service technician routing and scheduling problem NoTeam
instances including the number of available technicians

Dataset Available Technicians

C101_5×4_NoTeam 17
C103_5×4_NoTeam 15
C201_5×4_NoTeam 8
C203_5×4_NoTeam 7
R101_5×4_NoTeam 25
R103_5×4_NoTeam 20
R201_5×4_NoTeam 7
R203_5×4_NoTeam 8

RC101_5×4_NoTeam 22
RC103_5×4_NoTeam 18
RC201_5×4_NoTeam 9
RC203_5×4_NoTeam 7

C101_6×6_NoTeam 16
C103_6×6_NoTeam 13
C201_6×6_NoTeam 7
C203_6×6_NoTeam 9
R101_6×6_NoTeam 26
R103_6×6_NoTeam 19
R201_6×6_NoTeam 7
R203_6×6_NoTeam 7

RC101_6×6_NoTeam 24
RC103_6×6_NoTeam 18
RC201_6×6_NoTeam 8
RC203_6×6_NoTeam 8

C101_7×4_NoTeam 17
C103_7×4_NoTeam 17
C201_7×4_NoTeam 8
C203_7×4_NoTeam 8
R101_7×4_NoTeam 28
R103_7×4_NoTeam 22
R201_7×4_NoTeam 10
R203_7×4_NoTeam 9

RC101_7×4_NoTeam 23
RC103_7×4_NoTeam 19
RC201_7×4_NoTeam 9
RC203_7×4_NoTeam 8

231

Table A.4 Table showing the service technician routing and scheduling problem
ReducedNoTeam instances including the number of available technicians

Dataset Available Technicians

C101_5×4_ReducedNoTeam 8
C103_5×4_ReducedNoTeam 8
C201_5×4_ReducedNoTeam 4
C203_5×4_ReducedNoTeam 4
R101_5×4_ReducedNoTeam 12
R103_5×4_ReducedNoTeam 12
R201_5×4_ReducedNoTeam 4
R203_5×4_ReducedNoTeam 4

RC101_5×4_ReducedNoTeam 11
RC103_5×4_ReducedNoTeam 11
RC201_5×4_ReducedNoTeam 5
RC203_5×4_ReducedNoTeam 5

C101_6×6_ReducedNoTeam 8
C103_6×6_ReducedNoTeam 8
C201_6×6_ReducedNoTeam 4
C203_6×6_ReducedNoTeam 4
R101_6×6_ReducedNoTeam 13
R103_6×6_ReducedNoTeam 13
R201_6×6_ReducedNoTeam 4
R203_6×6_ReducedNoTeam 4

RC101_6×6_ReducedNoTeam 12
RC103_6×6_ReducedNoTeam 12
RC201_6×6_ReducedNoTeam 4
RC203_6×6_ReducedNoTeam 4

C101_7×4_ReducedNoTeam 9
C103_7×4_ReducedNoTeam 9
C201_7×4_ReducedNoTeam 4
C203_7×4_ReducedNoTeam 4
R101_7×4_ReducedNoTeam 14
R103_7×4_ReducedNoTeam 14
R201_7×4_ReducedNoTeam 5
R203_7×4_ReducedNoTeam 5

RC101_7×4_ReducedNoTeam 12
RC103_7×4_ReducedNoTeam 12
RC201_7×4_ReducedNoTeam 5
RC203_7×4_ReducedNoTeam 5

232

Table A.5 Table summarising the simulated annealing with restart performance metrics
on the NoTeam problem instances

Dataset Average Restarts Average Iterations

C101_5×4 21 241,350
C103_5×4 13 213,761
C201_5×4 13.6 159,699
C203_5×4 7 149,073
R101_5×4 26.5 311,760
R103_5×4 15.5 235,029
R201_5×4 12.4 163,032
R203_5×4 6.2 139,696

RC101_5×4 22.6 284,923
RC103_5×4 16.8 237,933
RC201_5×4 13.6 172,695
RC203_5×4 5.6 137,529

C101_6×6 18.8 222,147
C103_6×6 11.7 199,725
C201_6×6 7.4 97,845
C203_6×6 3.5 97,611
R101_6×6 23.3 268,915
R103_6×6 12.9 212,172
R201_6×6 9 124,864
R203_6×6 2.4 95,175

RC101_6×6 19.8 247,406
RC103_6×6 12.2 210,023
RC201_6×6 8.7 129,974
RC203_6×6 3.1 101,370

C101_7×4 24.7 286,337
C103_7×4 16.1 256,830
C201_7×4 16.6 188,114
C203_7×4 11.2 189,899
R101_7×4 29.5 354,903
R103_7×4 18.1 265,872
R201_7×4 15.1 193,354
R203_7×4 7.8 166,176

RC101_7×4 24.8 313,719
RC103_7×4 18.3 275,076
RC201_7×4 15.6 196,620
RC203_7×4 8.8 175,336

233

Table A.6 Table summarising the simulated annealing with restart performance metrics
on the ReducedNoTeam problem instances

Dataset Average Restarts Average Iterations

C101_5×4 19.4 237,760
C103_5×4 11 208,798
C201_5×4 11.6 136,426
C203_5×4 4.8 127,628
R101_5×4 22.4 270,029
R103_5×4 17.4 244,082
R201_5×4 8.9 129,428
R203_5×4 3.6 111,218

RC101_5×4 22.3 274,143
RC103_5×4 12.2 233,929
RC201_5×4 10.8 157,719
RC203_5×4 4.9 127,146

C101_6×6 18.9 224,364
C103_6×6 8.5 187,398
C201_6×6 7.3 101,494
C203_6×6 2.2 101,176
R101_6×6 21.6 255,237
R103_6×6 13.3 213,570
R201_6×6 5 103,062
R203_6×6 2.9 86,080

RC101_6×6 19.6 248,300
RC103_6×6 13.1 210,875
RC201_6×6 5.7 110,432
RC203_6×6 2.7 88,949

C101_7×4 25.3 282,559
C103_7×4 16.4 249,775
C201_7×4 13.5 145,236
C203_7×4 6.7 136,232
R101_7×4 29.4 331,041
R103_7×4 21.5 282,724
R201_7×4 11.2 154,580
R203_7×4 5.6 125,351

RC101_7×4 27.4 315,893
RC103_7×4 20.5 281,064
RC201_7×4 12.2 161,558
RC203_7×4 5.9 138,643

Appendix B

Solving Technician and Task Scheduling Problems with

an Intelligent Decision Heuristic

Amy Khalfay, Alan Crispin, and Keeley Crockett

School of Computing, Mathematics and Digital Technology,

Manchester Metropolitan University, Manchester, M1 5GD, UK
{a.khalfay, a.crispin, k.crockett}@mmu.ac.uk

Abstract. This paper proposes a new approach, an intelligent decision (ID) heu-

ristic, to solve a technician and task scheduling problem (TTSP) defined by the

ROADEF 2007 challenge. The ID heuristic is unlike other approaches because

at each stage the heuristic considers multiple scenarios of team configurations

and job assignments. Within the ID heuristic, novel operators have been de-

signed which focus on flexibility in team configurations. Furthermore, out-

sourcing is a sub-problem of the ROADEF 2007 challenge, so computational

experiments have been performed to evaluate various strategies of outsourcing

to utilize the ID heuristic. Results obtained using the ID heuristic have been

compared against other researchers who have tackled this problem.

Keywords: Technician and task scheduling problem (TTSP), intelligent deci-

sion (ID) heuristic and outsourcing

1 Introduction

Technician and task scheduling problems are present in many sectors such as tele-

communications, health care and public utilities [1]. The difficulty in finding quality

solutions to these constrained problems is recognized in [2] and highlights the bene-

fits of optimized staff scheduling such as; customer and workforce satisfaction and

economic savings. The ROADEF 2007 challenge, organized by the French Opera-

tional Research Society, encouraged researchers to find efficient ways of solving

France Telecom’s optimization problem [3]. France Telecom wished to protect their

market share and maintain a high level of customer service whilst limiting the growth

of their workforce [4]. Characteristics featured in the ROADEF 2007 challenge prob-

lem are still applicable to the problems faced today in many organisations [5].

The ROADEF 2007 challenge problem can be summarized as follows: each job

has domain skill requirements that need a team to be built in order to satisfy the de-

mand. A domain may be a particular area of expertise i.e. electrician and a skill level

will represent the proficiency within that domain. Teams are made up of technicians

who have intrinsic skill domain levels and days where they are unavailable. In addi-

tion, there are also dependency relationships between jobs, prohibiting some jobs

being started until others have been completed. Jobs have a priority level, represent-

ing how important it is to serve the job as early as possible. Jobs have a completion

time and must be started and finished on the same day. Furthermore, in some instanc-

es, there is an outsourcing budget available (outsourced jobs do not contribute to the

objective function). The ROADEF 2007 challenge comprised of three sets of data; Set

A, Set B and Set X, increasing in complexity. Set A instances range from 5-100 jobs,

include precedence relationships but no outsourcing budget. Set B and Set X instances

range from 110-800 and 100-800 jobs respectively, include precedence relationships

and outsourcing budgets.

The ROADEF 2007 challenge attracted a lot of research attention and a number of

solution approaches such as; adaptive large neighbourhood search [6], mixed integer

programming [7] [8], local search heuristics [9] [10], greedy algorithms [11-13], and

greedy randomized adaptive search algorithms [14] have been proposed. All of these

approaches use procedures we would classify as single scenario (SS) heuristics. The

approaches select a single seed job according to some criteria, and create a team able

to service the seed job. The ID heuristic is a new approach, which at each stage evalu-

ates many team and job configuration scenarios. The heuristic selects multiple seed

jobs and creates a team able to service each job if possible. For each constructed team,

the heuristic then checks which jobs could also be allocated to the team. A utility

score is calculated for each scenario, which represents the quality of the job assign-

ments to the team. The highest scoring scenario is then selected, the team is config-

ured and job assignments are made.

In other work on the ROADEF 2007 challenge, team configurations have been rig-

id and difficult to alter. Three operators presented in this paper were developed to

provide flexibility in team configurations using the ID heuristic. The first operator,

move with team build, allows a single job to be moved onto a different day by creat-

ing a team to service the job. The second operator, decompose and rebuild, allows a

single day to be rebuilt within the scheduling horizon. The last operator, decompose

and rebuild N, allows N days in the scheduling horizon to be rebuilt. These operators

allow distant solutions to be evaluated as they have the ability to change not only

team configurations but also the allocation position of a job. Experiments into strate-

gies for outsourcing have previously not been carried out in the evaluation of other

heuristics to determine whether the quality of the solution produced is dependent on

the choice of outsourcing strategy.

The remainder of this paper is organized as follows. Section 2 presents the formu-

lation of the problem. Section 3 describes the ID heuristic. Section 4 presents the

outsourcing strategy testing and results. Section 5 outlines the local operators used

within the ID heuristic and section 6 shows the results obtained by the ID heuristic

against other researchers work. Lastly, section 7 draws conclusions about the perfor-

mance of the ID heuristic and directions for further work are identified.

2 Problem Formulation

The aim of the ROADEF 2007 challenge problem is to construct teams over a sched-

uling horizon in order to service a set of jobs. A set of jobs must be completed.

Each job has certain properties, a priority level 𝑝 where 𝑝 , an execution

time , a domain skill requirement matrix
 , an outsourcing cost and a set of

successor jobs . All jobs belonging to may not begin until job has been com-

pleted. There are a set of technicians , each technician also has attributes; unavail-

able days and domain skill levels
 . There are domains and

 skill levels within each domain. The scheduling horizon repre-

sents an entire solution and each represents a working day/schedule. Each day is

limited to 120 time units with no overtime allowed. Each day has a set of available

technicians , who make up teams and each team will have job

assignments and must stay together for the day. Let if technician belongs

to team on day . Let if job is assigned to team on day . The start

times of jobs are denoted as . Let =1 if jobs and are assigned to the same

team on the same day and begins after is completed.

 In the Set B and X instances there is an outsourcing budget available, . Out-

sourced jobs must adhere to precedence constraints, so if a job is outsourced then so

are all successor tasks. Let if job is outsourced. The objective function of a

solution is calculated using Equation (1), a weighted sum of the latest ending times of

each priority type. The weightings in the objective function are given by

 for 𝑝 and is the ending time of the latest job in the sched-

uling horizon of priority 𝑝. However, is the ending time of the latest job in the

scheduling horizon over all priority types.

∑

Subject to the following constraints;
 𝑝

∑

∑

 ∑ ∑

 ∑

 ∑

 ∑

 ()

∑

| | ∑

With variables;

 , t

 𝑝

Equation (2) states that the latest ending time for each priority group, , must be

greater than, or equal to, the start time of every job plus the duration of the job. Equa-

tion (3) ensures the latest ending time overall for all jobs is greater than, or equal to,

the start time of every job belonging to the set of all jobs , plus the duration of the

job . Equation (4) guarantees that if a technician is available to work, then the techni-

cian may only be a member of one team that day. Conversely, Equation (5) confirms

that if a technician may not work, then the technician is not a member of any team.

Equation (6) ensures that either a job is outsourced or a team completes it during the

scheduling horizon. Equation (7) states that if a team completes a job, the team collec-

tively has the skills necessary to service the job. Equation (8) shows that if a job is a

successor it may not begin until the predecessor job has been completed. Equations

(9&10) ensure that the start and end times of a job lie within the eligible working

times of the day that the job is scheduled on. Equation (11) ensures time continuity. If

a job is scheduled to be started after another job it does not begin until the other job

has been completed. Equation (12) states that if two jobs are to happen sequentially

then they must be both scheduled to be completed by the same team on the same day.

Equation (13) ensures that the total sum of the outsourced jobs does not exceed the

outsourcing budget available. Equation (14) guarantees that if a job is outsourced,

then all successor jobs belonging to are also outsourced. Equations (15-18) show

that variables; , , and are binary. Lastly, Equations (19 and 20)

show that the starting and ending times of jobs are non-negative.

3 Intelligent Decision Heuristic

The variables associated with this heuristic are; the scheduling horizon , which

holds all schedules and is an entire solution, an array 𝑙𝑙𝐽𝑜 containing all jobs that

need to be scheduled, a schedule that represents a day within the scheduling

horizon , a set of technicians who are available for schedule , an array

containing jobs of priority 𝑝 that are under consideration for allocation, an array

called ℎ 𝑝𝑜 𝑎 which contains a list of teams that could be made to service jobs

belonging to , an array called ℎ 𝑟𝐽𝑜 which contains further allocations that

could be made to each hypothetical team, a team which is the best team

configuration to make according to a utilization score and lastly, a 𝑃𝑟 𝑛 𝑟𝑟𝑎 ,

which contains jobs which may not yet be allocated.

Fig 1 shows the pseudo code for the ID construction heuristic. A scheduling

horizon is initialized, which holds individual schedules and makes up an entire

solution to the TTSP. The ID heuristic iterates through all jobs until they have been

allocated to teams (i.e. the 𝑙𝑙𝐽𝑜 array is empty).

Create Scheduling Horizon K

While (AllJobs>0)

 Create Schedule k, Add Techs T

 p=1

 While (p<= 4)

 set = AllJobs(p)

 hypoteams = MakeTeams (set)

 if (hypoteams != null)

 Otherjobs= findjobs (hypoteams)

 T1= HighestUtility(hypoteams)

 MakeTeam (t1)

 AddJobs(set)

 Update PrecedenceArray

 Else

 p=p+1

 End While

End While

Initial Solution Created K

Fig. 1. Pseudo code for the ID construction heuristic

A new day/schedule is created by initializing all available technicians as single

technician teams. The inner while loop is entered and the set of jobs with priority 𝑝 is

found and stored in an array . For each job belonging to , a hypothetical team is

made if possible, who if constructed has the time and skills to complete the job. In

this heuristic, teams are made in a greedy fashion, at each step, the team member who

covers the most skill and wastes the least skill is added as the next member of the

team until the job requirements are fulfilled or no members can be added to the team.

A check is performed, if no teams can be created for jobs belonging to the set, then

𝑝 is incremented and the loop is iterated through again. However, if a team can be

created for any job belonging to the set of jobs with priority 𝑝, then the heuristic

checks which other jobs from could also be added onto each job list belonging to

a hypothetical team. A utility score is calculated for each possible hypothetical team,

Equation (21). The utility function is made up of two components, the average over-

skill of the team to the jobs they would be allocated Equation (22), and the wasted

time Equation (23). The highest scoring utility function is selected; the best hypothet-

ical team is recorded as . Team is constructed and added to the schedule .

 𝑙 𝑙𝑙 𝑛

 𝑙𝑙 𝑛

 ∑

 𝑙𝑎 𝑛 ∑

 All job assignments from are made to the team and the heuristic then checks

whether any jobs are now eligible for allocation due to satisfied precedence

constraints. Once no more jobs can be allocated to the current schedule, the heuristic

checks whether all jobs have now been allocated, if not another schedule is created

and the heuristic iterated through again. The construction heuristic terminates once all

jobs have been allocated, and an initial solution has been created. The ID heuristic is

used for the initial solution construction and it is used in the improvements phase. The

ID heuristic is used by the local operators, which remove a job or selection of jobs

and then reallocates them.

4 Outsourcing

In the ROADEF 2007 challenge, outsourcing is treated as a sub-problem and is solved

before the scheduling process begins. The selection of outsourced jobs is final i.e.

outsourced jobs do not enter the schedules. Experiments into outsourcing strategies

have previously not been performed; therefore, the strategies featured in this work are

“initial investigation” strategies. The strategies contain features such as the duration

of a job, the skill requirements and outsourcing cost. Multiple outsourcing strategies

were designed as shown in Table 1. Multiple instances were chosen for experiments

from the Set B and Set X datasets, shown in Table 2, as one outsourcing may not be

suitable for all problem instances.

Table 1. Outsourcing strategies

Strategy Number Description

1 Duration

2 Skill Requirements

3 Outsourcing Cost

4 Duration + Skill Requirements

5 Duration + Skill Requirements + Outsourcing Cost

6 Duration + Outsourcing Cost
7 Skill Requirements + Outsourcing Cost

Table 2. Datasets chosen for outsourcing experiments

Set Data Number Jobs Technicians

B 4 400 30

B 8 800 150

X 2 800 100

X 7 300 50

X 10 500 40

Fig.2 shows that the strategy used for outsourcing can greatly affect the quality of

the solution produced by the ID heuristic; it also shows that some datasets are more

affected by the use of outsourcing strategy than other datasets. For example, the re-

sults produced for dataset B8 appear to be consistent; suggesting that the quality of

solution produced is independent of the outsourcing strategy chosen. However, for

dataset B4 the objective function appears to be heavily dependent on the outsourcing

strategy used. It appears that the best strategies are 2, 4 and 5.

The results suggest the most important factors are the skill requirements and the du-

ration of a job. In addition, for dataset X2 there seems to be a relationship between the

strategy used and the objective value produced. Strategies 1 and 4 appear to produce

the best results suggesting that the most important factors are duration of job followed

by the skill requirements of a job.

Fig. 2. Mean objective outsourcing strategy testing results

Results produced by dataset X7 also appear to be dependent on the strategy used

for outsourcing. The objective values found appear to be of better quality when using

strategies 5 and 6, which both include duration time and outsourcing cost of the job in

combination. Lastly, for dataset X10, strategy 2 appears to be the best strategy, which

considers the skill requirements of the job.

As expected, these results agree with our original assumption that a single out-

sourcing strategy is not suitable for all datasets. Multiple outsourcing strategies are

used on the ROADEF 2007 challenge datasets.

5 Local Operators

A variety of operators were used in this work, some from other combinatorial optimi-

zation work such as; move a job, swap two jobs, shuffle a job list, swap three jobs and

swap job lists. The following operators where designed for this research and use the

ID heuristic; move with team build, decompose and rebuild and decompose and re-

build N. The operator move with team build aims to reallocate a single job. The op-

erator begins by selecting a job at random to reallocate. The ID heuristic then iterates

through each day/schedule in the scheduling horizon and checks whether a team can

be constructed in order to service the job

The operator decompose and rebuild allows the structure of a day/schedule in the

scheduling horizon to change. All jobs assigned to this day/schedule are removed and

all team configurations are deconstructed. Each team member is assigned to his or her

own individual team. The ID heuristic is then used to reallocate the removed jobs and

to make team configurations able to satisfy the jobs. This operator is focused on ex-

ploring different team configurations.

The operator decompose and rebuild N allows the structure of a partial amount of

the scheduling horizon to change. A value of N is selected which represents how

many days/schedules in the scheduling horizon will be decomposed and rebuilt. The

schedules are selected at random and ordered from the earliest to latest schedule. All

jobs are removed from the schedules and teams are decomposed into single technician

teams. The ID heuristic then iterates through the days/schedules, reallocating the jobs

and constructs teams. This operator allows not only team configurations to change but

also jobs to move across the scheduling horizon.

During the improvement phase of the ID heuristic, an operator is picked randomly

(with equal probability) and applied to the current solution. The candidate solution is

then evaluated using an Iterative Local Search (ILS) metaheuristic. ILS can be classi-

fied as a multi start technique and is conceptually simple [15]. ILS has similarities to

hill climbing, however it contains a mechanism to escape locally optimal points with-

in the search space. The ILS metaheuristic has two parameters, the step size N and the

kick type. The step size N determines how many non-improving moves will be ac-

cepted before the heuristic is moved to another area of the search space. Once N non-

improving moves have been reached, a kick is applied that transports us to another

area of the search space. When implementing ILS many decisions are left to the de-

veloper in regards to the step size used and the type of kick to be performed [16].

6 Challenge Comparison

In the ROADEF 2007 challenge, a 20 minute computational time limit was set. The

heuristics were run on each dataset five times and the best score was recorded. The

columns of Table 3. represent the datasets used, the best-known score, the results

achieved by [8] (Hu), [6] (C), [9] (E), [7] (F), [10] (D), [13] (P), [11] (K), [14] (Ha)

and the ID heuristic respectively.

For Sets B and X, in most instances outsourcing strategy 5 was used (time, skill

and outsourcing cost) as testing showed this was generally the best strategy. However

for some datasets B4, B5, B6, X3 and X10 strategy 2 was used (skill requirements) as

this resulted in better quality solutions.

The ID heuristic appears to perform well on the Set A instances and matches the

performance of the other researchers. In datasets A1-A4 and A6 the ID heuristic also

finds the best reported values from the literature.

In the ROADEF 2007 challenge Set B instances there is variation in the results

produced by the ID heuristic. In some datasets, the ID heuristic performs competitive-

ly B1-B3 and B7-B10 with regards to the solutions found by the other researchers. In

other instances, particularly B4-B6, the ID is unable to perform competitively. Inter-

estingly after examination it appears that these datasets have a high volume of prece-

dence and successor relationships which form chains and result in producing elongat-

ed solutions. This suggests that a complex aspect of the ROADEF 2007 challenge

problem is the interrelationships between jobs (successor and precedence).

The ROADEF 2007 challenge Set X instances were not tackled by [9-12]. For

some datasets, the ID heuristic performs well, finding solutions that are competitive

(X1, X7 and X9). For other datasets (X2, X3, X4 and X6), the ID heuristic found

worse quality results than the other researchers, also suggesting there are further com-

plexities to this problem that need to be studied.

Table 3. ROADEF 2007 Challenge Comparison

Data BKS Hu C E F D J P K Ha ID

A1 2340 2340 2340 2340 2340 2340 2490 2340 2340 2340 2340

A2 4755 5580 4755 4755 4755 4755 4755 4755 4755 4755 4755

A3 11880 12600 11880 11880 11880 13068 12600 11880 11880 11880 11880

A4 13452 13620 13452 14040 13452 13620 14040 14760 13452 13452 13452

A5 28845 30150 29335 29700 29335 31236 32400 33480 29335 28845 29040

A6 18795 20280 18795 18795 20005 21576 21120 22380 19935 18870 18795

A7 30540 32520 30540 30540 30960 40116 32520 33360 31050 30840 30660

A8 16920 18960 17700 20100 17355 23115 19380 21180 17587 17355 20100

A9 27348 29328 27692 28020 28280 34056 28280 30000 28028 27692 28020

A10 38296 40650 38636 38296 39300 52348 41580 42740 40350 40020 39000

B1 33900 34710 37200 34395 34575 58968 46995 44025 43620 43860 34410

B2 15870 17970 17070 15870 16775 28989 19890 21240 20010 20655 18600

B3 16005 18060 18015 16020 16275 34368 20340 20280 19575 20565 18210

B4 23775 26115 23775 25305 23925 56382 29460 31815 35385 26025 45855

B5 88680 94200 117540 89700 88920 N/A 100080 122760 119160 120840 119820

B6 26955 30450 27390 27615 28785 N/A 24230 37965 32760 34215 37755

B7 31620 33300 33900 38200 31620 N/A 36060 38820 41220 35460 37140

B8 33030 35490 33240 37440 35520 N/A 35550 34440 39240 33030 36000

B9 28080 28200 29760 32700 28080 N/A 29460 33360 30000 29550 33360

B10 34680 34680 35640 41280 35040 N/A 36960 44640 38040 34920 40680

X1 146220 151140 159300 188595 146220 N/A N/A N/A N/A 181575 178560

X2 7260 9090 8280 8370 7740 N/A N/A N/A N/A 7260 32925

X3 48720 50400 50400 50100 48720 N/A N/A N/A N/A 52680 52920

X4 64600 65400 66780 68120 64600 N/A N/A N/A N/A 72860 74880

X5 144750 147000 157800 183700 144750 N/A N/A N/A N/A 172500 182820

X6 9480 10320 9900 10440 9690 N/A N/A N/A N/A 9480 13020

X7 32040 33240 47760 37200 32040 N/A N/A N/A N/A 46680 40320

X8 23220 23460 24060 25480 23220 N/A N/A N/A N/A 29070 27420

X9 122800 134760 152400 159660 122800 N/A N/A N/A N/A 168240 159600

X10 120330 137040 140520 152040 120330 N/A N/A N/A N/A 178560 160860

7 Conclusion
The ID heuristic has matched some of the best-known solutions to the ROADEF 2007

challenge problem. In 23 out of 30 datasets, the ID heuristic has produced a competi-

tive solution with regard to solutions found by other researchers.

This research has highlighted that there are many complexities in the ROADEF

2007 datasets which arise due to the real-world nature of the technician and task

scheduling problem especially relating to the constraints and their relationships [2].

Future work will investigate the precedence relationships within the datasets to ascer-

tain if results can be improved in instances which have a high number of precedence

and successor relationships.

Our contributions in this paper to the field are; (i) the ID heuristic, which behaves

in a different manner to the heuristics proposed by other researchers, (ii) outsourcing

strategy testing which has shown dependency between the strategy chosen and the

quality of result produced and (iii) novel operators designed to provide flexibility in

team configurations.

Acknowledgments
This research is sponsored by ServicePower Technologies PLC, a worldwide leader at provid-

ing innovative mobile workforce management solutions, in cooperation with MMU and KTP.

References
1. Pillac, V., Guéret, C., Medaglia, A.: On the Technician Routing and Scheduling Problem.

In: The IX Metaheuristics International Conference, pp. S2-40, Italy (2011)

2. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A re-

view of applications, methods and models. EJOR. 153(1), pp. 3-27 (2004)

3. The ROADEF 2007 Challenge, http://challenge.roadef.org/2007/

4. Dutot, P.F., Laugier, A., Bustos, A.M.: Technicians and interventions scheduling for tele-

communications (2007) , Available at, http://challenge.roadef.org/ 2007

5. Montoya, C., Bellenguez-Morineau, O., Pinson, E., Rivreau, D.: Integrated column genera-

tion and Lagrangian relaxation approach for the multi-skill project scheduling problem. In:

Handbook on Project Management and Scheduling Vol. 1, pp. 565-586. Springer, (2015)

6. Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: Scheduling technicians and tasks in a tele-

communications company. JOS. 13(4), pp. 393-409 (2010)

7. Fırat, M., Hurkens, C.A.J.: An improved MIP-based approach for a multi-skill workforce

scheduling problem. JOS. 15(3), pp.363-380 (2012)

8. Hurkens, C.A.: Incorporating the strength of MIP modeling in schedule construction.

RAIRO OP RES. 43(04), pp. 409-420 (2009)

9. Estellon, B., Gardi, F., Nouioua, K.: High-performance local search for task scheduling

with human resource allocation. In: Engineering Stochastic Local Search Algorithms. De-

signing, Implementing and Analyzing Effective Heuristics, pp. 1-15. Springer, (2009)

10. Dongala, S.G.P.: The Problem of Scheduling Technicians and Interventions in a Tele-

communications Company (2008)

11. Korteweg, P.: When to hire the A-Team. (2007) ROADEF, Available at, http://challenge.

roadef.org/ 2007

12. Jaskowski, W., Wasik, S.: Efficient Greedy Algorithm with Hill Climbing for Technicians

and Interventions Scheduling Problem (2007), Available at, http://challenge.roadef.org

/2007

13. Pokutta, S., Stauffer, G.: France Telecom workforce scheduling problem: a challenge.

RAIRO OP RES. 43(04), pp. 375-386 (2009)

14. Hashimoto, H., Boussier, S., Vasquez, M., Wilbaut, C.: A GRASP-based approach for

technicians and interventions scheduling for telecommunications. ANN OP RES. 183(1),

pp. 143-161 (2011)

15. Martí, R., Moreno-Vega, J.M., Duarte, A.: Advanced multi-start methods.' In: Handbook

of metaheuristics, pp. 265-281. Springer, Boston (2010)

16. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. Springer, Heidelberg,

Boston (2003)

Appendix C

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

A Review of Technician and Task Scheduling
Problems, Datasets and Solution Approaches

Amy Khalfay
Manchester Metropolitan University

Manchester
United Kingdom

Email: a.khalfay@mmu.ac.uk

Alan Crispin
Manchester Metropolitan University

Manchester
United Kingdom

Email: a.crispin@mmu.ac.uk

Keeley Crockett
Manchester Metropolitan University

Manchester
United Kingdom

Email: k.crockett@mmu.ac.uk

Abstract—This paper aims to provide a review of technician
and task scheduling problems. A technician and task scheduling
problem requires the creation of timetables for employees in
order to serve customers, who each have skill requirements.
Optimised scheduling can reduce the cost of a workforce and save
the employer significant amounts of money whilst maintaining
customer and workforce satisfaction. This problem is an NP-
hard combinatorial optimisation problem. Over the years, many
technician and task scheduling problems have been studied. This
is due to the real world nature of the problem, that occurs in many
industries such as service maintenance, home healthcare, call
centres, forest management and housing development projects.
Each problem studied has included a diverse range of constraints
such as teaming, priority levels, outsourcing, precedence, routing,
time windows and tools and spare parts. We present a study of the
problems in the literature, datasets and solution approaches. This
review aims to identify promising areas for further research such
as focusing on multi-period problems, technician unavailability,
teaming and precedence constraints.

Keywords—Technician and task scheduling problems; con-
straints; combinatorial optimisation; datasets; solution approaches

I. INTRODUCTION

This paper aims to provide a review of the literature based
in the field of technician and task scheduling problems (TTSP).
A TTSP requires a schedule to be constructed for technicians
who are allocated jobs which each require certain levels of
skill proficiency in order to be completed. In the last few
decades, personnel scheduling problems have become a widely
studied research area [1]. This is due to the real world nature
of the problem that occurs in a vast number of organisations
and businesses. A scheduling problem involves the creation of
timetables for employees that satisfy an organisation’s demand
for services or goods [2]. There have been many personnel
scheduling problems studied of which each include varying
constraints that must be adhered to. In some problems, there
are additional constraints to skill compatibility, such as travel
time and location, time windows, teaming etc. which add to
the complexity of the problem, and more intelligent solution
approaches have to be designed. This paper aims to identify
which constraints are usually associated with the TTSP, review
the limitations of the current datasets, highlight promising
solution approaches and identify areas for further investigation.

The importance of personnel scheduling problems was
highlighted by [3] as a way for industries to maintain market

share and ensure repeat business. In an increasingly compet-
itive market, service providers are in competition not only
in terms of the product they provide but also the quality of
customer service provided and after-care. They also predicted
this research area to grow as we become more reliant on
machinery and technology in the daily running of our lives,
and so the maintenance requests of machinery will naturally
rise.

The cost of a workforce is usually one of the largest costs
incurred by a business. Optimised scheduling can minimize
these costs, and therefore save significant amounts of money.
Optimised scheduling also has the potential to ensure that
shifts are distributed evenly amongst employees and employees
work their preferred shifts [2], which can result in a contented
workforce, and, in turn, a more productive workforce.

Scheduling problems are NP-hard combinatorial optimisa-
tion problems. This means there are no known polynomial
time algorithms that can solve them to optimality within a
discrete time period [4]. In the literature exact techniques are
used to solve problems that contain up to 29 jobs. For this
reason, exact techniques are prohibitive for many real world
and large scale scheduling problem instances and approximate
techniques must be used [5]. Approximate techniques have no
guarantee of finding the optimal solution, but generally are
able to find quality solutions in short computational times.
Approximate techniques have been used to solve problems that
contain up to 1000 jobs [6].

There are also many closely related problems to the TTSP.
The most notable related problem is the vehicle routing
problem (VRP), which evolved from the truck dispatching
problem (TDP) studied by [7] in the 1950’s. The VRP requires
scheduling a fleet of vehicles to serve a set of customers [8].
Each vehicle leaves the depot and visits a subset of customers
before returning to the depot. The constraints of the problem
are that each customer is visited exactly once. The objective
of the VRP is to minimize the sum of the distance travelled by
the vehicles [9]. The Euclidean distance between customers is
used.

The VRP has also been studied with various side con-
straints. Constraints such as the capacity of the vehicles [10],
multiple depots [11] and time windows in which customers
must be visited [12]. The TTSP can be thought of as a
generalization of the VRP. The main differences between these
scheduling problems are the homogeneousness of the vehicles

IEEE 1 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

(capacity) in the VRP compared to heterogeneousness of the
workers (skill set) in the TTSP. The VRP is usually concerned
with making a schedule for a single day, whereas some TTSPs
require scheduling for multiple days.

Another related problem is the home healthcare problem
(HHP). The HHP requires the scheduling of skilled personnel
to travel to patients based in different locations to administer
medication or provide care. This problem can be thought of
as a generalization of the VRP with time windows, multiple
depots and compatibility constraints [13]. This problem is
becoming more prevalent in society as our population ages and
private companies begin to work in this area [14]. The main
purpose of this problem is to allow elderly patients to be treated
in their own homes for as long as possible [15]. The care
given can be anything between cleaning and making food, to
changing bandages and dressings to administering medication.
There are also many side constraints to be considered such as
patient preference and travel time dependent on the mode of
transportation [16].

As demonstrated the TTSP is related to other personnel
scheduling problems. There are shared constraints such as skill
compatibility (care providers to patients), travel time (between
patients/customers) and time windows (between patient medi-
cations). It is reasonable to assume that approaches to solve a
TTSP could be adapted in order to solve the VRP or the HHP
since problems share common constraints.

The large number of real world domains in which TTSPs
occur has attracted many researchers [17]. These types of
personnel scheduling problems have occurred in industrial
settings for many decades. TTSPs arise in industries such
as utility services, gas and electrical services, and general
maintenance [18]. The field of TTSPs includes many types
of problem, each of which has different sets of constraints and
objectives. Usually the objective is to serve all customers in the
least costly manner. There are also many similarities between
TTSPs, such as the use of time windows or team building, and
therefore results obtained in one area may be applied to another
[19]. Due to the wide ranging types of problem and the number
of areas in which the problems occur, finding efficient solution
approaches can not only benefit the employer, the employee
and the customer but also has the potential to impact on the
environment.

The main purpose of this paper is to;

• review the constraints that are associated with TTSPs
in order to find out which constraints are used most
frequently, and which constraints need further investi-
gation

• review the TTSP datasets available in order to identify
if there are any additional constraints to be considered,
or constraints that have not been studied simultane-
ously

• review the solution approaches used to solve TTSPs
to highlight promising solution approaches and scala-
bility and robustness

• determine key areas for future research in the field of
TTSPs

This paper is structured as follows; section II describes the
constraints associated with the TTSP, section III presents the
datasets used in this field, section IV discusses the solution
approaches that have been used to solve TTSPs, section V
describes the metaheuristics used, section VI identifies the
current gaps and limitations within the literature and lastly,
section VII concludes on this paper and our contributions.

II. TTSP AND VARIATIONS

There have been many constraints featured in TTSPs. How-
ever, we believe the main constraint that makes a personnel
scheduling problem a TTSP is;

”the allocation of skilled personnel to tasks, each of
which have skill requirements that must be satisfied”

The following subsections will explain each additional
constraint that has been featured throughout the literature in
variations of the TTSP that have been studied.

A. Routing

The complexity of routing is an important aspect of many
TTSPs. In most settings, the set of customers will each be
positioned in their own location, and so skilled personnel must
travel between these locations. The occurrence of routing also
usually implies that there is a central depot, from which skilled
personnel depart and return to at the beginning and end of
the day. The travel times are accounted for between these
locations and the depot and are usually calculated as Euclidean
distance. However, in many practical situations travel time can
be variable dependent on the day of the week or the time of
the day that the journey between two customers is made. In
addition, the use of a SAT NAV can also estimate the journey
time which takes into account traffic incidents, roadworks and
congestion etc.

Problems featuring the complexity of routing in the lit-
erature include [20], [21] and [22] who studied technician
routing and scheduling problems (TRSP), [23] who studied
a service technician routing and scheduling problem (STRSP),
[24] who studied the multi-period field service routing problem
(MFSRP), and [25] who studied the multi-period technician
routing and scheduling problem (MTRSP).

B. Teaming

Teaming is also an important constraint particularly in
the utility and service maintenance sector. Some jobs require
skills which cannot be fulfilled by a single skilled worker.
Therefore, a team must be made where the cumulative skills
of the team satisfy the job’s skill requirements. In all problems
featuring the complexity of teaming in the literature, the team
is configured at the beginning of the working day and will
stay together for the whole day. For this reason, team formation
decisions require much consideration in order to make sure the
team’s skills are utilized. In the real world, a manual planner
may also take into account other information such as knowing
which technicians work well together. Problems featuring the
complexity of teaming include the ROADEF 2007 challenge
[26] which was a TTSP and [23] which was a TRSP.

IEEE 2 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

C. Single period/ multi-period

Furthermore, there are also differences in the size of the
scheduling horizon, i.e. the number of working days available.
Some TTSPs in the literature have been adapted from VRPs
and so, have only one scheduling day, because in the VRP
the objective is to minimize the distance. However, there are
some multi-period problems, where typically the schedule can
cover over a month of working days. Considerations must then
be given to the acceptable amount of time allowed to find
feasible solutions. Typically, a schedule that will cover a month
should be given more computational time than a single day
problem as the impact of a bad solution will be more costly.
Single day problems have been studied by [20] and [23]. The
ROADEF 2007 challenge problem was a multi-period problem
[27]. Multi-period problems were also studied by [21] and [25].

D. Time windows

Time windows are an emerging constraint in TTSPs. Ser-
vice providers are seeking to differentiate themselves from
each other to maintain market share. Allowing a customer to
choose their own preferred time slot may result in a better
customer experience, customer satisfaction and result in repeat
business. Time windows have been used by [20], [21], [23],
[24] and [25]. The size of the time window can vary depending
on the industry. Time windows may span half a day, a few
hours or, in some delivery services, a single hour.

E. Precedence

The complexity of precedence and successor relationships
can also be a common occurrence in some types of schedul-
ing problem. A precedence relationship between jobs i and
i′ implies that job i′ may not begin until job i has been
completed. We can say that i′ is a successor of i, and i
precedes i′. Precedence and successor constraints occur in
sectors such as utility and electrical maintenance and housing
projects. For example, in housing projects the decorations may
not begin until all the plastering is completed, or in the utility
services, fixing a fault may not begin until the road has been
dug up and pipes can be accessed. Furthermore, chains of
precedence relationships can develop between a set of jobs
which adds to the complexity of the scheduling problem.
Precedence constraints have been used in the ROADEF 2007
challenge, which was tackled by [28] and [29], and in other
scheduling problems by [25] and [30].

F. Priority

Priority levels are also a consideration in some TTSPs. A
priority level quantifies how important it is to serve a job as
early as possible in comparison to other jobs. These scenarios
can arise where there are customers who place a lot of orders
to a business so they will be seen as more important than
customers with smaller orders. Priority levels can also be used
to classify the seriousness of a fault in the maintenance sector,
for example the water being off in a town compared to a minor
leak in a single customer’s house. Priority levels have been
included in the ROADEF 2007 challenge [26] and research by
[21].

G. Tools and spare parts

Tools and spare parts are an important aspect in the
maintenance and repair sector. Generally there will be a finite
number of tools that must be shared between the technicians.
A complicating factor is that the tools are usually located at a
central depot, and so may need to be collected and returned.
Furthermore, spare parts are non replenishable, and therefore
consideration must be given to stock levels and so on. A
problem where technicians began their routes with a set of
tools and spare parts was studied by [20].

H. Unavailability

In some problems, there are also days when some tech-
nicians may not be available. This is also an emerging con-
straint, as in law consideration must now be given to people
with special circumstances in relation to the working patterns
and hours. Unavailability of resources particularly affects the
process of building a team as all members must be available
and there may be a trade off between sending someone over
qualified against waiting for a technician to become available.
Most work does not consider the unavailability of resources
[1], however the ROADEF 2007 challenge does [31].

I. Dynamic

In some industries there may also be dynamic jobs. A
dynamic job is a job that will need to be fitted into the schedule
and arrives in real time. It is common in the water, electricity
and gas services, where there are faults that must be fixed
quickly. In addition the emergency service is also a sector
where jobs continually arrive and must be allocated. When
emergency jobs arrive in real time, any jobs that have begun
are fixed in position. Only jobs that have not yet begun can
be moved in order to fit in the emergency job. A dynamic
scheduling problem was studied by [32].

III. DATASETS

There are numerous sets of data based on the TTSP. In fact,
some of the datasets for technician and task scheduling have
actually been adapted from vehicle routing problem datasets
proposed by [12]. Each problem contains a different set of con-
straints. For example some problems include the complexity
of teaming, routing, job relationships, priority levels and tools
and spare parts etc. Table I shows the datasets that have been
studied in this field, along with the constraints each problem
featured and the size of the problems.

A. Technician and task scheduling problem

A TTSP was the basis of the ROADEF 2007 challenge. The
ROADEF challenge is a bi-annual competition proposed by the
French Operational Research Society, that invites researchers
to compete to find efficient ways of solving combinatorial
optimisation problems. In 2007, the problem was a TTSP,
and used real world datasets provided by France Telecom,
containing data instances ranging from 5 to 800 jobs and 5
to 150 technicians. The aim of the problem is to allocate a
set of jobs over a scheduling horizon to a set of teams. Teams
are made up of technicians, each with intrinsic skill domain
levels and days within the scheduling horizon when they are

IEEE 3 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

TABLE I. TECHNICIAN AND TASK SCHEDULING PROBLEMS AND
VARIATIONS

Problem Type Constraints No. of Customers

TTSP [26]

Teaming

Resource unavailability

Priority levels

Outsourcing

Skill

Job relationships

800

TRSP [20]

Routing

Time windows

Skill

Tools and spare parts

100

TRSP [23]

Teaming

Routing

Time windows

Skill

100

FTSP [6]
Routing

Time windows
1000

MTRSP [25]

Routing

Time windows

Skill

Teaming

25/27

MFSRP [24]

Routing

Time windows

Skill

Resource unavailability

Breaks

100

MTRSP [21]

Routing

Time windows

Skill

Tools and spare parts

Priority

25

DTRSP [32]

Routing

Time windows

Skill

Tools and spare parts

Dynamic

100

not available. Each job has a priority level indicating how
important it is to serve the job as early as possible. In some
problem instances there is an available outsourcing budget
that can be utilized. Jobs can also have relationships with
other jobs, which can be precedence or successor relationships,
where a job may not begin until another has been completed.
Jobs have skill requirements which must be satisfied by the
team which serves the job.

B. Technician routing and scheduling problem

TRSPs in the literature include problems studied by [20]
and [23]. The work by [23] extended the vehicle routing
problem instances proposed by [12] into a TRSP. The problem
generated skill requirements for each job based on the skill
requirements present in the ROADEF 2007 datasets. In this
problem, teams leave the depot and travel to service customers.

This version of the problem negated some constraints that
are present in the ROADEF 2007 challenge problem, such as
precedence and successor relationships, priority levels, techni-
cian unavailability, length of a working day and outsourcing
budgets, but did contain the complexity of routing.

The work by [20] extended the instances in [12] by generat-
ing skills, tools and spare parts information. This problem, the
technician routing and scheduling problem, did not include the
complexity of teaming or precedence. However, this is the first
work we are aware of that included the complexity of tools
and spare parts, an important aspect of service maintenance
problems.

C. Field technician scheduling problem

A field technician scheduling problem (FTSP) was pro-
posed by [6], where jobs had to be serviced at different
locations within a time window. This research did not treat
skill compatibility as a hard constraint [19] which is the under
pinning constraint that makes a scheduling problem a TTSP
or a variation of the TTSP. The objective was to maximise
the number of served jobs with a predefined time period
whilst minimizing the cost of the workforce. This paper tested
problem instances with up to 1000 jobs, which is representative
of the scale of real world problems that occur in industry.

D. Multi-period technician routing and scheduling problem

Artificial datasets were used by [21] to solve the multi-
period technician routing and scheduling problem (MTRSP).
The datasets contained up to 25 jobs and CPLEX was used
to solve the mixed integer programming model. The prob-
lem included complexities such as skill requirements, priority
levels, time windows, breaks and overtime. This work found
that CPLEX could only solve all instances with 10 jobs to
allocate within reasonable computational times. This paper
demonstrated how the computational time rapidly increases
with problem size and complexity, and the need for approxi-
mate scalable solution approaches.

Both artificial and real world datasets were used by [25].
The artificial datasets contained up to 25 jobs, and the real data
instances contained up to 27 jobs. This paper again emphasized
the difficulties faced with scalability and robustness of solution
approaches, and the need for hybridized approaches.

E. Multi-period field service routing problem

The multi-period field service routing problem (MFSRP)
studied by [24] used both exact and hybrid solution ap-
proaches. The datasets used in this research were artificial and
contained two sets, C4 small instances up to 40 jobs and C1
up to 100 jobs. This paper highlighted that even after 7 days
of computational time, the branch and price technique was
not able to find the optimal solution for 2 out of 5 instances.
However, when using some heuristic techniques within branch
and bound, a solution can be found for all instances within 24
hours of computational time.

F. Dynamic technician routing and scheduling problem

A dynamic technician routing and scheduling problem
(DTRSP) was studied by [32]. In this problem new job requests

IEEE 4 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

appear as the schedule is implemented in real time. This is
another aspect of a real world situation faced by industry.
These datasets were created extending VRP instances from
[12].

IV. SOLUTION APPROACHES

Many approaches have been applied to solve the TTSP and
its variations. Both exact and approximate approaches have
been used. Table II shows some of the solution approaches
that have been applied to TTSPs and their variants.

A. Approximate Mixed Integer Programming

Approximate mixed integer programming (MIP) techniques
have been used by [28] and [33] to solve the TTSP proposed
by the ROADEF 2007 challenge [26]. In these approaches,
a construction algorithm was designed that broke down the
overall scheduling problem into smaller sub problems. These
sub problems then used the CPLEX library to solve these
smaller integer programming (IP) and integer linear program-
ming (ILP) problems. These approaches did not contain an
improvement phase, but the construction algorithm produced
high quality solutions, and solved problems with up to 800
jobs.

B. Adaptive Large Neighbourhood Search

Adaptive large neighbourhood search heuristics have been
used by both [23] and [34] to solve a TTSP and a TRSP. The
ALNS heuristic is based on the work by [39] with the large
neighbourhood search (LNS) heuristic. The ALNS uses several
destroy and repair operators. A destroy operator removes a
portion of the current solution, and the repair operator reinserts
the removed tasks back into the solution. In the ALNS, the
effectiveness of each destroy and repair operator is tracked
such that operators that have performed well so far are more
likely to be selected, which will aid the search for quality
solutions.

C. Greedy Randomized Adaptive Search Procedure

A greedy randomized adaptive search procedure (GRASP)
was used by [35] to solve the ROADEF 2007 challenge [26].
This approach proved to be a successful one, [35] won 1st
place in the student category of the ROADEF 2007 challenge.
The GRASP comprises of two components, a greedy heuristic
and then a local search phase. A solution is made using a
greedy algorithm, iteratively selecting the best decision at each
stage of the scheduling process. Local search is then used to
try to improve the solution for a short amount of computational
time. This process is run multiple times and the best solution
found is recorded.

D. Local Search

Local search (LS) has been used by [31] to solve the
ROADEF 2007 challenge. This heuristic came joint 2nd place
with the ALNS used by [34]. In this heuristic, an initial
solution is constructed using a greedy heuristic. Next, in the
improvement phase, operators are iteratively applied in order
to reduce the objective function.

E. Mathheuristic

The mathheuirtsic is a novel heuristic proposed by [20].
The heuristic was created in order to solve a TRSP that
included many constraints. The mathheuirtsic is composed of
three phases, a construction algorithm, a parallel ALNS and
a mathematical programming post optimisation phase. The
parallel ALNS takes advantage of the parallel architectures
which results in a significant computation speed up.

F. Intelligent Decision heuristic

The intelligent decision heuristic is a novel heuristic devel-
oped to tackle the ROADEF 2007 challenge problem instances
[37]. This heuristic considers many different scenarios of
team configurations at each stage of the allocation process.
Furthermore, this heuristic contained operators that provided
flexibility within team configurations.

G. Branch and price

Branch and price is an exact solution technique. This
method has proved popular as many authors have used this
technique [24], [25] and [38]. However, exact solution ap-
proaches are only suitable for small sized problems. Branch
and price combines branch and bound with column generation
techniques in order to solve large IP problems.

H. MIP Programming

MIP programming has been used by [21] to solve a multi
skill technician routing and scheduling problem. Again, this
solution approach is only suitable on small sized problems
and so would not be suitable on an industrial scale. In MIP,
variables are restricted to take integer values.

V. METAHEURISTICS

Most approximate solution approaches to solve TTSPs are
two phase. In the first phase, an initial solution is generated.
In the second phase, local operators are applied which perturb
the current solution generating a neighbouring solution. This
neighbouring solution has to be evaluated, using a metaheuris-
tic. According to [5]

”metaheuristics are high level strategies
for exploring search spaces by using different methods”

The following subsections will describe three popular tra-
jectory metaheuristics, hill climbing, iterative local search and
simulated annealing. Each of these metaheuristics has been
used successfully to solve TTSPs and their variants.

A. Hill Climbing

Hill climbing is the most simple and easy to implement
metaheuristic. Figure 1 illustrates the hill climbing metaheuris-
tic. First an initial solution is generated using a construction
heuristic. It is recorded as the best solution on line 1. On each
iteration a local operator o is selected randomly applied to
solution S which generates neighbouring solution S′ on line
4. If solution S′ is of better quality than solution S then it is
accepted and becomes the new current solution S on line 6.
If solution S is now of better quality than the best solution,
then it replaces it on line 8. Once the termination criterion has

IEEE 5 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

TABLE II. SOLUTION APPROACHES

Type Approach Problem

Heuristic

Approximate Mixed Integer Programming TTSP [28], [33]

ALNS TTSP [34] TRSP [23]

GRASP TTSP [35] FTSP [6]

Local Search TTSP [31], [36]

Parallel Matheuristic TRSP [20]

Intelligent Decision Heuristic TTSP [37]

Exact
Branch and Price MFSRP [24] MTRSP [25] TRSP [38]

Mixed Integer Programming MTRSP [21]

been met, the best solution is output. Hill climbing has been
proved to be successful in solving a range of combinatorial
optimisation problems and was used by [31]. One of the
drawbacks of the hill climbing metaheuristic is that it does
not incorporate an escape mechanism. For this reason, it can
get stuck in local optima.

Variables: S: current solution, S′: neighbouring solution,
SBest: the best solution, O: the set of local operators

1: SBest ← S
2: while termination criteria not met do
3: randomly choose o ∈ O
4: S′ ← o(S)
5: if S′ ≤ S then
6: S ← S′

7: if S ≤ SBest then
8: SBest ← S
9: end if

10: end if
11: end while
12: return SBest

Fig. 1. Hill Climbing

B. Iterative Local Search

Iterative local search (ILS) is an extension to the hill
climbing metaheuristic and does include an escape mechanism.
Iterative local search is classed as a multi start technique
[40] and contains a diversification quality [41]. There is one
parameter associated with this metaheuristic, the step size N .
The implementation of ILS is shown in Figure 2. Firstly, the
variable count is assigned the value 0. On each iteration a
local operator o is randomly selected and applied to solution S
which generates neighbouring solution S′ on line 5. If solution
S′ is of better quality than solution S then it is accepted and
becomes the current solution S on line 7.

If solution S is now of better quality than the best solution,
then it replaces it on line 9, and the count variable is reset to
0 as an improving move has been found. If the neighbouring
solution is not of better quality then the variable count is
incremented by one. On line 15 a check is performed, if the
number of non improving moves is equal to the maximum step
size N , then a local operator is applied to S generating S′ on
line 16. The solution S′ then replaces S on line 17 to become
the current solution and the search will continue from this point

Variables: S: current solution, S′: neighbouring solution,
SBest: the best solution, O: the set of local operators, N :
maximum steps before beginning from best solution, count:
counter for iterations,

1: SBest ← S
2: count← 0
3: while termination criteria not met do
4: randomly choose o ∈ O
5: S′ ← o(S)
6: if S′ ≤ S then
7: S ← S′

8: if S ≤ SBest then
9: SBest ← S

10: count← 0
11: end if
12: else
13: count← count+ 1
14: end if
15: if count = N then
16: S′ ← o(S)
17: S ← S′

18: count← 0
19: end if
20: end while
21: return SBest

Fig. 2. Iterative Local Search

in the solution space. This feature of the ILS metaheuristic
allows the algorithm to escape local minima when it becomes
stuck. ILS can ensure that previously unvisited regions of the
solution space are searched.

C. Simulated Annealing

Simulated annealing is one of the most widely used meta-
heuristic techniques. This metaheuristic was first proposed by
[42] and has shown to be able to produce quality results not
only in the field of TTSPs [34], but in other optimisation
problems.

This metaheuristic has two parameters, the temperature T
and the decrement δT . Simulated annealing has the ability
to escape local optima, through the ability to accept a worse
quality solution. The chance of accepting a worse quality solu-
tion is controlled by the temperature parameter. The simulated
annealing metaheuristic is shown in Figure 3. On each iteration

IEEE 6 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

Variables: S: current solution, S′: neighbouring solution,
SBest: the best solution, O: the set of local operators, T :
initial temperature, δT : the cooling rate

1: SBest ← S
2: while termination criteria not met do
3: randomly choose o ∈ O
4: S′ ← o(S)
5: if S′ ≤ S then
6: S ← S′

7: if S ≤ SBest then
8: SBest ← S
9: end if

10: else
11: r ← random(0, 1)
12: p← exp(S′ − S)/T
13: if p ≥ r then
14: S ← S′

15: end if
16: end if
17: T ← T · δT
18: end while
19: return SBest

Fig. 3. Simulated Annealing

a local operator is randomly selected and applied to solution
S which generates S′. If S′ is of better quality then it replaces
S on line 6. If solution S is better than the best found solution
so far then it replaces SBest on line 8. However, if solution
S′ is of worse quality than solution S then a probability p
is calculated on line 12. The probability p is the negative
exponential of the difference in solution quality divided by
the temperature parameter. If the probability p is greater than
a random number generated on the interval [0,1] then S′ is
accepted and replaces S on line 14. After each iteration the
temperature parameter is decremented using δT , reducing the
likelihood of accepting a worse quality solution. Once the
termination criterion has been met the best solution is output.

D. Comparison of metaheuristics

Each of these metaheuristics has been applied successfully
to solve TTSPs or their variants. A hill climbing metaheuristic
was used by [31] to solve the ROADEF 2007 challenge.
A simulated annealing metaheuristic was used by [34] to
also solve the ROADEF 2007 challenge. Both [31] and [34]
ranked 2nd place in the competition. An iterative local search
metaheuristic was also used by [37] to solve the ROADEF
2007 challenge and produced competitive results.

It seems that one of the important qualities of a meta-
heuristic is the ability to escape local optima. In such complex
problems the solution space is full of peaks and troughs. It can
be easy to end up in a trough and so, there is a need to be
able to move through the solution space by accepting a worse
solution in the hope of being able to find a better quality one.

VI. DISCUSSION

As demonstrated, the field of TTSPs is a vast research
field that needs continued investigation. There is a wealth

of industrial applications which means that breakthroughs in
this field have the potential to make both environmental and
financial impacts in closely related fields.

The complexity of teaming has been studied on relatively
small problem sizes, for example in [20] and [23] the problem
instances contain at most 100 jobs that were adapted from
VRPs. The ROADEF 2007 challenge does deal with teaming
with larger instances, up to 800 jobs, but routing is not part
of the problem definition. The complexity of routing has been
studied in many problems, with usually up to 100 jobs. Routing
was considered in [6] with 1000 jobs, but skill compatibility
was not treated as a hard constraint.

Precedence constraints are featured in the ROADEF 2007
challenge but are absent from many other problems that have
been studied. Precedence constraints can occur in many appli-
cation areas such as home health care. In the field of TTSPs
precedence constraints are featured in housing developments,
utility and electrical services problems. Precedence constraints
add significant complexity to the problem and can influence
the design of a solution approach. It is vital that research is
undertaken that considers precedence constraints because they
can occur in many sectors and pose significant challenges when
designing a solution approach.

Furthermore, the largest problems studied have included up
to 1000 jobs in [6] although skill was not treated as a hard
constraint, which we believe is the fundamental characteristic
that makes a TTSP. A problem with up to 800 jobs was
studied in [26]. However, in most problems up to 100 jobs
are considered. In many industrial scenarios there will be
many jobs to schedule over a larger geographical area and
realistically sized problem instances are needed in order to
validate solution approaches.

The lack of multi-period problems has also meant that the
complexity of the unavailability of resources needs further
research and investigation. Typically many TTSP problems
and their variants are either adapted from VRP instances or
are artificial. The use of exact solution approaches has also
prohibited the use of multi-period problems as the problem
size has had to be kept relatively small. The unavailability of
resources is also directly linked to the complexity of teaming,
as all team members must be available to join the team. In
large organisations, it is necessary to schedule a workforce over
multiple days, accounting for technician unavailability and, in
some organisations, create teams to complete jobs.

VII. CONCLUSION

This paper has given an outline of the TTSPs and variations
featured in the literature. We have also presented the datasets
available for researchers and the solution approaches used,
both exact and approximate.

Our contributions are; (i) a comprehensive study of the
constraints that have been associated with the TTSP and
variants, and an analysis of which constraints have been
studied simultaneously, (ii) review of the datasets used which
has highlighted the limitations of the datasets available (in
terms of problem size, number of scheduling days and the
source of the data i.e. artificial and adapted) and (iii) a review
of solution approaches which has shown the limitations of

IEEE 7 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

exact approaches and the need for heuristic approaches to solve
industry sized problems.

We conclude that future research in the field would ben-
efit from being focused on multi-period problems, technician
unavailability, teaming and precedence constraints.

ACKNOWLEDGMENT

This research is sponsored by ServicePower Technologies
PLC, a worldwide leader in providing innovative mobile work-
force management solutions, in cooperation with MMU and
KTP.

REFERENCES

[1] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and
L. De Boeck, “Personnel scheduling: A literature review,” European
Journal of Operational Research, vol. 226, no. 3, pp. 367–385, 2013.

[2] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff scheduling
and rostering: A review of applications, methods and models,” European
journal of operational research, vol. 153, no. 1, pp. 3–27, 2004.

[3] D. L. Haugen and A. V. Hill, “Scheduling to improve field service
quality*,” Decision Sciences, vol. 30, no. 3, pp. 783–804, 1999.

[4] M. Krishnamoorthy, A. T. Ernst, and D. Baatar, “Algorithms for large
scale shift minimisation personnel task scheduling problems,” European
Journal of Operational Research, vol. 219, no. 1, pp. 34–48, 2012.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[6] J. Xu and S. Y. Chiu, “Effective heuristic procedures for a field
technician scheduling problem,” Journal of Heuristics, vol. 7, no. 5,
pp. 495–509, 2001.

[7] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[8] A. Crispin and A. Syrichas, “Quantum annealing algorithm for vehicle
scheduling,” in 2013 IEEE International Conference on Systems, Man,
and Cybernetics. IEEE, 2013, pp. 3523–3528.

[9] B. M. Baker and M. Ayechew, “A genetic algorithm for the vehicle
routing problem,” Computers & Operations Research, vol. 30, no. 5,
pp. 787–800, 2003.

[10] R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Aragão, M. Reis,
E. Uchoa, and R. F. Werneck, “Robust branch-and-cut-and-price for
the capacitated vehicle routing problem,” Mathematical programming,
vol. 106, no. 3, pp. 491–511, 2006.

[11] J.-F. Cordeau, M. Gendreau, and G. Laporte, “A tabu search heuristic for
periodic and multi-depot vehicle routing problems,” Networks, vol. 30,
no. 2, pp. 105–119, 1997.

[12] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations research, vol. 35,
no. 2, pp. 254–265, 1987.

[13] E. Cheng and J. L. Rich, “A home health care routing and scheduling
problem,” URL http://citeseerx. ist. psu. edu/viewdoc/summary, 1998.

[14] S. Bertels and T. Fahle, “A hybrid setup for a hybrid scenario:
combining heuristics for the home health care problem,” Computers
& Operations Research, vol. 33, no. 10, pp. 2866–2890, 2006.

[15] M. S. Rasmussen, T. Justesen, A. Dohn, and J. Larsen, “The home
care crew scheduling problem: Preference-based visit clustering and
temporal dependencies,” European Journal of Operational Research,
vol. 219, no. 3, pp. 598–610, 2012.

[16] G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger, and G. R. Raidl,
“Metaheuristics for solving a multimodal home-healthcare scheduling
problem,” Central European Journal of Operations Research, vol. 23,
no. 1, pp. 89–113, 2015.

[17] P. Brucker, R. Qu, and E. Burke, “Personnel scheduling: Models and
complexity,” European Journal of Operational Research, vol. 210, no. 3,
pp. 467–473, 2011.

[18] J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu, “A survey on
workforce scheduling and routing problems,” in Proceedings of the
9th international conference on the practice and theory of automated
timetabling. Citeseer, 2012, pp. 283–302.

[19] D. C. Paraskevopoulos, G. Laporte, P. P. Repoussis, and C. D. Tarantilis,
“Resource constrained routing and scheduling: Review and research
prospects,” 2016.

[20] V. Pillac, C. Gueret, and A. L. Medaglia, “A parallel matheuristic for
the technician routing and scheduling problem,” Optimization Letters,
vol. 7, no. 7, pp. 1525–1535, 2013.

[21] I. Mathlouthi, M. Gendreau, and J.-Y. Potvin, “Mixed integer program-
ming for a multi-attribute technician routing and scheduling problem,”
2016.

[22] X. Chen, B. W. Thomas, and M. Hewitt, “The technician routing
problem with experience-based service times,” Omega, vol. 61, pp. 49–
61, 2016.

[23] A. A. Kovacs, S. N. Parragh, K. F. Doerner, and R. F. Hartl, “Adaptive
large neighborhood search for service technician routing and scheduling
problems,” Journal of scheduling, vol. 15, no. 5, pp. 579–600, 2012.

[24] F. Tricoire, N. Bostel, P. Dejax, and P. Guez, “Exact and hybrid methods
for the multiperiod field service routing problem,” Central European
Journal of Operations Research, vol. 21, no. 2, pp. 359–377, 2013.

[25] E. Zamorano and R. Stolletz, “Branch-and-price approaches for the
multiperiod technician routing and scheduling problem,” European
Journal of Operational Research, 2016.

[26] F. O. R. Society. (2016) What is the roadef 2007 challenge. [Online].
Available: http://challenge.roadef.org/2007/en/

[27] P.-F. Dutot, A. Laugier, and A.-M. Bustos, “Technicians and interven-
tions scheduling for telecommunications,” France Telecom R&D, 2006.

[28] M. Fırat and C. Hurkens, “An improved mip-based approach for a multi-
skill workforce scheduling problem,” Journal of Scheduling, vol. 15,
no. 3, pp. 363–380, 2012.

[29] P. Korteweg, “When to hire the a-team,” 2007.

[30] Y. Park, Y. Khosiawan, I. Moon, M. N. Janardhanan, and I. Nielsen,
“Scheduling system for multiple unmanned aerial vehicles in indoor
environments using the csp approach,” in Intelligent Decision Tech-
nologies 2016. Springer, 2016, pp. 77–87.

[31] B. Estellon, F. Gardi, and K. Nouioua, “High-performance local search
for task scheduling with human resource allocation,” in Engineering
Stochastic Local Search Algorithms. Designing, Implementing and
Analyzing Effective Heuristics. Springer, 2009, pp. 1–15.

[32] V. Pillac, C. Guéret, and A. Medaglia, “On the dynamic technician
routing and scheduling problem,” 2012.

[33] C. A. Hurkens, “Incorporating the strength of mip modeling in schedule
construction,” RAIRO-Operations Research, vol. 43, no. 04, pp. 409–
420, 2009.

[34] J.-F. Cordeau, G. Laporte, F. Pasin, and S. Ropke, “Scheduling techni-
cians and tasks in a telecommunications company,” Journal of Schedul-
ing, vol. 13, no. 4, pp. 393–409, 2010.

[35] H. Hashimoto, S. Boussier, M. Vasquez, and C. Wilbaut, “A grasp-based
approach for technicians and interventions scheduling for telecommuni-
cations,” Annals of Operations Research, vol. 183, no. 1, pp. 143–161,
2011.

[36] E. Tsang and C. Voudouris, “Fast local search and guided local
search and their application to british telecom’s workforce scheduling
problem,” Operations Research Letters, vol. 20, no. 3, pp. 119–127,
1997.

[37] A. Khalfay, A. Crispin, and K. Crockett, “Solving technician and task
scheduling problems with an intelligent decision heuristic,” in Intelligent
Decision Technologies 2016. Springer, 2016, pp. 63–75.

[38] C. E. Cortés, M. Gendreau, L. M. Rousseau, S. Souyris, and A. Wein-
traub, “Branch-and-price and constraint programming for solving a real-
life technician dispatching problem,” European Journal of Operational
Research, vol. 238, no. 1, pp. 300–312, 2014.

[39] P. Shaw, “Using constraint programming and local search methods
to solve vehicle routing problems,” in International Conference on
Principles and Practice of Constraint Programming. Springer, 1998,
pp. 417–431.

IEEE 8 | P a g e

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

[40] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,”
in Handbook of metaheuristics. Springer, 2003, pp. 320–353.

[41] R. Martı́, J. M. Moreno-Vega, and A. Duarte, “Advanced multi-start
methods,” in Handbook of metaheuristics. Springer, 2010, pp. 265–
281.

[42] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by
simmulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

IEEE 9 | P a g e

Appendix D

Applying the Intelligent Decision Heuristic
to Solve Large Scale Technician
and Task Scheduling Problems

Amy Khalfay(B), Alan Crispin, and Keeley Crockett

Department of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester, UK

{a.khalfay,a.crispin,k.crockett}@mmu.ac.uk

Abstract. Scheduling personnel to complete tasks is a complex com-
binatorial optimisation problem. In large organisations, finding qual-
ity solutions is of paramount importance due to the costs associated
with staffing. In this paper we have generated and solved a set of novel
large scale technician and task scheduling problems. The datasets include
complexities such as priority levels, precedence constraints, skill require-
ments, teaming and outsourcing. The problems are considerably larger
than those featured previously in the literature and are more represen-
tative of industrial scale problems, with up to 2500 jobs. We present our
data generator and apply two heuristics, the intelligent decision heuristic
and greedy heuristic, to provide a comparative analysis.

Keywords: Combinatorial optimisation · Large scale technician and
task scheduling problems · Data generator · Intelligent decision heuristic

1 Introduction

The importance of finding quality solutions to scheduling problems was high-
lighted in [5]. There are many benefits to optimised scheduling; such as main-
taining customer satisfaction and providing a balanced working schedule for
employees. The importance of field service scheduling is growing due to the
increasing number of machines that are used and therefore the number of spe-
cialized technicians needed to meet the demand [8]. There are many different
types of scheduling problems that can be categorized by the constraints that
they include. This paper focuses on generating and solving a set of large scale
technician and task scheduling problems.

This problem is NP-hard, there are no known polynomial time algorithms
for solving them optimally, which makes using exact methods prohibitive. In
large businesses, there is also often a conflict between computational time and
solution quality, whilst a solution of high quality is desired, it is desired within a
reasonable computational time. The use of heuristic methods is popular for larger
sized problems and has produced competitive results in many combinatorial opti-
mization problems such as; graph colouring [17], the vehicle routing problem [3]

c© Springer International Publishing AG 2018
I. Czarnowski et al. (eds.), Intelligent Decision Technologies 2017,
Smart Innovation, Systems and Technologies 72, DOI 10.1007/978-3-319-59421-7 7

72 A. Khalfay et al.

and nurse rostering [1]. Whilst approximate methods have no guarantee of find-
ing a globally optimal solution, they generally produce high quality results in
short computational times and are scalable and robust.

Literature in the field of technician and task scheduling problems has included
solving both artificial and real world problems. Technician and task scheduling
problems have been studied by [11,12,14]. In addition the ROADEF 2007 chal-
lenge was based on France Telecom’s technician and task scheduling problem
and has attracted much research interest; [2,6,7,9,10].

The ROADEF 2007 challenge problem used real world datasets [4]. France
Telecom aimed to reduce the cost of its workforce whilst maintaining a satisfied
client base and dominating the market share. This optimisation problem involves
creating a set of teams over a scheduling horizon to service or outsource a set of
jobs [15]. The problem includes many constraints such as technician unavailabil-
ity, priority levels, outsourcing, skill requirements and precedence relationships.
Instances in the ROADEF 2007 challenge ranged from 5 to 800 jobs, however,
the problems that arise in industrial settings may include many more jobs to
allocate.

A technician routing and scheduling problem was proposed by Pillac et al.
[14]. In this work, vehicle routing problem instances proposed by Solomon [16]
were extended to create a technician routing and scheduling problem. To do
this, random skill requirements were created for each customer and each vehicle
(technician) had intrinsic skill levels. This problem included location informa-
tion and tools and spare parts constraints but did not include the complexity
of teaming or precedence relationships. Instances in these datasets contained at
most 100 jobs. A service technician routing and scheduling problem was created
by Kovacs et al. [11] which also extended instances from [16]. This work, con-
catenated skill domain information from the ROADEF 2007 challenge problem
on to the customer information from the vehicle routing instances. Again these
instances contained at most 100 jobs.

A personnel task scheduling problem was also studied by [12] who procedu-
rally generated the datasets used. In this work, the objective was to minimize
the make span of the scheduling horizon (similar to ROADEF 2007 challenge
but without priority levels). A heuristic approach was compared against mixed
integer programming using data instances with up to 2105 jobs. This work con-
sidered a heterogeneous workforce, however not in the same way as the ROADEF
2007 challenge, which used skill domain areas and multiple levels of skill within
those domains. This research concluded that mixed integer programming was not
an appropriate solution technique for large scale scheduling problems. Also the
heuristic approaches tested produced quality solutions in short computational
times and, most importantly, were scalable.

It appears that the ROADEF 2007 challenge problem includes the most rele-
vant features of the problems studied in the literature. The problem includes the
complexity of outsourcing which itself is an NP-hard problem, as well as skill
compatibility, unavailability, precedence and priority etc. However, the prob-
lems featured range from 5 to 800 jobs. To our knowledge, there is no current

Applying the Intelligent Decision Heuristic 73

literature that includes solving large scale (1000+ jobs) scheduling problems that
have precedence relationships, skill requirements and teaming. In this paper, we
have generated large scale technician and task scheduling problems (created
under the ROADEF 2007 challenge problem definition) and evaluated our intel-
ligent decision heuristic and greedy heuristic on the data.

This paper is structured as follows; Sect. 2 presents the mathematical for-
mulation of the ROADEF 2007 challenge problem. Section 3 describes the large
scale technician and task scheduling problem datasets that have been gener-
ated. Section 4 describes the two heuristics, an intelligent decision heuristic and
a greedy randomized heuristic, that have been used to test the large scale data
instances. Section 5 presents the experimental results and Sect. 6 discusses the
performance of the intelligent decision and greedy heuristic. Lastly, Sect. 7 iden-
tifies areas for further research.

2 ROADEF 2007 Challenge Mathematical Formulation

The aim of the ROADEF 2007 challenge problem is to construct a set of teams
to service a set of jobs over a scheduling horizon K = [1...k]. Each job i belonging
to set N has certain properties, a priority level p where p ∈ [1...4], an execution
time di, a domain skill requirement matrix si

δα (where δ is the domain and α is
the skill level), an outsourcing cost ci and a set of successor jobs σi. The set of
teams is denoted by M = [1...m], which are made up of technicians T = [1...t].
The objective function set in the challenge is shown in Eq. (1). The objective
function is a weighted sum of the latest ending times, ep, of each priority group
where wp = [28, 14, 4, 1] for p = [1, 2, 3, 4].

Minimize
4∑

p=1

wp ∗ ep (1)

The start times of jobs are denoted as bi. Equation (2) ensures that the latest
ending time for each priority group, p ∈ [1...3], must be greater than, or equal
to, the start time of every job plus the duration of the job.

ep ≥ bi + di ∀p ∈ 1, 2, 3, i ∈ Np (2)

In addition, Eq. (3) ensures the latest ending time overall e4, is greater than, or
equal to, the start time of every job plus the duration of every job belonging to
the entire set of jobs.

e4 ≥ bi + di ∀, i ∈ N (3)

Let xt,k,m = 1 if technician t belongs to team m on day k. Equation (4) guaran-
tees that if a technician is available to work i.e. belongs to the set Tk, then the
technician may only be a member of one team that day.

∑

m∈M

xt,k,m ≤ 1 ∀k ∈ K, t ∈ Tk (4)

74 A. Khalfay et al.

Conversely, Eq. (5) confirms if a technician may not work i.e. does not belong to
the set Tk, then the technician is not a member of any team on that day.

∑

m∈M

xt,k,m = 0 ∀k ∈ K, t /∈ Tk (5)

Let yi,k,m = 1 if job i is assigned to team m on day k. Equation (6) states that
every job belonging to the set of jobs N , must be either outsourced, zi = 1, or
scheduled during the scheduling horizon.

zi +
∑

k∈K

∑

m∈M

yi,k,m = 1 ∀i ∈ N (6)

Equation (7) ensures that if a team is assigned a job i.e. yi,k,m = 1, then the col-
lective skill levels of the team are greater than or equal to the skill requirements
needed to complete the job.

yi,k,m ∗ si
δα ≤

∑

t∈Tk

vt
δα ∗ xt,k,m ∀i ∈ N, k ∈ K,m ∈ M,α ∈ A, δ ∈ D (7)

Equation (8) deals with the precedence relationships between jobs, so that if job
i′ is a successor of job i, i.e. belongs to the set σi, i

′ may not begin until i has
been completed.

bi + di ≤ b′
i ∀i ∈ N, i′ ∈ σi (8)

Equations (9) and (10) deal with the working hours of the day. Equation (9)
ensures that if a job is scheduled to begin on day k, then the start time of the
job is greater than or equal to the beginning of that day. Equation (10) states that
if a job is scheduled to be completed on day k then the job must be completed
before the working day ends.

120(k − 1) ∗
∑

m∈M

yi,k,m ≤ bi ∀i ∈ N, k ∈ K (9)

120(k) ∗
∑

m∈M

yi,k,m ≥ bi + di ∀i ∈ N, k ∈ K (10)

Let ui,i′ = 1 if jobs i and i′ are assigned to the same team on the same day and
i′ begins after i is completed. Equation (11) ensures time continuity, if two jobs
happen sequentially then the end time of job i is less than or equal to the start
time of the job i′. Here, G is a large number to satisfy the constraint when jobs
do not happen sequentially.

bi + di −G(1− ui,i′) ≤ b′
i ∀i, i′ ∈ N, i �= i′ (11)

Equation (12) helps with the ordering of jobs. If two jobs happen sequentially
then they must both be allocated to the same team and one must be scheduled
before the other.

yi,k,m + yi′,k,m − ui,i′ − ui′,i ≤ 1 ∀i, i′ ∈ Ni �= i′, k ∈ K,m ∈ M (12)

Applying the Intelligent Decision Heuristic 75

In some problem instances of the ROADEF 2007 challenge problem there is an
outsourcing budget available, C. Jobs that are outsourced do not contribute
to the objective function, therefore utilization of this budget is important. Let
zi = 1 if job i is outsourced. Equation (13) ensures that the outsourcing budget
is not exceeded. ∑

zi ∗ ci ≤ C ∀i ∈ N (13)

The set of jobs that are outsourced must adhere to precedence constraints, so if
a job is outsourced then so are all successor tasks, Eq. (14).

|σi| ∗ zi ≤
∑

i∈σi

z′
i ∀i ∈ Nσ (14)

Equations (15)–(18) show that variables; xt,k,m, yi,k,m, ui,i′ and zi are binary.

xt,k,m = [0, 1] ∀k ∈ K,m ∈ M, t ∈ T (15)

yi,k,m = [0, 1] ∀k ∈ K,m ∈ M, i ∈ N (16)

ui,i′ = [0, 1] ∀i, i′ ∈ N, i �= i′ (17)

zi = [0, 1] ∀i ∈ N (18)

Lastly, Equations (19) and (20) show that the start and end times of jobs are
non-negative.

ep ≥ 0 ∀i ∈ Np (19)

bi ≥ 0 ∀i ∈ N (20)

3 Large Scale Technician and Task Scheduling Problem
Instances

Table 1 shows the large scale technician and task scheduling problems that have
been designed for this research. To our knowledge, there is only one piece of
research that generated technician and task scheduling problem datasets inde-
pendently, this was [12]. Two other works we are aware of extended existing
vehicle routing datasets, [11] and [13], by concatenating skill requirements from
other scheduling problems or generating them randomly.

The datasets created in this research are novel, they involve solving a multi-
period scheduling problem, with an outsourcing budget, respecting unavailability
of resources and teaming. Column one shows the name of each dataset created,
column two (Jobs) shows the number of jobs to be scheduled, column three
(Techs) displays the number of available technicians and column four (Budget)
displays the outsourcing budget available. Lastly, columns five and six (Domains
and Levels) show the number of domains and levels.

There are twelve data instances that range from 1000 to 2500 jobs. These
new datasets can be split into four groups; L1–L3, L4–L6, L7–L9 and L10–L12.
Each group of data contains the same set of jobs to be scheduled, but contains
a varying number of available technicians.

76 A. Khalfay et al.

Table 1. Large scale technician and task scheduling problem instances

Dataset Jobs Techs Budget Domains Levels

L1 1000 25 500 3 3

L2 1000 50 500 3 3

L3 1000 100 500 3 3

L4 1500 25 1000 4 4

L5 1500 50 1000 4 4

L6 1500 100 1000 4 4

L7 2000 25 1500 3 3

L8 2000 50 1500 3 3

L9 2000 100 1500 3 3

L10 2500 25 2000 4 4

L11 2500 50 2000 4 4

L12 2500 100 2000 4 4

3.1 Generating Large Scale Instances

Each data instance was made up of three files, an instance file, a technician
file, and a job file. Firstly, the instance file was generated which contains the
number of jobs, technicians, domains, levels and outsourcing budget. Next the
set of technicians can be created. Each technician is randomly given a level of
expertise in each of the domains and assigned days off within the scheduling
horizon. Lastly, the job file is created. Each job is randomly assigned a duration,
an outsourcing cost and a priority level. However, the jobs also have two other
important attributes, domain skill requirements and precedence and successor
relationships.

Generating Job Durations. In the ROADEF 2007 challenge problem the
length of a working day is limited to 120 time units. In the original problem
instances, the job durations ranged from 15 time units to 120 time units, in 15
time unit intervals. Therefore, the job durations in the new datasets have been
randomly assigned to be of a length that is a multiple of 15 time units and not
greater than 120 time units.

Generating Skill Domain Requirements. The total number of technicians
skilled in each domain skill level is recorded. When it comes to generating the skill
domain requirements of a job, for the first level in each domain a random number
is selected from 0 to the maximum number of technicians who possess this area of
expertise. For each subsequent level of expertise in a domain a random number is
selected between 0 and the previous required level of expertise. This is to ensure
that skill levels are hierarchical i.e. if four technicians are required to be skilled

Applying the Intelligent Decision Heuristic 77

in domain 2 to level 3, then the next level, i.e. domain 2 level 4 must require
four or fewer technicians.

Generating Precedence and Successor Relationships. Generating prece-
dence and successor relationships between jobs was a complex task. In the
ROADEF 2007 challenge problem, there were multi layered precedence and suc-
cessor relationships that contained many layers and many jobs. In order to gen-
erate these types of constraints an algorithm had to be designed.

This algorithm randomly selected a set of jobs, and ordered them in terms
of their priority levels in descending order of importance. This is to ensure that
jobs of priority group p are dependent on jobs that are priority p or higher, as
this is the way the objective function is calculated, a weighted sum of priority
end times.

The algorithm then iterates through the list of priority ordered jobs selecting
a random number of jobs for each layer of the relationship tree. Next, each job
is assigned to its layer. The algorithm then iterates through each job in the tree
ensuring each job has at least one connection to another layer; either upwards
(successor) or downwards (precedence).

As this algorithm has a random nature the following relationship trees, as
shown in Fig. 1, have been created using the same set of jobs. In Fig. 1a the
relationship tree has four layers. On the first layer are jobs 1 and 2, on the
second, job 3 (which is a successor of jobs 1 and 2), the third layer contains jobs
4 and 5 (which are successors of job 3), and lastly, on the fourth layer, jobs 6
and 7 (both dependent on job 4, and one dependent on job 5).

Fig. 1. Example of the dynamic precedence and successor relationship trees

78 A. Khalfay et al.

In Fig. 1b, the relationship tree has 5 layers, with one initial job node and
one end job node. This figure depicts that jobs can be a member of the rela-
tionship tree without having to have both a successor and predecessor (jobs 3
and 6), reiterating the complexity of job relationships within the ROADEF 2007
challenge problem framework.

4 Heuristic Approaches

4.1 Intelligent Decision Heuristic

The intelligent decision heuristic considers multiple scenarios before making a
job allocation decision [10]. Given a set of jobs, the heuristic checks to see if a
dummy team could be made for each job. Each dummy team is then checked to
see which further job allocations could be made. Each scenario is then scored
for skill utilization of the team and the utilisation of available time. The highest
scoring scenario is selected and the job allocations are made.

4.2 Greedy Heuristic

In order to benchmark the intelligent decision heuristic we will also implement
a greedy heuristic on the large scale technician and task scheduling problem
instances. The greedy heuristic does not include the intelligent step that checks
the implications of an allocation decision. The greedy heuristic selects a single
job randomly, creates a team and then makes further allocation decisions based
on the skill waste of the team.

5 Experimental Results

Under the competition rules of the ROADEF 2007 challenge, each run of the
heuristic is allowed a 20min computational time limit and so in this work, we
have used a 20min run time. The heuristics were programmed in Java and tested
on an HP Z210 Workstation, with an i7-2600 CPU with 3.4 GHZ with 12GB of
RAM. Table 2 presents the best result obtained over five runs for each heuristic.
In column two the results of the intelligent decision heuristic are displayed, in
column three the best result obtained for the greedy heuristic is shown and in
column four (% Gap) the percentage gap between the results of the intelligent
decision and greedy heuristic are displayed.

6 Discussion

The previous section shows the results obtained for each heuristic approach on
the large scale technician and task scheduling problem instances. It is shown
that overall the ID heuristic outperforms the greedy heuristic in all problem
instances.

Applying the Intelligent Decision Heuristic 79

Table 2. Experimental results for the large scale problem instances

Dataset ID Greedy % Gap

L1 192810 203850 5.7

L2 97725 103440 5.8

L3 48330 50700 4.9

L4 296940 315210 6.2

L5 147480 156960 6.4

L6 76110 80880 6.3

L7 420660 445335 5.8

L8 198900 207405 4.3

L9 97080 102870 6

L10 574465 607890 5.8

L11 280260 290745 3.7

L12 140970 144840 2.7

Average 214311 225844 5.3

Also as the number of technicians available increases, the gap in solution
quality generally decreases. This can be expected, because as the number of
available technicians on each day increases, there are fewer shortages of skills,
and therefore less consideration can be made for team configurations.

Overall the intelligent decision heuristic finds a solution that is on average
5% better than the quality of solution found by the greedy heuristic. A saving
of 5% in personnel costs has the potential to save significant amounts of money
in large businesses.

This paper has demonstrated that although the ID heuristic is far more com-
putationally expensive than the greedy heuristic, it can produce better quality
results in the same computational time limit. The research has shown that the
ID heuristic is both a robust and scalable approach to solving technician and
task scheduling problems within strict computational time limits.

7 Conclusion

This paper has shown the benefits of finding efficient ways to solve large scale
technician and task scheduling problems in time constrained conditions. In these
large scale problems, finding a better quality solution of even 1% can result in
large financial savings.

Our contributions to the field are; (i) a methodology for creating techni-
cian and task scheduling problem instances, (ii) twelve new large scale techni-
cian and task scheduling problems available at https://akhalfay.wordpress.com/
large-scale-ttsps/, and (iii) a comparative analysis of the greedy heuristic and the
intelligent decision heuristic. It is hoped that other researchers will also evaluate
their algorithms on these datasets.

80 A. Khalfay et al.

Future work will explore related large scale technician and task scheduling
problems, that contain the complexity of routing or time windows in which a
customer must be visited.

Acknowledgements. This research is sponsored by ServicePower Technologies PLC,
a worldwide leader in providing innovative mobile workforce management solutions, in
cooperation with Manchester Metropolitan University and KTP.

References

1. Burke, E., De Causmaecker, P., Berghe, G.V.: A hybrid tabu search algorithm for
the nurse rostering problem. In: Asia-Pacific Conference on Simulated Evolution
and Learning, pp. 187–194. Springer (1998)

2. Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: Scheduling technicians and tasks
in a telecommunications company. J. Sched. 13(4), 393–409 (2010)

3. Crispin, A., Syrichas, A.: Quantum annealing algorithm for vehicle scheduling.
In: 2013 IEEE International Conference on Systems, Man, and Cybernetics,
pp. 3523–3528. IEEE (2013)

4. Dutot, P.F., Laugier, A., Bustos, A.M.: Technicians and Interventions Scheduling
for Telecommunications. France Telecom R&D, Lannion (2006)

5. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27
(2004)

6. Estellon, B., Gardi, F., Nouioua, K.: High-performance local search for task
scheduling with human resource allocation. In: Engineering Stochastic Local Search
Algorithms, Designing, Implementing and Analyzing Effective Heuristics, pp. 1–15.
Springer (2009)

7. Hashimoto, H., Boussier, S., Vasquez, M., Wilbaut, C.: A grasp-based approach
for technicians and interventions scheduling for telecommunications. Ann. Oper.
Res. 183(1), 143–161 (2011)

8. Haugen, D.L., Hill, A.V.: Scheduling to improve field service quality*. Decis. Sci.
30(3), 783–804 (1999)

9. Hurkens, C.A.: Incorporating the strength of MIP modeling in schedule construc-
tion. RAIRO-Oper. Res. 43(04), 409–420 (2009)

10. Khalfay, A., Crispin, A., Crockett, K.: Solving technician and task scheduling prob-
lems with an intelligent decision heuristic. In: Intelligent Decision Technologies
2016, pp. 63–75. Springer (2016)

11. Kovacs, A.A., Parragh, S.N., Doerner, K.F., Hartl, R.F.: Adaptive large neigh-
borhood search for service technician routing and scheduling problems. J. Sched.
15(5), 579–600 (2012)

12. Krishnamoorthy, M., Ernst, A.T., Baatar, D.: Algorithms for large scale shift
minimisation personnel task scheduling problems. Eur. J. Oper. Research 219(1),
34–48 (2012)

13. Pillac, V., Guéret, C., Medaglia, A.: On the dynamic technician routing and
scheduling problem. In: Proceedings of the 5th International Workshop on Freight
Transportation and Logistics (ODYSSEUS) (2012)

14. Pillac, V., Gueret, C., Medaglia, A.L.: A parallel matheuristic for the technician
routing and scheduling problem. Optim. Lett. 7(7), 1525–1535 (2013)

Applying the Intelligent Decision Heuristic 81

15. Society, F.O.R.: What is the roadef 2007 challenge (2016). http://challenge.roadef.
org/2007/en/

16. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

17. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem.
Discrete Optim. 8(2), 376–384 (2011)

Appendix E

Operational Research manuscript No.
(will be inserted by the editor)

Solving the service technician routing and scheduling
problem with time windows

Author 1 · Author 2 · Author 3

Received: April 2017 / Accepted: date

Abstract In this paper, we present the first comparative performance analysis on the
service technician routing and scheduling problem with time windows. Time win-
dow constraints occur in many sectors such as telecommunications, maintenance, call
centres, warehouses and healthcare, and is a way of service providers differentiating
themselves from each other in a bid to maintain customer satisfaction and ultimately
retain market share. We present the first sequential heuristic, the greedy randomized
heuristic, to be tested on the service technician routing and scheduling problem with
time windows datasets, coupled with a simulated annealing with restart metaheuris-
tic. Our sequential heuristic is tested on 72 known service technician routing and
scheduling problem with time windows instances, and compared against a parallel
adaptive large neighbourhood search heuristic, presenting new best known results in
18% of the datasets.

Keywords technician routing and scheduling problem · time windows · sequential
heuirstic · greedy randomized heuristic · simulated annealing with restart

1 Introduction

The service technician routing and scheduling problem with time windows (STR-
SPTW) is an NP-hard combinatorial optimisation problem, meaning that as the prob-
lem size increases, exact methods become prohibitive, and, therefore, approximate
techniques must be used in order to find feasible and good quality solutions within
reasonable computational times (Blum and Roli, 2003). This research is based on a
combinatorial optimisation problem applicable to many industries such as the mainte-
nance sector (Fırat and Hurkens (2012) and Pillac et al. (2013)), call centres (Van den
Bergh et al. (2013)) and home healthcare (Hiermann et al. (2015) and Paraskevopou-
los et al. (2016)).

Address(es) of author(s) should be given

2 Author 1 et al.

The cost of a workforce is usually the most significant cost a business or organi-
sation incurs. In the context of STRSPTW, it is not solely the cost of the employees,
but also the maintenance and repair of the fleet of vehicles that must be considered.
Efficient scheduling and routing of employees and vehicles can reduce the cost of a
workforce and ensure a balanced workload, and has the potential to reduce the envi-
ronmental impacts caused by the vehicles used.

The occurrence of time windows is becoming increasingly popular with service
maintenance providers, and directly affects the scheduling and routing of employees.
From a customer’s perspective, knowing that a technician/skilled worker will be ar-
riving between time ai and bi can improve his/her customer experience. It may allow
the customer waiting for a service to take less time off work, and even choose his/her
preferred time slot, providing not only convenience but satisfaction.

In this paper, we propose the first sequential heuristic to solve the STRSPTW data
instances that were first proposed by Kovacs et al. (2012). These problem instances
were adapted from the vehicle routing instances proposed by Solomon (1987), by
combining the datasets with skill domain information taken from the ROADEF 2007
challenge (Society, 2016). The research presented in this paper studies a range of
STRSPTW datasets, each with 100 customers, a varying crew size, and different pro-
portions of jobs with time windows. The STRSPTW datasets have only been solved
by Kovacs et al. (2012) who used a parallel adaptive large neighbourhood search
(pALNS) algorithm. We propose a sequential greedy randomized heuristic on these
problem instances to test performance and provide a comparative analysis.

This problem requires tours to be designed for teams, such that all jobs are served
or outsourced. The objective of the problem is to minimize the sum of the routing and
outsourcing costs. Each team is made up of one or more technicians, who each have
intrinsic skills and levels of competency within each skill area. Each team leaves a
central depot at the beginning of the working day, travels to service customers, and
returns to the depot before the end of the working day. Each job requires a set of
skills that must be satisfied by the team who serves the job. Each job also has a time
window [ai,bi], and the beginning of service Bi must lie within the time window such
that ai ≤ Bi ≤ bi. This problem is a single period problem as the solution consists of
a single working day. Lastly, there is also the option to outsource some jobs (if they
are unable to be allocated), which incurs a penalty cost.

Our approach, a greedy randomized heuristic, proposed in this paper has some
similarities with the well known greedy randomized adaptive search procedure (GRASP)
metaheuristic. The greedy randomized heuristic, like GRASP, uses multiple scoring
criteria to decide which job should be allocated next, and includes a degree of ran-
domness in order to avoid deterministic results. In contrast, our heuristic does not
generate multiple initial solutions. Instead, the greedy randomized heuristic gener-
ates a single initial solution and the rest of the computational time is spent trying to
iteratively improve it. During the improvement phase, the chance of selecting a local
operator is uniform. We have used a greedy randomized heuristic as opposed to a
GRASP heuristic due to the short run times that were used in the initial experiments
by Kovacs et al. (2012) as we believe multi start heuristic procedures are suited better
to longer run times.

Solving the service technician routing and scheduling problem with time windows 3

The rest of the paper is organised as follows: section 2 provides a literature re-
view of the research already undertaken in this area of personnel scheduling, sec-
tion 3 presents the mathematical formulation of the STRSPTW, section 4 describes
our heuristic approach, section 5 shows the results of the computational experiments
performed, section 6 discusses the results obtained and section 7 concludes on the
research undertaken.

2 Literature

Research in the area of personnel scheduling has included many problem defini-
tions; the technician routing and scheduling problem (TRSP), the technician and task
scheduling problem (TTSP), the service technician routing and scheduling problem
(STRSP), the field technician scheduling problem (FTSP) and the STRSPTW. Each
problem has included a diverse range of constraints such as routing, teaming, pri-
ority levels, precedence, time windows, multi-period (multiple days), tools and spare
parts, and experienced based service times. However, the main characteristic featured
in all of these problems is skill complexity. All of these problems require jobs to be
completed by a technician/team who collectively posses the necessary expertise to
perform the required job.

Many approaches have been applied to solve these types of personnel schedul-
ing problems including both exact and approximate techniques. Approximate tech-
niques such as adaptive large neighbourhood search (Cordeau et al., 2010; Kovacs
et al., 2012), local search (Estellon et al., 2009), greedy randomized adaptive search
(Hashimoto et al., 2011) and intelligent decision heuristics (Author1 et al., 2016)
have been applied to these types of problem. Exact techniques such as mixed integer
programming (Hurkens, 2009; Fırat and Hurkens, 2012; Mathlouthi et al., 2016) and
branch and price (Zamorano and Stolletz, 2016) have also been used.

An FTSP was studied by Xu and Chiu (2001), which included the complexity
of routing, overtime, multiple depots and skill requirements. However, skill require-
ments were not treated as hard constraints in this problem, and unlike most schedul-
ing problems, the objective was not to serve all jobs in the least costly manner, but
to serve as many jobs as possible. This research used data instances with up to 1000
jobs.

A TTSP was the basis of the ROADEF 2007 challenge. The ROADEF challenge
is a bi-annual competition proposed by the French Operational Research Society,
that invites researchers to compete to find efficient ways of solving combinatorial op-
timisation problems. In 2007, the problem was a TTSP, and used real world datasets
provided by France Telecom, containing data instances ranging from 5 to 800 jobs
and 5 to 150 technicians. The aim of the problem is to allocate a set of jobs over a
scheduling horizon to a set of teams. Teams are made up of technicians, each with
intrinsic skill domain levels and days within the scheduling horizon when they are
not available. Each job has a priority level indicating how important it is to serve
the job as early as possible. In some problem instances there is an available out-
sourcing budget that can be utilized. Jobs can also have relationships with other jobs,
which can be precedence or successor relationships, where a job may not begin until

4 Author 1 et al.

another has been completed. Jobs have skill requirements which must be satisfied
by the team which serves the job. Many approaches such as mixed integer program-
ming (Hurkens, 2009; Fırat and Hurkens, 2012), adaptive large neighbourhood search
(Cordeau et al., 2010), local search (Estellon et al., 2009), greedy randomized adap-
tive search (Hashimoto et al., 2011) and intelligent decision heuristics (Author1 et al.,
2016) have been applied to this problem.

A study by Pillac et al. (2012) concentrated on the dynamic technician routing
and scheduling problem (DTRSP), in which new job requests appear, an aspect of a
real world situation faced by industry. In addition a static TRSP was studied by Pillac
et al. (2013), who extended instances from vehicle routing problems proposed by
Solomon (1987) by combining them with randomly generated skill requirements and
tools and spare parts information. This TRSP used a crew of up to 25 technicians and
scheduled up to 100 jobs and required the scheduling of crew over a single day. This
research included the complexity of tools and spare parts constraints, an important
aspect in the service maintenance sector.

An exact approach was studied by Tricoire et al. (2013) who compared the per-
formance of exact and hybrid solution approaches, concluding the trade off between
computational time and solution quality. In addition, Chen et al. (2016) studied a
version of the TRSP where the technicians became more experienced throughout the
scheduling horizon resulting in a reduction of service times, an aspect of the real
world scenario previously unstudied.

Other exact approaches in the literature include papers by Mathlouthi et al. (2016)
and Zamorano and Stolletz (2016) who used mixed integer programming (MIP) and
branch and price solution approaches respectively. Mathlouthi et al. (2016) used ar-
tificial datasets that contained up to 25 jobs and used CPLEX to solve the mixed
integer programming model. The problem included the complexities such as skill
requirements, priority levels, time windows, breaks and overtime. This paper also il-
lustrated how the computational time needed to solve the problems rapidly increases
with problem size and complexity. Zamorano and Stolletz (2016) used both artificial
and real world datasets containing up to 29 jobs, again emphasizing the difficulties
faced with the scalability of MIP solution approaches.

Lastly, Author1 et al. (2017a) proposed some large scale technician and task
scheduling problems, created under the framework of the ROADEF 2007 challenge,
that required the use of heuristic approaches. The instances included up to 2500 jobs
to schedule over a multi day scheduling horizon. This research compared the perfor-
mance of an intelligent decision heuristic (Author1 et al., 2016) and a greedy heuris-
tic.

Reviews in the field of personnel scheduling problems have been undertaken by
Ernst et al. (2004), Castillo-Salazar et al. (2012) and Author1 et al. (2017b) which
outline the many complexities and constraints that are included in the problems such
as routing, teaming, skill requirements, priority levels, precedence and successor rela-
tionships, unavailability of resources, scheduling over multiple days, tools and spare
parts and time windows.

Throughout the literature it is clear that research is needed into approximate ap-
proaches in order to tackle medium and large scale problems as exact methods are
prohibitive. Furthermore, as the number of machines grow, so do the number of tech-

Solving the service technician routing and scheduling problem with time windows 5

nicians needed to perform skilled jobs, and so does the need for scalable and robust
heuristic solution approaches. Our research focuses on designing and implement-
ing approximate approaches that can deal with relevant real world constraints such
as time windows. As evidenced, time windows are an important consideration for
service providers who seek to maintain customer satisfaction and maintain repeat
business through providing a reliable and customer focused service.

3 Problem formulation

In this work, we solve a set of STRSPTW datasets. We present the Mixed Integer
Programming (MIP) formulation, as introduced by Kovacs et al. (2012) but do not
solve it using MIP as the problems are too large and complex to solve within reason-
able computational time. The problem can be defined mathematically as a complete
directed graph G = {V,A}, where V is the set of all vertices i.e the set of jobs, and A
a set of arcs between the vertices. The set of jobs that is allocated can be defined as
V ′, and jobs that belong to V but not V ′ is the set of jobs that is outsourced.

There is a set of technicians T = {1, . . . , t} and a set of teams τ ⊂T , made up of
technicians. We denote the starting depot as 0 and the ending depot as N. Each tech-
nician has intrinsic skills s ∈ S and varying levels l ∈ L within each area of expertise.
The fleet of technicians is heterogeneous, each being unique with different skills and
levels within each skill area. The technician’s skills can be represented by an L× S
matrix where [pt

l,s] denotes the level of expertise the technician has in skill area s to
level l. Skill levels are hierarchical so if pt

l,s = 1 then pt
l′,s = 1 for l′ < l.

Each job belonging to the set V has a service time denoted by di, a skill require-
ment matrix, of size L× S, denoted as ql,s and a time window in which service of
the job must begin [ai,bi]. The aim of the problem is to construct the least costly
schedule, by minimizing the total sum of the outsourcing and routing costs. We use
the following variables;

Bτ
i = the beginning time of service of job i or the depot by team τ

Eτ
i = the end time of service of job i or the depot by team τ

xτ
i, j that equals one only if team τ travels from job i to job j

zi equals one only if job i has been outsourced
yτ

i equals one if job i is assigned to team τ
vτ

t equals one if technician t is assigned to team τ

The problem can now be represented as;

min ∑
t∈τ

∑
i, j∈A

ci, j · xτ
i, j + ∑

i∈V ′
oi · zi (1)

Equation (1) shows the objective function of the problem, which is to minimise the
total sum of the routing costs (ci, j is the distance between customers i and j) and the
outsourcing costs (where oi is the cost of outsourcing job i). Subject to;

∑
τ∈T

vτ
t ≤ 1 ∀t ∈ T (2)

Equation (2) ensures that each technician may belong to one team only.

6 Author 1 et al.

∑
τ∈T

yτ
i + zi = 1 ∀i ∈V (3)

Equation (3) guarantees that each job is either outsourced or it is allocated to a single
team.

∑
j∈V ′∪{N}

xτ
0, j = 1 ∀τ ∈T (4)

∑
i∈V ′∪{N}

xτ
i,N = 1 ∀τ ∈T (5)

Equations (4 and 5) ensure each team departs from the central depot at the beginning
of the working day and returns to the depot at the end of the working day.

∑
j∈V ′∪{0}

xτ
j,i = yτ

i ∀i ∈V ′,τ ∈T (6)

∑
j∈V ′∪{0}

xτ
j,i− ∑

j∈V ′
xτ

i, j = 0 ∀i ∈V ′,τ ∈T (7)

Equations (6 and 7) confirm that if a team is assigned to a job i, then the team must
travel to the job from another location, and leave the job to travel to another location.

Bτ
j ≥ (Eτ

i + ci, j)∗ xτ
i, j, ∀i ∈V ′,τ ∈T (8)

Equation (8) states that if two jobs i and j happen sequentially, then the start time of
j must be equal to or greater than the end time of i plus that travel time between i and
j, to ensure continuity.

Bτ
0 = 0 ∀τ ∈T (9)

Equation (9) sets the beginning time of each team’s route.

yτ
i ·qi

l,s ≤ ∑
t∈Tk

pt
l,s · vτ

t ∀i ∈V ′, l ∈ L, s ∈ S (10)

Equation (10) ensures that if a job is allocated to a team, then the technicians who
make up the team collectively have the skills necessary to service the job.

Eτ
i = (Bτ

i +di) · yτ
i ∀i ∈V ′,τ ∈T (11)

Equation (11) states that the end service time of a job must be equal to the beginning
service time plus the service time of the job.

ai ≤ Bτ
i ≤ bi ∀i ∈V ′∪{N},τ ∈T (12)

Equation (12) guarantees that the beginning of service of a job i is within the time
window.

∑
t∈T

vτ
t = 1 ∀τ ∈T (13)

Solving the service technician routing and scheduling problem with time windows 7

Lastly, in this work we are tackling the instances that contain no team building, i.e
each team contains, at most, one technician. This can be modelled as equation (13).
We use the following variables;

xτ
i, j, ∈ {0,1} ∀(i, j) ∈ A,τ ∈T (14)

zi ∈ {0,1} ∀i ∈V ′ (15)

yτ
i ∈ {0,1} ∀i ∈V ′,τ ∈T (16)

vτ
t ∈ {0,1} ∀t ∈ T,τ ∈T (17)

Bτ
i ≥ 0 ∀i ∈V ′ (18)

Eτ
i ≥ 0 ∀i ∈V ′ (19)

4 Heuristic approach

Our solution approach comprises of two parts, generating an initial feasible solution,
and secondly, iteratively trying to improve the current solution through the use of
local operators and evaluating using a simulated annealing with restart metaheuristic.

4.1 Greedy randomized construction heuristic

The greedy randomized heuristic behaves in a flexible manner by changing the sort-
ing criteria that decide which job is next to be allocated. There are five insertion
methods; earliest late window, minimum window size, complex jobs, depot distance
and random. Each of these methods is described in the following subsections. The
pseudo code for the greedy randomized construction heuristic is displayed in Figure
1.

– Earliest late window This insertion method orders the set of unallocated jobs
into a list. Each job has a time window [ai,bi], and the sorting method orders
the jobs into an increasing order of bi, i.e the end of the time window, the latest
time the job can be started. This method tries to ensure that all jobs are allocated
before their time window has passed, as they will then be outsourced in order to
stay within the feasible solution space, which incurs a cost.

earlylatei = bi (20)

8 Author 1 et al.

– Minimum window size The minimum window size method orders the set of
unallocated jobs into a list, sorting them by the size of their time window. This
method aims to ensure that jobs that have a small opportunity to be started, i.e the
difference between bi and ai is small, have a higher chance of being allocated in
favour of jobs with a larger difference between bi and ai.

minwindowi = bi−ai (21)

– Complex jobs The set of unallocated jobs is ordered by the complexity of the
jobs that are currently unallocated. The difficulty of a job is calculated as the sum
of the total skill requirements across each domain and skill level, as in Cordeau
et al. (2010). This method aims to allocate jobs which require lots of skill earlier,
and jobs that are less difficult to schedule are scheduled later.

complexi = ∑
l∈L

∑
s∈S

qi
l,s (22)

– Depot distance The depot distance method orders the set of jobs in ascending
order of distance away from the depot. The distance between a job i located at
xi,yi, and the depot located at x0,y0 is calculated using the Euclidean distance as
shown in Equation (23).

depotdistancei =
√

(x0− xi)2 +(y0− yi)2 (23)

– Random The random sorting method orders the unallocated jobs by shuffling the
array that contains the jobs. In this work, we have set the level of randomness,
r, to 0.08. The tuning experiments for the level of randomness is explained in
Section 5.1.

4.1.1 Greedy randomized heuristic pseudo code

Figure 1 shows the greedy randomized construction heuristic. This algorithm takes
the following variables, a set of jobs V , a set of teams τ , a schedule S, an outsourcing
list O, the following sorting methods ELW : earliest late window, MWS: minimum
window size, CJ: complex jobs, DD: depot distance, and R: Randomly, i the job
selected for allocation, and τi the team selected to be allocated job i.

First, an empty schedule S is initialised. While jobs can be allocated to the sched-
ule S, a random number r is generated on the interval {0,1}. Dependent on the value
of r, a sorting method is chosen; ELW earliest late window, MWS minimum window
size, CJ complex jobs, DD depot distance or R randomly. On line 5, the set of remain-
ing unallocated jobs V is sorted by the chosen sorting method, then a job i is selected
belonging to V . Job i is then assigned to a team (if one is available in terms of time
windows and skill requirements) and removed from the set of unallocated jobs. The
while loop is iterated through until no more job allocations can be made to the teams.
On line 11, any remaining unallocated jobs are added to the outsource list O. Lastly,
on line 12, the initial solution S is output.

The cost of outsourcing a job is shown in equation (24). Note, it is always less
costly to schedule a job, if there are technicians available rather than to outsource it.

Solving the service technician routing and scheduling problem with time windows 9

Variables: V : set of jobs, τ: the set of teams , S: the schedule, O: outsource list, ELW : earliest late window,
MWS: minimum window size, CJ: complex jobs, DD: depot distance, R: Randomly, i:job selected for
allocation, τi: team selected to serve job i

1: initialise S
2: while jobs can be allcoated do
3: r← random(0,1)
4: technique←Choosesortingmethod(r,ELW,MWS,CJ,DD,R)
5: V ← method(V)
6: i← select job(V)
7: τi← selectteam(i,S)
8: assign(S,τi, i)
9: remove(V, i)

10: end while
11: O← addOutsourced(V)
12: return S

Fig. 1: Greedy randomized construction heuristic

The cost of outsourcing is equal to 200 plus the sum of the domain skill requirements
of the job.

oi = 200+∑
l∈L

∑
s∈S

qi
l,s (24)

4.2 Local operators

In this work we have used a variety of local operators. A local operator is used to
perturb the current solution generating a neighbouring solution that can be evaluated
using a metaheuristic. Some of the local operators used were featured in our previous
work, Khalfay et al. (2016), and some from other work by Cordeau et al. (2010)
and Kovacs et al. (2012) which were based on the local operators proposed in Shaw
(1998) for the VRP. In this work, we only search through feasible solution space. This
means that when an operator is applied, skill compatibility, time window constraints
and route length are checked to make sure we remain within feasible solution space.

– Swap two jobs This operator randomly selects two jobs j1 and j2 belonging to
different teams τ1 and τ2 respectively and tries to swap them over such that job
j2 is now allocated to team τ1 and job j1 is now allocated to team τ2.

– Swap order This operator randomly selects two jobs j1 and j2 belonging to the
same team τ , with positions p1 and p2 respectively. The operator then reassigns
the jobs such that j2 is now positioned at p1 and j1 is positioned at p2 in team
τ’s route.

– Move a job This operator randomly selects a job j1 belonging to team τ1 and
removes it from its current position. The heuristic is then used to reallocate this
job back into the schedule. If the job cannot be reallocated it is added into the
outsource list.

10 Author 1 et al.

– Remove a team This operator randomly selects a team τ and removes all of the
jobs that are currently assigned to the team, placing the jobs in the outsourced list.
The heuristic is then used to try to allocate the jobs in the outsourced list back to
the schedule, since it is always less costly to allocate a job than to outsource it.

– Remove N jobs This operator selects a number N which defines how many jobs
are to be removed from the schedule. The heuristic then randomly selects a job
and removes from the schedule until N jobs have been removed. The removed
jobs are added to the outsourced list. The heuristic is then used to try to allocate
the jobs in the outsourced list back to the schedule.

– Remove N teams This operator randomly selects N teams belonging to the
schedule and removes all of the jobs that were assigned to the teams, adding
each job to the outsourced list. The heuristic is then used to try to allocate the
jobs in the outsourced list back to the schedule.

– Remove related jobs This operator randomly selects a number N, which rep-
resents how many jobs that will be removed. Next, a single job is selected at
random, job i, and removed. The remaining jobs are then ranked in terms of how
similar they are to the removed job in terms of skill requirements as in Cordeau
et al. (2010). The highest scoring job is selected and removed until N jobs have
been removed, and added to the outsourced list. The heuristic is then used to try
to allocate the jobs in the outsourced list back to the schedule.

reli,i′ = ∑
l∈L

∑
s∈S
|qi

l,s−qi′
l,s| (25)

– Remove close jobs This operator randomly selects a number N, which defines
how many jobs will be removed. Next, a single job is selected at random, job i,
and removed. The remaining jobs are then ranked in terms of how similar they
are to the removed job in terms of geographical location. The highest scoring job
is selected and removed until N jobs have been removed, and added to the out-
sourced list. The heuristic is then used to try to allocate the jobs in the outsourced
list back to the schedule.

closei,i′ =
√

(xi− xi′)2 +(yi− yi′)2 (26)

– Remove chains This operator iterates through each team belonging to the sched-
ule. If the size of the team’s route is greater than two, then a portion of the route
is removed and each job is added into the outsourced list. The heuristic is then
used to try and allocate the jobs from the outsourced list back into the schedule.

4.3 Simulated annealing with restart

In this work we have implemented a simulated annealing metaheuristic with a restart
mechanism. Simulated annealing was chosen due to its success in other types of com-
binatorial optimisation problems i.e. Kundu et al. (2008) and Cordeau et al. (2010).
The implementation of this metaheuristic is shown in Figure 2.

The variables associated are: S the initial solution generated by the greedy ran-
domized construction heuristic, S′ the neighbouring solution generated by applying a

Solving the service technician routing and scheduling problem with time windows 11

local operator to S, SBest the best solution found, O the set of local operators which
perturb the solution S, T the initial temperature, δT the decrement rate, StepSize the
maximum number of steps before restarting from the best solution, and lastly, count
which counts the number of iterations.

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O: the set of local
operators, T : initial temperature, δT : the cooling rate, StepSize: maximum steps before beginning from
best solution, count: counter for iterations,

1: SBest ← S
2: count← 0
3: while termination criteria not met do
4: randomly choose o ∈ O
5: S′← o(S)
6: if S′ ≤ S then
7: S← S′

8: if S≤ SBest then
9: SBest ← S

10: count← 0
11: end if
12: else
13: r← random(0,1)
14: p← exp(S′−S)/T
15: if p≥ r then
16: S← S′

17: end if
18: end if
19: T ← T ·δT
20: count← count +1
21: if count = StepSize then
22: S← SBest
23: count← 0
24: end if
25: end while
26: return SBest

Fig. 2: Simulated annealing with restart metaheuristic

The initial solution S, generated by the greedy randomized heuristic, is saved as
the best solution SBest on line 1, and count is set to 0. Whilst the termination criterion
is not met, i.e. there is computational time remaining, a local operator is selected
on line 4. This local operator o is applied to the solution S on line 5 generating a
neighbouring solution S′. On line 6 this solution S′ is evaluated. If it has a lower
objective function than S, then it replaces S. Next, on line 8 the solution S is evaluated
against the best solution SBest and if better, the best solution is updated and the count
is set to zero. However, if solution S′ is not better than the current solution S then it is
evaluated using the simulated annealing criterion and compared to a random number
r generated on the interval (0,1). If the probability p of accepting this solution is
greater than r then solution S is updated. After every iteration, the simulated annealing
temperature is reduced and the count is incremented by one. Once the count has

12 Author 1 et al.

reached its maximum value, StepSize, solution S is set to SBest on line 22, and the
count is set back to 0. Once the termination criterion has been met, the best solution
SBest is output on line 26.

5 Computational experiments

A series of computational experiments have been performed to ensure the least costly
solution is produced using the greedy randomized heuristic. We are comparing the
performance of the greedy randomized heuristic against the best known, average and
maximum scores achieved by Kovacs et al. (2012) who used a pALNS.

5.1 Tuning the greedy randomized heuristic

The first set of experiments has been used to tune the level of randomness within the
greedy randomized heuristic. In order to minimise the number of tuning experiments
to be performed, it was decided that the chance of selecting a sorting method, other
than the random sorting method, will each have an equal probability. Our experiments
range from using an equal level of random sorting in comparison to the other sorting
methods (0.2), to using no randomness (0) to find the optimal value of randomness.
We present a percentage gap comparison compared against the results presented in
Kovacs et al. (2012). We compare the percentage gap based on many criteria; average
gap (across all of the datasets used), average gap from the 01 instances (where 100%
of the jobs have time windows), average gap on the 03 instances (where 50 % of
the jobs have time windows), the NoTeam instances (no outsourcing needed), the
ReducedNoTeam instances (where outsourcing is needed) and lastly, a comparison
across the different numbers of domains and skills, 5×4, 6×6 and 7×4.

Table 1: Tuning datasets for the greedy randomized heuristic

Datasets

C101 5×4 NoTeam
C103 5×4 NoTeam
C201 5×4 ReducedNoTeam
C203 5×4 ReducedNoTeam
R101 6×6 NoTeam
R103 6×6 NoTeam
R201 6×6 ReducedNoTeam
R203 6×6 ReducedNoTeam
RC101 7×4 NoTeam
RC103 7×4 NoTeam
RC201 7×4 ReducedNoTeam
RC203 7×4 ReducedNoTeam

Solving the service technician routing and scheduling problem with time windows 13

The 12 datasets chosen from the STRSPTW instances for the tuning experiments
are shown in Table 1. The name of the dataset describes its characteristics. For ex-
ample in R103 6×6 NoTeam, we can deduce that the jobs are randomly located by
the R (C is clustered and RC randomly clustered), the jobs have 50% time windows
defined by the 03 (01 means 100% time windows), there are 6 domains and 6 lev-
els within each domain represented by 6× 6, and, lastly, the instance is a no team
instance represented by NoTeam.

Table 2 displays the percentage gap achieved from the best known score (BKS)
as found by Kovacs et al. (2012). The first column displays the level of randomness,
r, in each implementation and the second column shows the average percentage gap
achieved across all of the datasets used in the tuning experiments. The third column
shows the average gap from the BKS for the 01 datasets, and column 4 displays the
average gap from BKS for the 03 datasets. Columns 5 and 6 show the average gap
from BKS achieved across the NoTeam and ReducedNoTeam datasets respectively.
Lastly, columns 7, 8 and 9 display the average gap from the BKS across the 5× 4,
6×6 and 7×4 datasets.

Table 2: Tuning experiment results for the greedy randomized heuristic

r All 01 03 NoTeam ReducedNoTeam 5×4 6×6 7×4

0.2 0.0634 0.0217 0.1052 0.0602 0.0666 0.0379 0.0575 0.0759
0.16 0.0622 0.0258 0.0985 0.0674 0.0569 0.0353 0.0499 0.0837
0.12 0.0605 0.0253 0.0957 0.0614 0.0595 0.0383 0.0543 0.0696
0.08 0.0587 0.0206 0.0968 0.0543 0.0630 0.0370 0.0516 0.0688
0.04 0.0599 0.0248 0.0949 0.0563 0.0634 0.0386 0.0521 0.0696
0.00 0.0605 0.0239 0.0970 0.061 0.0599 0.0394 0.0511 0.0712

The experiments have shown that the gap from BKS is minimized overall when
using a randomness level r = 0.08. Interestingly, these experiments have also high-
lighted characteristics within the datasets. For example, it seems that the 01 dataset
experiments produced a much smaller gap from BKS than the 03 instances. However,
the average gaps from BKS seem to be equal when comparing the ReducedNoTeam
and NoTeam instances. In addition there also seems to be a distinction between the
number of domains and skill levels, where the larger the number of domains and
skills, the larger the gap from optimal results. The tuning experiments performed
have shown it is important to have an element of randomness within the algorithm, in
order to minimize the gap from BKS.

5.2 Tuning the simulated annealing with restart metaheuristic

The second set of experiments aimed to find the optimal parameter values for the
simulated annealing with restart metaheuristic. The restart metaheuristic has three
parameters; the Temperature, the Decrement and the StepSize. The Temperature
value controls how likely it is to accept a worse quality solution. Decrement controls
the rate of decrease in accepting a worse solution and, lastly, the StepSize controls

14 Author 1 et al.

how frequently we revert back to the best solution. Each parameter had two levels,
and therefore 23 tests had to be undertaken. We have performed a series of experi-
ments using datasets C101 5× 4 NoTeam and C103 5× 4 NoTeam (Kovacs et al.,
2012), using the parameter values shown in Table 3 to find the main and interaction
effects.

Table 3: Main and interaction effects parameter testing

Experiment StepSize Temperature Decrement

1 10,000 25 0.9999

2 25,000 25 0.9999

3 10,000 50 0.9999

4 25,000 50 0.9999

5 10,000 25 0.99999

6 25,000 25 0.99999

7 10,000 50 0.99999

8 25,000 50 0.99999

The simulated annealing with restart metaheuristic was run 10 times for each
experiment, and the average objective value obtained was recorded. The main and
interaction effects of each parameter are explained in the following subsections for
each dataset tested.

5.2.1 C101 5×4 NoTeam

Figure 3 shows the results obtained for dataset C101 5×4 NoTeam. The main inter-
actions plot illustrates that Decrement seems to have the strongest effect on solution
quality due to the steepness of the line, i.e. the higher the decrement value the lower
mean objective results that are produced. Temperature also has a significant effect on
the quality of solution obtained, using a higher temperature produces better quality
results. StepSize has a smaller yet still significant impact, preferring a smaller step
size.

From the interactions plot, shown in Figure 3, we can also deduce that Decrement
and StepSize appear parallel, and therefore there is no interaction between these fac-
tors. However, factors StepSize and Temperature do have an interaction as they
intersect each other. The most significant interaction is between Temperature and
Decrement.

5.2.2 C103 5×4 NoTeam

The results for C103 5× 4 NoTeam is displayed in Figure 3. Again, the main ef-
fects plot shows that each parameter, Temperature, StepSize and Decrement has an

Solving the service technician routing and scheduling problem with time windows 15

Fig. 3: Plot showing the main and interaction effects of each parameter for C101 5×4 NoTeam and
C103 5×4 NoTeam

effect on the quality of solution found. Decrement has the strongest effect on so-
lution quality in this dataset, but in this dataset, the lower the decrement factor the
lower mean objective results that are produced. The other parameters StepSize and
Decrement have a similar impact on solution quality evidenced from equal gradients.
In this dataset, C103 5×4 NoTeam, using a lower Temperature and StepSize leads
to better quality results.

In Figure 3, the interactions plot for C103 5×4 NoTeam shows again that there
is no interaction between Decrement and StepSize. The most significant interaction
is between Decrement and Temperature, although Temperature and StepSize also
have an interaction.

5.2.3 Summary of tuning experiments

Figure 3 demonstrates that the two types of datasets are affected differently by the
parameter values set. In the 01 instances, a higher temperature and decrement lead
to better objective values, whereas in the 03 datasets a lower temperature and decre-
ment produce better quality results. This suggests the highly constrained datasets
need more freedom to travel through the solution space, whereas the less constrained
datasets need more focus.

16 Author 1 et al.

5.2.4 Simulated annealing with restart performance

In this research, we have calculated both the average number of iterations and restarts
for each dataset over ten runs of the greedy randomized heuristic. Tables 4 and 5
display the results for the NoTeam and ReducedNoTeam datasets respectively.

Due to the results from the tuning experiments performed in section 5.2 we have
set the StepSize to 10,000 iterations. This means that if no improvements are found
on the best solution for 10,000 iterations, the heuristic resets the current solution S to
SBest and the search continues until the computational time limit has been reached.

Table 4: Simulated annealing with restart performance metrics NoTeam

Dataset Average Restarts Average Iterations

C101 5×4 NoTeam 21 241,350
C103 5×4 NoTeam 13 213,761
C201 5×4 NoTeam 13.6 159,699
C203 5×4 NoTeam 7 149,073
R101 5×4 NoTeam 26.5 311,760
R103 5×4 NoTeam 15.5 235,029
R201 5×4 NoTeam 12.4 163,032
R203 5×4 NoTeam 6.2 139,696

RC101 5×4 NoTeam 22.6 284,923
RC103 5×4 NoTeam 16.8 237,933
RC201 5×4 NoTeam 13.6 172,695
RC203 5×4 NoTeam 5.6 137,529

C101 6×6 NoTeam 18.8 222,147
C103 6×6 NoTeam 11.7 199,725
C201 6×6 NoTeam 7.4 97,845
C203 6×6 NoTeam 3.5 97,611
R101 6×6 NoTeam 23.3 268,915
R103 6×6 NoTeam 12.9 212,172
R201 6×6 NoTeam 9 124,864
R203 6×6 NoTeam 2.4 95,175

RC101 6×6 NoTeam 19.8 247,406
RC103 6×6 NoTeam 12.2 210,023
RC201 6×6 NoTeam 8.7 129,974
RC203 6×6 NoTeam 3.1 101,370

C101 7×4 NoTeam 24.7 286,337
C103 7×4 NoTeam 16.1 256,830
C201 7×4 NoTeam 16.6 188,114
C203 7×4 NoTeam 11.2 189,899
R101 7×4 NoTeam 29.5 354,903
R103 7×4 NoTeam 18.1 265,872
R201 7×4 NoTeam 15.1 193,354
R203 7×4 NoTeam 7.8 166,176

RC101 7×4 NoTeam 24.8 313,719
RC103 7×4 NoTeam 18.3 275,076
RC201 7×4 NoTeam 15.6 196,620
RC203 7×4 NoTeam 8.8 175,336

Solving the service technician routing and scheduling problem with time windows 17

In Table 4 it is clear that the most iterations and restarts are performed on the
101 instances. The fewest iterations and restarts are performed on the 203 problem
instances. This pattern occurs throughout the 5×4, 6×6 and 7×4 instances, regard-
less of the distributions of jobs i.e clustered, random and randomly clustered. In Table
5, similarly, the most iterations and restarts are performed on the 101 and the fewest
on the 203 problem instances.

Table 5: Simulated annealing with restart performance metrics ReducedNoTeam

Dataset Average Restarts Average Iterations

C101 5×4 ReducedNoTeam 19.4 237,760
C103 5×4 ReducedNoTeam 11 208,798
C201 5×4 ReducedNoTeam 11.6 136,426
C203 5×4 ReducedNoTeam 4.8 127,628
R101 5×4 ReducedNoTeam 22.4 270,029
R103 5×4 ReducedNoTeam 17.4 244,082
R201 5×4 ReducedNoTeam 8.9 129,428
R203 5×4 ReducedNoTeam 3.6 111,218

RC101 5×4 ReducedNoTeam 22.3 274,143
RC103 5×4 ReducedNoTeam 12.2 233,929
RC201 5×4 ReducedNoTeam 10.8 157,719
RC203 5×4 ReducedNoTeam 4.9 127,146

C101 6×6 ReducedNoTeam 18.9 224,364
C103 6×6 ReducedNoTeam 8.5 187,398
C201 6×6 ReducedNoTeam 7.3 101,494
C203 6×6 ReducedNoTeam 2.2 101,176
R101 6×6 ReducedNoTeam 21.6 255,237
R103 6×6 ReducedNoTeam 13.3 213,570
R201 6×6 ReducedNoTeam 5 103,062
R203 6×6 ReducedNoTeam 2.9 86,080

RC101 6×6 ReducedNoTeam 19.6 248,300
RC103 6×6 ReducedNoTeam 13.1 210,875
RC201 6×6 ReducedNoTeam 5.7 110,432
RC203 6×6 ReducedNoTeam 2.7 88,949

C101 7×4 ReducedNoTeam 25.3 282,559
C103 7×4 ReducedNoTeam 16.4 249,775
C201 7×4 ReducedNoTeam 13.5 145,236
C203 7×4 ReducedNoTeam 6.7 136,232
R101 7×4 ReducedNoTeam 29.4 331,041
R103 7×4 ReducedNoTeam 21.5 282,724
R201 7×4 ReducedNoTeam 11.2 154,580
R203 7×4 ReducedNoTeam 5.6 125,351

RC101 7×4 ReducedNoTeam 27.4 315,893
RC103 7×4 ReducedNoTeam 20.5 281,064
RC201 7×4 ReducedNoTeam 12.2 161,558
RC203 7×4 ReducedNoTeam 5.9 138,643

We believe that this pattern, more iterations and restarts, may occur because the
101 instances are the most constrained, so there are fewer feasible insertions for jobs,
which speeds up the heuristic’s decision making. In contrast, the 203 problem in-

18 Author 1 et al.

stances are the least constrained, therefore there are more feasible insertions to choose
from which slows down the heuristic.

5.3 STRSPTW computational results

The greedy randomized heuristic was programmed in Java and tested on an HP Z210
Workstation, with an i7-2600 CPU with 3.4 GHZ with 12GB of RAM. Each run
on the NoTeam instances lasted 80 seconds and each run on the ReducedNoTeam
instances lasted 60 seconds, as in Kovacs et al. (2012) for comparison purposes. The
greedy randomized heuristic was run 5 times per data instance, and the best, average
and worst results obtained are shown in Tables 6 and 7.

Column 1 shows the dataset, columns 2-4 show the best, average and maximum
objective value achieved by Kovacs et al. (2012) with the pALNS, and columns 4-
7 displays the best, average and maximum objective values found by the greedy
randomized heuristic. The highlighted rows indicate where the greedy randomized
heuristic has found a lower objective value than was achieved by Kovacs et al. (2012)
with the pALNS.

6 Discussion

6.1 Performance of greedy randomized heuristic on NoTeam instances

Table 6 displays the results achieved for the NoTeam problem instances. In these
datasets, the sequential greedy randomized heuristic is able to find a lower mini-
mum objective value than the pALNS in 8 out of 36 datasets and is able to find the
same minimum objective value in two datasets, C201 6× 6 NoTeam and C101 7×
4 NoTeam.

The results illustrate that the greedy randomized heuristic finds a smaller gap from
BKS on the 01 instances compared to the 03 instances. The difference between these
datasets is the proportion of time windows, the 01 instances are more constrained
(contain 100% time windows) compared to the 03 instances (contain 50% time win-
dows) and therefore, there are fewer options of where and when to allocate a job. In
the 5×4, 6×6 and 7×4 datasets, the gap from minimum objective results in the 01
instances is 1.08%, 1.98% and 1.12%. This increases to 11.77%, 14.03% and 8.82%
in the 03 instances.

Another trend within the results occurs in the 203 datasets. These datasets achieve
the highest gap from BKS overall, regardless of the distribution of job locations i.e C
clustered, R randomly, RC randomly clustered. This pattern occurs across each set of
domains and levels, 5×4, 6×6 and 7×4.

Furthermore, we can also deduce a pattern across the distribution of customers’
locations in the 5×4 and 7×4 datasets. Throughout the distributions, C, R and RC,
the gap from BKS increases. In 5×4 the gap is 5.75%, 6.59% and 7.03% and in 7×4
the gap is 3.98%, 4.07% and 6.86%, respective of distributions R,C and RC.

Solving the service technician routing and scheduling problem with time windows 19

Table 6: NoTeam

Dataset pALNS GREEDY
min avg max min avg max

C101 5×4 NoTeam 1098.71 1111.08 1128.02 1096.85 1135.03 1180.95
C103 5×4 NoTeam 1018.61 1037.33 1049.41 1075.36 1119.66 1195.76
C201 5×4 NoTeam 1158.97 1180.93 1228.99 1157.65 1163.1 1183.31
C203 5×4 NoTeam 1046.93 1049.3 1052.83 1228.23 1297.39 1337.33
R101 5×4 NoTeam 1678.68 1685.85 1697.2 1672.55 1682.17 1692.81
R103 5×4 NoTeam 1238.67 1249.91 1282.28 1288.48 1312.95 1339.13
R201 5×4 NoTeam 1440.3 1448.93 1462.62 1526.43 1563.53 1599.98
R203 5×4 NoTeam 1098 1106.12 1123.08 1281.83 1334.01 1378.83
RC101 5×4 NoTeam 1708.51 1716.07 1729.75 1676.57 1721.95 1760.88
RC103 5×4 NoTeam 1337.99 1354.11 1388.13 1454.46 1482.46 1507.06
RC201 5×4 NoTeam 1601.89 1607.25 1610.75 1650.66 1698.03 1727.49
RC203 5×4 NoTeam 1161.53 1166.5 1178.64 1373.44 1430.32 1467.19

C101 6x6 NoTeam 989.21 1004.82 1029.72 973.05 1002.15 1029.72
C103 6×6 NoTeam 893.94 897.86 907.62 1075.26 1181.12 1239.93
C201 6×6 NoTeam 821.55 821.55 821.55 821.55 847.22 868.72
C203 6×6 NoTeam 689.6 703.1 750.12 831.51 908.91 970.66
R101 6×6 NoTeam 1658.27 1667.43 1672.57 1662.69 1666.02 1675.24
R103 6×6 NoTeam 1223.63 1231.49 1243.49 1243.7 1264.54 1286.5
R201 6×6 NoTeam 1261.94 1270.26 1279.81 1335.66 1375.56 1417.77
R203 6×6 NoTeam 932.35 951.84 964.54 1104.75 1153.24 1200.86
RC101 6×6 NoTeam 1679.13 1683.96 1690.06 1672.85 1686.62 1693.34
RC103 6×6 NoTeam 1281.55 1310.95 1331.46 1354.14 1381.79 1400.85
RC201 6×6 NoTeam 1395.4 1403.95 1411.48 1494.14 1547.03 1613.75
RC203 6×6 NoTeam 1001.04 1016.71 1030.15 1176.41 1236.67 1291.41

C101 7×4 NoTeam 1357.05 1398.95 1462.16 1357.05 1416.19 1553.71
C103 7×4 NoTeam 1215.7 1239.22 1264.17 1263.67 1295.83 1335.95
C201 7×4 NoTeam 1256.56 1282.18 1302.56 1256.3 1264.26 1302.56
C203 7×4 NoTeam 1150.85 1151.27 1152.94 1288.96 1354.81 1474.64
R101 7×4 NoTeam 1776.46 1793.95 1813.53 1771.56 1791 1807.89
R103 7×4 NoTeam 1346.8 1375.09 1399.95 1402.04 1423.96 1456.49
R201 7×4 NoTeam 1398.14 1410.9 1427.95 1427.56 1458.63 1474.29
R203 7×4 NoTeam 1164.9 1166.94 1169.27 1285.35 1334.17 1407.76
RC101 7×4 NoTeam 1821.9 1844.37 1859.17 1832.75 1903.58 1980.33
RC103 7×4 NoTeam 1435.63 1455.33 1477.84 1547.33 1610.13 1679.64
RC201 7×4 NoTeam 1697.82 1701.25 1705.48 1771.25 1793.66 1811.06
RC203 7×4 NoTeam 1239.45 1241.65 1249.72 1422.35 1459.22 1527.29

6.2 Performance of greedy randomized heuristic on ReducedNoTeam instances

Table 7 displays the results achieved for the ReducedNoTeam problem instances.
In these datasets, the greedy randomized heuristic is able to find a lower minimum
objective value than the pALNS in 5 out of 36 datasets; and is able to find the same
minimum objective value in two datasets C201 5×4 ReducedNoTeam and C201 7×
4 ReducedNoTeam.

The results again show that the greedy randomized heuristic finds a smaller gap
from BKS on the 01 instances compared to the 03 instances with the average min-
imum gap equal to 0.36%, 3.05% and 0.7% across the 01 instances for the 5× 4,

20 Author 1 et al.

Table 7: ReducedNoTeam

Dataset pALNS GREEDY
min avg max min avg max

C101 5×4 ReducedNoTeam 5656.63 5733.75 5806.55 5572.99 5798.25 6286.36
C103 5×4 ReducedNoTeam 2644.65 2782.2 2869.64 2941.77 3461.57 3861.02
C201 5×4 ReducedNoTeam 2755.52 2755.52 2755.52 2755.52 2755.52 2755.52
C203 5×4 ReducedNoTeam 2389.37 2392.5 2393.62 2591.11 2680.16 2907.03
R101 5×4 ReducedNoTeam 5582.58 5895.38 6181.52 5663.64 6030.76 6400.05
R103 5×4 ReducedNoTeam 1710.25 1845.25 2020.48 2034.5 2378.57 2664.23
R201 5×4 ReducedNoTeam 2838.5 2854.3 2865.75 2895.78 3014.47 3250.06
R203 5×4 ReducedNoTeam 2332.23 2332.23 2332.23 2544.48 2595.48 2802.92
RC101 5×4 ReducedNoTeam 5127.79 5164.84 5262.36 5103.33 5428.46 5830.71
RC103 5×4 ReducedNoTeam 2170.57 2348.06 2490.12 2661.07 2984.91 3500.22
RC201 5×4 ReducedNoTeam 3088.23 3091.67 3093.56 3107.26 3217.95 3282.21
RC203 5×4 ReducedNoTeam 2516.16 2540.35 2550.62 2672.52 2761.53 2828.82

C101 6×6 ReducedNoTeam 7731.07 7762.94 7791.08 7660.86 7763.51 8151.45
C103 6×6 ReducedNoTeam 4980.7 5028.83 5136.21 5242.58 5771.19 6394.29
C201 6×6 ReducedNoTeam 3278.07 3299.56 3328.01 3283.84 3405.21 3603.53
C203 6×6 ReducedNoTeam 2460.17 2465.9 2468.71 2743.44 2923.61 3101.72
R101 6×6 ReducedNoTeam 5955.17 6152.29 6322.82 6174.57 6453.63 6701.15
R103 6×6 ReducedNoTeam 2251.64 2329.28 2404.57 2485.9 2839.6 3228.95
R201 6×6 ReducedNoTeam 3503.4 3536.7 3574.97 3635.03 3857.49 4072.21
R203 6×6 ReducedNoTeam 2437.28 2446.18 2481.77 2649.38 2806.12 2955.39
RC101 6×6 ReducedNoTeam 5276.34 5466.18 5771.99 5231.5 5513.1 5664.35
RC103 6×6 ReducedNoTeam 2263.83 2349.57 2522.71 2704.04 3212.48 3945.85
RC201 6×6 ReducedNoTeam 4422.86 4519.95 4656.79 4973.47 5310.02 5753.73
RC203 6×6 ReducedNoTeam 2649.51 2673.72 2730.78 2825.65 3239.56 3615.14

C101 7×4 ReducedNoTeam 5208 5257.9 5307.12 5256.49 5438.5 5732.91
C103 7×4 ReducedNoTeam 2020.4 2117.44 2173.39 2205.58 2569.24 2804.6
C201 7×4 ReducedNoTeam 2773.41 2779.37 2803.21 2773.41 2784.02 2820.23
C203 7×4 ReducedNoTeam 2261.37 2282.15 2301.73 2450.03 2566.85 2755.9
R101 7×4 ReducedNoTeam 5239.81 5381.35 5437.66 5232.6 5580.65 6018.08
R103 7×4 ReducedNoTeam 2104.93 2215.84 2314.3 2338.84 2427.95 2666.58
R201 7×4 ReducedNoTeam 2672.96 2679.38 2682.23 2706.8 2764.65 2936.23
R203 7×4 ReducedNoTeam 2199.1 2209.8 2229.67 2318.15 2368.62 2443.63
RC101 7×4 ReducedNoTeam 5531.06 5799.77 6367.47 5627.79 5959.56 6467.22
RC103 7×4 ReducedNoTeam 2586.03 2676.54 2820.48 3127.24 3633.13 3963.97
RC201 7×4 ReducedNoTeam 2919.83 2936.28 2945.46 2930.78 3033.64 3244.95
RC203 7×4 ReducedNoTeam 2277.62 2285.17 2301.26 2459.13 2541.01 2675.67

6× 6 and 7× 4 problems. However, the gap from minimum objective value results
increases for the 03 instances to 12.5%, 10.33% and 10.49%.

Again, we can find a pattern within the distribution of customers’ locations. In
the ReducedNoTeam problem instances, the pattern occurs within each skill domain
area, 5× 4, 6× 6 and 7× 4. The gap from minimum results is the smallest when
the distribution of jobs is clustered (C), 4.55%, 4.01% and 4.61%. The gap is largest
when the jobs are distributed in random clusters (RC), 7.24%, 9.42% and 7.76%.

In these datasets there is a new pattern present in both the 5×4 and 7×4 datasets.
In these datasets, the pattern occurs in the 201 datasets. These datasets achieve the

Solving the service technician routing and scheduling problem with time windows 21

highest gap from BKS overall, regardless of the distribution of job locations i.e C, R
and RC. In the 6×6 datasets the 203 achieve the highest gap from BKS overall.

6.3 Summary of performance

Overall, considering the results presented on the 72 datasets, we calculate that the
gap from minimum, average and maximum results is 6.38%, 10.07% and 14.04%.
We can split this into the performance gap on the 01 instances as 1.39%, 3.27% and
5.82%, and on the 03 instances as 11.36%, 16.86% and 22.27%.

The results presented in this paper illustrate that the sequential greedy randomized
heuristic approach can in some cases, 13 out of 72, find a better quality solution than
the pALNS approach presented by Kovacs et al. (2012). This is the first time that
another heuristic approach, and indeed a sequential approach, has been tested on
these datasets, allowing a comparison with pALNS. Our approach has not performed
as well on the 03 problem datasets which include only 50% of datasets with time
windows. We believe this is due to the number of configurations that are possible, as
the datasets are less constrained than the 01 datasets.

In addition the pALNS approach uses adaptive operators that change their chance
of selection dependent on performance so far within the search phase. The datasets
presented in this paper can be split by many factors such as percentage of time win-
dows, 01 and 03, how customers are geographically located, C clustered, R randomly,
RC randomly clustered, and the number of domain skill areas, 5×4, 6×6 and 7×4,
which suggests that an adaptive approach would perform well.

7 Conclusion

In this work we have presented our approach to solving the STRSPTW. We have
designed and implemented a sequential greedy randomized construction heuristic to
solve the STRSPTW datasets which have not been tested since Kovacs et al. (2012),
with a pALNS. Furthermore, we have also implemented a simulated annealing with
restart metaheuristic, and tested both the main and interaction effects of parameters
across different types of dataset. Lastly, we have also found 13 new best known re-
sults for these datasets. We have shown that the presence of time windows can greatly
affect the solution approach and that the algorithmic performance is also heavily de-
pendent on characteristics of the datasets tested i.e. the proportion of time windows
within the datasets.

The results found in this work can be readily applied to other scheduling prob-
lems with common constraints such as the home healthcare problem. In this problem
trained professionals (skill complexity) travel to patient locations (travel time) to ad-
minister medications under strict guidelines (time windows). Furthermore, this work
also has the potential to make an environmental impact, since vehicles are used for
transportation between locations, and the smaller the distances travelled, the fewer
emissions are produced.

Future work will focus on related service maintenance combinatorial optimisation
problems, featuring other common constraints such as tools and spare parts.

22 Author 1 et al.

Acknowledgements This research is sponsored by ServicePower Technologies PLC, a worldwide leader
in providing innovative mobile workforce management solutions, in cooperation with MMU and KTP.

References

Author1, Author 2, and Author 3. Solving technician and task scheduling problems
with an intelligent decision heuristic. In Intelligent Decision Technologies 2016,
pages 63–75. Springer, 2016.

Author1, Author 2, and Author 3. Applying the intelligent decision heuristic to large
scale technician and task scheduling problems. In Intelligent Decision Technolo-
gies 2017, pages xx–xx. Springer, 2017a.

Author1, Author 2, and Author 3. A review of technician and task scheduling prob-
lems, datasets and solution approaches. In SAI Intelligent Systems Conference
(IntelliSys), 2017, page Accepted. IEEE, 2017b.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):
268–308, 2003.

J Arturo Castillo-Salazar, Dario Landa-Silva, and Rong Qu. A survey on workforce
scheduling and routing problems. In Proceedings of the 9th international confer-
ence on the practice and theory of automated timetabling, pages 283–302. Citeseer,
2012.

Xi Chen, Barrett W Thomas, and Mike Hewitt. The technician routing problem with
experience-based service times. Omega, 61:49–61, 2016.

Jean-François Cordeau, Gilbert Laporte, Federico Pasin, and Stefan Ropke. Schedul-
ing technicians and tasks in a telecommunications company. Journal of Schedul-
ing, 13(4):393–409, 2010.

Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. Staff
scheduling and rostering: A review of applications, methods and models. European
journal of operational research, 153(1):3–27, 2004.

Bertrand Estellon, Frédéric Gardi, and Karim Nouioua. High-performance lo-
cal search for task scheduling with human resource allocation. In Engineering
Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Ef-
fective Heuristics, pages 1–15. Springer, 2009.

Murat Fırat and CAJ Hurkens. An improved mip-based approach for a multi-skill
workforce scheduling problem. Journal of Scheduling, 15(3):363–380, 2012.

Hideki Hashimoto, Sylvain Boussier, Michel Vasquez, and Christophe Wilbaut. A
grasp-based approach for technicians and interventions scheduling for telecommu-
nications. Annals of Operations Research, 183(1):143–161, 2011.

Gerhard Hiermann, Matthias Prandtstetter, Andrea Rendl, Jakob Puchinger, and
Günther R Raidl. Metaheuristics for solving a multimodal home-healthcare
scheduling problem. Central European Journal of Operations Research, 23(1):
89–113, 2015.

Cor AJ Hurkens. Incorporating the strength of mip modeling in schedule construc-
tion. RAIRO-Operations Research, 43(04):409–420, 2009.

Solving the service technician routing and scheduling problem with time windows 23

Amy Khalfay, Alan Crispin, and Keeley Crockett. Solving technician and task
scheduling problems with an intelligent decision heuristic. In Intelligent Decision
Technologies 2016, pages 63–75. Springer, 2016.

Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive
large neighborhood search for service technician routing and scheduling problems.
Journal of scheduling, 15(5):579–600, 2012.

S Kundu, M Mahato, B Mahanty, and S Acharyya. Comparative performance of
simulated annealing and genetic algorithm in solving nurse scheduling problem.
In Proceedings of the International MultiConference of Engineers and Computer
Scientists, volume 1, pages 96–100, 2008.

Ines Mathlouthi, Michel Gendreau, and Jean-Yves Potvin. Mixed integer program-
ming for a multi-attribute technician routing and scheduling problem. 2016.

Dimitris C Paraskevopoulos, Gilbert Laporte, Panagiotis P Repoussis, and Christos D
Tarantilis. Resource constrained routing and scheduling: Review and research
prospects. 2016.

Victor Pillac, Christelle Guéret, and Andrés Medaglia. On the dynamic technician
routing and scheduling problem. 2012.

Victor Pillac, Christelle Gueret, and Andrés L Medaglia. A parallel matheuristic for
the technician routing and scheduling problem. Optimization Letters, 7(7):1525–
1535, 2013.

Paul Shaw. Using constraint programming and local search methods to solve vehi-
cle routing problems. In International Conference on Principles and Practice of
Constraint Programming, pages 417–431. Springer, 1998.

French Operational Research Society. What is the roadef 2007 challenge, 2016. URL
http://challenge.roadef.org/2007/en/.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265, 1987.

Fabien Tricoire, Nathalie Bostel, Pierre Dejax, and Pierre Guez. Exact and hybrid
methods for the multiperiod field service routing problem. Central European Jour-
nal of Operations Research, 21(2):359–377, 2013.

Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester,
and Liesje De Boeck. Personnel scheduling: A literature review. European Journal
of Operational Research, 226(3):367–385, 2013.

Jiyang Xu and Steve Y Chiu. Effective heuristic procedures for a field technician
scheduling problem. Journal of Heuristics, 7(5):495–509, 2001.

Emilio Zamorano and Raik Stolletz. Branch-and-price approaches for the multiperiod
technician routing and scheduling problem. European Journal of Operational Re-
search, 2016.

