

ANEESAH: A Novel Methodology and

Algorithms for Sustained Dialogues and

Query Refinement in Natural Language

Interfaces to Databases

Khurim Shabaz

A thesis submitted in partial fulfilment of the

requirements of the Manchester Metropolitan

University for the degree of Doctor of Philosophy

School of Computing, Mathematics and Digital

Technology

the Manchester Metropolitan University

 June 2017

i

Abstract

This thesis presents the research undertaken to develop a novel approach towards the

development of a text-based Conversational Natural Language Interface to Databases,

known as ANEESAH. Natural Language Interfaces to Databases (NLIDBs) are computer

applications, which replace the requirement for an end user to commission a skilled

programmer to query a database by using natural language. The aim of the proposed

research is to investigate the use of a Natural Language Interface to Database (NLIDB)

capable of conversing with users to automate the query formulation process for

database information retrieval. Historical challenges and limitations have prevented the

wider use of NLIDB applications in real-life environments. The challenges relevant to the

scope of proposed research include the absence of flexible conversation between NLIDB

applications and users, automated database query building from multiple dialogues and

flexibility to sustain dialogues for information refinement. The areas of research

explored include; NLIDBs, conversational agents (CAs), natural language processing

(NLP) techniques, artificial intelligence (AI), knowledge engineering, and relational

databases.

Current NLIDBs do not have conversational abilities to sustain dialogues, especially with

regards to information required for dynamic query formulation. A novel approach,

ANEESAH is introduced to deal with these challenges. ANEESAH was developed to allow

users to communicate using natural language to retrieve information from a relational

database. ANEESAH can interact with the users conversationally and sustain dialogues

to automate the query formulation and information refinement process. The research

and development of ANEESAH steered the engineering of several novel NLIDB

components such as a CA implemented NLIDB framework, a rule-based CA that

combines pattern matching and sentence similarity techniques, algorithms to engage

users in conversation and support sustained dialogues for information refinement.

Additional components of the proposed framework include a novel SQL query engine

for the dynamic formulation of queries to extract database information and perform

querying the query operations to support the information refinement.

ii

Furthermore, a generic evaluation methodology combining subjective and objective

measures was introduced to evaluate the implemented conversational NLIDB

framework. Empirical end user evaluation was also used to validate the components of

the implemented framework. The evaluation results demonstrated ANEESAH produced

the desired database information for users over a set of test scenarios. The evaluation

results also revealed that the proposed framework components can overcome the

challenges of sustaining dialogues, information refinement and querying the query

operations.

iii

CHAPTER 1 - INTRODUCTION ... 8

1.1 INTRODUCTION ... 8

1.2 BACKGROUND .. 8

1.3 RESEARCH AIM ... 9

1.4 RESEARCH QUESTIONS ... 10

1.5 RESEARCH HYPOTHESIS .. 10

1.6 RESEARCH OBJECTIVES ... 10

1.7 CONTRIBUTIONS ... 11

1.8 THESIS OUTLINE ... 13

CHAPTER 2 - STATE OF THE ART .. 15

2.1 INTRODUCTION ... 15

2.2 NATURAL LANGUAGE INTERFACES TO DATABASES ... 15

2.2.1 NLIDB Development Challenges and Limitations.. 17

2.2.1.1 Syntax-based Approach ... 18

2.2.1.2 Semantic Grammar Approach.. 18

2.2.1.3 Pattern Matching Approach .. 19

2.2.2 Datasets used for NLIDBs Evaluation ... 20

2.2.3 Current known weaknesses in the field of NLIDBs .. 22

2.2.3.1 Linguistic Coverage .. 22

2.2.3.2 Domain Coverage Failure ... 22

2.2.3.3 Users Assumption of System’s Intelligence ... 22

2.2.3.4 Interface Problems .. 23

2.2.3.5 Configuration and Maintenance .. 23

2.2.4 Challenges for NLIDBs ... 23

2.2.5 Existing Methods of Evaluating NLIDB ... 24

2.3 CONVERSATIONAL AGENTS ... 26

2.3.1 Pattern-matching Text-based CAs .. 29

2.3.2 Background... 30

2.3.3 Review of Challenges for CAs.. 33

2.3.4 Existing Methods of Evaluating CA ... 34

2.3.5 Formulation of Evaluation Metrics ... 36

2.4 EXISTING CONVERSATION ENABLED NLIDB SYSTEMS ... 38

2.5 CONCLUSION ... 40

2.6 CHAPTER HIGHLIGHTS .. 41

CHAPTER 3 - A METHODOLOGY FOR DEVELOPING A CONVERSATIONAL NATURAL LANGUAGE

INTERFACE TO DATABASE (NLIDB) ... 43

3.1 INTRODUCTION ... 43

iv

3.2 ANEESAH CONVERSATIONAL NLIDB ... 43

3.2.1 Phase 1: Components Development ... 44

3.2.1.1 Adopt a NLIDB Building Approach ... 44

3.2.1.2 Selection of a Domain Database .. 45

3.2.1.3 Analyse Real Life Information and Query Requirements ... 45

3.2.1.4 Determine Conversation Scope and Structure .. 46

3.2.1.5 Develop Knowledge Base Structure ... 46

3.2.1.6 Devise Methodology for ANEESAH’s Evaluation .. 47

3.2.2 Phase 2: Conversation Scripting and Query Formulation .. 47

3.2.2.1 Selection of a scripting methodology .. 47

3.2.2.2 Map/Organisation of Conversation Scripts .. 48

3.2.2.3 Develop Technique to Determine System Responses ... 48

3.2.2.4 Develop a Layered Based Request Matching Approach .. 49

3.2.2.5 Develop/Adopt a SQL Query Formulation and Refinement Engine ... 49

3.2.3 Phase 3: Design Architecture for ANEESAH NLIDB .. 50

3.2.3.1 ANEESAH NLIDB Architecture .. 50

3.2.3.2 Graphical User Interface (GUI) ... 51

3.2.3.3 Conversation Manager .. 51

3.2.3.4 Conversational Agent (CA) ... 51

3.2.3.5 Knowledge base ... 51

3.2.3.6 Information Refinement Module ... 52

3.2.3.7 SQL Engine ... 52

3.3 CONCLUSION .. 52

CHAPTER 4 - ARCHITECTURE FOR DEVELOPING ANEESAH NLIDB .. 54

4.1 INTRODUCTION ... 54

4.2 OVERVIEW OF ARCHITECTURE .. 55

4.3 COMPONENTS DEVELOPMENT FOR ANEESAH NLIDB (COMPONENT 1) ... 58

4.3.1 Controller .. 59

4.3.2 Pattern Matching (PM) Engine ... 60

4.3.3 Sentence Similarity Feature .. 63

4.3.4 Dice Coefficient Algorithm .. 64

4.3.5 Pattern Matching Scripting Language (PMSL) .. 65

4.3.5.1 Regular Expression based Pattern Matching ... 67

4.3.6 Utterance Processing Flow .. 68

4.3.7 Utterance Processing for Database Information Mapping ... 70

4.3.8 Conflict Resolution .. 74

4.3.9 Response Analyser for Query-based Responses .. 76

4.3.10 Conversation Manager (CM) .. 77

4.3.11 Temporal Memory .. 79

v

4.3.12 Log file ... 80

4.3.13 User Interface .. 81

4.4 KNOWLEDGE ENGINEERING THE DOMAIN (COMPONENT 2) .. 81

4.4.1 Adapting a Domain Database for System Evaluation .. 83

4.4.2 Knowledge Base Structure for the Scope of Conversation .. 85

4.4.3 Domain Database Scripts ... 86

4.4.4 Frequently Asked Question (FAQ) Domain ... 86

4.4.5 General Chat Domain ... 86

4.4.6 Dynamic Database Knowledge (DDK)... 87

4.4.7 Domain Grammar ... 88

4.4.8 Knowledge Engineering the Domain for Query Scenarios .. 88

4.5 SQL ENGINE (COMPONENT – 3) .. 92

4.5.1 SQL Configurator .. 93

4.5.2 SQL Execution ... 97

4.5.3 SQL Analyser ... 98

4.6 CONCLUSION ... 99

CHAPTER 5 - ANEESAH PROTOTYPE ONE – EVALUATION METHODOLOGY AND RESULTS 101

5.1 INTRODUCTION ... 101

5.1.1 Hypothesis .. 102

5.2 EVALUATION METRICS ... 102

5.3 EXPERIMENTAL METHODOLOGY FOR ANEESAH NLIDB .. 104

5.4 EVALUATION SCENARIOS .. 105

5.5 EXPERIMENT 1 ... 105

5.5.1 Experiment 1 Results .. 107

5.5.2 Experiment 1 Discussion (Group-A) .. 108

5.5.3 Experiment 1 Discussion (Group-B) .. 109

5.6 DATA ANALYSIS AND SELECTION OF STATISTICAL TEST .. 110

5.6.1 Inferential Statistics (Mood’s Median Test) .. 111

5.6.2 Descriptive Statistics (Test of Normality) .. 113

5.7 EXPERIMENT 2 ... 114

5.7.1 Interactive Sessions .. 114

5.7.2 ANEESAH’s Dialogue Responses ... 117

5.7.3 Precision, Recall and Accuracy ... 119

5.8 DISCUSSION ... 120

5.9 CHAPTER SUMMARY .. 121

CHAPTER 6 - ANEESAH NLIDB (PROTOTYPE TWO) WITH INFORMATION REFINEMENT 123

vi

6.1 INTRODUCTION ...123

6.2 REVISED ARCHITECTURE OF ANEESAH NLIDB ...124

6.3 FURTHER DEVELOPMENT OF ANEESAH NLIDB (OVERVIEW) ..125

6.4 EXTENDED FEATURES OF ANEESAH’S CA ...126

6.4.1 Date/Time Matching Feature ...127

6.4.2 User Response Agreement ..128

6.4.3 English Language Dictionary ...129

6.5 INFORMATION REFINEMENT FEATURE ...130

6.5.1 Refinement Request Detection..131

6.5.2 SQL Query Refiner Module ..132

6.5.2.1 Add Information .. 132

6.5.2.2 Remove Information .. 134

6.5.2.3 Replace Information .. 135

6.5.2.4 Aggregation Function .. 136

6.5.2.5 Restrict Information... 138

6.5.3 ANEESAH NLIDB with Information Refinement ...140

6.6 KNOWLEDGE BASE EXPANSION ...141

6.7 GRAPHICAL USER INTERFACE (GUI) ..142

6.8 SESSION MANAGER MODULE ..144

6.9 DATABASE INFORMATION SELECTION TOOL ..145

6.10 CONCLUSION ...146

CHAPTER 7 - ANEESAH 2 EVALUATION RESULTS AND DISCUSSION (PHASE TWO) 148

7.1 INTRODUCTION ...148

7.2 EXPERIMENTAL DESIGN ..148

7.3 HYPOTHESIS ...149

7.4 EXPERIMENTS ...150

7.5 PARTICIPANT INTERACTION ..151

7.6 EVALUATION METRICS FORMULATION ...151

7.7 EVALUATION METRICS ..152

7.8 DATA COLLECTION ...154

7.8.1 Subjective Data Collection...154

7.8.2 Objective Data Collection ..154

7.9 DATA ANALYSIS ...154

7.10 SCENARIOS ..155

7.11 PARTICIPANTS SAMPLE ..156

7.11.1 Sample Distribution by SQL Knowledge ...156

7.12 EXPERIMENTS RESULTS ..157

vii

7.12.1 Experiment 1 .. 157

7.12.2 Experiment 1 Results ... 159

7.12.3 Experiment 1 Discussion (Group-A) ... 160

7.12.4 Experiment 1 Discussion (Group-B).. 162

7.12.5 Descriptive Statistics (Test of Normality) ... 163

7.12.6 Selection of Statistical Test .. 164

7.12.7 Inferential Statistics (Mood’s Median Test) ... 164

7.12.8 Analysis of Questionnaire Results for Prototype (one and two) 168

7.13 EXPERIMENT 2 ... 176

7.13.1 Interactive Sessions.. 177

7.13.2 Utterance Distribution ... 178

7.13.3 AEESAH’s Responses .. 179

7.13.4 Robustness and Accuracy .. 183

7.13.5 Queries Distribution Between Group A and B Participants .. 184

7.13.6 Precision, Recall and F-Measure .. 185

7.13.6.1 Precision, Recall and Accuracy for Group A ... 185

7.13.6.2 Precision, Recall and Accuracy for Group B ... 185

7.13.6.3 F-Measure Comparison for Prototype one and two .. 186

7.14 RESULTS CONCLUSION .. 186

CHAPTER 8 - CONCLUSIONS, KEY FINDINGS, CONTRIBUTIONS AND FUTURE WORK 189

8.1 OVERVIEW ... 189

8.2 KEY FINDINGS AND LIMITATIONS .. 192

8.3 RESEARCH CONTRIBUTIONS... 195

8.3.1 ANEESAH - Conversational NLIDB Development .. 196

8.3.2 Framework and Methodology for Conversational NLIDB Development........................... 196

8.3.3 The PM engine .. 197

8.3.4 Scripting Language ... 197

8.3.5 Query Formulation and Refinement Algorithm .. 198

8.3.6 The SQL Engine ... 198

8.4 FUTURE RESEARCH .. 198

8.4.1 Voice Recognition ... 199

8.4.2 Universal Web Service .. 199

8.4.3 Dynamic Knowledgebase for Link Responses/Analysis... 200

8.4.4 Graphical Representation of Query Results .. 200

8.4.5 Knowledge base expansion .. 201

8.4.6 Evaluation Framework for Conversational NLIDB .. 201

8.4.7 Cross-database searching ... 202

viii

8.5 TAKE HOME MESSAGE ...202

REFERENCES...203

APPENDICES ...213

APPENDIX – A - QUESTIONNAIRE FOR PHASE TWO EVALUATION PROTOTYPE ONE ...213

APPENDIX – B- TEST SCENARIOS FOR THE EVALUATION PROTOTYPE ONE ..215

APPENDIX – C – PHASE ONE EVALUATION DATA HISTOGRAMS ..217

APPENDIX – D- QUESTIONNAIRE FOR PHASE TWO EVALUATION ..222

APPENDIX – E- TEST SCENARIOS FOR THE EVALUATION ...224

APPENDIX – F – PHASE TWO EVALUATION DATA HISTOGRAMS ...227

APPENDIX – G –ANEESAH’S LOG FILE ...234

APPENDIX – H –AUTHOR PUBLICATIONS ...240

1

List of Figures

Figure 1.1: Thesis chapters in relation to the research objectives
Figure 2.1: Goal Question Metric model
Figure 3.1: Generic ANEESAH NLIDB Architecture
Figure 4.1: High-level overview of proposed architecture (prototype one)
Figure 4.2: CA Components of ANEESAH NLIDB
Figure 4.3: Pattern Matching Engine
Figure 4.4: High-Level Overview of ANEESAH’s functional flow diagram
Figure 4.5: Example pattern with regular expression
Figure 4.6: Overview of user utterance flow in ANEESAH
Figure 4.7: Layer-based Database Information Mapping/Discovery
Figure 4.8: Matched attribute values in database tables
Figure 4.9: Example duplicate records maintained in database
Figure 4.10: Example duplicate records match situation
Figure 4.11: Response analyser working flow
Figure 4.12: Conversation handling example in the user interface
Figure 4.13: ANEESAH’s User Interface
Figure 4.14: Information universe of an example organisation
Figure 4.15: Information universe of an example organisation
Figure 4.16: Sample table records stored in the Sales History database
Figure 4.17: ANEESAH’s knowledge base structure
Figure 4.18: Dynamic Database Knowledge update process
Figure 4.19: Query required syntax extraction from user utterance
Figure 4.20: SQL query formulation flow
Figure 4.21: SQL Configurator’s working flow
Figure 4.22: Selection of tables relevant to captured database objects
Figure 4.23: Selection of tables in relational structure
Figure 4.24: Assembly of database objects with source table identification
Figure 4.25: Syntax prepared to restricted database results to user’s desire
Figure 4.26: Aggregation function integrated in SQL query syntax
Figure 4.27: Formulation of syntax to group query results
Figure 4.28: Formulation of syntax to sort query results in specific order
Figure 4.29: Formulated query by the SQL configurator
Figure 4.30: SQL Query Execution within ANEESAH
Figure 4.31: Example query returned results display in user interface
Figure 4.32: Error code showing failed execution of a SQL query
Figure 5.1: Formulation evaluation metrics for the ANEESAH system
Figure 5.2: Participants Rating from Experimental Group-A
Figure 5.3: Participants Rating from Experimental Group-B
Figure 5.4: Normality Histograms

2

Figure 5.5: Level of difficulty for each scenario
Figure 5.6: Example dialogues between ANEESAH and user
Figure 5.7: Example dialogues between ANEESAH and user
Figure 5.8: Example dialogues between ANEESAH and user
Figure 5.9: Example dialogues between ANEESAH and user
Figure 6.1: Improved Architecture of ANEESAH NLIDB
Figure 6.2: Graphical User Interface of ANEESAH prototype two
Figure 7.1: Pie chart of sample distribution by SQL knowledge
Figure 7.2: Participants rating from experimental Group A
Figure 7.3: Participants rating from experimental Group B
Figure 7.4: Phase two evaluation data histograms
Figure 7.5: Comparison of results for question 1
Figure 7.6: Comparison of results for question 2
Figure 7.7: Comparison of question 4 results
Figure 7.8: Comparison results for question 5
Figure 7.9: Comparison of results for question 7
Figure 7.10: Comparison results for question 10
Figure 7.11: Comparison of results for question 11
Figure 7.12: Comparison of results for question 12
Figure 7.13: Utterance Distribution for Each Participant Group
Figure 7.14 - Queries distribution for each scenario between both groups

List of Tables

Table 2.1: Sample datasets used for NLIDBs evaluation

Table 2.2: Example AIML Category

Table 2.3. An example Pattern Script Rule

Table 4.1: Rule scripts using PM and sentence similarity

Table 4.2: Algorithm to for utterance processing and query formulation

Table 4.3: SQL query syntax used for successful query results

Table 4.4: SQL query syntax implemented in ANEESAH

Table 5.1: Evaluation Questionnaire

Table 5.2: Overall Questionnaire Results from Group-A & Group-B

Table 5.3: Mood’s median test results

Table 5.4: Number of utterances and results for each test scenario

Table 5.5: Experiment results for Group-A & Group-B

Table 6.1: Example of user input match against time pattern

Table 6.2: Algorithm for addition of information in query refinement scenario

Table 6.3: Algorithm for deletion of information in query refinement scenario

Table 6.4: Algorithm to replace information in query refinement scenario

Table 6.5: Algorithm for function in query refinement scenario

3

Table 6.6: Algorithm to restrict information in query refinement scenario

Table 6.7: Algorithm for sustained dialogue and query refinement

Table 6.8: ANEESAH’s responses based on short-term memory

Table 7.1: List of objective metrics

Table 7.2: Goal, questions, metric model for phase two evaluation

Table 7.3: Participants groups for data analysis

Table 7.4: Questionnaire for phase two evaluation

Table 7.5: Questionnaire results from both participant groups

Table 7.6: Mood ‘median test results

Table 7.7: Questionnaire results from both participant groups for Prototype-2

Table 7.8: Questionnaire results from both participant groups for Prototype-1

Table 7.9: Mann-Whitney u test statistics

Table 7.10: Log file analysis of data collected during phase two evaluation

Table 7.11: Number of utterances and results for both groups for each scenario

Table 7.12: Example dialogue during phase two evaluation

Table 7.13: Example dialogue during phase two evaluation

Table 7.14: Example dialogue during phase two evaluation

Table 7.15: System produced queries for each scenario

List of Equations

Equation 2.1: Accuracy Equation

Equation 2.2: Recall Equation
Equation 2.3: Precision Equation

Equation 2.4: F-Measure Equation

Equation 4.1: Dice Coefficient Equation

Equation 4.2: Dice Coefficient similarity match between two words

List of Appendices

Appendix – A - Questionnaire for phase two evaluation prototype one
Appendix – B- Test Scenarios for the evaluation prototype one
Appendix – C – Phase one evaluation data histograms
Appendix – D - Questionnaire for phase two evaluation prototype two
Appendix – E- Test Scenarios for the evaluation prototype two
Appendix – F – Phase two evaluation data histograms

4

Dedication

ِِمْسبِ بِِ ربِ ِ نٰمِحْسبِ ِ نٰمْحَّ

“In the name of God, the Most Gracious, the Most Merciful"

This thesis is dedicated to my mother (deceased) and father. Both of whom are like a candle

– It consumes itself to light the way for others.

5

Acknowledgements

I must express my very profound gratitude to my parents (Mohammed Aslam and Ghulam

Safia), my wife (Sadia Noreen), my two daughters (Aneesah and Afifa) and other family

members for providing me with unfailing support and continuous encouragement

throughout the research process. This accomplishment would not have been possible

without them.

I would also like to acknowledge Dr James O’Shea, Dr Keeley Crockett and Dr Annabel

Latham of the Manchester Metropolitan University as the supervisory team for this

research, and I am gratefully indebted to them for their very valuable support, guidance and

help throughout the research.

Thank you.

6

List of Publications

SHABAZ, K., O'SHEA, J. D., CROCKETT, K. A. & LATHAM, A. ANEESAH: A Conversational Natural

Language Interface to Databases. Proceedings of the World Congress on Engineering, 2015.

(Appendix H)

7

List of Abbreviations

AI Artificial Intelligence

NLIDB Natural Language Interface to Database

CA Conversational Agent

CM Conversation Manager

DOMAIN Sample Database/Dataset Used for Evaluation

FAQ Frequently Asked Question

GC General Chat

GQM Goal Question Metric

GUI Graphical User Interface

KB Knowledge Base

NLP Natural Language Processing

PARADISE Paradigm for Dialogue System Evaluation

PM Pattern Matching

STS Short Text Similarity

XML Extensible Mark-up Language

AIML Artificial Intelligence Mark-up Language

NLI Natural Language Interface

System ANEESAH NLIDB

ERP Enterprise Resource Planning

8

Chapter 1 - Introduction

1.1 Introduction

 This thesis presents research investigating whether a Natural Language Interface to

Database can mimic a human query expert by conversationally interacting with users,

and formulate queries to extract and refine desired database information. The research

entails a thorough analysis of Natural Language Interfaces to Database (NLIDBs) and

Conversational Agents (CAs) as well as inherent challenges involved in implementing

conversational NLIDBs such as social adaptability, sustained dialogues, information

refinement and querying the query operations. The research has led to the development

a novel conversational Natural Language Interface to Database, called ANEESAH. The

ANEESAH NLIDB is designed to model a database expert by directing the conversation

and translating the user's requirements into database query language (e.g. Structured

Query Language). The architecture of ANEESAH comprises several new components,

which have been specifically developed to address the unique challenges involved in

implementing NLIDBs. This chapter provides the background and motivation of the

proposed research, aims and objectives, along with a summary of the research

contributions, and brief description of thesis structure.

1.2 Background

Information has its fundamental importance in decision making at any level. The largest

sources of information storages are databases in public or commercial environments.

The databases servers are constantly evolving with not only information but in terms of

complexities of structures and designs (Hamaz and Benchikha, 2017). Retrieving

information from a database normally requires querying the database using specialised

programming code not accessible to the inexperienced users, known as structured query

language (SQL). There exists a need for creating computer applications that permit

inexperienced users to extract desired information stored in a database (Yaghmazadeh

et al., 2017). Natural Language Interfaces to Databases (NLIDBs) are computer

programmes that replace the requirement for an end user to commission a skilled

9

programmer to query a database by using natural language (Pazos R et al., 2013; O’Shea

et al., 2011).

The primary focus of NLIDB development has been intended to process a single query

response transaction. The conversational capabilities of NLIBDs have received little

attention in research, among other aspects such as social adaptability and sustained

interaction to elicit what an end user envisages about the domain (Owda et al., 2007;

Androutsopoulos et al., 1995). NLIDB development attempts span decades. However

there remain unsolved key challenges for their wider acceptance in public and

commercial environments (Pazos R et al., 2013). Despite many development

approaches, NLIDBs have failed to achieve 100% user satisfaction. There are a number

of challenges have been identified by researchers such as linguistic problems,

conversational abilities, query translation, information refinement, domain

independence and ease of configuration. Also, the lack of generally accepted evaluation

benchmarks that can be used to test effectiveness and reliability of NLIDBs adds to the

existing challenges and those of building similar applications (Castillo et al., 2014; O’Shea

et al., 2011).

The motivation for this research came from the need for a conversational NLIDB that

could mimic a human structured query language expert by employing conversation with

users to dynamically formulate queries to extract and refine database information. The

research aim, questions, hypothesis and objectives are discussed as follows.

1.3 Research Aim

The main aim of this research is to contribute to the understanding of existing NLIDBs

by developing a novel conversational NLIDB architecture for sustained dialogues to

automate query formulation and information refinement processes and perform an

evaluation of the implemented prototype through a sample database. The following

research questions are investigated as part of this research.

10

1.4 Research Questions

The research questions are as following:

1. Can a NLIDB allow users to retrieve desired information from a database

conversationally?

2. Can a NLIDB allow users to engage in sustained dialogues to refine query

produced information from a database?

3. Can a Pattern Matching approach be used to successfully develop a

conversational NLIDB, capable of automating complex query formulation

process?

4. Can a conversational NLIDB generate comparable results to those produced

conventionally by a database expert?

1.5 Research Hypothesis

The null hypothesis (H0) is that a general user cannot interact with a NLIDB to formulate

a query to retrieve and refine desired information from a relational database.

The (H1) hypothesis is that a general user can interact with a NLIDB to formulate a query

to retrieve and refine desired information from a relational database, successfully.

1.6 Research Objectives

The objectives of this research are:

1. Investigate state of the art (SOA) on existing NLIDBs and CAs, based on

approaches and architectures adopted for developments.

2. Research and identify historical challenges that have prevented progress and

wider adaptability of NLIDBs in real-life environments.

3. Specify a methodology for the development and implementation of a novel

NLIDB framework, scripting language and evaluation framework to measure

features implemented in the proposed prototype system.

4. Review and investigate knowledge engineering techniques to generate and

implement a NLIDB knowledge base.

11

5. Build a conversational NLIDB architecture with CA components and

conversational abilities to allow users to extract and refine information stored in

a database.

6. Design an appropriate evaluation methodology for the proposed conversational

NLIDB, and determine its ability to handle conversation with the users, usability

and usefulness (such as user experience, user acceptance, information accuracy,

reliability) through specific experiments.

Figure 1.1 illustrates each objective of the proposed research and how it is addressed in

this thesis. An overview of each chapter is detailed below thesis structure section (1.8).

Figure 1.1: Thesis chapters in relation to the research objectives

1.7 Contributions

The most significant contributions of this research are:

Objective 1

Objective 2

Objective 3

Objective 4

Objective 5

Objective 6

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 & 7

Chapter 8 Chapter 9

12

 A novel architecture for a conversational NLIDB (ANEESAH) and a generic

development methodology for creating similar NLIDBs for other

databases/domains.

 A new scripting methodology designed specifically to allow fine control of the

conversation, dynamic query formulation and information refinement during the

scripting process.

 Proof of concept that it is possible for an inexperienced user to conversationally

interact with a NLIDB to dynamically formulate a query to retrieve desired

information stored in a database.

 Proof of concept that a conversational NLIDB can engage users in sustained

dialogues to further refine query produced information from a database.

 A novel evaluation methodology that can be utilised to perform an evaluation of

similar conversation-based NLIDBs from the subjective and objective

perspectives.

 Development of ANEESAH prototype one and results from empirical studies that

validate the generic architecture and methodology for a NLIDB with

conversational abilities to provide an interactive and friendly environment to

assist users in extracting desired database information.

 Development of ANEESAH prototype two and results from empirical studies on

the further developed and modified architecture and improved methodology as

well as enhanced conversational abilities to sustain dialogues for information

refinement and dynamic querying the query operations (i.e. reformulation of an

existing query to reflect different/refined results etc.)

The contributions listed above are expected to be of value to researchers and

developers in the fields of CAs and NLIDBs. Researchers and developers can utilise these

contributions as a starting point for their future projects/research. The proposed

methodology and architecture can be used as a foundation to build conversational

NLIDBs, which can conversationally engage users to extract desired information stored

in a database by dynamic query formulation process as well as sustain dialogues to

perform further information refinement.

13

1.8 Thesis Outline

The nature of the research and development of the ANEESAH conversational NLIDB

resulted in the substantial amount of documentation and experiment work. Chapter 2

provides a current state of the art of NLIDBs and CAs, the background of the field,

different approaches to building similar applications, challenges and limitations relevant

to the scope of this research followed by a review of existing conversational NLIDBs.

Chapter 3 presents the development methodology adopted for creating a

conversational ANEESAH NLIDB. The development methodology has been described in

three phases. Phase one will give an overview of the proposed ANEESAH NLIDB

prototype and details on the development of different components. Phase two of the

development methodology will highlight the development of scripting methodology and

knowledge base. Subsequently, phase three will also provide details on a generic

architecture for ANEESAH NLIDB.

Chapter 4 of this thesis presents an implementation of ANEESAH conversational NLIDB

prototype.

Chapter 5 presents details on evaluation methodology adopted to evaluate the

developed prototype ANEESAH NLIDB, empirical results and statistical tests undertaken

to answer research hypothesis and research questions. Chapter 5 will also highlight

experimental results based on users’ interaction with the developed ANEESAH NLIDB,

followed by a survey/questionnaire-based evaluation data highlighting whether the

developed prototype was comparable to a human expert with respect to assisting users

in task completion. Chapter 5 also provides a detailed discussion of experiments results

from an evaluation of the initial prototype initial ANEESAH NLIDB prototype. This

chapter also highlights different aspects of the initial prototype’s architecture, areas

highlighted for improvement (such as spelling mistakes), robustness and information

accuracy measures recorded during evaluation. Chapter 5 also bring to light gaps (such

as sustained dialogues for information refinement, querying the query operations)

leading to the further development of an initial prototype, to evaluate and answer all

research questions.

14

Chapter 6 presents further research and development conducted to improve and

strengthen ANEESAH’s architecture to address the weaknesses and areas of

improvements outlined through the first stage evaluation. Chapter 6 also provides

details on modifications made to the existing architecture (of the initial prototype

ANEESAH NLIDB), and new components developed to strengthen its abilities further and

overcome shortcomings noted through first stage evaluation.

Chapter 7 reflects on the evaluation methodology and results gathered during the

evaluation of ANEESAH prototype two. Chapter 7 also presents a statistical analysis of

empirical results to determine if enhancement and further development have led to

improvements in ANEESAH’s abilities such as conversational control, query refinement,

weaknesses highlighted during first phase evaluation.

Chapter 8 highlights the conclusions drawn from findings, contributions, discussion and

comparison of results to evaluate the effectiveness of both prototypes, and describe its

limitations and provide recommendations for the direction of future work.

15

Chapter 2 - State of the Art

2.1 Introduction

The idea of a computer taking the role of a human in a conversation was first proposed

by Alan Turing (Turing, 1950). This idea led to the proposal of Turing’s test which spurred

the research community to develop prototypes that could mimic humans to fool a judge.

The research attempts to pass Turing’s test appeared in the form of computer programs

called chatterbots, which used tricks to create the delusion of intelligence during a

conversation. Adding goal-oriented intelligence to chatterbots led to a new generation

of conversational partners referred to as “Conversational Agents” (Weizenbaum, 1966).

Conversational Agents (CAs) are computer applications that enable people to

communicate with computers using natural language (Russell et al., 1995). The term CA

comprises a description of different types of CA applications such as text-based,

embodied or spoken systems. The implementation of CAs in various domains assist users

to achieve their goal easily and rapidly (O’Shea et al., 2011).

Natural Language Interfaces to Databases (NLIDBs) are computer programs, which

replace the requirement to react with a skilled programmer to query a database by using

natural language. This chapter represents a review of NLIDBs both historical and the

current state of the art and contrasts the strengths and weaknesses of existing

approaches. Finally, a review of existing NLIDB and CA building techniques, the need for

alternative approaches and evaluation methodologies adopted for testing are also

discussed in this chapter.

2.2 Natural Language Interfaces to Databases

Natural Language Interfaces to Databases (NLIDBs) are computer applications, which

replace the requirement for an end user to commission a skilled programmer to query

a database by using natural language. Among early development of NLIDBs, the most

popular NLIDB was LUNAR (Woods, 1972). LUNAR was built to perform moon rocks

analysis based on an underlying database, but it had functional limitations and could not

be generalised to other domains (Woods, 1973). Later, the development of

RENDEZVOUS was intended to simulate open dialogues to users in order to formulate

16

database queries. RENDEZVOUS required user anticipated inputs to closely match its

knowledge base text for the system to understand the entered text, for processing.

LADDER development (Hendrix et al., 1978) was developed to target big data and

distributed databases. However, LADDER NLIDB required substantial customisation (e.g.

new grammar, domain knowledge) to work with new domains. PLANES designed

features were based on the principals of RENDEZVOUS, which used flights and an airport

database to answer users’ questions (Waltz, 1978; Walts, 1975). PLANES NLIDB also

required new grammar and extensive customisation to work with new domains.

In the 80s, research on NLIDBs increased with the main focus on portability and interface

designs (Owda et al., 2007). Several NLIDB systems were developed by this time such as

CHAT80, which translated natural language in Prolog language and TEAM, which

translated natural language queries into Simple Object Database Access query language

(Warren and Pereira, 1982; Grosz et al., 1987). Other systems such as PARLANCE (Bates,

1989), were built to resolve domain configuration issues and allow users to configure

underlying domains manually. ASK also appeared as a cross application NLIDB that

allowed users to input their requests in natural language to generate appropriate

responses from the underlying database (Thompson and Thompson, 1985; Thompson

and Thompson, 1983).

In the 90s, fewer NLIDB systems made their way to the commercial market with a

primary development focus on learning approaches. Despite the lack of acceptance in

real-life environments, work on NLIDBs continued to evolve with research on various

systems such as CHILL. This was built to analyse the implications of Inductive Logic

Programming, which comprised of paired questions with respective parsing (Zelle and

Mooney, 1996). INTELLECT’s entry in the commercial market was perceived as a

motivational step to amplify development of similar NLIDB systems. Some buyable

NLIDB options in the market were IBM’s Language Access, Q&A Symantec, DATALINKER,

and LOQUI from IBM English Wizard (Ott, 1992; Sijtsma and Zweekhorst, 1993).

More recently, the development of NLIDBs continues to evolve with the implementation

of advanced technologies in the Natural Language Processing field, integrating language

and graphics to take the benefits available from all modalities (Revuelta-Martínez et al.,

17

2013). In recent years some online system also appeared such as Wolfram Alpha,

Powerset and TrueKnowledge(Lopez et al., 2012). These were designed to rely and work

on initial information imported during their development stage. Recent developments

show further efforts to create limited interaction between the user and NLIDBs. The ITG

system was developed to offer train ticket information. However, it urged users to

repeatedly validate predictive text generated based on their inputs (Revuelta-Martínez

et al., 2013).

PRECISE was developed to address issues such as natural language translation and

overcome parser errors (Popescu et al., 2004). GeoDialogue was developed to handle

conversational grounding and dialogue generation challenges (Cai et al., 2005). NLPQC

was implemented to work through templates for translating natural language inputs

into queries for a relational database system. NLPQC also employed WordNet feature

that would generate from the database schema (Stratica et al., 2005a). C-Phrase was

developed on Codd’s tuple calculus to allow context-free grammar (Mooney, 2006).

NaLIX implementation focused on serving as a search tool to query the web-based

datasource (Li et al., 2007).

NaLIR a keyword-based search interface for web developed using Natural Language

Processing (Li and Jagadish, 2014). Other developments include NL2CM, which was built

to provide an interface that translates the user inputs into the formal query languages

that covered mining platforms support (Amsterdamer et al., 2015). ATHANA translated

user requests into an intermediate query language over the ontology and later

translated them into database queries (Saha et al., 2016).

2.2.1 NLIDB Development Challenges and Limitations

According to (Church and Patil, 1982), development of Natural Language Interfaces

(NLIs) for information retrieval from structured data requires a deep understanding of

different factors e.g. Natural Language complexities, ambiguities, etc. Some

architectural techniques have been adopted to use limited natural language to generate

logical queries for structured data. Such techniques include the Syntax-Based Family of

18

Architectures (Woods, 1972), the Semantic-Grammar Family of Architectures and

Pattern Matching (Cui et al., 2007).

2.2.1.1 Syntax-based Approach

Syntax-based systems utilise syntactic parsers to process a user utterance and produce

a corresponding to natural language query with the help of generated parsed tree, often

referred as a constituent tree (Androutsopoulos et al., 1995). In Syntax-based systems,

a user utterance is parsed and analysed syntactically to formulate a relevant query for a

database. The LUNAR system is an example NLIDB built using the Syntax-based approach

(Woods, 1972). A language specific parser generates a constituent tree in a shape of a

syntactic representation based on the user utterance. The parser extracts phrases and

words from the user utterance and uses a set of rules to create a relationship between

phrases and words. Later, the constituent tree is translated to the database query

language (e.g. SQL) with the help of designed rules. The constituent tree contains deep

information to formulate a query (Pazos R. et al., 2013).

The syntax-based approach has several problems for its use in natural language interface

developments. The NLI systems designed with the Syntax-based approach are

dependent on grammatically correct utterances and with correct structure. Poorly

structured sentences can lead to system failures (O’Shea, et al., 2011). Domain

independence is also a concern highlighted for systems developed with the Syntax-

based approach. The possibility of multiple syntactic trees which create various

interpretations of user utterances is also highlighted as one of the major problems in

adopting this approach (Owda et al., 2011). Defining mapping rules that transform users’

utterances to database queries is often difficult (Androutsopoulos et al., 1995), and

portability of syntax-based systems is also difficult due to in-depth designed (domain

specific) syntactic structures (Pazos R. et al., 2013).

2.2.1.2 Semantic Grammar Approach

Semantic grammar systems (Karande and Patil, 2009) work on a similar principle to

Syntax-based systems. The users’ utterances are parsed to generate a constituent tree.

19

However, the difference in this technique is that it uses pre-defined grammar categories

for mapping the constituent tree to a SQL query. In semantic grammar based systems,

unlike Syntax-based systems, pre-defined grammar categories do not necessarily relate

to syntactic concepts but correspond to domain knowledge and help to enforce

semantic constraints (Androutsopoulos et al., 1995). The NLIDB systems developed

using semantic grammar architecture tend to process user inputs with less complex

constituent trees, when comparing to conventional Syntax-based NLIDBs. The semantic

grammar approach also makes NLIDB systems flexible in allowing assignment of

semantic information to the tree nodes, which reduces elliptical problems during query

formulation process. PLANES, LADDER, REL, PRECISE, NLPQC, WYSIWYM are some

example semantic grammar-based systems (Karande and Patil, 2009).

The main disadvantage of using this technique is portability, due to its reliance on

domain specific knowledge, which is hardwired in the form of semantic grammar. A new

semantic grammar is required to configure a given system to work on a different

domain. Moreover, the syntactic tree developed using this approach cannot be adapted

to other databases. The NLIDB systems developed using semantic grammar approach

mostly relied on a corpus of query templates manually created by developers. This

approach has been adopted more recently in a system called NLDBI developed by (Rao

et al., 2010; Androutsopoulos et al., 1995).

2.2.1.3 Pattern Matching Approach

Some of the early NLIDBs relied on the pattern matching approach (Pazos, et al., 2013).

The pattern matching approach is based on a method, which explores all matched

occurrences of scripted patterns against user utterance. This approach is also described

as the act of evaluation for an input sequence of tokens for the presence of constituents

of some pattern. In contrast to pattern recognition, the match usually has to be exact

(Liapis, 2013). The patterns are formed in either a tree structure or sequences (Fader et

al., 2013). In this pattern matching approach, a user utterance is not required to be

grammatically correct, as the pattern matching technique works on a different principle

from that of syntax-based approach. Furthermore, the wildcard matching method

parses a user utterance to yield matched words and relationships to formulate a ruled

20

based response. The pattern matching approach can be adopted in the development of

Chatbots, CAs and NLIDBs based on precise methodologies (Crockett et al., 2009).

The pattern matching approach has shown effectiveness and flexibility to develop

extended dialogue applications (O’Shea et al., 2011; Pazos R. et al., 2013). SAVVY

(Johnson, 1984), InfoChat (ConvAgent, 2001) are examples of NLIDB systems which

employ the pattern matching approach. This approach using a rule-based matching

algorithm produces controlled responses and offers flexibility to sustain dialogues with

users (ConvAgent, 2005;Crockett et al., 2009). The NLI-RDB system employed the

pattern matching approach for its development, discussed in section 2.4 (Owda et al.,

2007). According to (Kerry et al., 2009), the pattern matching approach has revealed

impressive results in systems with clearly defined domains. However, this approach due

to its shallowness can lead to system failures. The pattern scripting is a laborious and

time-consuming task (discussed in more detail below).

2.2.2 Datasets used for NLIDBs Evaluation

There exists no agreement on what sample databases (datasets) should be used as

evaluation benchmarks for building and testing NLIDB systems. Most NLIDB

developments have relied on three main example datasets with sample records namely;

jobs domain dataset with jobs related information, a restaurant information dataset and

a geo-base dataset containing locational information. Inherently, these datasets are

simple due to basis or non-relational structure and contain fewer records. Therefore,

the selection of one or more of these datasets often required researchers to modify its

structure in order to evaluate their NLIDB applications (Tang and Mooney, 2001).

Historically, researchers have also used custom created datasets to evaluate their NLIDB

applications. Table 2.1 gives an overview of few example datasets used for NLIDB

developments and evaluation, in the past decade.

21

Prototype
System

Author(s) Development
Approach

Database Used Accuracy
Recorded

NL Query Custom/Domain
ontology

Custom 89%

NLI-RDB
(2)

(Alghamdi et al.,
2017)

PM Custom
(Unknown)

Unknown

NaLIR (Li and Jagadish,
2014)

NLP Microsoft
Academic Search
database

89.79%

CPC-NLIDB (Akula et al., 2013) Semantic
Grammar

Unknown
Database

96.6%

ITS (Revuelta-Martínez et
al., 2013)

NLP Trains Database
(Unknown)

80%

AskMe

(Llopis and Ferrández,
2013)

NLP A subset of
Northwind
Database

94.8%

PNLIDB (Kaur and Bhatia,
2010)

PM Generic
Agriculture
(Unknown)

Unknown

GINLIDB (Faraj et al., 2009) NLP Generic
Employees
Database
(Unknown)

Unknown

NLI-RDB
(1)

(Owda et al., 2007) Knowledge
Trees - PM

Generic Sales
Database
(Unknown)

Unknown

NaLIX (Li et al., 2007) NLP Timber XML
Database

Unknown

Table 2.1: Sample datasets used for NLIDBs evaluation

Some NLIDB systems have been evaluated using Northwind Traders’ dataset

(Microsoft.com, 2017), Pubs Books dataset or the CINDI library dataset (Stratica et al.,

2005b) that either have a simple structure or fewer example records. Moreover, the

ATIS dataset with airline flights information is regarded as most complex in a relational

structure comprising 27 tables and 123 columns. There are only a few NLIDBs evaluated

with ATIS dataset or similar databases due to elliptical and complexity of structure

(Pazos R. et al., 2013; Castillo et al., 2014). The selection of an appropriate dataset is

fundamental to the testing and evaluation of a NLIDB capable of conversationally

interacting with users to automate query formulation process and allowing access to

desired information with query refinement abilities.

22

2.2.3 Current known weaknesses in the field of NLIDBs

There have been many attempts to develop NLIDB systems in the past decades.

However, these attempts have yet not received a wider acceptance in real-life

environments. There are several factors involved leading to the lack of acceptance and

widespread use of NLIDB systems in real-life environments.

2.2.3.1 Linguistic Coverage

The linguistic coverage problem has been one of the major weaknesses, as users are

often ignorant of the linguistics abilities of NLIDBs (Cohen, 1992). In real-life

environments, it is not practical for users to remember what questions an NLIDB system

can or cannot cope with/handle. An NLIDB system will only give a definitive answer after

it has understood user utterance (Ramasubramanian and Kannan, 2004).

2.2.3.2 Domain Coverage Failure

In the case of NLIDB’s failure to answer user question, it is often not clear for users to

determine whether the system failure was caused due to linguistic limitations or domain

coverage (Copestake and Jones, 1990). The users in this situation try to rephrase their

utterances to make the system understand, staying unknown of the actual problem. In

some cases, a few NLIDBs respond through error messages (i.e. unknown answer,

unknown syntax, etc.), which adds to the lacking abilities of such systems (Carbonnell et

al., 1982; Crockett et al., 2011).

2.2.3.3 Users Assumption of System’s Intelligence

The users’ assumption of system intelligence is also among factors associated with the

weaknesses of NLIDBs. The users naturally assume NLIDBs to be intelligent, sensible and

active enough to understand and extract facts from their utterances. However, the

existing NLIDBs lack conversational and reasoning abilities, which ultimately adds to the

disadvantages of NLIDBs from a user perspective (Hendrix et al., 1978; Crockett et al.,

2013).

23

2.2.3.4 Interface Problems

The use of natural language in communicating with computers has been disputed by

some researchers, who have regarded its use as inappropriate. The basis for these

arguments is related to the inability of computer applications to understand and cope

with user’s requirements when using natural language. The users are often displeased

by having to express their requests formally, with correct grammar, and in short

sentences, etc. (Binot et al., 1991).

2.2.3.5 Configuration and Maintenance

One of the major factors hindering the acceptance of NLIDBs is referred to post

implemented configuration and maintenance. Most commercially available NLIDBs

were later cancelled from parent companies purely due to the issues related

configuration, maintenance and portability to a different environment (O’Shea et al.,

2011; Pazos R. et al., 2013).

2.2.4 Challenges for NLIDBs

The development of Natural Language Interfaces has been around for over 50 years, but

to date, these systems are not in wider use. There are a number of associated factors

which led to discouraging the industry from accepting NLIDB systems as useful real-life

tools (Pazos R et al., 2013). Amongst note able discouraging factors are the unsolved

issues and weaknesses in developed systems, as researchers who worked in this area,

did not further improve their prototypes. Some of the common challenges and concerns

identified by most NLIDB researchers are: conversational/linguistic problems, domain

independence issues, poor translation processes (database query formulation), poor

result refinement, multimodality issues and ease of configuration (Pazos R. et al., 2013;

O’Shea et al., 2011). In line with the scope of this research, challenges can be

summarized below:

Lack of conversational abilities in NLIDBs has been outlined as a frequent problem by

the users (Carbonnell et al., 1982; Tennant et al., 1983; Cohen, 1992). For users to

remember or memorise what kind of questions a NLID system can answer or cannot

24

answer is not ideal. In the case where a NLIDB fails to understand user requirement, it

is often difficult for that user to judge the reason behind system failure (i.e. scope of the

system, system abilities or coverage of domain, etc.). In complex and distributed

databases, many NLIDB systems have revealed ellipsis problems. Selection of conceptual

models in constructing NLIDBs is also highlighted as an issue for linguistic problems

(Tennant et al., 1983). Other problems such as anaphora (i.e. repetition/mentioning of

same word/term in a one sentence etc), grammatical utterances, quantifier scoping are

some of the linguistic problems that a NLIDB has to tackle when attempting to interpret

a user utterance. The query translation process has also been described as one of the

major aspects of an NLDB (Androutsopoulos et al., 1995).

The query translation process undertakes the understanding of natural language in

contrast to syntax and query. Query formulation problems that originate are relevant to

the adopted NLIDB development approach. Major problems confronting NLIDBs in the

formulation of queries can be defined as semantic ellipsis and wrong words or phrases

(i.e. missing key information, adjectives, verbs prepositions), coverage capabilities of

SQL such as several tables, aggregative functions, excessive information and user errors

(Androutsopoulos et al., 1995). The results produced by NLIDBs can contain encoded

information such as department identification number instead of department name

(Pazos R. et al., 2013; Binot et al., 1991).

There are a number of other challenging areas that are relative to the lack of

advancement of NLIDB technology. These areas can be described namely; achieving high

accuracy rates with domain independent architecture, portability of knowledge domain

and underlying database to work in a different environment, the ability to read and

explore big data in real-time (Giordani and Moschitti, 2009; Pazos R. et al., 2013).

2.2.5 Existing Methods of Evaluating NLIDB

There has been a substantial amount of work done on the evaluation of NLIDBs.

However, unlike other mature areas of research, evaluating NLIDBs is regarded as a

challenging task due to lack of generally accepted evaluation frameworks. The lack of

evaluation standards are considered to be one of the main problems that have

25

prevented the progress of NLIDBs. Many researchers have relied on evaluation metrics

such as precision and recall to determine the accuracy and performance of their NLIDBs

(Castillo et al., 2014; Sujatha and Raju, 2016). Equation 2.1, Equation 2.2 and Equation

2.3 show accuracy, recall and precision equations used for NLIDBs evaluation:

Equations (2.1, 2.2 and 2.3) make use of correct queries produced by NLIDBs, in

determining the appropriate measured values. The accuracy equation is the percentage

of correctly formulated and executed queries with respect to the total number of

queries including queries with inadequate and excessive results. The recall equation

measures are based on correctly formulated/executed queries with respect to the total

number of queries attempted including incorrect or failed queries, incomplete or

inadequate results. There are other evaluation metrics that can be used to determine

the performance of NLIDB e.g. Precision, F measure etc. (Castillo et al., 2014).

The F-Measure value combines the metric of Recall and Precision. This measuring

technique has been widely used to evaluate NLIDB systems for their accuracy (Lopez et

al., 2013; Srirampur et al., 2014). Following is the equation Eq. (2.4) for F-Measure

calculation.

Accuracy =

Total number of correct queries generated by NLIDB

Total number of queries parsed/attempted/Failure

X 100

Equation 2.1: Accuracy Equation (Castillo et al., 2014; Sujatha and Raju, 2016)

 Recall =

number of correct system answers (with excessive info)

number of gold standard/correct answers

X 100

Equation 2.3: Precision Equation (Lopez et al., 2013)

Precision =
number of correct system answers

number of system answers

Equation 2.2: Recall Equation (Lopez et al., 2013)

X 100

26

𝒇 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

Equation 2.3: F-Measure Equation (Lopez et al., 2013)

Unfortunately, the definition of “correct query” lacks uniformity as some researchers

consider a query containing requested results only, as a correct or an ideal query. Others

have regarded, a query that contains results in excess of requested results, as a correct

query (Castillo et al., 2014). Considering all aspects of evaluation is important in relation

to the expected outcome from NLIDB. Comparing performance of different NLIDBs is

difficult, as there is no uniformity on what benchmark should be used for evaluation. For

a business, the term “correct query results” is very important if NLIDB was to be

deployed and used as an information tool in decision-making (Castillo et al., 2014; Pazos

R. et al., 2013). Historically, the evaluation of NLIDB has focused on determining

conventional measures such as accuracy, precision, recall and F measure, and very little

attention has been given to evaluate to subjective metrics e.g. social adoptability,

interaction and user experience etc (O’Shea et al., 2011).

Furthermore, research on evaluation of other conversational systems has produced

number of models, methodologies and evaluation frameworks, which can be combined

with conventional measures (accuracy, precision, recall and F measure) to take a holistic

view of a NLIDB. The evaluation metrics can be divided into two categories namely;

subjective metric and objective metrics. The subjective metrics help in determining

system’s overall performance from user satisfaction perspective. Objective metrics are

measured by employing a different approach (O’Shea et al., 2011; Forbes-Riley and

Litman, 2011).

2.3 Conversational Agents

Conversational Agents (CAs) allow users to communicate with computer systems using

natural language. CAs have been implemented in various domains to assist users to

achieve their goals easily and rapidly. CAs have the advantage of replacing skilled,

expensive human advisors with a consistent 24/7 service (O’Shea et al., 2014). CAs offer

the conventional benefits of computer systems. CA applications are available for use at

27

all times and they present consistent advice do not require rest. CAs have been used

effectively in many applications, such as web-based guidance and database interfaces

(Latham et al., 2010). CAs have been used effectively across many fields i.e. advice &

guidance, customer services, computerised learning (Reis et al., 1997). Following are the

three main types of CA:

 Text-based CAs were originally intended to hold conversation with users, often

referred as chatbots (Carpenter, 2007). Other type of text-based CAs are goal-

oriented designed to address specific problems in a specific domain or

environment. Goal-oriented textual CAs adopt goal achievement methodology

such as “InfoChat” (Michie and Sammut, 2001), supported by an AI decision

making component.

 Embodied conversational agents (ECA) are computer-based graphical characters

that impersonate represent several properties of humans when engaged in face-

to-face conversation. ECA are capable of producing and responding to verbal and

non-verbal interaction (Cassell, 2000).

 Spoken dialogue-based CA applications employ speech as communication

method for interaction. The possibility of using spoken language is attractive for

several reasons as speech is natural method of communication. Spoken dialogue

systems are also goal driven (Sadek, 1999).

In the context of this thesis, the term CAs refers to text-based CA systems to separate

the signal processing challenges of automatic speech recognition (ASR) from the

semantic requirements of NLIDB. The implementation of voice feature to a CA helps in

widening access and giving demonstration of more human-like interface. CA

applications engage users in conversation by accepting their inputs in natural language

and producing an appropriate answer. The answers are usually pre-defined “generic

text” that can be dynamically changed with variable information to reflect the

conversation context. For example, in a pre-defined greeting response variable

information can be used to replace name e.g. Nice to meet you ‘Craig’. However, there

are several different techniques to understand user utterances in CAs:

28

 The natural language processing (NLP) technique attempt to parse/understand

user input by analysing constructs, meaning of natural language, sentence

structure and by application of rules to process important parts of sentences.

NLP understand user input based on a hierarchy of parts-of-sentence that makes

this technique dependent only on the sentence’s structure rather than on

context and domain-specific information. The users’ utterances are expected to

be grammatically correct that is often not the case. NLP technique also require

huge amount of computational power ultimately impacting on scalability and

speed for real-time user in different environments such as web, office (Khoury

et al., 2008), particularly if repair mechanisms are used to correct grammar etc.

 The pattern matching approach has also been adopted for the development of

CAs. As discussed in section 2.2.1.3, rather than attempting to understand the

input; this approach utilises an algorithm to match scripted patterns and key

words within an utterance to pattern-based stimulus-response pairs. Whilst

developing a set of scripts is a laborious and time consuming task, this approach

can understand/translate grammatically incorrect and incomplete inputs

(Wallace, 2009). For example, the InfoChat , ADAM (Convagent, 2005), OSCAR

(Latham et al., 2012) and UMAIR (Kaleem et al., 2014) are few CA applications,

built using pattern matching technique.

 Another approach used in CAs to translate and understand user inputs is AI

driven, which utilises a semantic similarity measure. Research in semantic

similarity measures is at its earlier stage. This method intends to reduce the

development time required to build CA applications and efforts of scripting.

However, the benefits of this approach are not yet fully realised (O’Shea et al.,

2011).

CAs are regarded as good for question and answering systems because of intuitiveness

to utilise and enable users to access desired information. However, for an environment

requiring sustained dialogues (such as application in database operating environment),

expertise and time required to create sophisticated CA scripts that impersonate human

conversation is a challenge rarely evaluated.

29

2.3.1 Pattern-matching Text-based CAs

Most text based CAs rely on the pattern matching approach as it supports sustained

dialogues (O’Shea et al., 2011). This approach works by requiring development of

conversation scripts. The example of conversation scripts used for pattern matching

approach similar to the scripts used in call centre enviornments where key input words

and phrases are matched to appropriate responses. The conversation scripts often

comprise numerous patterns leading to many stimulus response pairs in the CA’s

knowledge base. Scripts are initially developed by anticipating user utterances followed

by writing response (stimulus) pairs to match them. The development of conversation

scripts for a CA is a time consuming and complex task. The maintenance of CA scripts

requires continuous improvement by reviewing incorrect CA responses from

conversation logs and altering or enhancing stimulus response pairs to address the

issues. This is labour intensive, time consuming and requires considerable language

experties.

A CA script contains collection of pattern-based stimulus-response pairs called rules. The

rules represent current status and a response pattern. A script pattern contains

wildcards that are used to match any number of words or characters, increasing the

matching probabilities of rules to match utterances containing specific words and key

phrases. The pattern matching process does not grammatically correct input or

complete sentence structure. However, non-specific/declarative user utterances (e.g.

“what do you mean?”) remain one of the major challenges. Different conversation

histories and topic groups are utilised to help discover appropriate matches i.e. the

meaning of an example user utterance “Yes, let me take a look” can only be understood

with respect to the previous utterance and current context.

Rule execution/selection (as CA response) is driven through an algorithm, which works

through scripts grouped into categories and linked in a tree structure (Sammut, 2001).

The grouping of categories is sometimes structured over various levels such as a filter

script for capturing abusive words. The efficiency of the matching algorithm and the

organisation of the scripts have a direct impact on the real-time use of CAs as interfaces.

CA systems built with pattern matching approach can be applied to social (chatbots) or

30

goal-based conversations (e.g. conducting a sales), depending on the development

methodology chosen (Crockett et al., 2009).

2.3.2 Background

Most general-purpose CA’s were developed with the restrictive knowledge base to

engage in shallow conversations only. Nevertheless, ELIZA received the global

endorsement, as being the first best Chatbot prototype, which convinced users to

believe that it was listening and understanding their inputs. Parry (theparanoind)

chatbot which was also convincing because it implemented a narrow domain (Pereira

and Coheur, 2013). Among best known early developments were ALICE (Artificial

Linguistic Intelligent Computer Entity) and ADAM (Wallace, 2008). These agents were

developed and implemented in several fields. ALICE was designed on the same principle

as ELIZA to share one built purpose of using questions to draw a conversation out of the

user. ALICE and ELIZA were intended to keep the conversation going by asking users

common questions (Rzepka and Araki, 2015). ALICE was developed to work with

knowledge base stored in Artificial Intelligent Markup Language (AIML). AIML is a

pattern scripting language derived from Extensible Markup Language (XML).

The use of AIML helped symbolic reduction in order to analyse user utterances and

generate responses. The symbolic reduction process broke user inputs in constituent

parts to find appropriate matches against patterns. Approximately 41,000 elements

(referred as categories) were scripted/developed later referred as ALIC’s brain. Each

element comprised of a question (stimulus) and answer (response) known as the

“pattern” and “template” respectively. The scripted patterns were stored in a tree-like

structure and managed by an object called “graphmaster” (Wallace, 2009). The AIML

technology was also responsible for pattern matching and to relate a user input with a

response in the chatterbot’s Knowledge Base (Marietto et al., 2013).

Table 2.2 illustrates an example AIML category that comprises a pattern and a template.

The pattern consists of a key pattern that has a wildcard (*) character to match any word

or number of words at its position. In the example template, a variable (known as

predicate) value is retrieved to prepare the response. The predicate will have been set

31

previously in the dialogue using the markup <set name=”name”>Craig</set>. The

predicates allow information about the conversation to be stored e.g. commonly used

bind pronouns (i.e. he, she) to subjects (such as Einstein).

Source: ALICE AI Foundation, 2007

<category>
 <pattern>CAN I PLAY * TURING TEST</pattern>
 <template>
 We are already playing the Turing Game,
 <get name="name"/>.
 Now it's your turn.
 </template>
</category>

Table 2.2: Example AIML Category

The AIML recursion operator works as ‘goto’ command, repeatedly matching categories

to divide up utterances or match keywords. The conversation context is driven by last

utterance. Also, the categories are grouped into topics that are treated like ordinary

words to responses. Both ALICE and AIML are widespread as the chatbot are freely

available as open source. The distributed development of the ALICE’s knowledge base

allows the new patterns being added by many users. However, (Crockett et al., 2011)

earlier agents faced criticism because of limited autonomous properties, lack of

features, intelligence and context awareness that could influence, track and direct the

conversation.

The InfoChat agents (Convagent, 2005) and OSCAR (Latham et al., 2012) are examples

of CAs built using pattern matching technique. InfoChat is a goal-oriented CA engine,

which is used by ConvAgent Ltd for commercial applications (2005). InfoChat has been

successfully deployed in various environments as guidance and advice system such as

the Bullying and Harassment Advisor (Latham et al., 2010) and Adam, the Student Debt

Advisor (Crockett et al., 2009).

InfoChat is built with pattern matching approach, using spreading activation inspired by

human consciousness and empowered with a sophisticated scripting language known as

Pattern Script (Michie and Sammut, 2001). Scripts are engineered with set of rules that

comprise stimulus patterns and responses. Each matched pattern to user input leads to

generate a response. Pattern Script extend InfoChat’s abilities by including more

32

features than AIML i.e. better organised scripts that make development/maintenance

more efficient and shorthand features like macros. Pattern Script enables organising of

scripts of rules into contexts/topics that manage specific parts of a conversation. Table

2.3 illustrates an example Pattern Script rule that combines a number of ‘patterns’ with

associated strengths, a ‘response’ and ‘activation’ level.

Source: (Latham et al., 2010)

<What-is-Bullying>
a:0.01
p:50 *<explain-0> * bullying*
p:50 *bullying *<explain-0>*
p:50 *<remind-0> * bullying*
p:50 *bullying *<remind-0>*
p:50 *<explain-0>* a bully*
p:50 *a bully*<explain-0>*
r: Bullying is persistent, threatening, abusive, malicious,
intimidating or insulting behaviour, directed against an
individual or series of individuals, or a group of people.
*<set BullyDef true>

Table 2.3. An example Pattern Script Rule

For example, in the rule “What is Bullying” consist of a rule name; ‘a’ is the activation

level maintained to provide conflict resolution, and p is the pattern strength derived

from the matched pattern against user utterance, ‘r’ is the CA’s. As each rule can contain

number of patterns which match individually, therefore, scripts (PatternScript) are

shorter and easier to maintain than AIML scripts. As shown in Table 2.3, patterns contain

the wildcard (*) character, which allows matching of any number of words, which can

later be retrieved for use in the response. PatternScript enables development of scripts

in modular nature by grouping rules into sets referred to as contexts (Michie and

Sammut, 2001). InfoChat has been successfully employed as a goal-oriented CA where

the conversation domain is explicitly defined (O’Shea et al., 2011). Several features such

as organising of scripts and managing conversations allow InfoChat to lend itself in goal-

based environments.

33

2.3.3 Review of Challenges for CAs

CAs have proven their abilities as alternative tools for scenarios and platforms, which

conventionally require human operators to provide information such as advice,

guidance. There have been many CA developments in past decades but the success and

their acceptance is limited. Following are some of the challenges that influence CA

developments and their wider acceptance:

 The development of CA scripts is a labour intensive and time consuming process

that puts an impact on development costs.

 The CA scripts are developed anticipating (what users will or might say) and

backward looking (applying correction to incorrect responses) leading to a

lengthy development time. This applies to CA developed techniques such as

XML/AIML and PM.

 Skills in developing dialogues are essential and CA responses must be carefully

scripted to maintain flow of conversation. In goal-oriented CAs, this drives the

conversation towards its goal.

 Development skills are required for the selection of patterns and key words to

match the required user utterances and give an appropriate response.

 Maintaining CA scripts is a difficult job as rules interact and compete with one

and other, and even one rule change can destabilise a CA or fire incorrect

responses.

 When applied to extended conversations rather than answering direct

questions, e.g. about products, CAs lack the social intelligence of humans. To

genuinely mimic human behaviour, CAs additionally need to be able to pick up

and react to user affect, such as mood, personality, boredom, confusion or

frustration (Becker et al., 2007).

 The CA applications lack scalabilities to cope with eventual expansion in

conversational load. Reliability of information is another issue, which worries

real business users to allow clients to be served through CA applications.

 Real-life environment users lack confidence in CAs’ treatment of users with

respect to their desired goals.

34

 The users often feel insecure revealing sensitive information to CA applications

with fear of their information being shared or unauthorize use of it (O’Shea et

al., 2011).

Although there exist several challenges, CA applications are able to communicate with

users adequately in clearly defined domains. More recent advances incorporate human

like behaviour into CA’s, to enhance the user experience by developing CAs that are

perceived more natural and less machine-like. There has been research in observing

and reacting to human social behaviour in CAs such as social conversational skills, socio-

emotional interaction (Kumar et al., 2010; Mairesse et al., 2007) detecting the type of

user personality during the conversation from the entered text using linguistic cues. (Ma

et al., 2005) used keyword spotting to estimate emotions from text-based conversation.

Furthermore, CAs help in reducing costs by taking over responsibilities of repetitive tasks

and can adopt to different domains. CAs enable exploitation and making the most of

extendable knowledge base and record iterations automatically, which can help in

performing analysis and improvements (O’Shea et al., 2011).

2.3.4 Existing Methods of Evaluating CA

In software engineering, the quality is described as the degree to which a system,

component or a process meets user or customer needs (Hilliard, 2000). As suggested by

(Roy and Graham, 2008) the quality of an application is determined mainly by the degree

to which requirements, such as reliability, correctness and usability are met. The aspects

that impact quality are known as quality attributes, which can be categorised in different

ways. The international standard (ISO 9241-11) for usability can be defined as

(UsabilityNet, 2017):

“The extent to which a product can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context of use.”

This consists of three following areas (UsabilityNet, 2017):

 Effectiveness – Objective metrics i.e. completion rate, no of errors etc.

 Satisfaction – Objective metrics i.e. SUS questionnaire etc.

 Efficiency – Subjective metrics i.e. time to complete tasks.

35

Information, on user behaviour and perception, is required for the evaluation of a

conversational system (Skantze and Hjalmarsson, 2013). The evaluation of dialogue

systems has been considered as a difficult challenge (Martinez et al., 2008). There are

no evaluation standards within the NLIDB community. Also, it is difficult to explore

performance figures from real world systems that can be ported/utilised to other

systems. Each conversational system has been developed and evaluated through

directly related performance figures or measures. Turing test is one of the early

examples of evaluating the success of a dialogue-based system. The Turing test (Turing,

1950) stipulates that a conversational application should make a human believe that

they are speaking to a human and not to a computer program.

Considering what is expected from goal-oriented conversational systems, the Turing test

approach is not suitable to measure factors such as usability and effectiveness as both

the (goal-oriented and general purpose CAs) applications differ in nature. The ‘usability’

has been agreed and regarded as one of the most important performance figures

(Turunen et al., 2006; Walker et al., 1997). Other commonly used measures are

“flexibility” or “naturalness”. Although, functionality is one of the major measures,

however, in the absence of usability a conversational system wouldn’t be able to

demonstrate functionality. Besides efficiency and quality measures, computed or

autonomous properties, subjective measures have been conducted in order to evaluate

and measure perceived user perception of the system, advantages and highlight

shortcomings of a system (Martinez et al., 2008).

There has been a substantial amount of research conducted on to evaluate CAs systems.

Work from (Walker et al., 1997) has been regarded as influential with the creation of

PARADISE framework. The PARADISE evaluation framework employs the application of

linear regression to derive abstract and indirect attributes i.e. using directly measurable

attributes to determine user satisfaction (Fenton and Bieman, 2014). Several aspects are

of interest when determining the quality of dialogue systems. Moller et al. (2009)

presented a taxonomy of quality criteria, which included quality as two separate aspects

consisting of Quality of Experience (QoE) and Quality of Service (QoS). The quality of

Experience describes the user experience with subjective metrics i.e. user understanding

36

of the system etc. Quality of Service relates to objective metrics such as total number of

dialogues, dialogue duration. Others have explained, such as (Silvervarg and Jönsson,

2011), that evaluation of a conversational system can be carried out by studying the

history of dialogues or by the distribution of questionnaires to the users to reveal their

subjective assessment. Later research supports this idea carried out by (Rauschenberger

et al., 2013) who propose a framework to measure software quality and user experience.

A general agreement among researchers suggests that a combination of subjective and

objective metrics should be utilised for the evaluation of CA/Dialogue systems (Alobaidi

et al., 2013; O’Shea et al., 2011; O'Shea et al., 2009). A combination of subjective and

objective metrics will ensure that CA’s usability (from users perspective) is evaluated

and not only the effectiveness of its functionality.

2.3.5 Formulation of Evaluation Metrics

Software development is conventionally driven using measurement mechanism for

evaluation and feedback. Measurement enables us to gain insights into the quality of

specific products and processes as well as revealing strengths and weaknesses in

processes (Van Solingen et al., 2002). Recognising the improvement and outcome of the

process is achieved through a set of clearly defined project goals for the processes and

systems. In the absence of the destination, it isn’t possible to determine if one is going

in the right direction (Fenton and Pfleeger, 1998).

An evaluation methodology has more probability of success if it is devised with project

goals in mind (Fenton and Pfleeger, 1998). Goal Question Metric (GQM) methodology is

an example that is based on the understanding or assumption of an organisation on

evaluating applications or processes in a focused way. For example, first, identify the

goals for the projects followed by tracing those goals to the data intended to define to

describe selected goals operationally. Finally, facilitate with a framework for translating

the data into the stated goals (Van Solingen et al., 2002).

The quantifiable sources of information should be selected in line with the information

needs (wherever possible) so that, quantified information can be analysed to determine

whether goals are achieved.

37

The GQM approach comprises a framework including following three steps:

1. Goal – List the main goals of the development

2. Question – Each goal dictates the questions that must be answered to evaluate

that goal is achieved. Use of questions helps in describing the objects of

measurement (such as resource, process or product) for the selected quality

issue and to evaluate its quality from the selected viewpoint. The next step is

relating each question with appropriate metric.

3. Metric – Derive from each question determine what must be measured in

ordered to answer all questions. Specific data is associated to each in to answer

it in a quantitative way, which can be:

Objective, which includes the object’s evaluation from a single perspective that is being

measured; e.g. a number of staff hours spent on a task etc.

Subjective, which includes users’ viewpoint e.g. as dialogues naturalness or how likely

the user would use the software again.

(Van Solingen et al., 2002; Fenton and Pfleeger, 1998)

Figure 2.1: Goal Question Metric model ((Van Solingen et al., 2002))

As illustrated in Figure 2.1, GQM is a top-down hierarchical model. The top level starts

with a goal (the purpose of measurement or expected achievement from the project).

The goals can be further divided into questions that decompse the issue into its main

components. Each question is then translated into an evaluation metric, which can be

38

objective or subjective in nature. However, a single metric may also answer or provide

information to answer more than one question (Van Solingen et al., 2002).

2.4 Existing Conversation Enabled NLIDB Systems

As the strengths and weaknesses of different applications become better understood, it

is possible by combining CA and NLIDB approaches to take advantage of one another.

The development of NLIDBs has been largely focused on single query response

transactions. Little attention has been given to social adaptability, sustained interaction,

information refinement and how domain knowledge is structured (Owda et al., 2007;

Damljanovic et al., 2011). Conversation or dialogue based NLIDB systems can offer users

a friendlier interaction experience, clarify facts and produce desired results, as well as

refine produced results from extended dialogues (Shabaz et al., 2015; O’Shea et al.,

2011).

As mentioned in section 1.3, CAs have proven their abilities in real life deployments and

have shown effectiveness in guiding users during conversation towards achieving their

desired goals, across many domains. For example, ADAM conversational agent

developed by ConvAgent (2005), worked as a debt advisor for eight years in real life

environment. CAs are an ideal candidate for NLIDBs to increase their potential and

capabilities not only for information retrieval but also for conversational aspects such as

social adaptability, friendliness, information refinement and querying the query

operations, etc. The CA implemented NLIDB systems for structured data, can help in

tackling problems linked to conversation such as extended dialogue, domain knowledge

(Pudner, et al., 2007).

An example of CA implemented system is NLI-RDB (Owda et al., 2007), which was built

on the same principals as ADAM (Crockett et al., 2009). The NLI-RDB relied on the

Knowledge Tree approach. The NLI-RDB system was restrictive by nature as it initiated

interactive sessions by presenting users with selective hard-coded conversation topics.

The use of the Knowledge Tree approach limits users to choosing from menu-based

options on the screen and steers the conversation in a pre-set path. NLI-RDB was

39

implemented with hand-coded SQL query templates stored as responses. The system

was not able to produce any results for user requests not covered in existing hand-coded

SQL query templates. Also, the NLI-RDB system was evaluated using a generic database

comprising a simple schema structure, adding considerable disadvantage in measuring

other features. The NLI-RDB system reflected nominal conversational features and

possessed limitations in its abilities to only respond to tractable (i.e. where user request

lead to the end note of tree corresponding a stored SQL query template only) user

requests, thus widely lacked in several aspects in contrast to desired NLIDB features.

NaLIR is another example of NLIDB, which was developed by (Li and Jagadish, 2014), to

act as a Keyword-based document search interface. NaLIR was evaluated using

Microsoft Academic Search database. The development NaLIR primarily focussed on

interactively helping users to translate their requests into database queries accurately.

The system was built using Syntax-based approach relying on the Stanford NLP parser

for the query translation process. The interactive abilities of NaLIR allowed shallow

disambiguation in users requests based on multiple possible query translations.

However, NaLIR was built as a single query response system and where necessary

displays user to choose from possible translations (multiple sub-trees) for resolve the

part of a request. The system relies on a Syntax-based approach, which inherently

requires users’ requests to be grammatically correct (Castillo et al., 2014) and can only

react to ambiguous situations in a non-intelligent manner.

More recently, Anand and Farooqui (2017) developed a NLIDB system based on NLP,

which also adopts a rule based technique to identify a context and then triggers

contextual dilaogues. The system has been developed for single transaction queries, and

due to the use of NLP building technique it requires user input to be grammatically

correct for appropriate query transation. The developed system can only formulate

basic SQL queries, therefore lacking conversational and query formulation abilities to

address the historical challenges highlighted in section 2.2.4. Another attempt towards

building conversational NLIDB is NLI-RDB (Alghamdi et al., 2017), which has been

developed based on an earlier (Owda et al., 2007) principles to allow users to interact

with objects directly in natural language and through navigation, rather than by using

40

SQL queries. The Object-Relational Mapping (ORM) framework (with the help of

Hibernate framework) has been used that communicates with and has a shallow

understanding of the underlying domain database. The use of the Hibernate framework

technology has advantages, but it has also been criticised for several reasons. This

method requires the developer to persistently define the mapping between the object

model and database schema, which express database-access operations regarding

objects. Additionally, organisations operating the Hibernate framework, often ignore

performance and testing of the data persistence layer that can lead to the system failure

(Wu et al., 2010). This attempt was also single query transaction oriented and failed to

address the historical challenges such as sustained dialogues, information refinement

with dynamic query formulation and querying the query operations.

2.5 Conclusion

This chapter has introduced Natural Language Interface to Databases, which allow

inexperienced users to retrieve desired information stored in databases. A number of

NLIDB systems were discussed. Different NLIDB building approaches were described.

There are a number of associated factors which led to the lack of acceptance for NLIDBs

in real-life environments (Pazos R et al., 2013). Among note able discouraging factors, a

significant proportion remains unsolved, as researchers who worked in this area, did not

further improve their prototype systems. The most common challenges and concerns

identified by majority researchers are namely; conversational/linguistic problems,

domain independence, natural language translation process (database query

formulation), result refinement, multimodality and ease of configuration (Pazos R. et al.,

2013; Crockett et al., 2011). Different NLIDB building techniques in relation to their pros

and cons were described. (Kaleem et al., 2014; Becker et al., 2007)

The concept of conversational agents as computer systems that facilitate

communication between users and computers using natural language was considered.

The research advancements in the field of CAs, their ability to interact and engage users

in sustained dialogues were described. A review of historical CAs along with recent

successful implementations has been discussed. For example, one of the earlier CAs

(ELIZA) was built to engage users by asking random questions to prolong the

41

conversation and did not have any meaningful purpose or goal to achieve. Similarly,

ALICE (Chatbot) was built to rely on a large knowledge base comprising rules for general

conversations, whereas, for goal-oriented scenarios such as tutoring or passport

applications assistance, InfoChat and UMAIR are more powerful and offer features of

the scripting languages. Different CA building techniques with pattern matching text-

based technique were discussed in more detail.

Furthermore, the feasibility of combining both CA and NLIDB to work together towards

a common goal “providing a conversation based interaction to users for accessing and

refining desired information stored in a database with querying the query operations”

was also discussed. A CA enabled NLIDB system can allow users to extract and refine

their desired information stored in a database. This advantages of such as making

information retrieval interactive/conversation-based, friendly and effortless with the

possibility wider implementation in the real-life environment. Finally, existing methods

of CA and NLIDB evaluation were also described.

2.6 Chapter Highlights

 Natural Language Interfaces to Databases (NLIDBs) allow users to retrieve

desired database information using natural language.

 Existing NLIDB building approaches still pose limitations and challenges leading

to their lack of success and acceptance.

 Conversational agents (CAs) enable natural language communication between a

user and a computer.

 Pattern matching approach is mostly used in text-based CAs as and is fast enough

to respond in real-time environments. The system build using PM approach can

handle different language related challenges such as grammatical and sentence

structure.

 Conversational agents (CAs) can support extended dialogues during the

conversation with users, therefore, can be integrated into NLIDB to enable

features such as information refinement from multiple dialogues.

 Developing CA scripts is a time-consuming, complex and labor-intensive task.

42

 There exists no evaluation benchmark to evaluate NLIDB or CA enabled NLIDB

applications.

43

Chapter 3 - A METHODOLOGY FOR DEVELOPING A

CONVERSATIONAL NATURAL LANGUAGE INTERFACE TO

DATABASE (NLIDB)

3.1 Introduction

This chapter introduces methodological steps for the development of a novel

conversational natural language interface to database (NLIDB) with abilities to engage

users in conversation to extract and refine desired information stored in a relational

database. The next section (Section 3.2) will give an overview of the proposed NLIDB

system (known as ANEESAH) followed by a section (3.2.1) detailing the considerations,

approaches and development of different components. The development and

engineering of conversation scope, scripting methodology and knowledge base is

detailed in section 3.2.2. Finally, section 3.2.3 includes the detail on a generic

architecture for ANEESAH, which is modular by design and flexible for further

development and maintenance. Throughout this thesis, the term ANEESAH refers to an

overall NLIDB system that engages with inexperienced users conversationally, to

formulate complex queries dynamically to extract database information and can

perform continual querying the query operations for information refinement.

3.2 ANEESAH Conversational NLIDB

The main aim of the proposed NLIDB (ANEESAH) is to interact with users and

conversationally guide users towards achieving their desired information from a domain

specific database (explained in section 4.4.1 in chapter 4). Instead of working as a single

transaction query system, ANEESAH is expected to mimic or act as a human structured

language query (SQL) expert to engage with users to dynamically formulate SQL queries

to extract database information with the ability to offer the continual information

refinement supported with querying the query operations. As identified in chapter 2,

there are a number of development techniques and approaches available for NLIDB and

Conversation Agents (CAs). The development of ANEESAH will combine these

techniques to develop both NLIDBs and CAs, i.e. pattern matching, rule-based algorithm,

44

structured query language formulation. In summary, the key expected features from the

proposed NLIDB are:

 ANEESAH will simulate a human SQL expert and offers an intuitive, natural

language interface to help users to engage in conversation to make their

requests.

 ANEESAH will use and apply conversational features (such as clarification,

resolving or completing missing information) to illicit goals from user requests

and understand their requests in the light of information stored in system’s

knowledge base.

 ANEESAH will translate complex users’ requests to formulate queries for a

specific domain database used for evaluation.

 ANEESAH system will execute queries to extract information stored in a specific

domain database and display results and offer users to refine query produced

information.

In the next section (3.2.1), a generic methodology has been proposed for developing

different components such conversational agents, natural language interface to

database, conversation design, query formulation techniques, evaluation methodology

for evaluation.

3.2.1 Phase 1: Components Development

This section of the thesis will explain methodology adopted for the development of

different components for proposed ANEESAH.

3.2.1.1 Adopt a NLIDB Building Approach

Building computer applications that mimic a human (in constructing database queries)

is complex and time-consuming. Such applications, along with scripting knowledge,

require expertise in extraction and formatting of expert knowledge (O’Shea et al., 2011)

i.e. subject knowledge, database schema information, structured query language

knowledge, etc. Formalising the development of a conversational NLIDB that can be

adapted to different domains will help to speed up the development. The NLIDB building

45

techniques should be investigated to produce a suitable development method in line

with the scope of this research.

3.2.1.2 Selection of a Domain Database

The selection of a sample dataset or domain database is one of the preliminary steps in

NLIDB building. This sample dataset is also called domain database, which plays a key

role in its evaluations by serving as an information source for conversationally

formulated queries from which results may be extracted. Ideally, the domain database

for NLIDB ought to be complex in schema structure (information about tables, columns,

constraints, etc.) with large number records. As discussed in chapter 2, there is no

universally accepted benchmark or standard specifying in what sample dataset should

be used for the evaluation of similar NLIDB systems. This, adds to the difficulties in

building a NLIDB with ideal properties. However, a domain database in line with the aim

of this research should have properties such as complex relational structure and a large

number of historical data records.

3.2.1.3 Analyse Real Life Information and Query Requirements

A user’s desire to access database information has two main aspects namely; what

information is requested, and requirement of a query to produce that information.

Seeking an in-depth understanding of how information is requested in real life

environments. Most modern enterprise resource planning (ERP) applications (i.e.

Oracle, Microsoft, SAP, etc.) deliver ready to use department-specific reporting suites.

For most organisations, off the shelf business applications are not able to deliver

unique/bespoke business needs such as coping with ever growing database records, the

constant requirement for information and development challenges, which in turn leads

to the requirement for help from database experts. A critical review and research on

ERP systems and chatting with information users from different organisations will

provide an idea of information request and delivery process. Conducting meetings with

database experts will highlight what implications and challenges involved in their roles.

46

3.2.1.4 Determine Conversation Scope and Structure

This phase of the methodology includes capturing of real life information and query

requirements for the development of conversation structure in proposed system. A

number of scenarios and information requests can be devised not only to construct the

conversation style but also for evaluation to see if, the proposed system can produce

the required outcome by means of conversation. The conversation style should lead the

proposed system to formulate complex structure queries (i.e. multiple database tables

joins to collate information, use of mathematical/aggregation functions, etc.) where

required. The use of real life information requirements to build conversation structures

will provide users with a natural experience in interacting with the agent to gain access

to desired information.

3.2.1.5 Develop Knowledge Base Structure

This step will involve selection and design of a knowledge base structure, which will

maintain information such as scripted responses for conversation, query related syntax

and database schema information. The information sought in sections 3.3.1.2, 3.3.1.3

and 3.3.1.4 can be used to prepare different blueprint documents to design different

conversational topics, knowledge base contexts and query relevant factors (i.e. scripting

of query syntax, database schema information, etc.). The proposed knowledge base

should offer support query and non-query (text based) based responses. The proposed

knowledge base will be scripted with relevant rules and patterns to enable the ANEESAH

system to react with appropriate responses. The proposed knowledge base structure for

the ANEESAH System will be comprised of three divisions namely; (1) domain database

scripts for query based responses, (2) Frequently Asked Questions scripts that will deal

with database structure/system related questions such as “how many tables are there

in the database?”, and (3) General Chat to manage off topic questions such as “what is

the weather like today?”. The introduction of multiple contexts will strengthen

ANEESAH’s conversational abilities to allow users to interact freely.

47

3.2.1.6 Devise Methodology for ANEESAH’s Evaluation

As discussed in chapter 2 no standard for the evaluation of CA or NLIDB applications

exists, which in turn creates the need for designing a new evaluation methodology for

the proposed system. The evaluation methodology design should include a wide

spectrum of subjective and objective metrics, as described in chapter 2 Section 2.3.5.

The design focus should be aimed the evaluation of major features of the proposed

system such as dialogue naturalness, robustness and information accuracy. The

evaluation methodology design should also include set experiments (in line with the

selected subjective and objective metrics). The information obtained from experiments

should be measured through statistical tests such as descriptive and inferential

statistics.

3.2.2 Phase 2: Conversation Scripting and Query Formulation

The conversation will be scripted with a view to evaluate if, users can conversationally

achieve desired database results, by using the prototype ANEESAH NLIDB system, that

will otherwise require a SQL query. The structured query language is widely used in

information systems environments to perform various operations on the data such as

retrieving subsets of information, or adding, deleting, updating records. The

conversation designed and query formulation technique following phase 2 of the

methodology, is described in the following sections.

3.2.2.1 Selection of a scripting methodology

The pattern matching technique implemented in similar conversational agent and

natural language interface to database systems has proven effectiveness in sustaining

dialogues during conversation with users (Kaleem et al., 2014). This technique not only

allows scripted dialogues based responses to support conversation to take place but can

support matching and extraction (from user utterances) of database relevant

information to formulate queries. The implementation of a pattern matching technique

will be coupled together with sentence similarity approach to support ANEESAH’s CA to

produce accurate and definitive responses. Although, pattern matching allows scripting

of the dialogue responses it has limitations in checking for rigid expressions requiring

48

case-sensitivity, non-alphanumeric symbols or the syntax of programming code, such as

SQL query syntax.

3.2.2.2 Map/Organisation of Conversation Scripts

As discussed in section 2.1.5, the knowledge base structure for the proposed

architecture will be segmented in three divisions (domain database scripts, frequently

asked questions, general chat). Adopting a strategic approach is pinnacle to develop

conversation contexts and organise CA scripts for ANEESAH. Sammut (2001) described

a technique of managing conversations by grouping rules into sets, called contexts. The

contexts with stored scripts represent individual conversation topics. This approach

helps the system recognise the current state of the activated context at any point during

conversation. Pattern scripts allow control to switch from one context to another, which

is useful in a structured conversation such as sustained dialogue for information

refinement. The use of context techniques makes development and maintenance of

scripts easier. This technique offers flexibility for further development. Contexts based

collection of conversational scripts will be used to develop and maintain scripts to cover

full conversational scope. The scope will require responses to events such as contexts

containing rules scripted to discuss frequently asked questions about the database or

system, where a user utterance has failed to match any rule script or a partially matched

utterance.

3.2.2.3 Develop Technique to Determine System Responses

This step of the development methodology involves designing of a technique for

ANEESAH’s CA to handle scripted query and text-based responses as well as recognising

and supporting of non-scripted responses. The technique will enable ANEESAH’s CA to

work with scripted responses stored in the knowledge base discussed in section 2.3.5.

This technique should also allow ANEESAH’s CA to perform user request matching across

knowledge base scripts in a sequential order to determine the appropriate response.

This technique should equip ANEESAH’s CA to deal with each user request and relevant

response (whether query, non-query, text-based) accordingly. This technique should

clarify when a user request might trigger a single transaction response (once matched

49

in the knowledge base against scripted responses), and detect requests that will direct

the system to follow a non-scripted query response process.

3.2.2.4 Develop a Layered Based Request Matching Approach

Due to the implications of conversational structure and natural language translation into

database information, it is necessary to develop mechanism and conversation that can

work to formulate queries in events such as non-scripted database information

requests. The query building mechanism/algorithm from user requests should adopt a

sequence of steps that will support mapping and capture of database and query syntax

related information. The capturing of the database and syntactic information will be

used for the query formulation purpose. This mechanism should be engineered with a

set of conditions and rules such as deciding on when minimum query information is

collected when to offer users to display results.

3.2.2.5 Develop/Adopt a SQL Query Formulation and Refinement Engine

The SQL query formulation ability will play a fundamental role in the proposed

architecture. The query formulation ability will be implemented as a SQL query engine.

The SQL query engine will be responsible for the dynamic formulation of database

queries, information retrieval and refinement process. The proposed query engine

should be modular in nature. The SQL engine should not rely upon pre-authored query

templates but should only receive query syntax and type instructions, which should be

sufficient to perform the query formulation process. The SQL engine should be

constructed with a designed path that, working in a pre-defined sequence of steps,

prepares and brings together the required syntactical parts of a query. In addition to the

initial formulation, the SQL engine should be equipped with query refinement

techniques. The SQL engine should be scripted with expert knowledge/techniques,

which can be used to analyse syntactical gaps, extract database schema information,

formulate queries that are complex in nature and perform enhancement/alteration to

the existing queries.

50

3.2.3 Phase 3: Design Architecture for ANEESAH NLIDB

The ANEESAH NLIDB architecture will include several components such as a CA, the

knowledge base, a Graphical User Interface and the SQL query engine. The proposed

ANEESAH NLIDB architecture is generic and incorporates related components, which will

be briefly discussed below.

3.2.3.1 ANEESAH NLIDB Architecture

The ANEESAH NLIDB should enable users from any background to interact

conversationally without having to ask their inputs/requests in specific order. Therefore,

it is important that ANEESAH NLIDB architecture maintains a comprehensive knowledge

base to understand user requirements. The architecture should allow domain database

to be changeable and incorporation of a new domain knowledge base with minimal

effort. In addition, ANEESAH’s response in helping users to extract their desired

information from domain database should be minimised. Therefore, an architecture

with modular approach has been proposed as most suited, which will allow

customisation, enhancement and replacement of individual components. Figure 3.1

highlights the proposed generic architecture of ANEESAH NLIDB that has been designed

with a modular structure. Next, the major components of the architecture are briefly

discussed below.

G
ra

p
h
ic

a
l
U

I

C
o
n

te
x
t

M
an

a
g
e
r

Sample

Database

R
e
fi
n

e
m

e
n

t
M

o
d

u
le

SQL Engine
Conversational

Agent

K
n
o

w
le

d
g

e

b
as

e

Figure 3.1: Generic ANEESAH NLIDB Architecture

51

3.2.3.2 Graphical User Interface (GUI)

The Graphical User Interface serves as interaction interface for users to converse with

ANEESAH NLIDB. The Graphical User Interface is responsible for sending and receiving

communication to and from the users. The GUI displays instructions, form control (such

as a clickable button, check boxes), database results and formulated SQL queries. The

GUI component contains an interactive chat area used to communicate with users.

ANEESAH NLIDB directs conversation when interacting with users; no navigation buttons

are included as there is no menu system. The modular nature of the architecture allows

changes to be made to the GUI component to reflect application needs such as including

voice or speech recognition feature, or deployment on portable devices.

3.2.3.3 Conversation Manager

The Conversation Manager is one of the major components of the architecture.

Conversation Manager is developed to manage the conversation flow in a predefined

path. The Conversation Manager works closely with other components (Conversational

Agent, Short-term Memory) to help ANEESAH to behave naturally. All communication

(to and from users) and the information is passed through conversation manager

module.

3.2.3.4 Conversational Agent (CA)

The conversational agent plays a key role in ANEESAH’s ability to interact with users

conversationally. The conversational agent has been developed to receive users’

requests related to the topics stored in ANEESAH’s knowledge base, perform user

request validation and user request matching process to generate natural language

responses (including formulating database query based responses to display

information from a database).

3.2.3.5 Knowledge base

ANEESAH’s knowledge base is responsible for managing information about three main

topics namely; the domain database, frequently asked questions about the system and

the domain database, and general chat or off topic questions such as weather, sports,

52

etc. The knowledge base will receive information from the graphical user interface and

conversational agent’s components via conversation manager, and will send

information back to the graphical user interface via conversational agent components.

3.2.3.6 Information Refinement Module

Information Refinement Module is responsible for supporting users to refine query

produced information from a domain specific database. Once a successful query is

executed, the refinement module is activated to receive further refinement/adjustment

requests. With the help of the information refinement module, users can perform

refinement of information such as add/remove database information, selection of

results, etc.

3.2.3.7 SQL Engine

SQL engine component is responsible for the dynamic formulation of queries, execution

of formulated queries in a domain specific database, and transferring of queries

produced results to the conversational agent to display in graphical user interface. In

line with the user request, the controller component of conversational agent collects

and then transfers relevant query information to the SQL engine, which uses this

information to construct a database query. The SQL engine will perform dynamic

formulation of queries and perform querying the query operation (e.g. ability to

reformulate/change existing query to produce different results as per user request).

3.3 Conclusion

This chapter has proposed a novel conversational natural language interface to database

call ANEESAH, which can process users requests interactively to allow access to desired

information stored in a sample database. Conversational agents (CAs) and natural

language interfaces are easy to use, as in real life we are used to communicating using

natural language. An improved natural language interface coupled together with a CA

can feel more natural and accessible to users, improving their effectiveness and

motivation in the day to day tasks.

53

A conversation enabled natural language interface can adopt the role of an SQL query

expert and bring ease of access to database information for inexperienced or naïve users

(users of information with no structured query language or database knowledge).

ANEESAH NLIDB can understand users’ conversational requests, translate these into

query relevant information, formulate queries and perform query execution to produce

database results. ANEESAH’s ability to allow and detect refinement requests also enable

users to take insights into database information. After a query produces responses,

ANEESAH can perform alterations to the formulated queries for information refinement.

By continually offering to refine information it enables users to users to extract,

manipulate and analyse information at will.

Instant availability of database desired information using natural language eliminates

the requirement for information users to rely on structured query language experts. A

similar system to ANEESAH, can support users with real-time database information

without any delays, aid effectiveness and improve productivity. A generic methodology

was proposed to design ANEESAH NLIDB, which will involve three-phase methodology

as discussed above.

54

Chapter 4 - ARCHITECTURE FOR DEVELOPING ANEESAH

NLIDB

4.1 Introduction

Based on the research conducted into the development of NLIDBs, it has been

established that to date and to the researcher’s knowledge there exists no approach to

building text-based conversational NLIDBs that can address key challenges such as social

adaptability, sustain dialogues, dynamic querying the query operations (discussed in

Chapter 2).

This chapter describes the development of a novel architecture and framework

components for the proposed conversational Natural Language Interface to Database

(NLIDB) called ANEESAH. ANEESAH is a new conversational NLIDB that can perform as a

human structured query language (SQL) expert, engages users in conversation and

dynamically formulates queries to extract information stored in a specific domain

database. The first phase of this research aims to validate a developed NLIDB

architecture and perform a proof of concept that the ANEESAH prototype can engage

users in conversation and formulate queries to extract their desired information stored

in a specific domain database.

The novel NLIDB architecture has been designed specifically to offer conversational

abilities (such as conflict resolution) to provide an interactive and friendly environment

to assist users with desired information stored in a specific domain database. The

proposed architecture comprises several components shown in Figure 4.1. The main

features of the ANEESAH prototype in the first of phase of the research are:

1. ANEESAH is able to interact with users conversationally to produce database

information in a limited/specific domain.

2. ANEESAH can support multiple inputs from users to elicit their desired goals and

offer single transaction-based query results.

3. By following a Pattern Matching (PM) approach (discussed in chapter 2 Section

2.3.1), ANEESAH can understand user requests by way of matching utterances

against scripts stored in the knowledge base.

55

4. ANEESAH employs developed features to extend its conversational abilities such

as perform conflict resolution and controlling the direction of conversation with

users.

5. ANEESAH is able to translate complex users’ requests into SQL data manipulation

statements.

6. ANEESAH is able to execute queries to extract information stored in a specific

domain database and display results.

4.2 Overview of Architecture

Figure 4.1 gives a high-level overview of proposed architecture and different

components in supporting ANEESAH’s role to create structured query language (SQL)

equivalent to that from a human expert, by leading users in conversation to produce

desired information from a database. The proposed architecture is modular in nature

for ease of development and maintenance with flexibility to integrate and adopt other

domains with customisation.

Figure 4.1: High-level overview of proposed architecture (prototype one)

Component 1

Component 3 Component 2

User Interface

Conversational
Agent Temporary

Memory Conversation Manager

Controller
User

 Response Analyser

PM Engine

 Sales History Database

Knowledge base

Dynamic
Database

Knowledge

General
Chat

Context

 D

FAQ
Context

 Domain
 Database

Scripts

56

ANEESAH’s architecture comprises of the following components which will now be

described.

Conversational Agent:

A Conversational Agent (CA) for ANEESAH had to be developed with its own associated

mechanisms because the literature review (in chapter 2) revealed that existing

techniques did not contain features necessary to be applied to NLIDB problems such as

conversational limitations, conflict resolution.

 A Controller that is used to control the utterance processing steps (discussed in

Section 4.3.1) within the proposed system in order to achieve user desired

response.

 A PM engine has been developed to take the role of user utterance matching

processes. The PM engine does this in two parts/tiers namely; the first tier deals

with user utterance matching against scripted patterns/rule-based responses

stored in the knowledge base and second tier deals with user utterance

processing against database information to build a manual query-based

response (discussed in Section 4.3.2).

 A Response Analyser feature which is responsible to fully analyse users’

utterances before the developed system initiate any query based response

discussed in Section 4.3.9.

 A Conversation Manager has been developed to manage conversation flow in line

with predefined path discussed in Section 4.3.10.

 A sentence similarity feature has been implemented to determine match

strengths between two phrases in Section 4.3.3.

 A new scripting language had to be developed because the literature review

revealed that existing scripting language techniques did not contain features

necessary to be applied to NLIDB problems discussed in chapter 2. The new

scripting language enabled the following development:

 Develop context based (e.g. Domain Specific Scripts, Frequently Ask Questions

and General Chat contexts) rules and patterns (e.g. scripts written to match

57

against user utterance to find appropriate response) necessary to enable

conversation in the system’s knowledge base (explained in the component 2

called knowledge base).

 Develop dialogue responses and results set from queries.

 Develop features to clarify and provide conflict resolution (e.g. that might arise

from poorly structured or unclear user utterances) while interacting with users.

 Develop for providing query related syntax to formulate SQL queries.

Each sub-component of Conversational Agent is discussed in section 4.3.

Knowledge base:

Component 2 consists of the following features of ANEESAH’s architecture.

 A knowledge base has been developed for ANEESAH prototype to hold all the

domain knowledge in a relational database which includes scripts, rules and

patterns based on different contexts. Scripts has been developed based on the

knowledge engineering techniques to specifically work with a sample domain

database (Sales History database). The developed knowledge base can be

customised with knowledge engineering to work with a different domain

database.

 Responsible for supporting a two-tier based user utterance matching across

three different domains/contexts e.g. Domain Database Scripts, FAQ Domain,

and General Chat Domain (discussed in Section 4.4).

 Responsible for supporting user utterance mapping to match across different

contexts.

 A Dynamic Database Knowledge module (part of the knowledge base that is

updated/initialized at system start-up with most up to date domain information)

to perform user utterance mapping against domain database to detect and

extract information/syntax necessary to formulate SQL queries.

SQL Engine

Component 3 of the ANEESAH’s architecture comprises of following novel features:

58

 SQL engine, after having received database relevant syntax/information from

the controller component. The SQL engine is responsible for the dynamic

formulation of queries to extract information/results stored in a database

(discussed in Section 4.5).

 The SQL engine works together with the SQL Configurator component, which is

responsible for analysing, exploring and acquiring the necessary database syntax

(i.e. primary keys, tables, joining conditions, etc.) to formulate complex queries.

Formulated queries are forwarded to the SQL execution components. However,

when query formulation fails, the user is displayed with an appropriate message

(discussed in Section 4.5.1).

 The SQL execution component is responsible for executing queries in the

database followed by producing, storing and displaying results back to the users

(discussed in Section 4.5.2).

 The SQL analyser performs analysis of query structures in the case where system

failure is related to a formulated query. The SQL analyser works by recognising

the actual query failure reasons (such as incorrect structure, missing syntax),

leading to system failure. Also, each query failure in the database results in an

appropriate message (often in the form of vendor code detailing the actual

reason for failure), which is utilised by the SQL analyser to apply an adjustment

(if possible) before re-running it (discussed in Section 4.5.3).

Each component with respect to its sub-components will now be fully described.

4.3 Components Development for ANEESAH NLIDB (Component 1)

Component 1 of ANEESAH’s architecture comprises of Conversational Agent,

Conversation Manager, User Interface and Temporary Memory. The CA component is a

fundamental component of the proposed architecture that enables users to interact

with ANEESAH for database information retrieval purpose. The CA comprises of sub-

components highlighted in Figure 4.2.

59

Figure 4.2: CA Components of ANEESAH NLIDB

The following sections will provide detail on different components of ANEESAH’s CA

followed by sections detailing Conversation Manager, User Interface, Temporary

Memory. The Conversational Agent (CA) is comprised of the following components:

 Controller

 Pattern Matching (PM) Engine

 Scripting Language

 Response Analyser

4.3.1 Controller

The controller module has been designed to control and handle the direction of

conversation with the users focusing on retrieving their desired information from the

database. The controller leads the conversation during dialogue sessions between users

and ANEESAH. The controller takes responsibility for validating each user utterance

before forwarding it to the Patterning Matching engine for further processing. The role

of controller module can be described as following:

1. The controller validates user utterances and deals with invalid utterances.

Utterance validation is performed to ensure that the utterance does not contain

bad/offensive or swearing words, or contains unnecessary characters and it is

not off-topic or irrelevant to the domain/contexts.

2. Firstly, the controller makes a copy of user utterance in ANEESAH’s log file,

followed by removing any unnecessary symbols (such as “!”, “.”, “*”, “^” etc.) to

simplify the utterance before proceeding with the matching process.

3. The controller features a built in three warnings rule in situations where it

detects offensive utterances or abuse of the system. The three warning rule has

Conversational
Agent

Controller

Response
Analyser

PM Engine
Tier 1 Tier 2

60

been successfully implemented in other conversational systems such as ADAM

debit advisor (Crockett et al., 2009), UMAIR (Kaleem et al., 2014) and OSCAR

(Latham et al., 2012). The user is warned, or session is terminated depending on

how many times the unacceptable language is used in the session.

4. The successfully validated utterances are forwarded to the PM engine by the

controller. After the utterance matching process, the controller is responsible

also for receiving matched responses and displaying to users where necessary

any accompanying query according to the fired rule/query. The controller works

closely with the PM engine and other components to ensure and manage the

entire conversation. The controller is the core of the CA and works in conjunction

with several other components to ensure the conversation goal is achieved.

4.3.2 Pattern Matching (PM) Engine

ANEESAH has been implemented using a novel Pattern Matching (PM) engine. The PM

engine controls user utterance matching against the system’s knowledge base. The PM

engine works based on a two-tier (Tier 1 and Tier 2) approach. The PM engine is

responsible for finding matched responses from both tiers. The Tier 1 deals with user

utterance matching against information stored in domain database (a sample sales

history database used for system evaluation discussed in Section 4.4.1). The Tier 1 part

does not adopt a rule based utterance matching. A user utterance is matched across

information stored in sample database to capture co-occurrence of attributes leading to

the formulation of a query based response (see Figure 4.5 for more detail). The Tier 2

adopts rule based utterance matching technique to find appropriate/matched response

across hand written patterns stored in system’s knowledge base. The PM engine works

on principle of a conventional rule-based pattern matching approach implemented in

other conversational system such as OSCAR (Latham et al., 2012). The PM engine has

been designed to work with rule based and non-rule based response handling. A rule

based response can be described as a scripted textual response, executed following a

successful utterance matching in either Domain Database context, FAQ context or

General Chat context. A non-rule (Tier 1) based response follows a manual query

61

following from a successful utterance processing against Domain Database Scripts, as

shown in Figure 1.5.

Figure 4.3: Pattern Matching Engine

The PM engine has been designed to work with other components of ANEESAH’s

architecture that work collectively to determine appropriate responses. Such

components can be described as pattern matching, scripting language (discussed in

section 4.3.5) and sentence similarity calculating algorithm (discussed in section 4.3.3).

The user utterance is categorised once a match has been found in the knowledge base.

Further, the relevant context (Domain Database context, FAQ context, or General Chat

context) is activated. The context activation is used by the PM engine to engage the user

in conversation and stay relevant to the topic. Following up from a context activation,

the PM engine continues to assume/relate subsequent user utterances to the same

context until a successful response is fired. The PM engine is equipped to recognise

changing contexts and allow users to switch conversational topics at desire. The PM

engine follows an implemented matching algorithm (discussed in Section 4.3.2 Table

4.2), which performs matching of each user utterance across all knowledge base

domains (Domain Database context, FAQ context and General Chat context) to detect

context or topic switching. Figure 4.4 gives a high-level description of ANEESAH’s

functional flow.

 Knowledge base

Pattern Matching Engine

Tier 1 (Non-Rule-base

Responses)

Tier 2 (Rule-base

Responses)

Dynamic

Database

Knowledge

Domain

Database

Scripts

General

Chat

Context

General

Chat

Context

62

The PM engine can deal with more than one matched responses. The PM engine

employs (an on-demand) sentence similarity strength function to determine an

appropriate response. In the case, where a user utterance has attracted duplicate

responses, the PM engine uses a sentence similarity calculation to execute the highest

matched response based on the similarity matched strength value.

Figure 4.4: High-Level Overview of ANEESAH’s functional flow

No

Start

Valid

Utterance

No

Yes
No

Inform User/

User History Evaluated

Clarify

with User

Match

Found

Yes

PM Engine

Utterance

Matching

No

S1
FAQ

Domain

S2
Domain

Database
Scripts

S2
Dynamic
Database

Knowledge

 S3
General

Chat
Domain

 D

Response

Successfully

Analysed

Query base

Response

Yes

Display Response/Result to

User

 Sales History Domain
Database

63

4.3.3 Sentence Similarity Feature

ANEESAH has been implemented with a sentence similarity technique. The sentence

similarity feature utilises a similarity measuring algorithm called Dice Coefficient

(discussed in Section 4.3.4). The role of this feature is to determine match strengths

between two patterns or word sets. This feature works in conjunction with the wildcard

pattern matching process (discussed in chapter 2) to support the PM engine to carry out

match process against different domains. The PM engine utilises wild card pattern

matching technique to shortlist matched pattern followed by selecting associated rule-

based response. In the case where a user utterance leads to duplicate matched

responses, the sentence similarity values are used to select a response based on highest

matched strength. A sentence similarity strength value can be described as a degree of

match between two strings based on calculated numeric value. The match value is

measured based upon the number of factors, such as matched keywords in two strings,

the number of matched pattern wild cards and algorithm-specific parameters. The main

purpose of introducing pattern strength feature is to increase the versatility of the

matching abilities of PM engine. The implemented sentence similarity feature replaces

scripted patterns by a few natural language sentences in each rule. Applying the

sentence similarity technique in CA building is more effective as it reduces the scripting

effort to a minimum (Li et al., 2004; O’Shea et al., 2008; O'Shea et al., 2009). Table 4.1

highlights the differences in rule handling for example topic “Payment of fees” obtained

from (O’Shea et al., 2010).

S: Example user sentence P: Scripted patterns R: Rule-based response

A Rule scripts using Pattern Matching A rule scripts using sentence similarity

<Rule 1> <Rule 2>

P1: * money S: I have no money

P2: * cash R: I’m sorry to hear that

P3: * funding
....
P250: * no money
R: I’m sorry to hear that

Table 4.1: Rule scripts using PM and sentence similarity

64

4.3.4 Dice Coefficient Algorithm

The Dice Coefficient matching algorithm is used to determine the similarity between

strings and is widely used in sciences, digital library and other fields to determine match

differences (Kondrak, 2004). The sentence similarity feature relies on Dice Coefficient

algorithm only in terms of determining the match strength values. The Dice Coefficient

algorithm works on principle to the derived degree of overlapping, between two-word

sets (i.e. user utterance and scripted patterns). Let A and B be the character bigram sets

for the word a and b respectively (Lin, 1998). Equation 4.1 shows the equation used for

similarity measure.

Eq. (3.1):

Equation 4.1: Dice Coefficient Equation

A value of 0 is used to show no overlap or mismatch between two-word sets (i.e. number

of words in a user utterance) and a value of 1 shows perfect overlapping or absolute

match. The difference between two-word sets is determined based on several bigrams

(a pair of adjacent letters in a string). Equation 4.2 shows an example of dice coefficient

calculated match value using bigram for two example words “context” words “contact”.

{ co, on, nt, te, ex, xt } = A
{co, on, nt, ta, ac, ct} = B

Equation 4.2: Dice Coefficient similarity match between two words

The calculated match value of 0.5 between word “context” and “contact” reflects a

degree of match determined using Dice Coefficient similarity algorithm as shown in

Equation 4.2.

2 |A ∩ B|
 Dice (a, b) = __________
 |A| + |B|

 2 (3)
Dice (context, contact) = ____________ = 0.5
 6 + 6

65

4.3.5 Pattern Matching Scripting Language (PMSL)

This section details the new scripting language used by the pattern matching engine that

allows users to engage in conversation. The development of NLIDBs have been

researched by a number of approaches, which represent associated challenges as

discussed in the literature review (discussed in chapter 2).

 The PMSL has been developed in order to represent the two separate sections of the

implemented knowledge base. The first represents set of rules, which further comprised

of scripted patterns and relevant rules based textual responses, whereas, the other

section deals with domain database relevant scripts, which lead to query based

responses (see detail example in Figure 4.5). A rule can be defined as sub-section of a

context that can be the target of a user utterance. A pattern consists of a few words,

symbols and spaces. The wildcard character sequence can be used as a substitute for

other mentioned characters in each set of words. The patterns have been scripted with

symbolic wildcard characters and regular expression operators i.e. a pattern containing

(*) can match any number of words. The utterance matching process takes place as

follows:

66

1 > START
2 Update Knowledgebase
3 Get user input
4 IF (User input valid = TRUE)

5 Take input forward to controller for processing (GO Step 9)

6 ELSE (Ask user for a valid/relevant input) //Allow user to make three attempts
7 IF (Valid input violated > 3)
8 END Session
9 Match input across domain contexts – (Database | FAQ | General)

10 IF (Input matched/Response found = TRUE)

11 ELSE (Ask user to enter a relevant input)

12 IF (Default response found (Non-Query) = TRUE && Match Strength = TRUE)

13 Execute Rule-based Response (Reset System (0))

14 ELSE IF (Default response found (Non-Query) = TRUE && Match Strength = FALSE)

15 IF (Match found is what was requested) // Check with user

16 Execute Rule-based Response (Reset System (0))

17 ELSE IF (Input matched database = TRUE) // (Query-based response = TRUE)

18 List matched query syntax // (Keyfields, Attributes, Functions, Filer etc.)

19 <Analyse query syntax>

20 IF (User Intention Exists = TRUE) // Select Statement

21 ELSE (Ask user to rephrase/or further clarification)

22 IF (Database Keyfields Exist = TRUE || Database Attributes Exist = TRUE)
 // Table, Column names, cell level information etc.

23 ELSE (Ask user to rephrase/select/clarify database information)

24 IF (Function Exist(s) = TRUE) //Aggregation function or sub-function etc.

25 <Analyse excessive use of syntax/function in input>

26 IF (Excessive Syntax Used = TRUE)

27 {Ask user to make selection}

28 ELSE (Move to the next step) (GO Step 30)

29 ELSE (Move to the next step)

30 IF (Minimum Query Formulation Condition Met = FALSE)

31 {Ask user to provide missing information to meet minimum condition}

32 ELSE (Minimum Query Formulation Condition Met = TRUE)

33 SWITCH (SQL Query Generator)
 // Query Types engineered based on complexity

34 CASE: Query Type 1
35 CASE: Query Type 2
36 CASE: ……………………
37 CASE: Query Type n
38 CASE: Query Type

39 {Collection of query related tables

40 Formalise database Keyfields and Attribute

41 Formalise functions and sub-functions

42 Formalise appropriate joining & result filter}

44 EXECUTE (SQL Query);

45 IF (SQL Query Results = TRUE)

46 Display (Display (0)) // Reset Session (0)

69 ELSE Reset Session (0) // Treat new user input as new request

70 END;

Table 4.2: Algorithm to for utterance processing and query formulation

67

The next section (4.3.5.1) will highlight a high-level utterance processing flow to

demonstrate how ANEESAH follows a predefined step by step process in assisting users

in accessing desired information stored in a domain specific database. Following up from

a user utterance failing to attract/match an appropriate response, ANEESAH tries to

build a query based response manually. ANEESAH’s knowledge base responsible for

providing patterns to aid manual query-based response building are scripted using

Regular Expression approach, discussed in next section.

4.3.5.1 Regular Expression based Pattern Matching

The scripting for patterns for a domain has been highlighted as a laborious task (Latham

et al., 2010). ANEESAH utilises an information matching feature based on regular

expression pattern scripts, also implemented in another similar application (Latham et

al., 2011). This feature has been implemented as part of the scripting language. A regular

expression is a pattern describing a certain amount of text. A regular expression, which

is a programming feature that has been designed to work in functional languages, is

derived from pattern matching approach and utilises wild card characters for the

assembly of patterns (Hosoya et al., 2005). Regular expression types are used as a

natural generalisation of text definition and description of text structure.

The regular expression pattern matching has been used for utterance processing to build

manual query response. To develop a flexible and robust approach for analysing and

matching table level information in the database, regular expression operators are used

in pattern scripting of the knowledge base. The implementation of regular expression

pattern matching not only provides benefit in intelligently extracting matches from user

utterances, but it also reduces the need for excessive scripting. For example, Figure 4.5

is a simple pattern that will match “city”, “citys”, “cities”, “town”, “towns” in an

utterance.

Example 1:

Figure 4.5: Example pattern with regular expression

68

The use of regular expression has allowed the development of reusable pattern scripts

to construct the full domain database knowledge. The database columns and tables

information is referenced by using named groups. A named group is the name of the

group reflection specific database key information (i.e. column name, table name, etc.)

and the pattern is the regular expression in the group itself. The atomic grouping feature

of regular expression has also been used to increase the efficiency of ANEESAH in

performing pattern matching.

4.3.6 Utterance Processing Flow

To find an appropriate match, a user utterance is matched across all knowledge base

contexts (Domain Database Scripts, FAQ Context and General Chat Context) in the flow

of conversation. Once a match has been found, ANEESAH displays a relevant response

back to the user. In addition to the utterance matching in the knowledge base, ANEESAH

offers conversation based assistance to the users for directing conversation towards

achieving their desired information. For example, if a user utterance is not very specific,

ANEESAH clarifies ambiguities raised during user utterance processing. Figure 1.9 gives

an overview of workflow of ANEESAH. After receiving an example utterance “total profit

in manchester”, the controller initiates the matching process by transferring the

utterance to the PM engine. The user utterance is matched against rule-based and non-

rule-based patterns stored in the knowledge base. However, if a query based response

is matched in the system knowledge base, user utterance is fully analysed before a query

is formulated. For a non-query response match, a text-based response is shortlisted and

displayed to the user. As shown in Figure 4.6, ANEESAH can handle and control various

outputs arising from the utterance matching process such as a poorly structured

sentence, conflict resolution or an utterance failed to match a response.

69

Figure 4.6: Overview of user utterance flow in the ANEESAH

// If rule based
response found

// If excessive
query results?

// If query based
response identified.

// If Utterance is fully analysed
and validated?

ANEESAH : I did not
understand what you
said ? Could you try
again?

ANEESAH : Make
appropriate
selection.

ANEESAH: What would you like to know about

sales?

System Start // Update Dynamic Database Knowledge

ANEESAH : I did
not understand
could you try
again?

False
// If Valid Utterance?

// If duplicate response

Controller

Example Utterance: “total profit in

manchester”

// If Database
information detected
by the system?

ANEESAH : Would you
like to see records
maintained in the
database for " '
'Manchester' , total
profit (i.e. net company
gain from business etc)
' " ?

True
Response
Analyser

False

ANEESAH :
Resolve issue with
User.

True

SQL
Configurator

SQL
Execution

SQL
Engine

ANEESAH : Execute a
rule based text
response.

Sales History

Database

// If no query
results
returned?

True

ANEESAH :

There no
records
found
against you
selection.
Please try
again.

ANEESAH : Do you want
me to restrict results ?

True

ANEESAH : Interface displaying query
results.

// If No Valid Response
Returned.

70

The next section (4.3.7) will explain a novel matching technique used to capture

database information reflected in user utterances.

4.3.7 Utterance Processing for Database Information Mapping

In order to develop a practical NLIDB system for a real-time environment, it was

necessary to contrive an information capturing approach that will allow ANEESAH to

perform user utterance matching against information maintained in the pre-selected

domain database. In this work, an Oracle sample database comprising sample records

was selected for evaluation and is described in Section 4.4.1. When a user utterance fails

to attract/match an appropriate rule-based response, this layer based matching process

is used to map user input across database relevant information. This process is used to

build a manual query response in different parts (referred as layers). The following

information discovery model (Figure 4.7) represents the flow of utterance matching

process.

Figure 4.7: Layer-based Database Information Mapping/Discovery

Layer 1:

Layer 1 involves matching of each user utterance containing words against domain

specific database information. The database information is pulled into Dynamic

Database Knowledge (DDK) module, which is a part of the knowledge base and serves

as a container. The DDK module makes available selective database information

Layer 1

Database
Attributes/Field

Matching

Layer 2

Database
Field

Patterns
Matching

Layer 3

Aggregation
Functions
Matching

Layer 4

Filter/Conditio
n of Results

Layer
5

User Intention

 Domain Database
 Scripts

Dynamic
Database

Knowledge

71

updated at system run times, to allow attribute and key information level matching. The

database metadata (column names, table names, data type) is also loaded and matched

against a user utterance. The Domain Database Scripts working together with DDK

component helps in capturing database relevant information from the users’ utterances.

The both components Domain Database Scripts and Dynamic Database Knowledge are

explained in detail in knowledge engineering section 4.4.2.

Let us consider the following user utterance as an example:

 Example User Utterance: “who are our top five best customers from ‘Spain’ based on

total purchase orders for ‘mouse pads’ in ‘1999’?”

At the first layer level, example utterance is checked against database information in

DDK module of the knowledge base, in order to capture any co-occurrences of an

attribute or key information. As shown in Figure 4.8, the attribute (“spain”, “mouse

pad”, “1999”) are recorded in the developed system’s temporary memory, and user

utterance is altered by replacement of matched attributes with corresponding database

fields, for further processing.

“spain” is matched in
countries table

“mouse pad” is matched
in products table

“1999” is matched in times
table

Figure 4.8: Matched attribute values in database tables

ANEESAH generates an identical surrogate user utterance before applying any

alteration.

Altered Example Utterance at Layer 1: “who are our top 5 best customers from

Country_Name based on total purchase orders for Prod_Name in Calendar_Year?”

The example utterance is altered to simplify matching process at next layer levels. Any

numerical value mentioned in user requests is also captured.

72

Layer 2:

This layer refers to the matching of example utterance against scripted patterns

(explained in section 4.4.3) stored in Domain Database Scripts module of the knowledge.

The domain database scripts module contains patterns relevant to the sales history

database (i.e. key information, column and tables information, etc.). Following is the

matched information (highlighted grey) from example utterance that corresponds to the

database fields.

 Altered Example Utterance: “who are our top five best ‘customers’ from Country_Name

based on total ‘purchase orders’ for Prod_Name in Calendar_Year?”

The patterns have been scripted for all domain database schema fields including table

names, column names, selective information stored in columns. Therefore, information

could be asked across the whole of the used sample database and in any combination

of objects. The matched part of the user utterance is replaced with the database fields.

Example Utterance at Layer 2: “who are our top 5 best Cust_Id from Country_Name

based on total Amount_Sold for Prod_Name in Calendar_Year?”

Layer 3:

The user utterance in this layer is matched to detect any aggregation function request.

ANEESAH is equipped to formulate SQL queries with number of aggregation functions

i.e. Sum(), Count(), Avg(), Max(), Min() etc. The knowledge base is equally developed

with aggregation function patterns. Once an aggregation function is matched from user

utterance, it is included in existing syntax collection to become part of query structure.

Altered Example Utterance: “who are our top 5 best Cust_Id from Country_Name based

on total Amount_Sold for Prod_Name in Calendar_Year?”

In the case of above example utterance, following is the syntax matched as part of the

aggregation function to be included in the query.

Matched
Pattern:

^(?=.*\b((?:customers?|clients? |consumers?|accounts?
holders?|buyers?|purchasers?))\b).*$

73

Example Utterance at Layer 3: “who are our top 5 (Oder by + Desc) Cust_Id from

Country_Name based on (Sum ()) Amount_Sold for Prod_Name in Calendar_Year?”

Layer 4:

Layer 4 is designed to analyse user utterances for any condition or a specific selection of

results. The developed system allows users to restrict results returned by queries (i.e.

first ten, last five, etc.). The system also features a method to prompt users with

excessive results, before displaying them in the system’s user interface. ANEESAH

utilises this feature in a situation where data rows returned by a query will not fit in user

interface screen (e.g. if query result rows were in the thousands). The users in such

scenarios can ignore or restrict results to their desire before query results before viewing

in the user interface. The system does this by displaying the number of results returned

by the query and offers the user a chance to restrict the result to his/her desire.

However, in a situation where the user explicitly requests conditional results, ANEESAH

does not offer restriction of results because of the pre-existing selection choice. The

query result condition applied in example utterance is “top 5” rows, which is recorded

in existing collection of syntax, captured in earlier layers.

Example Utterance at Layer 4: “who are our RowNum <= ‘5’ (Oder by + Desc) Cust_Id

from Country_Name based on (Sum ()) Amount_Sold for Prod_Name in Calendar_Year?”

Layer 5:

The user intention is checked at final layer to ensure that user intention to visualise a

query based response is present. The intention of the user is matched against scripted

intention patterns, which refers to “Select” syntax to be part of response query.

“Who are our” from the example utterance will correspond to ∞ “SELECT” statement.

The example utterance can now be broken down into segmented syntax to understand

query logic.

Matched
Pattern:

^(?=.*\b((?:best|top|most valueable|valueable|value
able|effective|highest))\b).*$

74

Example Utterance at Layer 5:

SELECT // Select records from the database

ROWNUM <= ‘5’ // restrict them by five rows

(ODER BY, DESC) // sort records by descending order

CUST_ID from COUNTRY_NAME // customer results from country table

Based on (SUM ()) AMOUNT_SOLD // aggregation function to transaction field

Mouse Pads PROD_NAME // include specific product with condition

In CALENDER_YEAR?” // selection based on a specific year

Next, the response analyser component (explained in section 4.3.9) is activated by the

PM engine for the user utterance to be fully analysed, before a final response (in the

form of a database query) is generated. ANEESAH is equipped with conversational

features to interact with the users actively. The implemented conversational features

extend ANEESAH’s ability to engage with the user to formulate queries from multiple

dialogues. The conversational features are aimed at handling a number of inconsistent

situations that might arise during the response formulation process i.e. resolving

ambiguities, non-existing information related requests, duplicates database records

handling, etc. These features are explained in more detailed in the following sections of

this chapter.

4.3.8 Conflict Resolution

This feature enables ANEESAH to perform conflict resolution for issues that might arise

during conversation with the users (i.e. duplicate product names, duplicate street

names, multiple query functions in a request, etc.). A database can contain duplicate

records, which might represent or refer to different information. During the utterance

matching process, ANEESAH is equipped to detect and capture the duplicate occurrence

of database information. In a situation where duplicate records are detected, ANEESAH

informs the user about duplicate matches and allows the user to make appropriate

match selection for his/her desired query. Let us consider the following user utterance

as an example (Example 1).

75

Example 1 user utterance:

Can you tell me the total quantity of sold y box games in Asia in 1998?

The attribute “Asia” from above example (Example 1) utterance is an attribute that is

detected as a duplicate match in the system, as shown in Figure 4.8.

Figure 4.9: Example duplicate records maintained in database

The attribute “Asia” exists in different columns (COUNTRY_SUBREGION and

COUNTRY_REGION) of the database table (COUNTRIES), which requires clarity from the

user, as random selection would lead to ambiguous or incorrect query results. In this

situation (as shown in Figure 4.10), ANEESAH displays the users with duplicate matches

captured in its temporary memory with match description to help the user in making

the correct decision.

Figure 4.10: Example duplicate records match situation, choices offered to the user

ANEESAH: Would you like to
include ‘Asia’ results from both
database fields?

 COUNTRY_SUBREGION

 COUNTRY_REGION

ANEESAH : The search has found duplicate recrods for ‘Asia’ ?

ANEESAH: Type 0 or type
country subregion to include
‘Asia’ results form
‘COUNTRY_SUBREGION’ ?

ANEESAH: Type 1 or type
country region to include
‘Asia’ results form
‘COUNTRY_REGION’ ?

User Intention

Attribute
Attribute SQL Function

Attribute Key Information

76

ANEESAH is implemented with this feature not only to handle duplicate matches

relevant to database information, but it also detects and deals with user requests

containing excessive information (beyond query formulation abilities of ANEESAH). For

example, ANEESAH deals with utterance containing more than one aggregation function

(such as Sum, Avg, Max) to be included in a single query, by way of asking user to select

one function at a given time. An utterance containing excessive database fields is also

interactively clarified with the user before a query response is formulated.

4.3.9 Response Analyser for Query-based Responses

ANEESAH has been implemented with a novel response analyser to work with SQL query

based responses. The role of the response analyser is to ensure that each user utterance,

shortlisted for the query based response, is fully analysed. The users’ utterances are

forwarded to response analyser by the controller before the SQL query formulation

process is initiated, as shown in Figure 4.11 below.

Figure 4.11: Response analyser working flow

The response analyser performs validation of user utterances. The user utterance is

analysed to address the most pressing problems i.e. non-existing information requests,

excessive information requests, unknown requests, etc. Let us consider the following as

an example (Example 2) user utterance (“Give me a list of goods names from spain”),

which meets all utterance validation requirements for the response analyser to trigger

the controller to proceed with SQL query formulation processing.

Controller

Response
Analyser

User Utterance
SQL

Configurator

Analyser

SQL
Engine

SQL
Execution

77

Example 2 - user utterance:

“<Give me a list > <of goods names> <from spain>”

Where a user utterance is not fully validated, the response analyser reacts by interacting

with the user to resolve it (i.e. user utterance might contain non-existent information).

Let us consider the following (Example 2) as a sample user utterance (“what is the total

profit from lg monitors in tokyo and exeter”), which does not meet utterance validation

requirements.

Example 3 - user utterance:

“<what is the total profit> <from lg monitors> <in Tokyo> <and Exeter>”

In Example 2, the user utterance has partially matched database relevant information.

ANEESAH offers matched records and makes further enquiries to the user about non-

existent information (e.g. “Exeter”). The user is asked to either rephrase non-existing

information or drop it from his/her request and proceed to view matched/available

database records.

4.3.10 Conversation Manager (CM)

This component manages the direction of conversation towards achieving the user’s

desired information. The CM also ensures that the user stays relevant to the

User
Intention

Select

Relation Identifiers Non-existent information

Attribute:
‘LG Monitor’

SQL Function:

Sum ()
Attribute:
Cust_city = ‘Tokyo’

User Intention
Select

Relation Identifier

Attribute:
country_name = ‘Spain’

Key Information:

prod_name

78

conversation topic and ensures that required information is made available to the

developed system before it executes any response. The conversation manager controls

the conversation in line with the activated domain context and allow users to switch

topic or contexts, as and when necessary. The use of repeated words is common in a

formal or informal conversation. In aiding query formulation from multiple dialogues,

the conversation manager has the ability to ignore repetition of words during a

conversation with the user. The conversation manager does this by verifying the existing

collection of matches in system’s temporary memory. The conversation manager works

closely with other components of ANEESAH, to handle inconsistent conversational

situations i.e. requests to produce nonexistence information, ambiguities in users’

requests, duplicate handling etc. Figure 4.12 explains the role of conversation manager

in directing the user in the given conversation to produce his/her desired database

results from multiple dialogues.

79

Figure 4.12: Conversation handling example in the user interface

4.3.11 Temporal Memory

ANEESAH features a temporary memory component to store a variety of information

during the conversation. The temporary memory component works closely with the

system log file providing assistance to the system during the conversation and in

extracting database results. ANEESAH uses temporary memory component during

conversational sessions with the users for the following:

80

1. The user utterance received by ANEESAH system is stored in the database before

its normalisation (i.e. cleaning, validation, etc.). The use of inappropriate, rude

or offensive words are matched against scripted rude word context in the

knowledge base. A user utterance with the rude word is highlighted as a violation

of rules, at which point the user is shown with a warning message. In the case

of repeated use of rude words, ANEESAH refers to counter in temporary memory

to analyse any repeated violation of rules.

2. Upon matching the user utterance is categorised to a relevant context in the

system’s knowledge base. The matched context (Database domain, FAQ domain

or General Chat domain) is activated in system’s temporary memory to allow the

controller to direct conversation with the user. During user utterance processing,

any database relevant information captured (key information, attributes,

database objects, etc.) at runtime, is retained in temporary memory and stored

in the system log file.

3. ANEESAH is equipped to process multiple utterances leading to one database

query, which requires it to remember information exchanged during a

conversation with the users. The temporary memory component provides

assistance to the system in staying relevant to the topics and sustaining a

conversation with the users by way of retaining variable information (i.e.

database information, user chat history, rules, responses, etc.).

4.3.12 Log file

The implemented log file helps ANEESAH by storing events, time & date stamps, unique

session ids, user utterances, system’s responses, and domain activation, captured

information, fired rules, correct responses, incorrect responses, formulated queries,

system breakdown and failed responses, etc. The log file module helps ANEESAH, where

necessary, refer to the historical information stored in log file i.e. calling previously

executed response, etc. This component also helps in carrying out statistical analysis

such as number of utterances recognised by the system and not recognised or failed

responses. The information recorded in the log file is aimed at aiding in future

improvements and developments of ANEESAH.

81

4.3.13 User Interface

ANEESAH is implemented with command line based user interface, which will be

replaced with a graphical interface at next stage development. The user interface is

responsible for serving as an interaction platform for the user and ANEESAH system. The

user interface receives user utterances and displays back responses in the interface

window. The development of the information displaying technique in the command line

interface has made it possible to display variable system responses in all forms i.e. text,

quoted words/phrases, tables, query results, etc. Also, the user interface supports the

presentation of query results in tabular structures.

A well-structured command line user interface possesses several advantages, when

compared with others. Command line interfaces are easy to learn, less complex, faster

in processing information, simplicity and uniformity make it easy to use (Pazos R. et al.,

2013). The Figure 4.13 shows the ANEESAH’s interface interacting with a user.

Figure 4.13: ANEESAH’s User Interface

The next section (4.4) will provide detail on the knowledge base structure and related

components.

4.4 Knowledge Engineering the Domain (Component 2)

A relational database in a commercial environment often represents a domain with

complex structure and storing millions of records. The records maintained in an

organisation’s database are used for various purposes and can be classified into a variety

82

of layered information. The layered information can be further divided into different

types such as master data, transaction data, enterprise information, and database

objects/metadata (Elmasri and Navathe, 2010). Each type of data stored in a database

reflects individual informational roles, for example, master data refers to the key

business entities i.e. product descriptions, customer details, operating countries, etc.

The transaction data defines business events i.e. quantities sold, the number of sales,

profit, loss, etc. Similarly, metadata information refers to the structure of information

models i.e. a number of tables, columns, fields, etc. The following Figure 4.14

(Sapinsider.wispubs.com, 2017) shows the scale of complexity involved in real life

organisational database structures. The nodes and spheres in above figure (4.14)

represent informational roles in a database and denote relationship among one another.

Figure 4.14: Information/Data universe of an example organisation

The spheres in the middle take the main relational point of individual information

models or schemas, which might represent individual departments (i.e. sales, finance,

accounts, production etc) in an organisation (Sapinsider.wispubs.com, 2014). In a real

life organisational environment, the information is often analysed by users working at

different levels. To access and analyse database stored information requires knowledge

of SQL language. Complex information analysis is a challenging task as users not only

require knowledge of SQL query language but also the knowledge of database schema.

A conventional knowledge engineering technique was adopted to script the domain

database. This information modelling technique relies on capturing, representing,

83

encoding and evaluation of expert knowledge (Chu et al., 2008). ANEESAH has been

equipped with the expert knowledge to lead the user in a conversation towards

generating a relevant response based on multiple dialogues. The knowledge base for

ANEESAH has been implemented with a generic approach in mind to allow naïve users

to interactively retrieve and analyse information stored in chosen database for the

developed system.

4.4.1 Adapting a Domain Database for System Evaluation

The domain database (Sales History database) used for the prototype system’s evaluation plays

a fundamental role in ANEESAH NLIDB as it serves as main information retrieval source during

conversation sessions with the users. The sample database has been selected based on the ideal

properties for ANEESAH’s evaluation, discussed in chapter 2. Oracle plc had developed the

database used for ANEESAH's evaluation. The chosen database comprises complex schema

structure with records of large data related to Sales History (SH) records (Oracle.com, 2014).

The short-listed SH schema for ANEESAH is particularly designed to demonstrate a large amount

of data in complex relational structure (Docs.oracle.com, 2014). The structure of the SH schema

has been developed with sample sales records of electronic products belonging to an assumed

company in view, which maintains a high volume operating business. The business operating

information is utilised by the company to perform business analysis from multiple database

tables to aid in decision making. The SH database information can be used to run

multidimensional analysis on sales trends, temporal reports, geographical reports, products

analysis etc. The structure of SH database comprises 8 database tables with 114 columns

containing domain relevant information. Figure 4.15 (Docs.oracle.com, 2014) below illustrates

the full structure of the SH database schema:

84

Figure 4.15: Sales History Database used for ANEESAH’s Evaluation

The SH database is installed using the documentation provided by the Oracle company.

The Figure 4.16 below shows an example data tuple in chosen domain database.

85

Figure 4.16: Sample table records stored in the Sales History database

4.4.2 Knowledge Base Structure for the Scope of Conversation

The implemented knowledge base structure for ANEESAH is comprised of three contexts

namely: Database context for SQL query based responses, Frequently Asked Questions

context which deals with database structure related questions, and General context for

off the topic chat with the users. The scope of ANEESAH’s conversational abilities is not

only restricted to simulating an SQL query expert but also allowing users to interact with

ANEESAH freely, in natural language. The knowledge contexts are scripted with relevant

patterns to enable ANEESAH to react with appropriate responses. The knowledge base

was constructed by a critical review and research on existing NLIDB systems and

commercial enterprise reporting systems (i.e. Oracle, Microsoft, SAP, ASAP, etc.) to take

an in-depth understanding of information management and knowledge engineering. An

in-depth study was also conducted in relational and non-relational databases (i.e. IBD

DB2, Oracle, Dynamo DB, etc.) for the purpose of adopting a comprehensive knowledge

base approach. ANEESAH uses an implemented knowledge base to support the user

retrieving his/her desired information conversationally. The Figure 4.17 below is an

example of implemented knowledge base structure in ANEESAH.

86

Figure 4.17: ANEESAH’s knowledge base structure

4.4.3 Domain Database Scripts

The Domain Database Scripts module plays fundamental role in the developed system

by housing domain database relevant scripts and dynamic database information for the

utterance matching process. The domain database scripts repository is responsible for

assisting the PM engine to perform user utterance mapping against database

information (i.e. key information, attribute information, database tables information

etc) to extract database relevant information. The domain database scripts are also

responsible for providing selective query syntax to aid in formulation of database

queries.

4.4.4 Frequently Asked Question (FAQ) Domain

FAQ contexts handles user questions related to the database structure itself for

example, a user might want to find number or name of database tables, description of

tables, or types of information stored in tables, or information about store/company

etc.

4.4.5 General Chat Domain

Database
structure
related
questions
table/column/
data

Database scripted patterns
i.e. tables, column, syntax,
reports etc.

ANEESAH’s Knowledge base

Dynamic
Database

Knowledge

Domain
Database

Scripts

FAQ
Domain

 General
Chat

Domain

 D

General Chat
or Out of
context
conversation
scripts.

87

The General context handles user utterances outside database relevance for example

user might want to talk about football, weather, etc. In this situation, the system

attempts reply briefly on topic, then motivate the user to return to the process of query

generation.

4.4.6 Dynamic Database Knowledge (DDK)

Dynamic Database Knowledge (DDK) is a key component of the ANEESAH’s knowledge

base. The DDK component has been developed to allow PM engine to map and capture

database relevant information during the utterance matching process. The information

maintained in the sales history database, used for ANEESAH’s evaluation, is dynamically

loaded into the DDK module on execution of the system. During conversation with the

users, each utterance is screened against extracted database information (i.e. master

data information, database metadata, and selective transactional data). The DDK

module allows the PM engine to perform matching of data records at all times, and

releases/frees the actual database from being reserved for match processes. The

database information extracted and stored in the DDK module is sessional, which is

deleted and reloaded with most up to dated information, upon each execution to aid

real time analysis. Figure 4.18 shows the flow for prepopulating DDK module with

updated database information.

Figure 4.18: Dynamic Database Knowledge update process

In real world scenarios, database information (information tables, database objects,

database structure, etc.) can change with the passage of time. The implementation of

the DDK module eliminates the need to make simultaneous changes, as it updates and

Welcome User: “Name”
ANEESAH: What would you like to know about sales?
User: I would like to know total sales from last week

Execution of ANEESAH

System

// Update Dynamic
Database Knowledge

// Delete
DDK

Records Sales History
Database

Dynamic
Database

Knowledge

// Update
DDK Records

from
Database

ANEESAH’s Knowledge base

88

houses the most up to date database information upon start-up. The DDK module makes

ANEESAH effective in understanding users’ requirements and broadens its database

knowledge to produce correct responses. The database information loaded into the DDK

is selective and contains characteristics information (i.e. products description, customer

details, operating countries, etc.).

4.4.7 Domain Grammar

The database grammar is a key component of Domain Database Scripts and DDK,

maintained in the system’s knowledge base. The domain grammar contains the

classification of users’ requests. The questions are often started as interrogative

sentences, but statements comprise of a collection of words assembled to yield a

meaning. For example, a user utterance can have situation leading to multiple response

scenarios i.e. a question-based utterance can trigger SQL query based or non-query

based response from the knowledge base. The database grammar provides information

related to a language specific grammar i.e. exclamatory sentences, question-based

sentences, etc (Shaalan et al., 2009). ANEESAH has been implemented with a library of

database grammar features which help it to understand user utterances. User

utterances are categorised with the help of implemented classification strategies

specifically designed to analyse user utterances intelligently. The Response Analyser

components also work in conjunction with domain grammar and other system

components to perform utterance analysis. This aids the system to identify correct

responses and to strengthen conversational abilities.

4.4.8 Knowledge Engineering the Domain for Query Scenarios

The knowledge engineering for the prototype system was carried out by researching

query formulation techniques and leading commercial business intelligence reporting

systems used in different organisations. Most modern enterprise resource planning

systems deliver department-specific reporting suites, which consist of pre-designed SQL

template based reports. A number of sales reports were studied in the interest of

understanding business process mapping. The structure of sales reports was also

analysed in contrast with the common SQL query syntax used to generate information

89

from the database. The research conducted on sales reports and complex query

structures helped in constructing SQL query formulation features for ANEESAH. The

gathered knowledge was also used in scripting ANEESAH’s knowledge base by adopting

a keyword based approach for identifying SQL query syntax from user utterances. The

system detects SQL query relevant syntax corresponded in user utterance.

However, a simple user utterance can lead to the requirement of a complex query

structure. The users in their utterances often (are unknown of the database structure or

system limitations) and do not mention all relevant syntax (aggregation functions,

joining keys/tables, etc.) required to complete a query structure. Therefore, where other

NLIDB fail in such situations, ANEESAH’s knowledge base has been developed to work

with minimal query syntax information. The users are not required to express detailed

query syntax notions in their requests.

ANEESAH has the ability to autonomously analyse, explore and include required query

syntax required when formulating complex queries. Suppose the user input is “show me

top two countries for extension cables sales” (shown in Figure 4.19).

Figure 4.19: Query required syntax extraction from user utterance

The information from utterance is matched in a layer-base approach as discussed in

section 4.3.6. For the given example utterance; Table 4.3 shows required query syntax

to successfully produce database results and formulated SQL query by ANEESAH.

 User : “Show me top two countries for extension cables sales"

ANEESAH
identifies user
intention.

ANEESAH
identfies sales as
database field
bearing
transaction data.

ANEESAH

identfies
extension
cables in
product
table with
the help of
DDK.

ANEESAH
identfies
countries as
database
field bearing
master data.

ANEESAH
identifies ‘two’ as
restriction of
results with its co
occuracne with
‘top’.

ANEESAH
identifies need for
introducing
function.

90

“show me top two countries for extension cables sales”

Database

Fields

Attributes

Values

Aggregation

Functions

Filter Schema

Tables

Require

Table

Joins

Required
Prod_Id
Cust_Id
Country_Id
Prod_Name
Amount_Sold
Country_Name

'Extension
Cable'

Sum(Amount_Sold)
Group by
Order by
Desc

rownum
<= 2

Profits
Customers
Products
Countries

3

ANEESAH system generated query for example utterance:

“select * from (select products.prod_name, sum(amount_sold), countries.country_name from

countries

join customers on countries.country_id = customers.country_id

join profits on profits.cust_id = customers.cust_id

join products on products.prod_id = profits.prod_id

WHERE PROD_NAME = 'Extension Cable'

group by products.prod_name, countries.country_name

order by sum(amount_sold) desc) where rownum <= 2;”

Table 4.3: SQL query syntax used for successful query results

The implemented knowledge base has enabled ANEESAH to formulate complex queries

for database information retrieval. ANEESAH’s query authoring knowledge extends

users abilities to request information from any of 118 database columns in complex

combination. ANEESAH has been tested to join 5 different tables to combine information

in formulated queries. Table 4.4 illustrates the scope of SQL query formulation

capabilities. The SQL engine utilises implemented query syntax to formulate database

queries depending on the nature of users’ requests.

91

SQL Query Syntax Description of SQL Query Syntax

SELECT - used to select data from a database.

FROM – used as assignment of source.

WHERE - used to filter records.

JOIN - used to combine rows from two or more tables.

AS – used for surrogate assignment

ON – used to specify joining value

SUM() – used to perform summation function

COUNT() - used to count values

AVG() - used to perform average function

GROUP BY – used to group values based on specific column.

ROWNUM – used to select specific rows.

ORDER BY - used to sort the result-set.

GREATEST () DESC – used to select values with condition.

DISTINCT - used to return only distinct (different) values

AND - filter records based on more than one condition

Table 4.4: SQL query syntax implemented in ANEESAH

ANEESAH is able to recognise information relevant to the domain database and converse

with users in the case where information is insufficient to execute a valid response. The

Sales History database chosen for ANEESAH’s evaluation was reviewed from various

angles such as schema structure, tables, columns, metadata, and information lying

inside database tables, etc. In contrast with sales history database information, the

knowledge base was written with various scripts required to formulate queries and yield

92

database results conversationally. The sales history database (schema structure), used

for ANEESAH’s evaluation, is fully scripted with synonymous information in Domain

Database Scripts module. The query syntax (as shown in Table 4.4) reflecting

information is also scripted as part of the domain database scripts. A part of the

knowledge base (explained in DDK section 4.4.6) is filled with information from the

database at system runtimes. The scripting language scripts database information as it

arrives in DDK module for simplifying user utterance matching process, and allows PM

engine to perform user utterance matching.

4.5 SQL Engine (Component – 3)

The SQL Engine takes a pivotal role in ANEESAH’s architecture. The SQL engine is

responsible for performing query translation/formulation process from user utterances.

The SQL engine works based on implemented techniques together with other

subcomponents (SQL Configurator, SQL Execution, and SQL Analyser) in order to retrieve

information from the database. The SQL engine relies on database relevant information

delivered by the system’s controller to analyse syntax requirements to engineer a query

structure. The SQL engine is equipped with the expert knowledge to identify the level of

complexity involved in a query formulation. The following figure (Figure 4.20) shows a

query formulation flow and its execution in the database.

Display query

results/respons

e

SQL Engine

SQL Configurator

Error code
Identified SQL Execution

No

Sales History
Database

Query
execution

failed.

SQL Analyser

Yes

Yes No

//Query Formulation Process

Start

S Start

93

Figure 4.20: SQL query formulation flow

ANEESAH features an automated query structuring approach, which can gather

necessary syntax to formulate query structures. The query formulation process adopts

a step by step query syntax preparation process. The SQL engine classifies a query based

on information received from ANEESAH’s controller. The query classification is

determined based on query syntax, and complexity. The PM engine also initiates the SQL

configurator to formulate a query. The query information is forwarded to the SQL

configurator for further processing. The SQL engine works closely with the SQL

Configurator seamlessly to generate appropriate syntax to form query structures.

4.5.1 SQL Configurator

The SQL configurator is responsible for generating syntactic information required to put

together a database query structure. This component works in a query formulation flow,

which collects and prepares necessary syntax in a step by step procedure, shown in

Figure 4.21.

Figure 4.21: SQL Configurator’s working flow

For example, a user utterance can require database objects, complex database tables’

relation, key information, aggregate functions, or restricted results, etc. Let us consider

following example (Example 1) to take an insight into the implemented solution.

4

Complete query
structure by combining
prepared syntax from

previous step.

3

Further preparation of
query syntax, based on

user request.

2

Selection of sub section
based on Table joins

identified

1

SQL
Configrator

SQL Engine

Sum()
Query Structure with 0 Joins

Query Structure with 1 Joins

Query Structure with 2 Joins

Query Structure with 3 Joins

Query Structure with 4 Joins

Assembly of database objects

Define Condition in query
results (WHERE)

Restrict query results
(ROWNUM)

Group query result sets
(GROUP BY)

Sort query results in order
(ORDER BY)

Formulated
SQL Query

Avg()

Max()

Min()

Count()

Select ()

94

SQL Configurator - Example 1:

User utterance: “can you show me top 5 best selling products in Japan through internet”

Following a user utterance processing, the information captured (Database Objects,

Attribute Value, Aggregate functions, filter, etc.) is received by the SQL configurator,

through SQL Engine. Based on information received, the SQL configurator first

determines required database tables, primary & foreign keys relations, and table joining

conditions. The Configurator does this by using database metadata to match captured

objects (Country_Name, Channel_Desc, Prod_Name, Amount_Sold, and Quantity_Sold)

against belonging tables in the database. For example (Example 1) utterance, Figure 4.22

shows a selection of relevant tables.

Attributes Values
Extracted from
above utterance:

Japan, Internet.

Database objects:

Country_Name,
Channel_Desc, Prod_Name,
Amount_Sold, Quantity_Sold

Aggregate functions and
selection of results
identified with the help
of domain knowledge:

Sum() + Group By + Order
By + Desc + <= 5

Field Name Table Name

Country_Name Countries

Channel_Desc Channels

Amount_Sold Profits

Prod_Name Products

Quantity_Sold Profits

Additional table

selected to

complete

joining relation.

Customers

Sales History Database Tables/Columns Structure

95

Figure 4.22: Selection of tables relevant to captured database objects

The relational database’s structures are comprised of primary and foreign key based

connections, which reflect information relations between database tables or entities.

For each query formulation, the selection of relevant tables is gathered based on the

shortest table combinations to avoid the addition of unnecessary complexity to the SQL

query structure. The SQL configurator can intelligently perform complex table joins

depending on primary and foreign key based relations. For example, user utterance

(Example 1), Figure 4.23 shows automated table joins formed by selecting relevant

database tables based on key (primary & foreign) relations between them.

Figure 4.23: Selection of tables in relational structure

After the collection of required tables, the SQL configurator performs assembly of

captured database objects (Country_Name, Channel_Desc, Prod_Name, Amount_Sold,

and Quantity_Sold) in required order to fit SQL standard query structure. Also, database

objects are also prefixed with parent database tables to avoid any ambiguity that may

be due to the coexistence of objects in different database tables, as shown in Figure

4.24.

Figure 4.24: Assembly of database objects with source table identification

Following the assembly of database objects, in line with attribute values (Japan,

Internet), the condition is applied to the results maintained in selected tables. At this

96

stage, the configurator also identifies the need to specify the number of query records

to return, depending on the filter value mentioned in user utterance (i.e. top 5 in case

of Example 1). The SQL configurator does this by introducing a “where” clause the in

query syntax, which limits database results returned to a predefined condition

depending on the user request. The Figure 4.25 shows formulation of conditional syntax

to be used as part of the overall query structure.

Figure 4.25: Syntax prepared to restricted database results to user’s desire

For users requests containing aggregation functions, the SQL configurator performs

integration of identified aggregation functions (Sum(), Avg(), Max(), Min() etc) with

existing query syntax, shown in Figure 4.26.

Figure 4.26: Aggregation function integrated into SQL query syntax

Further, SQL configurator identifies the need for grouping result sets or sorting of results

in specific order, based on the information transferred by the SQL engine. Following

Figure (4.27) shows the introduction of the “group by” syntax to be used in conjunction

with the aggregate function to group query result set by columns.

Figure 4.27: Formulation of syntax to group query results

Similarly, for the purpose of Example 1, Figure 4.28 shows the introduction of “order by”

keyword, which will sort query records in descending order.

97

Figure 4.28: Formulation of syntax to sort query results in specific order

Finally, the Configurator completes the query structure by joining segmentally prepared

syntax in required order. For the given example (Example 1) user utterance, the SQL

configurator formulated following query, shown in Figure 4.29.

Figure 4.29: Formulated query by the SQL configurator

4.5.2 SQL Execution

The formulated queries are transferred to SQL execution component, which takes the

responsibility of executing and retrieving queries relevant results from the database.

This component also stores formulated queries in ANEESAH’s log file before and after

their execution in the database, in order to allow further analysis and improvement. A

valid query execution returns database maintained results in the system’s temporary

memory (memory table), at run times. Followed by each query execution in the

database, the SQL execution component validates returned results from system’s

temporary memory. The SQL execution component is also responsible for calling query

returned results from temporary memory, and displaying in the user interface screen,

as shown in Figure 4.30.

98

Figure 4.30: SQL Query Execution within ANEESAH

In addition to the query returned results, a scripted text response is also displayed to

the user. For example, the user utterance mentioned in the SQL configurator section

4.5.1 (“can you show me top 5 bestselling products in japan through internet”), Figure

4.31 shows the representation of results returned by the query, in the user interface.

Figure 4.31: Example query returned results display in user interface

4.5.3 SQL Analyser

The SQL analyser component has been implemented as a failsafe tool, which takes the

role of a database query structure analyser. The SQL analyser component has been

developed to support ANEESAH’s abilities to assemble and readjust queries at run time.

In a real-world scenario, database queries can fail for a number of reasons i.e. missing

ANEESAH System’s Interface
 Sales History

Database

SQL
Configurator

SQL
Engin

e

SQL
Execution

[Grab your reader’s attention with a great quote

from the document or use this space to

emphasize a key point. To place this text box

anywhere on the page, just drag it.]

ANEESAH: Database

records produced followed by
execution of formulated SQL
query.

User Utterance: “can you show me top 5
bestselling products in japan through
internet sales”

ANEESAH: “How can I help you
with sales reports?”

Analyser

99

syntax, incorrect structure, memory issues, etc. The query failure mostly end up in

error(s) referring to the problem in query structure, and addressing such errors (error

code i.e. ORA-00936) validates query to generate database information successfully.

Query failure errors reflect coded information identifying reasons leading to the query

failure, which helps the database developers in resolving problems. The Figure 4.32

explains the detected error code ORA-00937, which refers to incorrect/missing syntax

in SQL query executed by the developed system.

Figure 4.32: Error code showing failed execution of a SQL query

The implemented SQL analyser works by identifying error codes in the event of a query

failure. The SQL analyser attempts to readjust query structure if falls within its scope.

Failed queries are re-executed after readjustment applied by the SQL analyser in order

to extract database information.

4.6 Conclusion

This chapter has detailed the methodology and implemented components which

comprise the ANEESAH prototype. Due to the nature of this research and the current

state of NLIDB developments, it was not feasible to create a conversational NLIDB using

existing development techniques and components. The existing techniques do not

contain features necessary to be applied to NLIDB problems such as conversational

limitations, conflict resolution, information refinement, etc. The development of the

ANEESAH prototype has steered research, design, testing and implementation of several

key components (e.g. CA, PM engine, scripting language, SQL engine, etc.) to deal with

unique challenges. The most significant contributions of this work are:

 ANEESAH mimics a human query assistant and allows users to access desired

information stored in the domain specific database conversationally.

100

 ANEESAH is able to understand and extract system relevant information by

analysing user utterance and map them to perform translation to formulate

appropriate responses from the system.

 ANEESAH has the ability to react and perform conflict resolution interactively

during conversation with the users.

 A novel CA enabled NLIDB (ANEESAH) architecture has been implemented to

process the user’s requests interactively. ANEESAH incorporates a novel CA

developed using pattern matching and new scripting language.

 The scripting language has been implemented to work in different contexts,

where each context is responsible for a conversation topic pursued by the user.

 A knowledge base has been developed based on a domain specific database and

other contexts e.g. Frequently Asked Questions (FAQ) and General Chat domain.

 The SQL engine and related components have been implemented to perform

dynamic formulation of SQL queries.

 A user interface has been created to deal with the exchange of dialogues and

display ANEESAH responses.

Next, the components ANEESAH’s architecture will be evaluated for their effectiveness

and robustness in order to gather evidence to answer the main research question of

‘can user interact with a NLIDB to formulate a query to retrieve and refine desired

information from a relational database, successfully?’. The testing/evaluation

methodology, experiments and results are detailed in the ensuing chapters.

101

Chapter 5 - ANEESAH Prototype One – Evaluation

Methodology and Results

5.1 Introduction

This chapter describes the empirical studies that were undertaken to validate the

proposed ANEESAH architecture highlighted in chapter 4. The evaluation ANEESAH’s

architecture was performed to analyse the implementation of a CA enabled NLIDB and

gauge, whether or not the resulting prototype can converse interactively with the users

to automate the query formulation process and allow access to desired information

stored in a sample domain database. The preliminary evaluation was conducted to

determine functionality, effectiveness and robustness of ANEESAH's architecture and

components. Also, the main aim of the evaluation was to answer the fundamental

research question “Can a general user interact with a NLIDB to formulate a query to

retrieve and refine desired information from a relational database?”. The following list

gives an overview of points sought for investigation:

 Can the implementation of a CA in NLIDB architecture help and engage users

conversationally?

 Can ANEESAH simulate a human query expert in reasoning, logic and

information, and lead conversation to formulate database queries?

 Can ANEESAH recognise user requirements and perform dynamic formulation of

queries to extract desired database information?

 Can the developed architecture and comprising components address the

challenges related to NLIDBs?

There is no benchmark approach for the evaluation of CAs and/or NLIDBs; therefore, a

novel evaluation methodology was designed, which aides to evaluate ANNEESAH from

subjective and objective aspects. A set of experiments involving end user interaction

with ANEESAH were intended to assess the effectiveness and functionality of the

developed prototype from the subjective aspects. Also, the ANEESAH system was

evaluated from objective perspectives through collection and analysis of user

102

interactions, system responses, formulated queries and results produced from the

database to gauge system's robustness, accuracy, task completion and effectiveness.

The following sections outline the research hypotheses, evaluation methodology,

designed experiments and the evaluation metrics measured through the testing. The

results of the experiments are analysed statistically and presented.

5.1.1 Hypothesis

At this stage of the research, the hypothesis to be tested through proposed evaluation

is related to the effectiveness of ANEESAH prototype system. The research hypothesis

as follows:

 H0 – A general user cannot interact with a Natural Language Interface to

Database to formulate a query and retrieve desired information stored in a

database.

 H1 – A general user can interact with a Natural Language Interface to Database

to formulate a query and retrieve desired information stored in a database.

A Goal, Question, Metric (GQM) model (discussed in section 2.3.5 in chapter 2) was

utilised to formulate evaluation metrics to the hypothesis.

5.2 Evaluation Metrics

The proposed evaluation methodology for ANEESAH required the use of a wide

spectrum of subjective and objective metrics. As established in the literature review in

chapter 2 section 2.2.5 and 2.3.4, there is no standard for the evaluation of CA and NLIDB

applications. This created the need for designing a new evaluation methodology for the

prototype system. The evaluation was focused on determining the performance of

several key components of ANEESAH's architecture such as the implemented CA,

knowledge base and SQL query engine (discussed in chapter 4). The formulation of

metrics (subjective & objective) included different aspect and features of ANEESAH such

as dialogues naturalness, robustness and information accuracy, as shown in Figure 5.1.

103

Metric 17

If implemented
query generation
engine is
effective?

Metric 13

Number of times
ANEESAH did not
recognise user
questions?

Metric 4.5.6

Number of
iterations & time
taken to get
desired info &
system
usefulness?

Metric 7.8.9

Effectiveness of
Implemented
architecture &
design & level of
satisfaction of
participants?

Question

Are users satisfied with ANEESAH?

N
at

u
ra

ln
es

s Question

Can ANEESAH generate user’s desired
information from database?

 A
cc

u
ra

cy

R
o

b
u

st
n

es
s

Metric 1.2.3

Naturalness of
dialogue & ease of
use of system &
task experience?

Metric 10

Number of times
system crashed
during testing?

Metric 12

Number of times
incorrect answers
/ info produced
by ANEESAH?

Metric 11

Number of times
correct answers /
info produced by
ANEESAH?

Metric 14.15.16
If executed queries
were correct &
time required to
produce results &
participant s
satisfied with
information
produced?

Goal
Can a general user interact with a NLIDB to

formulate a query to retrieve desired
information from a relational database?

Log FileLog File

Questionnaire

Log File

Questionnaire

Log File

Questionnaire

Log File

Log File

Log File

Log File

Questionnaire

Log File

Figure 5.1: Formulation
evaluation metrics for
ANEESAH

104

5.3 Experimental Methodology for ANEESAH NLIDB

The evaluation of ANEESAH system was achieved through two experiments. The aim of

the proposed experimental methodology was to analyse whether or not ANEESAH can

provide end users with an interactive environment, understand their requirements and

formulate database queries to access desired information. The experiments were

designed to gauge the role of different components of the developed architecture such

as dialogue responses, effectiveness, robustness and reliability of the database

information produced by ANEESAH (as shown in Figure 5.1). For the purpose of

designing the evaluation, two methodological questions mentioned in Figure 5.1 were

associated with each experiment. The high-level question “Are users satisfied with

ANEESAH?” is related to the first experiment. A second question “Can ANEESAH

generate user-desired information from the database?” is related to the second

experiment.

The first experiment was designed to provide an understanding of the participants’

opinions on system's naturalness, dialogue responses and interaction experience. There

were 20 participants in total who to took part in the evaluation of ANEESAH through a

scenarios-based evaluation model. The test scenarios were all derived from sample sales

history records (discussed in chapter 4 section 4.4.1). All participants reviewed an

experiment information sheet and gave consent to take part. The participants were

divided into two groups based on their knowledge namely; participants with SQL and

database knowledge (referred to as Group A), and other participants who did not

possess SQL or database knowledge (referred to as Group B). Each test scenario

comprised of a business example, which required the end user to discover specific

information from the domain database. The participants were asked to interact with

ANEESAH using natural language to find scenario described information.

Following the interaction with ANEESAH, the participants' feedback was gathered in the

form a survey questionnaire.

The second experiment was designed to examine various attributes and behavioural

factors of ANEESAH prototype system. The information stored in the system's log file

105

(discussed in chapter 4 section 4.3.12) such as dialogues, queries, etc. was utilised for

the purpose of the second experiment.

5.4 Evaluation Scenarios

The evaluation of ANEESAH was conducted through devised test scenarios (see

Appendix B). The test scenarios were developed in line with knowledge engineering

(discussed in chapter 4 section 4.4), a critical review of the existing NLIDBs and

mainstream business reporting and database systems such as Oracle, SQL database, SAP

used in real life environments. The development scope of ANEESAH and its query

formulation abilities were mapped to test scenarios. There were seven scenarios

developed in total, each containing an example business situation (i.e. “As part of

product analysis you are required to find company’s top five bestselling products in

France during the year 1999? Ask the system to give you this information”), which will

require participants to interact with ANEESAH to retrieve scenario described

information. All participants (from Group A and Group B) received test scenarios

instructions in the form of printed sheets. very participant completed the seven

scenarios using a computer on his/her own. The test scenarios were related to query

structuring difficulty (i.e. scenario 1 requires a simple/simple query, and scenario 7

requires formulation of a complex structure query) to evaluate the query formulation

and execution abilities of ANEESAH.

5.5 Experiment 1

The aim of Experiment 1 was to analyse participants’ feedback after their interaction

with ANEESAH. The participant filled evaluation questionnaires (Table 5.1) to help

determine and analyse their interaction experience and conversational abilities of

ANEESAH. The evaluation questionnaire was designed with ten questions structured in

a Likert scale format for user experience rating, presented on a five-point scale i.e. (1-

5). The evaluation questionnaire also included two questions that the user can respond

to with Yes or No, and an open-ended question for participants to write any comments

about the prototype system (shown in Table 5.1). The questions were designed based

on the evaluation metrics (subjective and objective) selected for ANEESAH’s evaluation,

106

as shown in figure 5.1. Some questions in this questionnaire have been used to evaluate

other similar systems (Latham et al., 2014).

1 2 3 4 5

1
Are you satisfied with interface
design & level of dialogue
naturalness during conversation?

Very Low

Very
High

2
It was easy to understand and use
the system.

strongly
disagree

 strongly
agree

3
I can effectively complete my
work using this system

strongly
disagree

 strongly
agree

4
I am able to complete my work
actively using this system.

strongly
disagree

 strongly
agree

5
I am able to complete my work
quickly using this system.

strongly
disagree

 strongly
agree

6 I found this system to be useful
strongly
disagree

 strongly
agree

7
ANEESAH’s level of understanding
your requirement

Very Low

 Very
High

8
I feel comfortable using this
system

strongly
disagree

 strongly
agree

9
Are you satisfied with ANEESAH’s
dialogue responses?

Very Low

 Very
High

10
Are you satisfied with information
produced from domain Database?

strongly
disagree

strongly
agree

11. Would you use these kind of systems in the future?

YES NO

12. Would you use ANEESAH system instead of taking help from a SQL expert?

YES NO

Any further comments you may have:

__

Table 5.1: Evaluation Questionnaire

0

0

0

0

0

0

0

0

0

0

107

5.5.1 Experiment 1 Results

The questionnaire results from both participant groups (Group A & Group B) show that

ANEESAH was well received (as indicated in Table 5.2). For question (1, 2 and 3), Overall

75% of participants from both groups have rated the system interface (frontend) and

level of understanding at high, however, 30% of participants rated these features

between low and medium. For question (4, 5, 6 and 7), around 70% of participants from

both groups perceived ANEESAH to be active, useful and level of understanding,

whereas 30% felt less confident in its activeness.

 1 2 3 4 5

1
Interface and Level of dialogue
naturalness during conversation.

Very Low
0% 5% 20% 60% 15%

Very
High

2
It was easy to understand and use
the system.

strongly
disagree 0% 10% 20% 50% 15%

strongly
agree

3
I can effectively complete my work
using this system

strongly
disagree 0% 10% 10% 50% 30%

strongly
agree

4
I am able to complete my work
actively using this system.

strongly
disagree 0% 0% 30% 60% 10%

strongly
agree

5
I am able to complete my work
quickly using this system.

strongly
disagree 0% 5% 15% 60% 20%

strongly
agree

6 I found this system to be useful
strongly
disagree 0% 0% 25% 70% 5%

strongly
agree

7
ANEESAH ’s level of understanding
your requirement

Very Low
5% 5% 25% 45% 20%

Very
High

8 I feel comfortable using this system
strongly
disagree 0% 10% 25% 50% 15%

strongly
agree

9
Are you satisfied with ANEESAH’s
dialogue responses?

Very Low
0% 0% 25% 60% 15%

Very
High

10
Are you satisfied with information

produced from domain Database?

strongly

disagree 0% 5% 20% 65% 10%

strongly

agree

 Yes No

11 Would you use these kind of systems in the future? 90% 10%

 Yes No

12
Would you use ANEESAH system instead of taking
help from a SQL expert?

65% 35%

Table 5.2: Overall Questionnaire Results from Group-A & Group-B

108

For question 8, overall system comfort level was rated high by 65% of the participants

with 25% rated at moderate, and 10% rated comfort and usability at low. For question

9, the dialogue responses of ANEESAH highly satisfied 70% of participants from both

groups. For question 10, most participants were satisfied with information produced by

ANEESAH and rated its ability highly (75%), with only 20% giving the medium rating, and

5% participants were less satisfied with its capacity to produced information.

Additionally, the participants from both groups showed very high acceptance level when

asked, if they would use a similar system in the future. For question 11, overall 90% of

participants agreed on using a similar system with only 10% who showed unwillingness.

In response to the question (question 12), 65% of the overall participants from both

groups agreed they would take help from ANEESAH instead of a SQL expert. The next

section will evaluate ANEESAH's ratings from each group (Group A and Group B).

5.5.2 Experiment 1 Discussion (Group-A)

The participants selected in Group-A had structured query language and database

knowledge. Figure 52. and 5.3 show moderate but not significant differences in opinions

from both groups. The participants from Group-A (30% of the participants) appear to

have for a low opinion of ANEESAH’s user interface, dialogue naturalness and user

requirements understanding. 50% of members of Group-A agreed and further 20%

strongly agreed with the effectiveness of ANEESAH.

Figure 5.2: Participants Rating from Experimental Group-A

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

1
0

%

1
0

%

0
%

0
%

0
%

0
%

1
0

%

0
%

0
%

3
0

%

3
0

%

2
0

% 3
0

%

2
0

%

2
0

% 3
0

%

2
0

%

2
0

%

1
0

%

6
0

%

5
0

%

5
0

% 6
0

% 7
0

% 8
0

%

6
0

%

5
0

%

7
0

% 8
0

%

1
0

%

1
0

% 2
0

%

1
0

%

1
0

%

0
%

1
0

% 2
0

%

1
0

%

1
0

%

0%

20%

40%

60%

80%

100%

Q - 1 Q - 2 Q - 3 Q - 4 Q - 5 Q - 6 Q - 7 Q - 8 Q - 9 Q - 1 0

Very Low Low Medium High Very High - Experiment 1 Questions

109

The remaining 30% participants rated ANEESAH’s effectiveness between low and

medium. Figure 5.2 also shows that ANEESAH was well-received and majority Group-A

participants gave high ratings for evaluation questions. The questions such as response

time, usefulness and level of understanding received high ratings from most

participants. However, the question regarding the comfort in using ANEESAH received

ratings from moderate to low. Overall 80% of participants from Group-A stated their

high satisfaction in ANEESAH’s dialogue responses. ANEESAH’s understanding of user

requirement received high rating from 60% of the participants but 30% of the overall

participants rated low for this metric. Further, ANEESAH received highest satisfaction

rating (by 90% of participants) for its ability to produce information from the database.

Also, 90% of Group-A participants strongly agreed to use a comparable system in the

future. In response to Question 12, 70% of participants agreed to take help from

ANEESAH as an alternative to a human SQL developer.

5.5.3 Experiment 1 Discussion (Group-B)

Figure 5.3 illustrates participants rating from Group-B. ANEESAH’s dialogue naturalness

and level of understanding was rated high by 70% of the Group-B participants. In

response to question 3, 4 and 5, most participants (approx. 70%) agreed that they found

ANEESAH effective and efficient in task performing. In particular, 30% of participants

from Group-B rated ANEESAH’s activeness at an average level. The same proportion of

participants rated ANEESAH’s effectiveness as very high. Figure 5.3 shows that

ANEESAH’s factors such as usefulness, the level of understanding (of users’

requirements) and comfort have received the rating between high and very high from

70% of participants. Further, 30% of participants ratings for ANEESAH’s usefulness,

understating user requirements and comfort were recorded between low and medium.

ANEESAH’s dialogue responses satisfied 70% of participants from Group-B, where 30%

of participants who strongly satisfied. Further, ANEESAH’s ability to produce information

from the database satisfied approx. 80% of participants (who rated at high).

110

Figure 5.3: Participants Rating from Experimental Group-B

Additionally, when answering question 11, 80% participants from Group-B agreed to use

a similar system in the future, and 20% of participants showed an unwillingness to use

a similar system in the future. ANEESAH’s acceptance as an alternative to a SQL

developer agreed by 60% of participants from Group-B with 40% showing no willingness

for the same.

5.6 Data Analysis and Selection of Statistical Test

Choosing the right statistical technique for data analysis is the most difficult part for any

research (Pallant, 2013). The choice of statistical test is usually related to research

questions being sought by the researchers and other factors such as the size of

evaluated data, the number of people or groups involved evaluation, measurement

scale type and distribution. Statistical tests selected for evaluation are defined in two

categories namely; parametric which include an assumption of the population used for

deriving the sample data from, and non-parametric type often referred as distribution-

free tests, which does not take into consideration the population. Parametric statistics

are performed based on the assumption of the population and require numerical values.

Non-parametric statistics or inferential statistical analyses are conducted to analyse

situations where the data is non abnormally distributed. A non-parametric test can be

performed on ordinal and categorical data. However, descriptive statistics are

conducted by visual inspection of histograms, which can help in analysing the normal

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

1
0

%

1
0

%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

2
0

%

2
0

%

3
0

%

2
0

%

2
0

%

3
0

%

3
0

%

3
0

%

3
0

%

2
0

%

6
0

%

5
0

%

6
0

%

5
0

%

7
0

%

6
0

%

4
0

%

5
0

%

6
0

%

7
0

%

1
0

%

2
0

%

1
0

%

3
0

%

1
0

%

1
0

%

3
0

%

2
0

%

1
0

%

1
0

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Q - 1 Q - 2 Q - 3 Q - 4 Q - 5 Q - 6 Q - 7 Q - 8 Q - 9 Q - 1 0

Very Low Low Medium High Very High - Experiment 1 Questions

111

distribution of data during evaluation (Doane and Seward, 2011; Gravetter and Wallnau,

1999).

5.6.1 Inferential Statistics (Mood’s Median Test)

Inferential statistics have been used to determine whether the difference between two

groups (Group-A & Group-B) is significantly different and not just due to chance. The

Mood’s median was adopted to compares the medians of Group-A and Group-B

participants. The significance test between both groups (Group-A & Group-B) is analysed

with the help of Mood’s test-driven significance values (Exact Sig.). The null hypothesis

will be accepted if significance value is recorded above 0.05. Table 5.3 highlights Mood’s

median test values recorded for each survey question.

Mood's median test

Number Median Exact Sig. Ratings Groups

 Test Scenarios A B

1 Interface and Level of dialogue
naturalness during
conversation.

20 4.0000 1.000 > Median 1 1

<= Median 9 9

2 It was easy to understand and
use the system.

 20 4.0000 1.000 > Median 1 2

<= Median 9 8

3 I can effectively complete my
work using this system

 20 4.0000 1.000 > Median 2 1

<= Median 8 9

4 I am able to complete my work
actively using this system.

 20 4.0000 0.582 > Median 1 3

<= Median 9 7

5 I am able to complete my work
quickly using this system.

 20 4.0000 1.000 > Median 1 1

<= Median 9 9

6 I found this system to be
useful

 20 4.0000 1.000 > Median 0 1

<= Median 10 9

7 ANEESAH’s level of
understanding your
requirement

 20 4.0000 0.582 > Median 1 3

<= Median 9 7

8 I feel comfortable using this
system

 20 4.0000 1.000 > Median 2 2

<= Median 8 8

9 Are you satisfied with
ANEESAH’s dialogue
responses?

 20 4.0000 1.000 > Median 1 1

<= Median 9 9

10 Are you satisfied with
information produced from
domain Database?

 20 4.0000 1.000 > Median 1 1

<= Median 9 9

Table 5.3: Mood’s median test results

112

The significance value recorded for Question 1 (Interface and Level of dialogue

naturalness during conversation) is greater than 0.05 threshold, therefore shows no

significant difference between Group-A and Group-B. The null hypothesis can be

accepted as the ratings from both groups do not differ significantly.

The Mood’s median test reveals no significant difference for survey Question 2 (It was

easy to understand and use the system), as the significance value recorded for both

groups is higher than 0.05. Therefore, it is not a considerable difference between the

two groups, and null hypothesis can be accepted.

The significance value recorded for Question 3 (I can effectively complete my work using

this system) does not represent a significance difference between both participants

groups. Therefore, the null hypothesis is accepted for question 3.

For Question 4 (I am able to complete my work actively using this system), significance

value is recorded higher than 0.05. Therefore, there is no considerable difference

between the both groups' rating.

Further, Mood’s median test revealed no significant difference for Question 5 (I am able

to complete my work quickly using this system). The significance value is measured

greater than 0.05; hence it is maintained that rating given by both groups reflected no

significant differences. Therefore, null hypothesis will be accepted on this occasion.

The significance value recorded for Question 6 (I found this system to be useful) does

not reflect a significant difference between Group-A and Group-B members rating.

Therefore, the null hypothesis will be accepted for Question 6.

Both groups ratings for the Question 7 represent slight but not significant difference

(ANEESAH’s level of understanding your requirements), as the value (Exact Sig.) was

measured higher than 0.05.

The significance value for Question 8 (I feel comfortable using this system) showed no

significant difference. Therefore, distribution of ratings from both groups does not differ

significantly, and the null hypothesis is accepted on this occasion.

113

The significance value for Question 9 (Are you satisfied with ANEESAH’s dialogue

responses?) shows that participants rating from both groups reflects no significant

difference and significance value is recorded higher than the threshold value (0.05). The

null hypotheses will is assumed for Question 9.

The rating given by both participant groups for Question 10 (Are you satisfied with

information produced from domain Database?) were analysed to measure significance

difference, which showed that the significance value recorded was higher than 0.05.

The above test has established data normality concerning data distribution. Further, in

the following sections, descriptive statistical analysis techniques have been utilised to

investigate the difference of data normality between participant groups.

5.6.2 Descriptive Statistics (Test of Normality)

The descriptive statistics test has been used due to small sample size. The histograms

and paired means test are used to calculate and evaluate normality of data distribution

over both participant groups (Group-A & Group-B). The visual inspection of the

histogram (see Appendix C) for both groups (Group-A & Group-B) reveals the

approximate shape of the normal curve. Therefore, it is assumed that data was normally

distributed. Figure 5.4 is an example normality histogram values (for one question) for

both groups.

Are you satisfied with information produced from domain
Database? (Group-A)

Are you satisfied with information produced from domain
Database? (Group-B)

114

Figure 5.4: Normality Histograms

The above test has established data normality in distribution. The descriptive and

inferential test results highlight the normality between tested metrics in contrast with

the perception of participants from both groups. The next section (5.7) will discussed

experiment 2.

5.7 Experiment 2

The aim of Experiment 2 was designed to perform analysis such as robustness and

accuracy (evaluation metrics 11 to 17 from Figure 5.1). This used information captured

from ANEESAH’s log file with records such as occurrences of dialogues between

participants and the prototype system during evaluation. The following sections will

provide detail on objective aspects of ANEESAH's evaluation such as interactive sessions,

robustness and information accuracy.

5.7.1 Interactive Sessions

In this evaluation, ANEESAH handled 485 dialogues from twenty participants, an average

24.5 utterances per participant. Table 5.4 illustrates the distribution of log file recorded

session dialogues from the seven scenarios, allocated to each participant during

Experiment 2. The ANEESAH’s log file was configured to record many variables such as

dialogues/utterances between participants and prototype system, rejected statements,

attribute and characteristics, key figures, context, SQL queries, etc. The number of

utterances shown in Table 5.4 represents ANEESAH's ability to interact with end users.

115

Table 5.4 Headings:

Utterances – Exchange of dialogues between users and ANEESAH
Correct Results – ANEESAH produced query results
Inadequate Results – ANEESAH query results contained excessive records
Incorrect Results/Failure – Incorrect query results or system failed/crashed.

Sce
n

ario

N
u

m
b

e
r

U
tte

ran
ce

s

C
o

rre
ct

R
e

su
lts

In
ad

e
q

u
ate

R

e
su

lts

In
co

rre
ct

R
e

su
lts –

Syste
m

Failu
re

U
tte

ran
ce

s

C
o

rre
ct

R
e

su
lts

In
ad

e
q

u
ate

R
e

su
lts

In
co

rre
ct

R
e

su
lts –

Syste
m

Failu
re

To
tal

D
ialo

gu
e

s

 Group A Group B

Scenario 1
38 9 0 1 30 9 0 0 68

Scenario 2
31 10 0 0 27 10 0 0 58

Scenario 3
43 5 1 4 44 5 0 1 87

Scenario 4
28 9 0 1 27 9 0 0 55

Scenario 5
45 10 0 0 30 10 1 0 75

Scenario 6
28 9 1 0 32 9 1 1 60

Scenario 7
52 4 4 2 30 4 1 2 82

Total 265 56 6 8 220 56 3 4 485

Table 5.4: Number of utterances and results for each test scenario

Table 5.4 also illustrates statistical information captured from the system log file. The

number of correct results represents ANEESAH's ability to understand user requirement

followed by dynamic SQL query formulation and database information retrieval. Further,

utterance distribution for Group-A and Group-B followed by correct and incorrect

results produced by ANEESAH for both groups. Table 5.4 also reflect inadequate system

responses and its failure to understand or react to the participants' requirements during

evaluation.

The information mentioned in time column of Table 5.5 shows overall tasks completion

time for each scenario. The participants’ interaction time with ANEESAH also reflects the

level of difficulty embedded in each scenario. Scenario 3, 5, 6 and 7 relatively took more

time due to embedded query structuring complexity when comparing with scenario 1,

2, and 4.

116

Table 5.5 Headings:

Utterances – Exchange of dialogues between users and ANEESAH
Correct Results – ANEESAH produced query results
Inadequate Results – ANEESAH query results contained excessive records
Incorrect Results/Failure – Incorrect query results or system failed/crashed.

Table 5.5: Experiment results for Group-A & Group-B

The test scenarios for ANEESAH’s evaluation were devised with embedded difficulty and

complexity. Figure 5.5 gives an understanding of the level of difficulty (designed in

task/scenario completion) for each scenario based on success results for each scenario.

Figure 5.5 also shows that Scenario 1, 2, and 5 were easily handled. Scenario 2 was

completed successfully by all participants from both groups. Scenario 3, 6 and 7 proved

difficult for ANEESAH. Scenario 1 and 4 had been completed successfully by all

participants except for one participant where ANEESAH produced results with excessive

information. Scenario 6 was better achieved by participants when comparing with

Scenario 3 results. While completing scenario (Scenario 3), 25% of participants were

presented with excessive information by the prototype system. Scenario 7 is visible as

most difficult (with 25% of overall participants failed to complete the task (either query

results were incorrect, query failed, or system crashed) and further 20% participants

Scenario
Number Utterances

Correct
Results

 Inadequate
Results

Incorrect Results -
System Failed

Time Per
Scenario

Scenario 1 81 95% 5% 0% 11.71%

Scenario 2 73 100% 0% 0% 10.94%

Scenario 3 103 70% 25% 5% 15.18%

Scenario 4 70 95% 5% 0% 12.39%

Scenario 5 94 95% 0% 5% 14.01%

Scenario 6 80 85% 5% 10% 16.44%

Scenario 7 115 55% 20% 25% 19.28%

117

received query results containing excessive information (information in excess of what

was originally requested by the participants)

Figure 5.5: Level of difficulty for each scenario

5.7.2 ANEESAH’s Dialogue Responses

This section will discuss ANEESAH's responses and user interaction abilities noted during

the evaluation phase. This section also comprises few example dialogues collected from

the prototype systems' log file. Figure 5.6 highlights one participant’s attempt to

complete Scenario 7. ANEESAH effectively guided and managed the conversation by

engaging participants in disambiguating between duplicate records. The discussion

shows ANEESAH stayed on topic and focused on the user desired information

“country_region” following the query formulation path to extract database information.

Scenario – 7

ANEESAH: How can I assist you with sales information stored in company database?
Participant-1: “how many mouse pads were sold in asia?”
ANEESAH: Search have found duplicate records for ' asia '
 1 country_subregion asia
 2 country_region asia
Please make appropriate selection, you can write below:
Participant-1: “delete 1 please”
ANEESAH: In response to your request I have following records:

Figure 5.6: Example dialogues between ANEESAH and user

55%

85%

95%

95%

70%

100%

95%

20%

5%

5%

25%

5%

25%

10%

5%

0%

5%

S C E N A R I O 7

S C E N A R I O 6

S C E N A R I O 5

S C E N A R I O 4

S C E N A R I O 3

S C E N A R I O 2

S C E N A R I O 1

Correct Results Inadequate/Excessive Results Incorrect Results/System Failed

D
ifficu

lty Level

 1
2

 3
 4

 5

118

Figure 5.7 highlights that ANEESAH did not only perform validation of participants’

inputs but also led conversation during experiments. Figure also 5.7 reveals that

ANEESAH promptly recognised and reacted to participant's use of the abusive word in

his/her input. ANEESAH responded with a warning message and urged the participant

to enter a valid input. Subsequently, the participant entered some random characters

“slk;dfalsd”, which also attracted an appropriate system response “Sorry I didn't

understand what you said. Please try again”. Further, as soon as participant entered

(rather less structured) but meaningful/knowledge base relevant input, ANEESAH

promptly recognised it and offered database available information.

Scenario - 2
ANEESAH: You can enter your request to find records related to Company Database.
Participant-6: “stupid system”
ANEESAH: You have used a bad word. Please enter a valid requirement.
Participant-6: “slk;dfalsd”
ANEESAH: Sorry I didn't understand what you said. Please try again.
Participant-6: “barcelona’s customer first and last name, email, contact number”
ANEESAH: Do you want the system to display found records related to “Barcelona customer email, customer first
name, customer last name, customer number”?
Participant-6:“yes”
ANEESAH : In response to your request I have following records:

Figure 5.7: Example dialogues between ANEESAH and user

Figure 5.8 shows (Scenario 6) ANEESAH’s ability to understand and converse with end

users to confirm exclusion of irrelevant information from their requests. ANEESAH

offered available results and truncated nonexistence information from the participant's

input. The prototype system also offered the participant the chance to restrict query

produced results. The participant's desire to view top five query results understood and

displayed by the prototype system.

119

Scenario - 6

ANEESAH: How can I help you with sales information?
Participant-20: “Can I have a look please on top fve bestselling products during 1999 in France and Pakistan?”
ANEESAH: The system have found records related to “highest sold products, France, 1999,” But could not find
any records relevant to "Pakistan"? Would you like to ignore "Pakistan" and see available records?
Participant-20: “Yes”
ANEESAH: The number of records returned against your request are 781. You can limit number of rows to
appear on screen by Entering “a number” below:
Participant-20: “5”
ANEESAH: Please make a valid selection you can enter selection i.e. first 5, last 5 etc. Please try again.
Participant-20: “FIRST 5”
ANEESAH : Following is the information in response to your request:

Figure 5.8: Example dialogues between ANEESAH and user

Further, when attempted to complete Scenario 5 (as shown in Figure 5.9), ANEESAH

partially understood participant’s request. The participant's request did not contain

intention and the word "countres" was incorrectly spelt. Therefore, in the absence of a

valid purpose, it offered to show partially understood/available results. The participant

realised his/her mistake and asked to include "countries" in query results. Subsequently,

ANEESAH then validated participant's requirement followed by production of query

based response.

Scenario - 5
ANEESAH: What would you like to know about the company’s sales today?
Participant-20: “total profit from different countres”
ANEESAH: Would you like see records maintained for “‘, total profit (i.e. net company gain from business) ' “?
Participant-20: “add countries in it“
ANEESAH: Are you looking for information related to 'countries, total profit (i.e. net company gain from
business) ‘?
Participant-20: “yeah“

ANEESAH: Below is the found information against your request:

Figure 5.9: Example dialogues between ANEESAH and user

5.7.3 Precision, Recall and Accuracy

This section will describe ANEESAH's efficiency and robustness, noted in this evaluation.

The recall and accuracy measures (discussed in chapter 2 section 2.2.5) have been

120

adopted to determine these factors. The information captured in the log file was

analysed to determine the information accuracy.

The recall value for Group-A participants, having familiarity with structured query

language and databases, was recorded at 90% and the information accuracy is noted as

80%. The recall value for Group-B participants with no knowledge of structured query

language and database recorded at 95% and ANEESAH’s overall accuracy for database

information produced during experimentation is calculated at 90%.

As mentioned in section 2.2.5 of chapter 2, unfortunately, there is no uniformity on what

constitutes as a correct results query. Historically, in some NLIDB evaluations, queries

with excessive results are often counted as “correct queries”, while in other NLIDB

evaluations queries with excessive information are not considered as correct (Pazos R.

et al., 2013). For ANEESAH's evaluation, queries with excessive information (i.e. results

with additional database fields, excessive records etc.) are not considered as correct.

The overall accuracy of ANEESAH for query produced results (for experimental Group-A

and Group-B) is recorded as 85%. Further, the harmonic mean or F-measure (discussed

in section 2.2.5 chapter 2) is used to measure test of accuracy by combining accuracy

and precision. This measure provides approximately the average of the two (accuracy

and precision) and has been recorded as 87.42%.

5.8 Discussion

An ideal or more robust NILDB system should be conversationally strong and be able to

guide users to ensure goal achievement. The experiments conducted on the prototype

system and collected results suggest and validate the robustness and accuracy of

ANEESAH's framework as a conversational NLIDB. The evaluation results have shown

that ANEESAH can engage users in conversation, provide conflict resolution and perform

dynamic query formulation to extract database information. Therefore, the null

hypothesis (H0) is rejected, and the alternative hypothesis (H1) is assumed that a

general user can interact with a Natural Language Interface to Database to formulate a

query to retrieve desired information from a relational database. The feedback and

lessons learnt from these experiments will be dealt in the future work.

121

The end user evaluation brought to light weakness in ANEESAH’s architecture, mainly

the number of unrecognised utterances and incorrect query responses. ANEESAH failed

to recognise some utterances from the participants (7% approx.). Upon further analysis

of the log file it was found that some of these unrecognised utterances were due to

minor spelling mistakes in the user/participants utterances, gaps in the knowledge base.

The other weaknesses were identified as failure of SQL engine, responses perceived as

machine-like and command line interface.

The spelling mistakes from the users inputs led to misunderstanding and repetition of

responses from ANEESAH. ANEESAH is programmed to ask the user to repeat or

rephrase his/her input “Sorry I didn't understand what you said. Please try again”.

However, if the spelling mistake is not corrected, the prototype system will again fail to

understand that would eventually lead to the termination of chat session. Figure 5.7 and

5.8 show that although ANEESAH failed to recognise spelling mistakes, it showed the

tenancy to support and recover the conversation towards users desired goals. The text

in the system’s log file (reflected in Table 5.4 and 5.5) reveals that where ANEESAH failed

to recognise spelling mistakes, it offered available response for the matched portion of

the user utterance. However, this issue will require further research to develop new

approach, which will reduce the impact of these language unique issues on the CA’s

performance.

As mentioned above in this section, one of the other causes for the unrecognised

utterances was due some gaps revealed in the knowledge base during end user

evaluation, but these gaps are easily addressable, simply by further scripting to the

knowledge base. The survey questionnaire revealed that system’s interface was very

basic, and its responses were perceived machine-like. This will require further

investigation and development to address these points.

5.9 Chapter Summary

The initial evaluation showed some key information with respective to the effectiveness,

robustness and functionality of ANEESAH. The main findings of the evaluation are

summarised below:

122

 ANEESAH can mimic as a human query assistant, which can lead/guide

conversation with the users to achieve their desired goals

 ANEESAH is able to understand, analyse and perform translation of user

utterance to formulate the appropriate response.

 It incorporates a novel CA developed using pattern matching, scripting language

and implemented string similarity algorithm.

 ANEESAH employs a novel SQL engine to perform dynamic query formulation to

retrieve database stored information.

The initial evaluation and testing of the ANEESAH prototype system revealed

weaknesses in specific components of its architecture. Further research will be required

to achieve all research objectives and to address the points highlighted through the

initial end user evaluation. The following section details components for further

development and enhancements.

1. Development of existing ANEESAH prototype, to further its abilities to handle

more complex user requirements and address linguistic problems noted during

preliminary evaluation.

2. Implement a graphic interface by replacing existing command line interface to

add to improve user system experience, as noted during initial evaluation.

3. Further development to increase ANEESAH's conversational abilities to sustain

dialogues and engage users in smart conversation to refine information

4. Research and development of implemented SQL engine to perform query

refinement/querying the query scenarios, which would allow users to carry out

drill down and drill across information analysis

5. Research, develop and enhance the implemented pattern matching engine,

improve the knowledge base and other components of the prototype system

highlighted to address points found during end user evaluation.

These weakness and further refinements and enhancements will be addressed by

further research and development which is detailed in the next chapter.

123

Chapter 6 - ANEESAH NLIDB (PROTOTYPE TWO) WITH

INFORMATION REFINEMENT

6.1 Introduction

Chapter 6 of presents the results of an evaluation of the first prototype of ANEESAH

NLIDB. The initial evaluation (chapter 5) showed several weaknesses in ANEESAH’s

architecture such as failure recognised user utterances, incorrect query responses.

Some weaknesses revealed during initial evaluation were due to morphological nature

and limitation of conversational features such as the inability to handle spelling

mistakes, which affected the overall effectiveness and robustness of ANEESAH.

Additionally, survey questionnaire results highlighted that end users perceived

ANEESAH’s responses as machine-like and command line interface as very

basic/unfriendly. Following is the list of major issues and weaknesses noted during end

user evaluation:

 The initial evaluation revealed ANEESAH failed to understand users’

requirements/inputs.

 ANEESAH’s inability to recognise spelling mistakes led to incorrect/inadequate

query responses.

 ANEESAH’s query formulation and execution abilities showed weaknesses, which

led to query/system failures.

 ANEESAH’s command line interface was criticised and described as very

basic/generic and unfriendly.

 The initial evaluation also revealed that participants perception about

ANEESAH’s dialogue naturalness was low (e.g. responses were machine-like).

These issues were individually researched and investigated that led to the

enhancement of existing components and development of new components for the

existing architecture. Additionally, the further development was also aimed to

answer all research questions (that have not been answered during the initial

evaluation e.g. Can a NLIDB allow users to engage in sustained dialogues to refine

query produced information from a database?). In addition to addressing these

124

weaknesses the following novel enhancements made to the existing architecture of

ANEESAH.

 ANEESAH’s conversational abilities and domain specific knowledge were

analysed, and the knowledge base was expanded with more domain specific

information to improve its abilities to understand user requirements (discussed

in Section 6.5).

 A spelling correction feature has been introduced with the help of a language

dictionary to address the negative impact spelling errors had on the overall

performance of ANEESAH (discussed in Section 6.3.3).

 The query formulation components were enhanced and further strengthened to

address the issues highlight during the initial evaluation. In addition, novel

information refinement abilities have implemented to allow users to sustain

dialogues and refine query produced information with the ability to perform

querying the query operations (discussed in Section 6.4).

 A graphical user interface was developed to improve end user interaction and to

address system engagement related issues such as usability, user understanding

of ANEESAH’s responses (discussed in Section 6.6).

 The knowledge base was further developed with scripts to aid end user

conversation to be perceived more natural, casual and friendlier (discussed in

Section 6.5).

This chapter will highlight further investigation of existing components of the ANEESAH’s

architecture as well as the development and addition of new features. The next section

will show the updated architecture of ANEESAH followed by section (6.2) explaining

what research and development decisions were made to overcome these issues.

6.2 Revised Architecture of ANEESAH NLIDB

Figure 6.1 shows the updated architecture of ANEESAH. Figure 4 also highlights new

components of ANEESAH’s architecture and their integration/interaction with other

components to address issues noted through end user evaluation. The new and

modified features have been explained the following sections of this chapter.

125

Figure 6.1: Improved Architecture of ANEESAH NLIDB

6.3 Further Development of ANEESAH NLIDB (Overview)

Further development work was carried out by following the originally proposed

development methodology (discussed in chapter 3) to address all issues noted during

end user evaluation as well as extend ANEESAH’ abilities with additional features such

as sustain dialogues to refine query produced database information. The further

development combines improvements to the existing architecture and addition of new

features to improve ANEESAH’s ability to mimic as a human structured query language

expert. The research and development decisions made to address noted issues,

weaknesses and addition of new features as follows:

 Extended Features of ANEESAH’s CA

The pattern matching (PM) engine was improved to recognise and deal with challenges

and common mistakes in user inputs such as spelling mistakes, the ambiguity of

information. This was achieved by improvement and addition of new features such as

improvement in the algorithm (section 6.4.3), the introduction of a language dictionary

to handle spellings and unrecognised user inputs related issues.

 Information Refinement Features

ANEESAH’s architecture has been further developed to support sustained dialogues

(section 6.4) with end users to perform information refinement operations and querying

the query operations (e.g. user’s ability to add/remove/update more

126

information/records in existing query produced information/results etc.). This was

achieved by modification and construction of features such as pattern matching engine

components, development of query refining algorithm and SQL refiner module, etc.

• Knowledge base expansion

Through further knowledge engineering, ANEESAH’s knowledge base was extended to

provide improved user experience and make the conversation more natural. The

knowledge base was extended with domain specific and other conversation topics (e.g.

Frequently Asked Questions (FAQ) and General Chat (GC)) to strengthen ANEESAH’s

understanding of user requirements.

 • New User Interface

The old command based user interface was replaced with a new Graphical User

Interface (GUI) to improve the end user experience, make information more

presentable. The new interface has been implemented to also provide ease in

clarification and disambiguation to make interaction experience more natural and

improve user satisfaction.

 Database base management tool

At run time, a part of ANEESAH’s knowledge base is filled (discussed in chapter 4 section

4.4.6) with selective/current domain database information such as schema, master data

records. The management tool has been added to control and select domain database

information for including in the knowledge base, which can be used to converse with

users for the formulation of queries.

These components have contributed to ANEESAH’s overall improvement, effectiveness

and information accuracy. Each component has been discussed in the following section.

6.4 Extended Features of ANEESAH’s CA

The first evaluation results revealed positive findings for the ANEESAH’s CA with respect

to its ability to recognise and process user inputs. However, there were few points

highlighted through the end user evaluation that required enhancement and further

127

development to improve ANEESAH’s robustness and effectiveness. The evaluation also

revealed that ANEESAH’s responses were perceived more machine-like, failed to handle

common spelling mistakes made by users, failed to recognise user requests due to lack

of scripts in the knowledge base. In addition to the improvements highlighted through

end user evaluation, additional development was also required to achieve sustained

dialogues and query refinement features. Therefore, the ANEESAH’s CA was improved

and further developed with new components to address issues raised through end user

evaluation. The pattern matching (PM) engine has been developed to improve utterance

matching process. The PM engine’s ability to detect and handle user intention to switch

topic or context has been improved. The response analyser component of CA is further

developed to improve user input analyses. The next sections (6.4.1, 6.4.2, 6.4.3) will

illustrate the new components added to the CA including date matching and user

response agreement.

6.4.1 Date/Time Matching Feature

In real-life environments, time has a significant importance in information analyses. The

segmentation of information over different time spans (such as weekly, monthly,

quarterly, yearly) is very common. The database records are always maintained with

date/time stamps, which can be used to perform historical analyses. The date matching

feature of ANEESAH has been further developed to allow users to ask time driven

database information with slice and dice approach to divide information into different

parts or time. The date and time matching feature enables users to ask time driven

information by either using an actual database table maintained time records (such as

January, 1999) or by using informal expressions such as last week, last quarter. The

ANEESAH’ knowledge base was extended to allow user inputs to match against different

time related scripts.

128

For example, consider the following user utterances:
Example user input 1: “I want to see last quarter sales from Spain”
Example user input 2: “I want to see sales for last quarter of 1998 from Spain”

Example user input 1: I want to see last quarter sales from Spain
Time Pattern-1: ^(?=.*\b((?:last?))\b)(?=.*\b((quarter?))\b).*$
Pattern Category: Time
Rule Id: 3.1
Response: System Date and (System Date - 90 days)

Example user input 2: I want to see sales for last quarter of 1998 from Spain
Time Pattern-2: ^(?=.*\b((?:last?))\b)(?=.*\b((quarter?))\b).*$
Time Pattern-3: ^(?=.*\b((?:year?))\b).*$
Pattern Category: Time
Rule Id: 8.2
Response: 1.10.1998 and 31.12.1998

Table 6.1 – Example of user input match against time pattern

The example user input 1 contains “last quarter” words corresponding to a single Time

Pattern-1 (scripted with regular expression discussed in chapter 4 section 4.3.5.1), which

matched in the knowledge base against appropriate response (as shown in Table 6.1).

The response query will retrieve database results with date restriction from system date

and 90 days before. The time matching feature can detect and react with an appropriate

response when users’ requests contain variation or selection of different date or specific

period (as shown in example user input 2). In the example user input 2, the user input

contains “last quarter” and “1998” words corresponding to two matched patterns (e.g.

Time Pattern-2 and Time Pattern-3). In this case, using the developed time logic, the

response query will retrieve database results for the three months of 1998.This feature

has enabled ANEESAH to produce time driven information from the domain database.

6.4.2 User Response Agreement

 The ANEESAH prototype system employs a new feature to check the user agreement

on query produced responses. The user agreed responses are stored in the system’s log

file. This feature was added to help ANEESAH to engage in conversation with confidence.

Further to a query produced response, ANEESAH asks the user “ANEESAH: I have

discovered information reflected in 'ResultsView' window relevant to your input. Is this

129

what you were looking to find out from the database?”. The user agreement leads to a

link response “ANEESAH: Thanks, let's continue with sales discussion”. Following up from

the user agreement/confirmation, ANEESAH initiates the query refinement feature,

which allows users to refine the existing query produced information/results (discussed

in 6.5), or enter a new information request. If the user disagrees with a produced

response, then ANEESAH allows the user to renew his/her request or continue to with

ongoing request to correct it. This feature was also introduced to improve user

understanding of ANEESAH and offer flexibility in achieving their desired information

from multiple dialogues.

6.4.3 English Language Dictionary

The end user evaluation and log file analysis revealed that user inputs contained spelling

errors, which resulted in incorrect responses or system failure. The literature review

showed that text-based dialogue systems with text correction, and validation feature

can help improve performance and effectiveness. Therefore, it was decided to

implement a spelling correction feature into the architecture of ANEESAH to address the

negative impact spelling errors has on the utterance matching and query responses. This

feature works by utilising an English language dictionary to detect and analyse user

inputs for spelling related errors. The English language dictionary utilised for this

purpose is known as Hunspell spell checker (Hunspell Dictionary, 2017).

Once the CA receives a user utterance, the spelling correction feature is initialised. The

user utterances are evaluated and validated for spelling errors before complete

utterance process is commenced. The user input is broken into words and held in a

temporary short-term memory. Firstly, each word is called by spelling correction feature

to match across database scripts in the knowledge base. If a word match is found in the

knowledge base/recognised as named entity such as customer name, place name,

product name, then that word is not proceeded for spell checking purpose. The spelling

correction feature moves onto the next word in user input. If a spelling error is detected,

the CA communicates it back to the user to clarify. The dictionary evaluation process

makes few suggestions to predict as to what user meant to write as part of his/her input.

The dictionary suggested words are further analysed through Dice Coefficient similarity

130

measure (refer to chapter 4 section 4.3.4) to determine highest matched word(s) before

displaying it to the user. The similarity match feature helps the CA in the selection of

highest matched (with match strength of 1.0 that translates as 100%) word, which

doesn’t require user confirmation. For example, a user input from ANEESAH’s log file

“Ruqayya: can you show the average sale for Mouse Pad for the Octuber, 1998 in fiscal

period?” contained a spelling error “Octuber”. The spelling correction feature adjusted

this input as “can you show the average sale for Mouse Pad for the October, 1998 in

fiscal period?” and then forwarded for the matching process.

However, if string matching process fails to achieve the highest match or match strength

of 100%, then a highest ranked word from matched words is suggested to the user. For

example, a user input “how many customers do we have in Japa” is communicated by

to the user for clarification i.e. “You have mentioned ‘Japa’ in your input, I couldn’t find

any matching record in the database. Did you mean to say ‘Japan’?”. The user can accept

ANEESAH’s suggestion, in which case user input is adjusted with correct word and

forwarded for further processing. If the user ignores the suggestion, the user input is not

altered and transferred for further processing.

This feature has been implemented to address the issue of unrecognised user inputs,

noted during the initial evaluation, which resulted in the pattern matching engine failing

to recognise specific part(s) of the user input.

6.5 Information Refinement Feature

ANEESAH’s architecture was further developed with a novel information refinement

feature to allow users to sustain dialogues and refine query produced information. The

information refinement feature has enabled ANEESAH to handle refinement requests

such as add, update or remove information from query produce results. The information

refinement service is activated and is made available by the system followed by

successful execution (e.g. a query produced results displayed and user agreement

received) of a query response. This required examining of modern business and

reporting applications with drill down/drill across (filter) into different aspects of reports

and further interviews with end users to understand information refinement scenarios

131

such as common query modification/enhancement requests raised by end users.

Further review into existing framework and development approaches was also carried

out to evaluate the most appropriate method that can be adopted to develop

information refinement feature. This required modification of existing components and

development of the new components that by working together as part of the

architecture extend ANEESAH’s abilities to support information refinement or querying

the query operations. The next section (6.5.1) will illustrate how refinement requests

are detected by ANEESAH’s CA, followed by a section (6.5.2) on the SQL Query Refiner

detailing refinement techniques and steps adopted in the process.

6.5.1 Refinement Request Detection

The ANEESAH prototype has been enabled to identify the user desire to continue the

discussion about an ongoing query response. Each user input can lead to a different

requirement or response from the ANEESAH system. The refinement requests can be

entered in different ways and at any stage during a conversation between end users and

ANEESAH. The users will perceive ANEESAH to recognise and distinguish between

refinement related and other (non-refinement) requests. This was achieved by further

development of ANEESAH’s CA and expansion of knowledge base to include refinement

scripts. The ANEESAH’s CA has been modified to detect user refinement requests. Firstly,

for the CA to detect a user refinement request, a successful query response must be

executed. The syntax and objects used to formulate the executed query are temporarily

stored in the short-term memory of ANEESAH (discussed in chapter 4). The CA evaluates

the new user input against refinement scripts stored in the knowledge base. If the CA

detects a link between new user input and previous query response, then it initiates the

SQL query refiner module for further processing (see section 6.5.2). In the case when

the CA cannot detect refinement and user input contains less information than

otherwise would require to qualify for a new query-based response fully. At that point,

the user is asked to clarify if his/her new request is in relation the previous response i.e.

“Is this in connection with your previous request?”. If the user clarifies that his/her

request in not related to the previous request/query produced results, then the

information stored in the temporary memory is reset and user input is treated as a new

132

request. Following is the list of refinement types that can be used by end users to sustain

dialogues to refine query produced information on a continual basis:

 AddInformation –

If user wants to add more information into existing query results

 RemoveInformation –

If user wants to remove information from existing query results.

 ReplaceInformation –

Where user wants to replace information in existing query results

 AddFunction –

Where user wants to introduce function into existing query results

 RestrictInformation –

Where user wants to limit query produced results

The next section will provide detail on the SQL query refiner module and each

refinement type mentioned in above list.

6.5.2 SQL Query Refiner Module

The SQL query refiner module has been implemented to update and adjust query

information (e.g. syntax collection) to enable information refinement. The SQL query

refiner module is initiated when a query response is successfully executed. Following up

from a query execution, the session manager module temporarily preserves the query

information (e.g. query syntax collection) in its short-term memory. Each refinement

request is analysed by the CA to understand its types to determine whether if it's related

to new information addition or deletion etc. Once the nature of refinement request is

identified, then former query syntax is released for the refiner module to apply

adjustments. The SQL query refiner module performs the following refinement features.

6.5.2.1 Add Information

The SQL query refiner has been equipped undertake refinement request to add further

database information into query produced results. For example, a user input “Show me

our last quarter total sales in the UK and France” can be refined by asking system such

as “add more countries”, “adding order quantities”, etc. Each user input, regardless of

133

refinement in nature, follows the complete utterance matching process, and query

relevant syntax is extracted and stored in short-memory section of the session manager

module (discussed in Section 6.8) along with database objects i.e. tables, column names,

attributes, etc. This information is stored distinctly in the temporary memory and in

addition to the existing collection of syntax/objects used to formulate the last query.

Once refinement type is finalised, query related information stored in the short-memory

is released, and query refiner module combines the newly requested information into

the existing collection of query syntax and objects follow a sequence of steps illustrated

(in Table 6.2) below.

If (QueryProducedResponseExists = True) Then

//A query produced response must be executed before refinement

 If (NextUserRequest = AddInformation()) Then

 //Refinement request relate to adding information

 If (RequestedInformationExistInDatabase = True) Then

 //Number of additional entities are found from database

 Foreach If (RequestedInformationIsNotInExistingResponse = True) Then

 //Existing query produced response doesn’t include request entities

 AddInformationInExistingSyntaxCollection()

 //Include requested entities into existing match collection

 If (ResponseAnalyserCheck = True)

 //Analyse response for minimum query condition

 ReformulateQueryWithNewInformation()

 //Reformulate query with additional syntax

 ExecuteQueryResponse()

 //Execute query and analyse response

 Else (Tell user response can’t be formed/rollback)

 Else (Information is already included in report)

 //Tell user information requested is already present in existing response

 Else (AskUserForClarity)

 //Ask user to rephrase his request

 Else (Do next)

 //Check for matching against other refinement functions

Else (ConsiderUserRequestAsNew)

//Take user request forward and treat it as fresh/new user request

Table 6.2: Algorithm for addition of information in query refinement scenario

134

As illustrated in Table 6.2, query refinement process is governed by algorithmic rules,

which involves various steps to evaluate and ensure that information is refined correctly

and in desired order. The next section will provide details on how users can ask ANEESAH

to remove information from query produced results.

6.5.2.2 Remove Information

The users can also ask ANEESAH to remove information (such as column name,

attributes) from query produced results. For example, a user input “Show me our total

sales from UK and France for the last quarter of 1999” can be refined such as “can you

remove country name”, “can you remove last quarter period”, etc. This information is

stored distinctly in short-memory and in addition to the existing collection (present in

the short-term memory) of syntax and objects used to formulate the last query. Once

refinement type is finalised, query related information (stored in the short-memory) is

released, and query refiner module finds and removes the request information from

existing collection. This achieved by following a sequence of steps illustrated (in Table

6.3) below.

If (QueryProducedResponseExists = True) Then

//A query produced response must be executed before refinement

 If (NextUserRequest = RemoveInformation()) Then

 //Refinement request relate to remove information

 Foreach If (InformationExistInQuery = True) Then

 //Information exists in query produced results and less than 3 at a time

 RemoveInformationFromExistingSyntaxCollection()

 //remove requested entities from existing match collection

 If (ResponseAnalyserCheck = True)

 //Check if query can still be formed with minimum condition

 ReformulateQueryWithRemainingInformation()

 //Reformulate query with remaining syntax

 ExecuteQueryResponse()

 //Execute query and analyse response

 Else (Tell user response can’t be formed/rollback)

 Else (Information is not present in report/or excessive)

 //Tell user information requested is already present in existing response

 Else (Do next)

//Check for matching against other refinement functions

135

Else (ConsiderUserRequestAsNew)

//Take user request forward and treat it as fresh/new user request

Table 6.3: Algorithm for deletion of information in query refinement scenario

In the case, when a user is requests to remove information that is not present in the

existing query syntax collection held in short-term memory, then the user is informed

and offered to renew his/her request. The next will illustrate how ANEESAH can replace

information in query produced results.

6.5.2.3 Replace Information

Following a successful query response, (unless refinement is explicitly mentioned in user

input that is successfully detected by ANEESAH) the user is asked to clarify if his/her new

input is in relation to previously executed response. The ANEESAH’s refinement features

also include its ability to replace information (i.e. column name, attributes, etc.) in query

produced results. For example, a user input “Show me our total sales from UK and France

for the last quarter of 1999”, can be refined by asking ANEESAH such as “replace the

country name with Italy”, “can you remove the year 1999 from results?” with different

information from domain database. The user input “replace the country name with

Italy” containing replacement information is processed through utterance matching

process. ANEESAH ensures that database information is present in the existing query

syntax collection. Once discovered the SQL query refiner performs the replacement

information in user desired order. Table 6.4 shows a high-level example of the algorithm

developed to replace information from query produced results:

136

If (QueryProducedResponseExists = True) Then

//A query produced response must be executed before refinement

 If (NextUserRequest = ReplaceInformation()) Then

 //Refinement request relate to replace information

 Foreach

 If (InformationExistInQuery = True

 && RequestedInformationExistInDatabase = True

 && ReplacementObjects =1) Then

 //Replacement object exists in query produced results,

 //and new object exists in knowledgebase, and 1 at a time

 ReplaceInformationInExistingSyntaxCollection()

 //Replace requested entities from existing match collection

 if (ResponseAnalyserCheck = True)

 //Check if query can still be formed with minimum condition

 ReformulateQueryWithRemainingInformation()

 //Reformulate query with remaining syntax

 ExecuteQueryResponse()

 //Execute query and analyse response

 Else (Tell user response can’t be formed/rollback)

 Else (Information is not present in report/or excessive)

 //Tell user either new information doesn’t exist in database or

 //replacement object not present in existing query response or

 // Display appropriate message

 Else (Do next)

 //Check for matching against other refinement functions

Else (ConsiderUserRequestAsNew)

//Take user request forward and treat it as fresh/new user request

Table 6.4: Algorithm to replace information in query refinement scenario

If the new information requested for replacement is not matched in the existing

collection of last query syntax (stored in short-term memory), ANEESAH adds new

information to the collection. The next section will provide detail on how users can

interact with ANEESAH to add/include aggregation functions to query produced results.

6.5.2.4 Aggregation Function

The information refinement feature has enabled ANEESAH to detect and introduce

aggregation functions (i.e. profit, sum, average, etc.) in query produced results. For

example, a user input “Show me product orders from UK and France for the last quarter

137

of 1999”, can be refined conversationally to introduce functions such as “give me a sum

of orders”, “what were average orders during this period”. After the user input matching

process, information from the short-memory module is combined and the SQL query

refiner performs the subsequent steps to adjusts query syntax collection with a new

function. Table 6.5 gives a high-level overview of the algorithm used in introducing

functions in query produced results:

If (QueryProducedResponseExists = True) Then

//A query produced response must be executed before refinement

If (NextUserRequest = AddFuntion()) Then

 //Refinement request relate to adding function

 If (FunctionIsNotInExistingCollection = True //Function doesn’t exist in results

 && FunctionIdentifiedCorrectly = True //Function requested available

 && FunctionRelevanceToResultIdentified = True //Function relevance to results

 && FunctionPossiblityChecked = True //Check if function can be introduced

 && MaxAdditionOfFunctionIs = 1) Then //Only one function is requested

 AddFunctionInExistingSyntaxCollection()

 //Replace requested entities from existing match collection

 if (ResponseAnalyserCheck = True)

 //Check if query can still be formed with minimum condition

 ReformulateQueryWithRemainingInformation()

 //Reformulate query with remaining syntax

 ExecuteQueryResponse()

 //Execute query and analyse response

 Else (Tell user response can’t be formed/rollback)

 Else (Inform user about the problem)

 // Display appropriate message

 Else (Do next)

 //Check for matching against other refinement functions

Else (ConsiderUserRequestAsNew)

//Take user request forward and treat it as fresh/new user request

Table 6.5: Algorithm to add function in query refinement scenario

In line with the query formulation abilities of the ANEESAH prototype, this feature is

limited to include only one function in each query response. However, with further

138

modifications and development, ANEESAH can be equipped to produce a query results

with multiple functions applied. If the user attempts to include more than one function

in a query response or request to include a different function in a pre-executed query

(that already contained a function) produced results, then ANEESAH reacts to inform

user about duplicate functions and offer to make selection.

6.5.2.5 Restrict Information

Another refinement type added to the prototype system is to allow users to

conversationally limit query produced results. The knowledge base has been scripted to

help ANEESAH to recognise user desire to limit query produced results (i.e. the number

of rows, attributes, etc.). For example, a user input “Show me our total monthly sales

from UK and France for the year 1999”, can be refined in a number of ways such as

“show me only just top five”, “last ten rows”. The user input is matched against

knowledge base scripts to extract row limit instructions in its short-term memory.

Additionally, the user desire to limit query results is evaluated to ensure that restrictions

can be applied i.e. query rows/records exist, there is no existing restriction in place, etc.

The query syntax is adjusted with the addition of results filter instructions before further

processing. Table 6.6 shows the algorithm applied for the restriction of query results:

139

If (QueryProducedResponseExists = True) Then

//A query produced response must be executed before refinement

If (NextUserRequest = RestrictInformation()) Then

 //Refinement request relate to restricting information

 If (InformationIsRestrictable = True) Then

 //Information can be restricted i.e. rows/records exists before restriction etc.

 RestrictQueryProductResult()

 //Restrict query result as per user input if possible

 if (ResponseAnalyserCheck = True)

 //Check if query can still be formed with minimum condition

 ReformulateQueryWithRemainingInformation()

 //Reformulate query with remaining syntax

 ExecuteQueryResponse()

 //Execute query and analyse response

 Else (Tell user response can’t be restricted/rollback)

 Else (result or information cannot be restricted)

Else (Do next)

 //Take user input forward to subsequent steps

Else (ConsiderUserRequestAsNew)

//Take user request forward and treat it as fresh/new user request

Table 6.6: Algorithm to restrict information in query refinement scenario

When there are no query results maintained in domain database, the user is informed

of an appropriate response. Further, the ANEESAH prototype has been equipped to

recognise and deal with complex refinement scenarios such as a user requesting

multiple refinements in a single input. The user is presented with an appropriate

response “Can you please ask only single refinement request next time. As your request

contains complex refinement processes, I am renewing this session please only ask

simple and single refinement request next time”. The information refinement abilities of

ANEESAH allow users to engage in sustained dialogues to discover and manipulate

database information with ease and at will. The next session will provide detail on

complete algorithm for user utterance processing including refinement features

discussed above.

140

6.5.3 ANEESAH NLIDB with Information Refinement

The ANEESAH’s information refinement approach is considerably more complex than a

single transaction query, thus requiring an algorithm for sustaining dialogues, conflict

resolution and querying the querying operations. ANEESAH’s architecture and algorithm

were developed by further research and investigation with the intention to improve the

overall effectiveness and user experience of ANEESAH and to achieve research

objectives in fullness. Further development of ANEESAH’s algorithm (illustrated in Table

6.7) was based on the original algorithm developed for initial prototype.

1 > START

2 Update Knowledgebase

3 Get user input

4 IF (User input valid = TRUE)

5 Take input forward to controller for processing (GO Step 9)

6 ELSE (Ask user for a valid/relevant input) //Allow user to make three attempts for a valid input

7 IF (Valid input violated > 3)

8 END Session

9 Match input across domain contexts – (Database | FAQ | General)

10 IF (Input matched/Response found = TRUE)

11 ELSE (Ask user to enter a relevant input)

12 IF (Default response found (Non-Query) = TRUE && Match Strength = TRUE)

13 Execute Rule-based Response (Reset System (0))

14 ELSE IF (Default response found (Non-Query) = TRUE && Match Strength = FALSE)

15 IF (Match found is what was requested) // Check with user

16 Execute Rule-based Response (Reset System (0))

17 ELSE IF (Input matched database = TRUE) // (Query-based response = TRUE)

18 List matched query syntax // (Keyfields, Attributes, Functions, Filer etc.)

19 <Analyse query syntax>

20 IF (User Intention Exists = TRUE) // Select Statement

21 ELSE (Ask user to rephrase/or further clarification)

22 IF (Database Keyfields Exist = TRUE || Database Attributes Exist = TRUE)
 // Table, Column names, cell level information etc.

23 ELSE (Ask user to rephrase/select/clarify database information)

24 IF (Function Exist(s) = TRUE) //Aggregation function or sub-function etc.

25 <Analyse excessive use of syntax/function in input>

26 IF (Excessive Syntax Used = TRUE)

27 {Ask user to make selection}

28 ELSE (Move to the next step) (GO Step 30)

29 ELSE (Move to the next step)

30 IF (Minimum Query Formulation Condition Met = FALSE)

31 {Ask user to provide missing information to meet minimum condition}

32 ELSE (Minimum Query Formulation Condition Met = TRUE)

141

33 SWITCH (SQL Query Generator)
 // Query Types engineered based on complexity levels
 // of query syntax matched/collected from user input

34 CASE: Query Type 1

35 CASE: Query Type 2

36 CASE: ……………………
37 CASE: Query Type n

38 CASE: Query Type

39 {Collection of query related tables

40 Formalise database Keyfields and Attribute

41 Formalise functions and sub-functions

42 Formalise appropriate joining & result filter}

44 EXECUTE (SQL Query); **Algorithm for refinement**

45 IF (SQL Query Execution/Results = TRUE)

46 Display (Display (0))

47 IF (User Agreed on Displayed Results = TRUE && Query Refinement = FALSE)

48 Reset Session (0) // Treat next input as new request

49 ELSE IF Check User (Agreement on Displayed Results = FALSE)

50 {Ask user to rephrase request} // Try again with rephrased input

51 (Reset Session (0))

52 ELSE IF Query Refinement Detected (Amend/Refine Query Results = TRUE)

53 <ANALYSE QUERY REFINEMENT REQUEST>
 // i.e. Add/Remove/Replace/Restrict/function

54 IF (User Intention Exists = TRUE) // Refinement request from user

55 ELSE (Ask user to rephrase/or further clarification)

56 IF (Database Keyfields Exist = TRUE || Database Attributes Exist = TRUE)

57 ELSE (Move to the next step)

58 IF (Function Exist(s) = TRUE) // Aggregation function

59 ELSE (Move to the next step)

60 DO (APPLY ADJUSTMENT TO THE EXISTING/SYNTAX COLLECTION)

61 IF (Query/Syntax Adjustment Successful = TRUE)

62 ELSE (Resolve/clarify with the user)

63 <Analyse excessive use of syntax/function in input>

64 IF (Minimum Query Formulation Condition Met = FALSE)

65 ELSE (Ask user to rephrase/or further clarification)

66 IF (Minimum Query Formulation Condition Met = TRUE)

67 {SWITCH (SQL Query Generator)
 // See Algorithm-1: Go to Step - 33}

68 ELSE (Ask user to rephrase/or provide clarification)

69 ELSE Reset Session (0) //Treat new user input as new request

70 END;

Table 6.7: Algorithm for sustained dialogue and query refinement

6.6 Knowledge base expansion

Following up from end user evaluation, ANEESAH’s knowledge base was further

expanded to address related findings and issues such failure recognised user utterances,

142

agent’s understanding of user requirements, dialogue naturalness. The findings were

collected from user evaluation and system’s log file, which revealed that participants

perceived their conversation with ANEESAH to be low in naturalness and more formal,

which can be translated that dialogues were seemed as “machinelike”. The knowledge

base was reconfigured and further expanded with scripts to aid end user conversation

to be perceived as more human-like, casual and friendlier. This was achieved in following

ways:

Firstly, domain specific knowledge was analysed and expanded with more domain

specific knowledge. This process involved a further review of CA and NLIDB applications,

enterprise reporting systems and further interviews with structured query language

(SQL) experts to understand information requirements in a real-life environment to

strengthen the knowledge base. The ANEESAH’s knowledge base was expanded to

provide dialogue/conversation coverage for ANEESAH to engage users and support

information refinement operations. The unrecognised utterances recorded during end

user evaluation, due to knowledge base weakness, were also added as new patterns in

ANEESAH’s knowledge base.

In addition to the domain specific knowledge, the knowledge base was also reconfigured

to include scripts for other contexts namely; frequently asked questions (FAQ) to allow

users to ask domain related questions, and general chat (GC) to detect and respond to

non-domain related questions (see chapter 4 section 4.4.4 and 4.4.5). Finally, more

domain relevant responses (including previously failed user utterances recorded in the

log file, noted during initial evaluation) were scripted into the knowledge base to handle

and respond to users’ requests with more variety and making ANEESAH to be perceived

more natural in conversations with end users.

6.7 Graphical User Interface (GUI)

The command line interface of ANEESAH prototype was replaced with a Graphical User

Interface. The end user evaluation from ANEESAH prototype one revealed negative

perception for the command line interface. The user comments noted during initial

evaluation showed end user understanding of command line interface as plain and

143

lacked in engagement (see chapter 4 and section 4.3.13) for command line interface).

Therefore, a conventional graphical user interface was developed to improve end user

interaction and to address system engagement problems noted through initial

evaluation such as generic command line interface, satisfaction, effectiveness, user

understanding of ANEESAH’s responses. The aspects and problems related to usability

problems have been considered (Nielsen and Molich, 1990). The graphical user

interfaces have been evaluated as preferred interfaces for real-life environments as

opposed to the use of other interface techniques (Minock, 2010; Revuelta-Martínez et

al., 2013).

Figure 6.2 highlights the new graphical user interface for ANEESAH, which employs two

major sections namely; ChatView showing chat history between the end user and

ANEESAH, and ResultsView window for displaying query results. The system’s responses

(text based) are displayed in ChatView window, and query produced results are

displayed ResultsView window of the interface. At start up, the system introduces itself

as ANEESAH and ask the user to provide his/her name followed by greeting user and

asking user “how can I help you with sales information?” to initialise the conversation.

ResultsView;
Query Results are displayed in this
section of the screen. ChatView:

This section of
the interface is
used for
conversation
between end
user and

ANEESAH.

This field is used by the system user to
enter their inputs/requests.

144

Figure 6.2: Graphical User Interface of ANEESAH prototype two

The user can use input field highlighted with text “Enter your request here” to enter

his/her input. The both windows of new GUI are interchangeably used by ANEESAH

depending upon the type of responses.

6.8 Session Manager Module

The ANEESAH’s session manager module has been equipped with short-term memory

feature to strengthen naturalness of the discussion and extend its abilities to support

information refinement operations. In order to engage with end users through dialogues

and support information refinement requires a staging memory that can be referenced,

updated or removed. The incorporation of memory feature in CA’s design has been

emphasised, which can be used to enable agents to simulate more intelligent and

human-like dialogues (O’Shea et al., 2011). The use of memory in agents is important

and necessary to perform various tasks such as remembering the stage of the

conversation, giving information, remembering the course of interaction and objects,

and referring to old/previous tasks or topic. The important concept to consider for

agents is believability in agents that can be achieved when it can imitate like a human

(Brom and Lukavský, 2009b; Brom and Lukavský, 2009a).

The end user evaluation revealed that participants’ general perception about ANEESAH

with respect to naturalness was low. The feedback from majority participants showed

that conversation with ANEESAH was machine-like and repetitive. In addition to

participants’ feedback, to allow sustained dialogues and perform querying the query

operations required a memory feature that will enable ANEESAH to remember

dialogues, ongoing conversation, database related information. Therefore, in order to

address these issues, a short-term memory technique feature was developed to allow

ANEESAH to remember executed responses. This feature holds query related

information and the ability to relate the previous discussion with new input by asking

the user “Is this in relation to your previous request”, and perform query refinement

operations. Additionally, the knowledge base was scripted to help ANEESAH clarify and

deal with repetitive dialogue/input situations. For example, it helps ANEESAH to

145

respond, when a user utterance fails to match against any context. If the same user

request was entered repetitively, ANEESAH utilises short-term memory to recognise this

and react more intelligently by responding with more human-like responses such as

“Sorry, I still didn’t understand what you are trying to say”. Further, if the repetition

happens more than permitted times (governed by three attempts rule), the

conversation is terminated. Once a final response is executed, ANEESAH offers the end

users to download a guiding document for the system detailing on how to use it. An

example of this highlight in the following Table 6.8.

Short term memory – unrecognised utterance behaviour

User Iteration ANEESAH Response

1st “ANEESAH: Sorry I couldn't understand what you are trying to
ask. I am a sales information assistant for a computer store.
You can ask information related to sales, products, profit,
products etc.”

2nd “I couldn’t relate your request to records in previous response.
Can you please try again to ask something relevant? If you have
a new requirement, please ask to renew request.”

Final “ANEESAH: I am only a computer program and my knowledge
is not developed as yours. You can download helpful
information about using this system by clicking here: Download
Information Document. This is your last chance to ask sales
related information.”

Table 6.8 – ANEESAH’s responses based on short-term memory

After the “final” response is executed, ANEESAH waits for the user to enter a valid

request that it can recognise, then the conversation continues to towards the built

purpose of the system. This enables ANEESAH to behave in more intelligent manner

when responding to unrecognised and repeated requests. The introduction of short-

term memory feature in session manager module allows ANEESAH to interact with users

in more natural and intelligent style by referring to previous knowledge related to the

conversation, therefore, making the conversation and responses to be perceived more

natural and human-like.

6.9 Database Information Selection Tool

146

An information selection tool has been implemented to control the selection of

database information updated in the knowledge base upon start up (discussed in

chapter 4 section 4.4.6). The selection tool is implemented as an administration tool to

provide control over what database information is dynamically loaded into the system’s

knowledge base. A section of the knowledge base is updated at system’s runtime with

fresh database information, which is used as part of the overall knowledge base to

support utterance matching process. In real life business environments, organisations

are required to alter, update or enhance databases on a regular basis to procure

business needs. The database modifications are often related to changes in database

schema structures such as addition or deletion of tables, or columns (Harrington, 2016).

Therefore, database information selection tool has been developed to keep system’s

knowledge base updated with the latest information.

This tool allows information selection as to what tables and columns should be used to

update at knowledge base at runtime. This tool works by calling and reading the domain

database structure at runtime. The information available from the domain database

tables and columns can be selected/unselected to pull the knowledge base, which then

can be used as part of the overall knowledge base for the matching process. This is also

useful to exclude any non-functional or database backend tables such as system tables.

6.10 Conclusion

This chapter highlighted additional research, development and techniques adopted to

not only address the weaknesses revealed through during the initial evaluation but also

to introduce such as sustained dialogue and querying the query operations. The

architecture components enhanced and developed at this stage of the research are

believed to bring improvement in the robustness and effectiveness of ANEESAH.

Improvements made to the CA along with the development of new features (such as

date matching, user response agreement and spelling correction) have improved the

overall robustness and accuracy of ANEESAH prototype system. The introduction of

information refinement feature to allow users to sustain dialogues for query refinement

on a continual basis has strengthened and improved the user experience. Other

supplementary components such as short-term memory, new graphical user interface

147

and database information selection tool have been implemented to with the intention

to improve overall effectiveness and user interaction experience with ANEESAH. Most

significant contribution at this stage of the research as follows:

 An undated architecture to develop a conversational NLIDB with improved

components and features.

 ANEESAH mimics as a human query assistant and conversationally allows users

to sustain dialogues to extract and refine query produced information stored in

the domain database.

 ANEESAH has been enabled to offer information refinement features such as

addition new records, replacing new records, removing records from query

produced information.

 Improved/Enhanced SQL engine abilities and related components to offer not

only offer dynamic formulation of single transaction query but perform querying

the query operations on continual basis.

 Improved CA with new features (such as date matching, user response

agreement and spelling correction).

 Knowledge base improvements with extended conversational abilities to

improve user interaction experience and provide wider coverage of

conversational topics.

 A new graphical user interface to improve end user interaction.

The new updated architecture of ANEESAH will undergo end user evaluation to evaluate

if the new development and enhancement have any positive impact on the success and

effectiveness of ANEESAH compare to the first prototype. The second end user

evaluation methodology and results are explained in the following chapter (7 and 8).

148

Chapter 7 - ANEESAH 2 Evaluation Results and Discussion

(Phase Two)

7.1 Introduction

The first phase evaluation was aimed to validate Conversational Agent (CA) enabled

Natural Language Interface to Database (NLIDB) framework methodology and

implemented CA enabled NLIDB ANEESAH. During first phase evaluation, implemented

architecture revealed weaknesses in specific components, and improvement with

further development points was highlighted. The improvements were carried out with

the addition of several new features and furthering the development of prototype one

to achieve a complete set of research objectives.

Formulation of evaluation metrics was used to analyse different components of

implemented prototype during the first phase. For phase two, formulation of evaluation

metrics was based on the original selection of metrics that were used for initial

evaluation. This will help in determining the success of further development and

improvements made to the ANEESAH’s architecture. The evaluation at phase two will

also highlight the overall effectiveness of ANEESAH. The evaluation metrics selected for

this purpose individually map to different features of ANEESAH, which can be used to

detect and evaluate the contribution of individual components. In addition, carrying first

phase evaluation metrics forward as a base for phase two evaluation will also serve as a

benchmark and bring to light any significant improvements between the two

prototypes.

7.2 Experimental Design

The data collection for phase two evaluation was carried out by experiments, which

required test participants to interact with the system to perform an objective analysis

of logs followed by completing survey questionnaires for subjective analysis. The

purpose of the evaluation is primarily to gauge the success of further developed

components and improvements made to the ANEESAH’s framework. This will also help

149

in examining if further development and enhancement have improved different aspects

of ANEESAH’s framework such as conversational abilities, query refinement,

weaknesses highlighted during first phase evaluation. The data collection during

experiments will aid in concluding the main research questions.

7.3 Hypothesis

The main aim of this research is highlighted through main research question as follows:

Research Question -

Can a Natural Language Interface to Database allow users to access desired database

information and sustain dialogue for further refinement of information?

The research hypothesis (H0) with subsidiary research hypothesises mentioned below

are to be evaluated through phase two evaluation by way of conducting experiments on

updated architecture of ANEESAH system.

H0-A. A NLIDB cannot allow users to retrieve desired information from a database

interactively.

H0-B. A NLIDB cannot allow users to perform multidimensional information analysis and

further refine information produced from the database.

H0-C. A Pattern Matching approach cannot be used to build a conversational NLID

successfully, capable of automating complex query formulation process.

H0-D. A conversational NLIDB cannot generate comparable results to those produced

conventionally by a database expert.

The research hypothesises refer to the subjective and objective features of the updated

architecture of ANEESAH. The original null hypothesis (H0) will be accepted or rejected

based on the results gathered for subsidiary hypothesis (A, B, C, D and E).

150

7.4 Experiments

In line with the first phase evaluation and to collect evidence for H0, two experiments

were designed to evaluate prototype two. The prototype two was expected to perform

better than prototype one in phase two experiments. Primarily two participant groups

namely; Group A and Group B partook in phase two experiments. There was a total of

32 participants in both groups. The Group A participants were selected on the basis of

their structured query language and database knowledge. The Group B participants

possessed no structured query language (SQL) and database knowledge. The Group B

participants can be further divided into three categories namely; Group B.1 test users

who create their reports based on queries written by other people, Group B.2 test users

who use reports and queries developed by other people or applications, and Group B.3

users who have never used a database before. The intention behind using participants

from diverse backgrounds was to put the system through firm testing, and their

contribution will help in taking an insight into system usage patterns.

 The experiments involved participants to conversely interact with ANEESAH to

complete a set of test scenarios. The interaction between ANEESAH and test users is

recorded in the log file that will provide data required to evaluate objective metrics. The

log file was configured to capture discussions between the system and test users. The

log file was also configured to store database queries that will be used to measure the

success of enhanced and further developed components of ANEESAH’s architecture.

The information necessary to evaluate subjective metrics was collected through

experiment two, which involved participants’ groups in completing survey

questionnaires (see Appendix A) after interacting with ANEESAH. The survey

questionnaire was amended to include questions in line with further developed features

to measure users’ perceptions such as their view of the query refinement feature etc.

The data collected from the log file and survey questionnaires are compiled to extract

151

subjective and objective data that is used to examine and measure the effectiveness of

enhanced architecture statistically.

7.5 Participant interaction

The test participants were invited through email, and later prototype two was made

available to them. The participants were informed that developed system is a prototype

only and it can only produce responses related to a domain in specific Sales History

sample database. The participants were briefed that scenarios are only open-ended

instructions to stipulate individual tasks that ANEESAH can perform. They were told to

interact with the system freely and as they felt suitable for example use of language

when interacting to complete individual scenarios assigned to them. All participants

were briefed on how to use the system to complete appropriate scenarios. The test

participants were presented with a list of scenarios with subtasks requiring users to find

database information.

The native language for selected participants varied, however, they were fluent in the

English language, but their knowledge of SQL and database varied from expert to

complete no knowledge of database. The scenarios instructions given to the

participants had no predetermined limit or boundary. Each participant was required to

read and translate scenarios questions as per his/her understanding when using the

ANEESAH system. Thus, avoiding the introduction of any bias in questions the

participants will ask the system during test sessions.

7.6 Evaluation Metrics Formulation

During the first phase of ANEESAH’s evaluation, subjective and objective metrics were

derived using goal, question, metrics (GQM) methodology. The next section (7.7) will

provide detail on the selected metrics for evaluation.

152

7.7 Evaluation Metrics

The data collected against these metrics (in phase two) will be contrasted to the set of

data collected during first stage evaluation to yield any statistical difference or

improvement between the two data samples. Table 7.1 illustrates “objective metrics”

sought for evaluation, “source” of information and what agent “characteristics” are

measured.

Obj. Metrics Source Characteristics Measured

Dialogue/
Conversation Length Log File

 Time taken to get desired info or complete a test
scenario

 Time required to produce results

Count of dialogue turns Log File
PR-F

 Number of iterations/dialogues required per one
scenario or all test scenarios

Various measures of
success at utterance or
task completion level

Log File
PR-F

 Number of times correct answers/information
produced by ANEESAH-2?

 SQL queries executed with correct results.

 SQL queries enhanced/reformulated to provide
refinement Various counts of correct

actions by the agent (e.g.
answering questions)

Various counts of errors,
corrections or percentage
error rates

Log File
PR-F

 Number of times system crashed during testing?

 Number of times incorrect answers / info
produced.

 Number of times ANEESAH did not recognise user
questions?

Precision
Recall
F-Measure

Log File
PR-F

 Other input recognition / accuracy measures

 If implemented architecture and query generation
engine is effective?

 Handling of test scenarios and information
refinement by way of dynamic query formulation

Table 7.1: List of objective metrics

Table 7.2 reflects how research hypothesises questions are mapped to subjective

metrics selected for ANEESAH’s evaluation such as usability, effectiveness, user

satisfaction.

153

Table 7.2: Goal, questions, metric model for phase two evaluation

154

7.8 Data Collection

The data to evaluate subjective and objective metrics have been collected as follows.

7.8.1 Subjective Data Collection

The data required to evaluate subjective metrics has been collected by way of survey

questionnaire filled by participants. The structure of questionnaire has been updated

to cover research questions that were not part of the first phase evaluation scope.

The scope of phase two evaluation is to provide answers to all research questions.

7.8.2 Objective Data Collection

The data required to examine objective metrics will be collected from the log file,

produced during participants’ interactive sessions with ANEESAH. The information

such as dialogues, responses, database queries is captured in the log file, which will

be utilised to derive statistical analysis.

7.9 Data Analysis

The data collected during phase two evaluation will be examined and contrasted with

the data collected at first phase evaluation of prototype one. Doing this will help in

analysing which if any of the further developed and enhanced/improved components

has a significant impact on the effectiveness and overall performance of ANEESAH.

The evaluation data collected during phase two will be compiled and transformed to

apply different statistical analysis techniques. The statistical analysis techniques will

aid in answering the research hypothesis questions. Following up from the phase

one, the phase two evaluation will also include participants with two main

backgrounds namely; participants with SQL knowledge (Group A) and participants

with no SQL (Group B). Table 7.3 highlights the differences between the two

prototypes (one and two) of ANEESAH. In addition, this will also reflect if the

participants knowledge of SQL/database have any significant difference in how both

participants’ groups interact with the prototype system and whether or not these

variables have any impact on the performance of prototype system.

155

New Data
Participants with
SQL Knowledge

Participants
with No SQL
Knowledge } Between Groups

Old Data
Participants with
SQL Knowledge

Participants
with No SQL
Knowledge

Table 7.3: Participants groups for data analysis

7.10 Scenarios

The prototype two was also evaluated through test scenarios (Appendix B). For phase

two evaluation, the system’s knowledge base has been further developed through

knowledge engineering that has increased the system’s abilities to include sustained

dialogues and query refinement features. The scenarios devised for experiments

were based on example queries and review of existing NLIDBs (discussed in chapter

2) and business applications. This process also involved taking an insight into how

database information is requested in real life environments. There were seven test

scenarios developed in total ranging (1-7) from simple to complex in nature. The

scenarios were different from one another in terms goal achievement and included

sufficient information necessary to complete the set-out tasks.

The scenarios were embedded with query formulation and refinement difficulties.

For example, scenario 1 required a simple/single transaction query and scenario 7

was designed to involve complex queries and multiple refinements. Each participant

from both groups (Group A and Group B) was required to complete seven scenarios.

In addition, the test scenarios were developed to (or “intending to”) giving

participants the flexibility to select specific database information of their choice

when attempting scenario 1 and scenario 2. Their selected information was later to

be used by participants in completing the subsequent scenarios (3-7). This was done

so that information given on scenarios sheet was not hard coded but down to

participant’s choice leading to different results as output. The participants’ choice of

information selection does not alter the outcome/nature of queries expected against

156

each scenario. Therefore, the variations will still be comparable and gathered results

would be usable for statistical analysis.

7.11 Participants Sample

The number of participants involved in first phase evaluation was 20, but for phase

two evaluation this number was increased to 32. This will help in gathering more data

that will lead to more decisive and conclusive results. A sample size of 32 has been

found to give meaningful results in other work on CAs and NLP in the past (O’Shea et

al., 2011; Pazos R et al., 2013). The sample has been divided into groups (Group A

and Group B) to analyse whether their knowledge about databases has any impact

on the effectiveness of ANEESAH. During the evaluation, experiment data was

filtered to include fully completed test sessions only. The test data for participants

who completed full experiments followed by completion of survey questionnaire was

carried forward for analysis. The following section illustrates test sample distribution.

7.11.1 Sample Distribution by SQL Knowledge

Figure 7.1 shows participants’ distribution chart based on different level of

knowledge for structured query language and use of database information.

A - Participants who can write their database
queries.

B.1 – Who create reports with queries written
by others.

B.2 – Who use database reports & queries
developed by others.

B.3 – Participants who never used a database.

Figure 7.1: Pie chart of sample distribution by SQL knowledge

The total sample of 32 participants can be grouped into two main categories. Group

A participants with SQL/database knowledge or Group B with no knowledge of

SQL/database that is further divided into subsidiary groups. Figure 7.1 shows that

A
50%

B. 1
16%

B. 2
28%

B. 3
6%

157

50% of participants included in experiments possessed structured query language

and database knowledge. These participants had this knowledge because of

educational or professional background. This was followed by 28% of the original

sample who use database information based reports or queries developed by

experts. Furthermore, 16% of the original sample included participants who author

their reports based on queries written by database experts. This proportion of the

sample was drawn from a professional environment. Following this, 6% of the sample

included participants who have never used database before. None of the

participants involved in the evaluation will have any previous experience using

ANEESAH, and the participants were not paid for their participation in the evaluation

study they all volunteered to participate for altruistic reasons.

7.12 Experiments Results

The following section will detail analysis of evaluation from experiment 1 and

experiment 2.

7.12.1 Experiment 1

Experiment 1 was designed to evaluate feedback from both participant groups

following up from their interaction with prototype two. In order to determine the

conversational abilities and interaction experience of further developed and

enhanced prototype two, all test participants were presented with an evaluation

questionnaire. The evaluation questionnaire was designed with a Likert scale based

questions to enable participants to rate their experience between one to five points.

The evaluation questionnaire also included two definitive questions answerable in

yes or no. There was an open-ended question to allow users to write any comments

or feedback about prototype two system as shown in Table 7.4. The evaluation

metrics were translated into individual questions on survey questionnaire to evaluate

different aspects of prototype two. The questions formed in below questionnaire

have been used effectively to evaluate similar systems.

158

Participant No:

 I write my own database queries.

 I create my own reports based on queries written by other people.

 I use database reports and queries developed by other people/applications.

 To the best of my knowledge I have never used a database

“Please rate the degree to which you agree with the following on a scale from 1 to 5 where 1 means

strongly/very negative and 5 means very positive.”

 1 2 3 4 5

1 I found this system to be useful?
strongly

disagree

 strongly

agree

2
I am able to complete my work actively and

quickly using this system?

strongly

disagree

strongly

agree

3
Overall, how would you rate your

satisfaction level about using the system?

strongly

disagree

strongly

agree

4
I think that I can effectively complete my

work using this system.

strongly

disagree

strongly

agree

5

To what extent do you agree with the

system’s ability to entertain/handle

requests?

strongly

disagree

strongly

agree

6
To what extent do you agree with the

system’s ability to refine information?

strongly

disagree

strongly

agree

7
I think it was easy to understand and use the

system.

strongly

disagree

strongly

agree

8
I am confident about the system’s level of

understanding my inputs.

strongly

disagree

strongly

agree

9 I found this system to be user friendly.
strongly

disagree

strongly

agree

10

I am satisfied with the results produced

from database and information refinement

as part of completing the scenarios.

strongly

disagree

strongly

agree

11
I am satisfied with the overall system’s

responses.

strongly

disagree

strongly

agree

12
The system’s dialogue during the

conversation was natural.

strongly

disagree

strongly

agree

13. Would you use a similar system again in the future?

YES NO

14. Would you use ANEESAH system instead of taking help from a Database expert??

YES NO

Any further comments you may have:

 Table 7.4: Questionnaire for phase two evaluation

0

0

0

0

0

0

0

0

0

0

159

7.12.2 Experiment 1 Results

This section will discuss questionnaire results from both participant groups. The

questionnaires' data from all participants was compiled to prepare Table 7.5. Table

7.5 shows that ANEESAH prototype two was well received by test participants. The

system usability question was rated at 94% where participants agreed or strongly

agreed with its usefulness. Approximately, 6% participants represent neutral rating

for system’s usefulness. In response to question two (satisfaction) and three (task

ease), prototype two received a rating at 82% and 81% where participants agreed or

strongly agreed that they are satisfied with the use of the system. Overall 19% neutral

rating was received for system’s satisfaction and its task easing feature. In response

to question four (system effectiveness), prototype two received an overall rating of

91% between agreed and strongly agreed with a neutral rating at 9%. For question

five, request handling ability of the system was rated at 97% where users agreed or

strongly agreed that was followed by 3% neutral rating for the same. The system’s

information refinement ability (question six) has been rated 88% where users agreed

or strongly agreed with 13% of participants giving a neutral rating for the same. The

user understanding of the system and agent understanding of user has been rated

87% and 91% between agreed and strongly agreed, respectively.

Overall 13% users gave a neutral rating for question number seven followed 9% users

who gave a neutral rating for question number eight, respectively. The question

number nine has been rated at 84% where users agreed or strongly agreed to

ANEESAH’s friendliness. There were 16% participants who gave a neutral rating for

system’s user friendliness. For user satisfaction on system produced results, it

received 84% agreement or strong agreement of test participants with 16% showing

neutral rating. Subsequently, agent behaviour as expected, and dialogue naturalness

received a rating of 84% and 79%. For these metrics, 16% and 19% of participants

gave a neutral rating. Finally, 91% of overall participants agreed to use ANEESAH in

future and same rating for their wiliness on using a similar system with only 9% of

overall participants disagreeing on either taking help from ANEESAH or using a similar

system in the future.

160

Questions 1 2 3 4 5

1

I found this system to be useful? strongly

disagree 0% 0% 6% 44% 50%

strongly

agree

2

I am able to complete my work actively and

quickly using this system?

strongly

disagree 0% 0% 19% 38% 44%

strongly

agree

3

Overall, how would you rate your satisfaction

level about using the system?

strongly

disagree 0% 0% 19% 56% 25%

strongly

agree

4

I think that I can effectively complete my work

using this system.

strongly

disagree 0% 0% 9% 47% 44%

strongly

agree

5

To what extent do you agree with the system’s

ability to entertain/handle requests?

strongly

disagree 0% 0% 3% 44% 53%

strongly

agree

6

To what extent do you agree with the system s

ability to refine information?

strongly

disagree 0% 0% 13% 47% 41%

strongly

agree

7

I think it was easy to understand and use the

system.

strongly

disagree 0% 0% 13% 53% 34%

strongly

agree

8

I am confident about the system’s level of

understanding my inputs.

strongly

disagree 0% 0% 9% 63% 28%

strongly

agree

9

I found this system to be user friendly. strongly

disagree 0% 0% 16% 28% 56%

strongly

agree

10

I am satisfied with the results produced from

database and information refinement as part

of completing the scenarios.

strongly

disagree 0% 0% 16% 53% 31%

strongly

agree

11

I am satisfied with the overall system’s

responses.

strongly

disagree 0% 0% 19% 34% 47%

strongly

agree

12

The system’s dialogue during the conversation

was natural.

strongly

disagree 0% 0% 22% 31% 47%

strongly

agree

Yes No

13 Would you use ANEESAH system instead of taking help

from a Database expert?

91% 9%

14 Would you use a similar system again in the future? 91% 9%

Table 7.5: Questionnaire results from both participant groups

7.12.3 Experiment 1 Discussion (Group-A)

Figure 7.2 shows questionnaire results from Group A participants during phase two

evaluation. Overall 93% participants have rated the system high (out of which 37.5%

rated it very high) for its perceived usefulness with 6% rated at medium. The

participants (87%) from Group A have rated their perceived satisfaction level for the

system between high and very high with 13% (approx.) rating their satisfaction at

161

medium level. The perceived system effectiveness and task ease (question 4) have

received a high rating from 93% of the sample (out of which 43% approx. rating it at

very high). The system’s ability to handle user requests (question 7) has received

62.5% high rating from overall Group A sample and 37.5% rated this feature as very

high. The system’s ability to refine query information has received a high rating from

43% (approx.) participants with further 37% rated it as very high. However, 18% of

overall sample rated this at medium level. Most participants (68% approx.) highly

agreed with user understanding of the system (question 7 and 8) and further 25%

rated this as very high. Only 6% of overall sample rated user understanding of the

system at medium level. The system’s friendliness received 81% rating between high

to very high.

Figure 7.2: Participants rating from experimental Group A

The participant’s satisfaction on ANEESAH’s ability to produce database information

(question 11) received 56% (approx.) high rating and 25% very high satisfied followed

by 18% (approx.) showing their satisfaction level medium. The system highly satisfied

81% (approx.) participants with its responses. The system’s dialogue naturalness has

been rated between high and very high by 75% of Group A participants with 25%

rating this measure at medium level. There were 93% participants who agreed to use

ANEESAH as an alternative system instead of writing structure queries to extract

information from a database. The same number of participants also agreed to use

similar systems in the future.

6
.2

5
%

1
2

.5
0

%

6
.2

5
%

6
.2

5
%

0
.0

0
%

1
8

.7
5

%

6
.2

5
%

6
.2

5
%

1
8

.7
5

%

1
8

.7
5

%

1
8

.7
5

%

2
5

.0
0

%37
.5

0%

31
.2

5%

56
.2

5%

43
.7

5%

62
.5

0%

43
.7

5%

68
.7

5%

62
.5

0%

31
.2

5%

56
.2

5%

37
.5

0%

37
.5

0%

56
.2

5%

56
.2

5%

37
.5

0%

50
.0

0%

37
.5

0%

37
.5

0%

25
.0

0% 31
.2

5%

50
.0

0%

25
.0

0%

43
.7

5%

37
.5

0%
Q - 1 Q - 2 Q - 3 Q - 4 Q - 5 Q - 6 Q - 7 Q - 8 Q - 9 Q - 1 0 Q - 1 1 Q - 1 2

Very Low Low Medium High Very High

162

7.12.4 Experiment 1 Discussion (Group-B)

The overall results from Figure 7.3 reflect Group B participants have well received

the prototype two. The participants (50%) from Group B have rated system’s usability

high. There 43% participants (approx.) found system’s usefulness as very high with

only 6% who rated this at medium level. The system was successful in satisfying

participants from this group by receiving 56% high satisfaction and 31% rating their

satisfaction as very highly. The system’s effectiveness has received 50% high rating

from the overall participants in Group B and further 37% who have rated

effectiveness at very high. The system’s ability to handle the request (received 68%

high and 25% very high rating) and refine information (received 50% high and 43%

very high rating) has been strongly agreed. The users understanding of agent and

their confidence has been rated high or above by 85% of the participants. The

system’s friendliness is strongly agreed by 25% of participants rating where 62% very

strongly agreed to this measure.

Figure 7.3: Participants rating from experimental Group B

ANEESAH’s ability to produce database information also strongly satisfied 87% of

participants from Group B. ANEESAH’s overall responses and dialogue naturalness

have been rated high or above by 80% (approx.) participants. Overall 91% of

participants from Group B agreed to use ANEESAH as an alternative system than

6
.2

5
%

2
5

.0
0

%

3
1

.2
5

%

1
2

.5
0

%

6
.2

5
%

6
.2

5
%

1
8

.7
5

%

1
2

.5
0

%

1
2

.5
0

%

1
2

.5
0

%

1
8

.7
5

%

1
8

.7
5

%

50
.0

0%

43
.7

5%

56
.2

5%

50
.0

0%

25
.0

0%

50
.0

0%

37
.5

0%

62
.5

0%

25
.0

0%

50
.0

0%

31
.2

5%

25
.0

0%

43
.7

5%

31
.2

5%

12
.5

0%

37
.5

0%

68
.7

5%

43
.7

5%

43
.7

5%

25
.0

0%

62
.5

0%

37
.5

0%

50
.0

0% 56
.2

5%

Q - 1 Q - 2 Q - 3 Q - 4 Q - 5 Q - 6 Q - 7 Q - 8 Q - 9 Q - 1 0 Q - 1 1 Q - 1 2

Very Low Low Medium High Very High

163

taking help from a structured query language expert and showed a willingness to use

similar systems in the future.

7.12.5 Descriptive Statistics (Test of Normality)

The data collected from phase two evaluation has been used to prepare histograms

(Appendix C) for visual inspection. The visual inspection of histograms will reveal the

distribution of evaluation data and highlight any abnormality in distribution. The null

hypothesis has been assumed that evaluation data has normally been distributed.

The data from both experiment groups is analysed (Figure 7.4 is an example

histogram values for question 9) through the curve of normality, which will show lead

to a conclusion on acceptance of the null hypothesis.

Group-A Participants Group-B Participants

I found this system to be user friendly.

I found this system to be user friendly.

Figure 7.4: Phase two evaluation data histograms

The visual inspection reveals that the test calculated normal curve for all questions

in the questionnaire used for phase two evaluation. The histograms also show there

is no significant difference in how both groups rated the system. For question 9 (“I

found this system to be user friendly.”), the histogram shows slight abnormality in

curve between Group A and Group B. This represents that the participants from

Group B (participants with no SQL and database knowledge) found the prototype two

more friendlier than the participants in Group A (participants with SQL and database

164

knowledge). The test of normality shows that participants for both groups similarly

perceived the system during phase two evaluation (Latham et al., 2011).

7.12.6 Selection of Statistical Test

As discussed in chapter 2 that, there exists no universally accepted benchmark

evaluation methodology that can be used to evaluate conversational NLIDB. In

addition, selection of a statistical test is also determined based on nature and type

of research. There are two types of statistical tests namely; parametric and

nonparametric. The parametric test involves the assumption of participants involved

in the test to derive the data from. Non-parametric tests usually known to evaluate

data that doesn’t take a number of participants into consideration. Non-parametric

analyses are performed to evaluate situation or occurrence of abnormal

distributions, and parametric (also known as descriptive) tests are carried out with

numerical values and assumption of the population. Parametric statistics can be

carried out by visual inspection of histograms that can help in analysing the

distribution of data, and non-parametric tests work with ordinal and categorical data.

Reviewing the ratio of skewness and kurtosis in relation to standard error values can

help in performing the test of normality (Doane and Seward, 2011; Gravetter and

Wallnau, 1999).

7.12.7 Inferential Statistics (Mood’s Median Test)

The inferential statistical analyses can assist to determine if test data is normally

distributed and not based on a set of assumptions about the participants (Nolan and

Heinzen, 2011). The Mood’s Median test has been used (because of the sample size)

to comparing the difference in ratings between two participants’ groups (Group A

and Group B) and highlight reason behind significant difference (if any) that can be

otherwise assumed as a difference by chance. The Mood’s median values for Group

A and Group B are reflected in Table 7.6. Table 7.6 highlights “Questionnaire

Questions” asked to test the participants, “Number” of test participants, overall

“Median” for each question for the two groups combined, “Exact Sig.” significance

value between both participants’ groups, and “ratings” showing less than, equal to

165

overall median or greater than overall median values. The significant difference

between Group A and Group B will be determined based on significant values also

known as “Exact Sig.” recorded when using Mood’s test for comparison. For this

purpose, the H1 hypothesis will be accepted with the difference value between both

groups is recorded less than 0.05. Table 7.6 reflects statistical values for both groups.

Mood's Median Test

Questionnaire Questions Numbe
r

Median Exact
Sig.

Ratings Groups

A B

1 I found this system to be useful? 32 4.5 0.479 <= Median 7 9

> Median 9 7

2 I am able to complete my work actively
and quickly using this system?

32 4 0.154 <= Median 7 11

> Median 9 5

3 Overall, how would you rate your
satisfaction level about using the
system?

32 4 0.07 <= Median 1 5

> Median 15 11

4 I think that I can effectively complete my
work using this system.

32 4 0.476 <= Median 8 10

> Median 8 6

5 To what extent do you agree with the
system’sبabilityبtoبentertain/handleب
requests?

32 5 0.076 <= Median 10 5

> Median 6 11

6 To what extent do you agree with the
system s ability to refine information?

32 4 0.718 <= Median 10 9

> Median 6 7

7 I think it was easy to understand and
use the system.

32 4 0.264 <= Median 12 9

> Median 4 7

8 Iبamبconfidentبaboutبtheبsystem’sبlevelب
of understanding my inputs.

32 4 0.544 <= Median 1 2

> Median 15 14

9 I found this system to be user friendly. 32 5 0.476 <= Median 8 6

> Median 8 10

10 I am satisfied with the results produced
from database and information
refinement as part of completing the
scenarios.

32 4 0.445 <= Median 12 10

> Median 4 6

11 Iبamبsatisfiedبwithبtheبoverallبsystem’sب
responses.

32 4 0.723 <= Median 9 8

> Median 7 8

12 Theبsystem’sبdialogue during the
conversation was natural.

32 4 0.287 <= Median 10 7

> Median 6 9

13 Would you use a similar system again
in the future?

32 1 0.544 <= Median 1 2

> Median 15 14

14 Would you use ANEESAH system
instead of taking help from a Database
expert?

32 1 0.544 <= Median 1 2

> Median 15 14

Table 7.6: Mood’ median test results

166

For question 1 (“I found this system to be useful?”), the significant value recorded is

greater than 0.05 limit. Therefore, the H1 hypothesis can be rejected as the rating

from both groups does not show significant difference.

The significant value recorded for question 2 (“I am able to complete my work

actively and quickly using this system?”) is greater than 0.05. Therefore the H1

hypothesis can be rejected as there is no significant difference between both

participants’ groups ratings.

The test showed no significant difference between the rating of Group A and Group

B for question 3 (“Overall, how would you rate your satisfaction level with using the

system?”). The significant value recorded for both groups is somewhat different but

greater than 0.05. Therefore, we can reject the alternative H1 hypothesis.

In the case of question 4 (“I think that I can effectively complete my work using this

system.”), Mood’s test revealed no significant difference between ratings of both

groups and the significant value recorded is greater than 0.05. For question 4, the H1

hypothesis can be rejected as the value recorded is greater than the threshold limit.

The significant value recorded for question 5 (“To what extent do you agree with the

system’s ability to entertain/handle requests?”) near threshold limit but over a

threshold value. Therefore, the alternative H1 hypothesis can be rejected, as the

difference recorded is not below threshold limit of 0.05.

The question 6 (“To what extent do you agree with the system’s ability to refine

information?”) has a recorded value of 0.718 that is over 0.05 that shows no

significant difference between both participants’ ratings. Therefore, for question 6

the H1 hypothesis can be rejected as significance value from both groups is recorded

over threshold limit.

Mood’s test showed no significant difference for question 7 (“I think it was easy to

understand and use the system.”), and a significant value was measured higher than

0.05, therefore H1 hypothesis can be rejected for this question.

167

The distribution of rating from both participant groups doesn’t differ significantly for

question 8 (“I am confident about the system’s level of understanding my inputs.”) as

value determined by Mood’s test is greater than 0.05. The H1 hypothesis can be

rejected for this question in the absence of significant difference between both

groups ratings.

The significant value noted for question 9 (“I found this system to be user friendly.”)

represents that participants from both groups have relative ratings for the prototype

two. The H1 hypothesis can be rejected for question 9 as significant value is recorded

above the threshold limit.

Ratings given for question 10 (“I am satisfied with the results produced from

database and information refinement as part of completing the scenarios.”) from

both participants’ groups show no significant difference as recorded value was above

the threshold limit. The H1 hypothesis can be rejected for question 10 as the

recorded value is above the minimum threshold value of 0.05.

Both groups’ ratings for question 11 (“I am satisfied with the overall system’s

responses.”) does not significantly different as test value is greater than 0.05.

Therefore H1 hypothesis can be rejected for this question.

The participants from both groups’ ratings for question 12 (“The system’s dialogue

during the conversation was natural.”) relatively similar as the significant value was

recorded above the threshold limit. The H1 hypothesis can be rejected for this

question as there is not a significant difference.

For question 13 (“Would you use ANEESAH system instead of taking help from a

Database expert?”) and question 14 (“Would you use a similar system again in the

future?”), the test recorded values are above threshold limit (0.05), therefore the H1

hypothesis can be rejected as there is not significant difference between both

group’s rating for these questions.

168

The above test analysis shows that ANEESAH has sufficient usability that there is no

significant difference between the user experience of an expert and a non-expert,

also as the scores are generally positive, it is a suitable system for non-expert users.

7.12.8 Analysis of Questionnaire Results for Prototype (one and two)

The questionnaire was divided into two parts, the first part was based on Likert scales

based questions and second part consisted definitive questions (Yes/No). The both

parts were designed to evaluate participants ratings from subjective aspects based

on their interaction with ANEESAH (see Appendix D). The analysis of questionnaire

based collected data will help in testing and concluding hypothesis questions.

Table 7.7: Questionnaire results from both participant groups for Prototype-2

ANEESAH Prototype Two Likert Scale Questions

Questionnaire Questions 1 2 3 4 5
1

I found this system to be useful?

strongly

disagree 0% 0% 6% 44% 50%

strongly

agree

2 I am able to complete my work actively

and quickly using this system?

strongly

disagree 0% 0% 19% 38% 44%

strongly

agree

3 Overall, how would you rate your

satisfaction level about using the

system?

strongly

disagree 0% 0% 19% 56% 25%

strongly

agree

4 I think that I can effectively complete my

work using this system.

strongly

disagree 0% 0% 9% 47% 44%

strongly

agree

5 To what extent do you agree with the

system’sبabilityبtoبentertain/handleب

requests?

strongly

disagree 0% 0% 3% 44% 53%

strongly

agree

6 To what extent do you agree with the

system s ability to refine information?

strongly

disagree 0% 0% 13% 47% 41%

strongly

agree

7 I think it was easy to understand and use

the system.

strongly

disagree 0% 0% 13% 53% 34%

strongly

agree

8 Iبamبconfidentبaboutبtheبsystem’sبlevelب

of understanding my inputs.

strongly

disagree 0% 0% 9% 63% 28%

strongly

agree

9

I found this system to be user friendly.

strongly

disagree 0% 0% 16% 28% 56%

strongly

agree

10 I am satisfied with the results produced

from database and information

refinement as part of completing the

scenarios.

strongly

disagree 0% 0% 16% 53% 31%

strongly

agree

11 Iبamبsatisfiedبwithبtheبoverallبsystem’sب

responses.

strongly

disagree 0% 0% 19% 34% 47%

strongly

agree

12 Theبsystem’sبdialogue during the

conversation was natural.

strongly

disagree 0% 0% 22% 31% 47%

strongly

agree

Yes No

13 Would you use ANEESAH system instead

of taking help from a Database expert?

91% 9%

14 Would you use a similar system again in the

future?

91% 9%

169

Although first phase evaluation metrics have been used in designing the evaluation

methodology of phase two, first phase formulation of metrics didn’t cover all aspects

because they were either not in scope or present at the time. The phase two

evaluation carried forward those metrics in addition to the new metrics included to

provide conclusions for all research hypotheses. Therefore, the survey questionnaire

for second evaluation combined relevant question (common) from survey

questionnaire used during the first phase evaluation.

ANEESAH Prototype One Likert Scale Questions

Questionnaire Questions 1 2 3 4 5

6 (1) I found this system to be useful
strongly
disagree

0% 0% 25% 70% 5%
strongly
agree

4 (2)
I am able to complete my work actively
and quickly using this system.

strongly
disagree

0% 0% 30% 60% 10%
strongly
agree

3 (4)
I can effectively complete my work using
this system

strongly
disagree

0% 10% 10% 50% 30%
strongly
agree

7 (5)
ANEESAHب’sبlevelبofبunderstandingبyourب
requirement

Very Low 5% 5% 25% 45% 20% Very High

2 (7)
It was easy to understand and use the
system.

strongly
disagree

0% 10% 20% 50% 15%
strongly
agree

5
I am able to complete my work quickly
using this system.

strongly
disagree

0% 5% 15% 60% 20%
strongly
agree

8 I feel comfortable using this system
strongly
disagree

0% 10% 25% 50% 15%
strongly
agree

10
(10)

Are you satisfied with information
produced from domain Database?

strongly
disagree

0% 5% 20% 65% 10%
strongly
agree

9
(11)

AreبyouبsatisfiedبwithبANEESAH’sب
dialogue responses?

Very Low 0% 0% 25% 60% 15% Very High

1
(12)

Interface and Level of dialogue
naturalness during conversation.

Very Low 0% 5% 20% 60% 15% Very High

Yes

 No

11
(13)

Would you use these kind of systems in the future? 90% 10%

12
(14)

Would you use ANEESAH system instead of taking help
from a SQL expert?

65% 35%

Table 7.8: Questionnaire results from both participant groups for Prototype-1

Table 7.7 shows the findings of the questionnaire survey from the second evaluation

of ANEESAH prototype two with enhanced and further developed architecture. Table

170

7.8 shows findings of questionnaire-based evaluation (first phase) data for prototype

one.

The Mann-Whitney test is a version of the two-sample t-test for samples which don’t

meet the requirements of the standard t-test (e.g. non-parametric data, ordinal scale

or better, etc.) The Mann Whitney U test technique is used to determine differences

between two independent groups. The Mann-Whitney U is the non-parametric

alternative to the t-test for independent samples. Instead of comparing means of the

two groups, as in the case of the t-test, the Mann-Whitney U test compares medians.

Scores are converted on the continuous variable to ranks, across the two groups and

then evaluation to observe whether the ranks of the two groups differ significantly.

If the calculated p-value is below the usually agreed alpha risk of 5 percent (0.05),

the H1 hypothesis can be accepted, and at least one significant difference can be

assumed. As the scores are converted to ranks, the actual distribution of the scores

does not matter (Pallant, 2013). Table 7.9 provides Mann Whitney test statistics

performed based on data collected from evaluation questionnaire.

Table 7.9: Mann-Whitney u test statistics

The question 1 in evaluation questionnaire was designed to ascertain participants’

perception on the usefulness of ANEESAH. Figure 7.5 illustrates the questionnaire

results for the question about system’s usefulness. Figure 7.5 shows that majority of

test participants rated the system either “high” or “very high” during phase two

Q1 Q2 Q4 Q5 Q7 Q10 Q11 Q12 Q13 Q14

P
er

ce
iv

ed
 U

se
fu

ln
es

s

Ti
m

e
Ta

ke
n

Ef
fe

ct
iv

en
es

s

R
eq

u
es

t
H

an
d

lin
g

Ea
se

 o
f

U
se

Sa
ti

sf
ac

ti
o

n

Sy
st

em
 R

es
p

o
n

se
s

D
ia

lo
gu

e
N

at
u

ra
ln

es
s

W
ill

in
gn

es
s

to
 U

se

A
ga

in

In
st

ea
d

 o
f

H
u

m
an

Mann-

Whitney U

155.00 212.00 453.500 168.5 225.00 239.50 226.50 231.50 319.50 222.00

Z-ratio
3.09406 2.02195 1.15675 2.84014 1.77744 1.50471 1.74922 1.65518 0.29096 1.83386

p-value. (2-

tailed)

.002 .043 .246 .004 .075 .133 .080 .096 .771 .067

171

evaluation. The comparison of this rating, when compared to phase first evaluation,

reveals that participants perceived the prototype two better than prototype one. In

addition, corroboration of these results by the Mann Whitney test in Table 7.10

shows that difference in perceptions between the two evaluations is significant (with

p value = .002). The result is significant at p < .05.

Figure 7.5: Comparison of results for question 1

The comparative analysis of participants’ responses related to question about the

system’s activeness show (in Figure 7.6) that prototype two received overall 78%

(approx.) rating as “high” or “very high. In Figure 7.6, comparison of prototype two

results with prototype one for the same question reveals that 34% more participants

perceived system’s time taken for task completion as “very high” during phase two

evaluation. Furthermore, the Mann Whitney test results for this questions in Table

7.9 show that participants’ general perceptions about both prototypes are

statistically significant (with p value = .043). Therefore, the H1 hypothesis can be

accepted. Test participants have well received the prototype two.

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 6% 44% 50%

ANEESAH 1 0% 0% 25% 70% 5%

0
%

0
%

6
%

4
4

% 5
0

%

0
%

0
%

2
5

%

7
0

%

5
%

0%

10%

20%

30%

40%

50%

60%

70%

80%
Perceived Usefulness

172

Figure 7.6: Comparison of results for question 2

Figure 7.7 illustrates that prototype two received over 91% rating “high” or “very

high” for perceived effectiveness from test participants, during phase two evaluation.

Figure 7.7 also represents a comparison of evaluation data for each evaluation. The

comparison shows that prototype two performed well, and it was perceived better

by test participants. The prototype two received 24% increased rating as “very high”

during phase two evaluation based on the first phase collected results for system’s

perceived effectiveness.

Figure 7.7: Comparison of question 4 results

Figure 7.8 highlights that the prototype two received 97% overall rating either “high”

or “very high” for its request handling abilities, during phase two evaluation. The

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 19% 38% 44%

ANEESAH 1 0% 0% 30% 60% 10%

0
%

0
%

1
9

%

3
8

% 4
4

%

0
%

0
%

3
0

%

6
0

%

1
0

%

0%

10%

20%

30%

40%

50%

60%

70% Time Taken

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 9% 47% 44%

ANEESAH 1 5% 5% 25% 45% 20%

0
%

0
%

9
%

4
7

%

4
4

%

5
%

5
%

2
5

%

4
5

%

2
0

%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Perceived Effectiveness

173

prototype two received 38% more improved rating (as “very high”) for its request

handling abilities than phase first evaluation. The Mann Whitney test results show

prototype two being perceived better with the difference in participants’ perceptions

that are statistically significant (with a p value = .004).

Figure 7.8: Comparison results for question 5

The participants from both groups gave prototype two overall rating of 87% as “high”

or “very high” for its perceived ease of use, during phase two evaluation, as shown

in Figure 7.9. The comparison of ratings for ANEESAH’ s ease is reflected in Figure 7.9,

that shows that the prototype two was received better by test participants than

prototype one. The participants rating increased 14% for the system from “high” to

“very high” for its perceived ease of use. The Mann Whiney test results for this

question in Table 7.9 show a significance value close to the threshold limit (p value =

.075).

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 3% 44% 53%

ANEESAH 1 0% 10% 20% 50% 15%

0
%

0
% 3

%

4
4

%

5
3

%

0
%

1
0

%

2
0

%

5
0

%

1
5

%

0%

10%

20%

30%

40%

50%

60% Request Handling

174

Figure 7.9: Comparison of results for question 7

The evaluation questionnaire for first and second phase evaluations was designed to

examine users’ perceived level of satisfaction with database information produced

by the system. Figure 7.10 shows that prototype two received an improved rating

from participants about their perceived satisfaction with system produced

information. The comparison of both evaluation questionnaire (phase one and phase

two) shows that prototype two received 21% increased (perceived) satisfaction

rating from “high” to “very high” on query produced information.

Figure 7.10: Comparison results for question 10

Following up from users interaction experience, test participants were asked to rate

system’s responses. Figure 7.11 shows that overall 80% of test participants rated the

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 13% 53% 34%

ANEESAH 1 0% 5% 15% 60% 20%

0
%

0
%

1
3

%

5
3

%

3
4

%

0
%

5
%

1
5

%

6
0

%

2
0

%

0%

10%

20%

30%

40%

50%

60%

70%
Perceived Ease of Use

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 16% 53% 31%

ANEESAH 1 0% 5% 20% 65% 10%

0
%

0
%

1
6

%

5
3

%

3
1

%

0
% 5

%

2
0

%

6
5

%

1
0

%

0%

10%

20%

30%

40%

50%

60%

70% Perceived Satisfaction

175

prototype two between “high” and “very high”. Figure 7.11 also gives a comparison

between participants rating during first and second phase evaluation for the same.

The comparison highlights that 32% participants have rated the prototype two “very

high” when compared to the prototype one. The Mann Whitney test reveals a

significance value closer to the threshold of .05 (recorded p value = .080).

Figure 7.11: Comparison of results for question 11

Figure 7.12 shows that prototype two received an accumulative rating of 78%

between “high” and “very high” for its dialogue naturalness. The datasets

comparison between first and second phase evaluation reveal that there is a

significant increase in participants’ rating for dialogue naturalness.

Figure 7.12: Comparison of results for question 12

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 19% 34% 47%

ANEESAH 1 0% 0% 25% 60% 15%

0
%

0
%

1
9

%

3
4

%

4
7

%

0
%

0
%

2
5

%

6
0

%

1
5

%

0%

10%

20%

30%

40%

50%

60%

70%
System Responses

Very Low Low Medium High Very High

ANEESAH 2 0% 0% 22% 31% 47%

ANEESAH 1 0% 5% 20% 60% 15%

0
%

0
%

2
2

% 3
1

%

4
7

%

0
% 5

%

2
0

%

6
0

%

1
5

%

0%

20%

40%

60%

80% Dialogue Naturalness

176

The prototype two received 32% increased rating as “very high” during phase two

evaluation than phase first evaluation. The Mann Whitney test in Table 7.9 recorded

significance difference above the threshold value (p value = .096).

The participants rating for definitive questions (Would you use a similar system again

in the future?) and (“Would you use ANEESAH system instead of taking help from a

SQL expert? “) during the first and second phase, has also changed. There were 91%

participants who willingness to use a similar system in the future during phase two

evaluation.

This rating has not changed significantly when compared to the rating received for

prototype one at 90%. The question on users’ willingness to use ANEESAH instead of

using a structured query language received 91% acceptance rating, whereas during

first phase evaluation participants’ acceptance rating of just 65%. This shows that the

prototype two has been perceived well, which resulted in attracting 26% more

participants to use ANEESAH instead of a SQL expert. The Mann-Whitney test shows

the difference significance value .771 for willingness to use the same system again

(question 11) in the future, and for question 12 significance value of .067 (for using

ANEESAH as an alternative to a human) was recorded closer to the threshold.

The Mann-Whitney test shows that enhancements and further development of

ANEESAH (prototype two) have marked impact on the overall performance.

Prototype two was well received, and participants overall perception about certain

aspects (such as usefulness, dialogue naturalness) has changed positively. The

following section explores and analyses the questionnaire data that was gathered in

order to gauge participants perceptions related to the subjective metrics.

7.13 Experiment 2

The experiment 2 is focused at analysing ANEESAH’s robustness and accuracy in

producing database information as well as overall performance when interacting

with end users. The following section will detail ANEESAH’s interacting abilities

177

during phase two evaluation followed by examination of measures of accuracy and

robustness.

7.13.1 Interactive Sessions

The raw data was collected from the system’s log file and transformed for analysis.

The prototype two handled 2296 dialogues from thirty-two participants, an average

71 of utterances per participant. Table 7.10 illustrates high-level overview of

different agent “Characteristics”, “Description of Characteristics” and total “Count”.

Table 7.10 has been prepared with system’s log file recorded variables such as

dialogues between participants and system, rejected utterances, key figures, syntax,

database queries were used as a source of information for object data evaluation.

The number of correct results shown in Table 7.10; represent the system’s ability to

interact with the participants. The summarised data shows that prototype two

system perform well during end user evaluation comparing to the prototype one. The

data is further transformed for examination to determine if phase two evaluation

results are significantly different from phase first evaluation.

Characteristics Description of Characteristics Count

Utterances Count of total user utterances during experiments 1140

Responses Count of total system’s Reponses during experiments 1158

User Utterance Failure Number of times system failed to recognise user utterance 7

System’s Understanding Number of times system partially understood user utterance 18

Incorrect System Responses Number of times system incorrectly responded 6

Completed Scenario Tasks Number of scenarios based tasks completed successfully 210

Incomplete Scenario Tasks Number of test scenarios failed/unfinished by the system 14

System Reset Number of times users requested the system to reset 4

System Error/Crash Number of times system failed due to fatal error/crashed 2

Number of times system failed because of query refinement 1

Discussion times Average time per experiment (mins) 12

Table 7.10: Log file analysis of data collected during phase two evaluation

Table 7.11 shows log file captured information and statistics for each scenario. The

system behaviour during experiments can be seen for participants from both groups.

The system’s failure (showing overall effectiveness of ANEESAH) to understand user

utterances is also reflected against each scenario. The test scenarios were developed

178

on scale basic to complex. The difficulty or complexity was engineered around

different factors such as utterance recognition, syntax, database information, query

formulation, refinement, etc.

Table 7.11 shows that Scenario 1 and 2 were handled easily with average 2 (approx.)

utterances per participant from each group (i.e. participants completed the scenario

1 and 2 with an average of 2.25 utterances per paticipants etc). Scenario 3 required

average of 5 utterances per participant from both each group. Scenario 4 and

Scenario 5 required average 7 and 6 utterances per participants from each group.

Table 7.11 shows that prototype two system on seven occasions failed to understand

(either fully or partially) user utterances when engaged in task completion for

scenario 4. Scenario 6 was handled with average 4 utterances per participant from

each group followed by scenario 7 ranking at an average of 9 utterances per

participant from each group.

Scenario
Number

Utterances

Failed to
Fully/Partially
recognise
Inputs

Incorrect
System
Responses Utterances

Failed to
Fully/Partially
recognise
Inputs

Incorrect
System
Responses Total

Group A Group B

Scenario 1 36 0 0 40 1 0 76

Scenario 2 33 0 0 40 2 2 73

Scenario 3 75 0 0 77 0 0 152

Scenario 4 119 5 2 112 2 0 231

Scenario 5 103 0 0 91 3 0 194

Scenario 6 61 1 1 66 0 0 127

Scenario 7 138 7 0 149 3 1 287

Total 565 6 3 575 9 3 1140

Table 7.11: Number of utterances and results for both groups for each scenario

7.13.2 Utterance Distribution

Figure 7.13 reflects utterance distribution for both participant group for each

scenario. The gap between both (grey and blue) lines highlights the difference

between one participant group’s interactive experience from the other. The plots in

Figure 7.13 don’t show significant differences in counts of utterances for both groups

(Group A and Group B) except for scenario 5 where there is an utterance count

difference of 12. Some difference in utterance distribution between both participant

groups can be accounted for the flexibility in information selection by the

participants.

179

Figure 7.13: Utterance Distribution for Each Participant Group

7.13.3 AEESAH’s Responses

During phase two evaluation, experiment data was recorded in the system’s log file.

The log file data has been analyzed, and some example dialogues between prototype

two and test users have been used to discuss ANEESAH’s conversational and query

formulation abilities in this section. Table 7.12 shows that system behaved as

expected in terms of understanding, greeting and calling user with her name

throughout the experiment session. In Table 7.12, the column “Actor” has been used

to differentiate system’s responses from user inputs. The column

“Utterances/Responses” contains actual response text between ANEESAH and test

user. The column “Attributes” highlights background processes and actions at

different levels. The system initiated the conversation by welcoming the user and

asking his/her name, and once it was established that user name had been provided;

the system preceded the conversation by greeting her and offered to help about

sales information. The user entered her input that was matched in all context (i.e.

Database, FAQ, General Chat) to find an appropriate response. In line with the

Scenario 1 requirement, when asked for by the user, the query produced database

information was displayed in the system interface.

Scenario 1 (Participant 1)

Actor Utterances/Responses Attributes

Aneesah: Welcome to Aneesah NLIDB. My name is Aneesah, what is your name?

Welcome Message

User my name is Rebecca

User Name Provided

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Group A 36 33 75 119 103 61 138

Group B 40 40 77 112 91 66 149

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f
U

tt
e
ra

n
c
e
s

180

Aneesah: Nice to meet you Rebecca, what would you like to know about the sales?

Greetings

Rebecca: can you tell me what products you sell? Searching Context/Syntax

Aneesah: I have discovered information reflected in 'ResultsView' window relevant
to your input.
Is this what you were looking to find out from the database?

Database Context

Query – 1
Initial Results

(more rows but clipped)

Table 7.12: Example dialogue during phase two evaluation

During first phase evaluation, it was noted that the system’s inability to deal with

spelling mistakes led to incorrect queries or incomplete results. The prototype two

has been further developed to detect and deal with spelling mistakes. Table 7.13

shows that the user mistyped spelling of “October” month as “Octuber”, which was

detected and replaced by the system before user utterance was further processed

for query formulation. Initially, the system asked the user if her input was related to

the previous query result. The user confirmed her input as a new request. The system

processed the user’s input as new, furthered by producing database query results

and displaying them in the user interface. The second part of test Scenario 5 required

results refinement for completeness. The user further asked the system to refine

query produced results by providing instructions in the form of text input “can you

add Envoy External Keyboard into this”. The subsequent input from the user was

processed by the system and new database matched information was added to

existing query syntax for its reformulation to produce refined results.

Scenario 5 (Participant 3)

Actor Utterances/Responses Attributes

Ruqayya: can you show the average sale for Mouse Pad for the Octuber, 1998? User utterance

Aneesah: Is this in connection with your previous request? Refinement Check

Ruqayya: no Searching Context/Syntax

181

Aneesah: I have found duplicate records for October in database:
1. October in calendar_month_name

(One of the twelve divisions of the calendar year)
2. October in fiscal_month_name

(One of the twelve divisions of accounting or tax period of the
company)

Please select which record did you mean or enter record number to select
appropriate record?

Duplicate Database Entity/Records
Detected

Clarify

Ruqayya: 2 Refine Collection

Aneesah: Aneesah: I have found duplicate records for 1998 in database:
1. 1998 in calendar_year

(A period of time containing 365 (or 366) days or period combining
12 calendar months)

2. 1998 in fiscal_year
(Accounting or Tax period of 12 months of the company)

Please select which record did you mean or enter record number to select
appropriate record?

Duplicate Database Entity/Records
Detected

Clarify

Ruqayya: 2

Aneesah: Aneesah: I have discovered information reflected in 'ResultsView'
window relevant to your input.
Is this what you were looking to find out from the database?

Database Context

Query -1
Initial
Results

Ruqayya: can you add Envoy External Keyboard into this Refinement Check (True)

Aneesah: Aneesah: I have discovered information reflected in 'ResultsView'
window relevant to your input.
Is this what you were looking to find out from the database?

Database Context
(User Database Results Selection
Remembered)

Query – 2
Refined
Results

Table 7.13: Example dialogue during phase two evaluation

During phase two evaluation, Scenario 7 required users to conversely ask the system

to perform multiple query refinements for completeness. Table 7.14 shows that the

system used its conflict resolution abilities to produce definitive query results.

Following up from conflict resolution, there were no records maintained in the

database for first query and the user was notified by the system about his selection.

Later, the user requested to replace product “y box” with a different product “64mb

memory car” but made a spelling mistake, which the system did not deem suitable

for correction because of its match similarity with the database records. The system

included the overarching category of products to look for the same results for all

products. At the outset, the user did not realise this mistake and asked the system to

include region “Americas” name. Further, the user realised this mistake and asked

the system to include the actual product “64MB Memory Card”. ANEESAH refined

182

the same query a fourth time to produce user-desired results. In conclusion, the

system was flexible in allowing users to make mistakes and facilitate users with a

recovery process to retrieve their desired results in a sustained conversing manner.

During test sessions, the system also offered users to start to renew their requests

or sessions. The system successfully formulated database queries, applied

refinement, and guided and led users to extract their desired database information.

Scenario 7 (Participant No 29)

Actor Utterances/Responses Attributes

Andy: can you assist me with total orders received by company for y box item in
1998

New Request

Aneesah: Is this in connection with your previous request? Refinement Check

Andy: No Searching
Context/Syntax

Aneesah: Aneesah: I have found duplicate records for 1998 in database:

1. 1998 in calendar_year

(A period of time containing 365 (or 366) days or period combining 12
calendar months)

2. 1998 in fiscal_year
(Accounting or Tax period of 12 months of the company)

Please select which record did you mean or enter record number to select
appropriate record?

Duplicate Database
Entity/Records
Detected

Clarify

Andy: this should be calendar_year

Aneesah: I do not think there are any records present in database meeting your input.
Would you like to ask information about something else?

Database Context

Query – 1
Results

Andy: i see. can you replace y box with 64mb memory car Refinement Check

(True)

Aneesah: Aneesah: I have discovered information reflected in 'ResultsView' window
relevant to your input.
Is this what you were looking to find out from the database?

Database Context
(User Selection
Remembered)

Query -2
Refined
Results

Andy: can you filter this result for only Americas

Refinement Check

Aneesah: Is this in connection with your previous request? Clarify
Refinement

Andy: Yes Refinement
Confirmed

Aneesah: Aneesah: I have discovered information reflected in 'ResultsView' window
relevant to your input.
Is this what you were looking to find out from the database?

Database Context
(User Selection
Remembered)

Query-3
Refined
Results

Andy: I just need for 64MB Memory Card

Refinement Check

183

Aneesah: Is this in connection with your previous request?

Clarify
Refinement

Andy: Yes Refinement
Confirmed

Aneesah: I do not think there are any records present in database meeting your input.
Would you like to ask information about something else?

Database Context
(User Selection
Remembered)

Query-4
Refined
Results
Andy: excellent. Thanks Output Agreed

Table 7.14: Example dialogue during phase two evaluation

7.13.4 Robustness and Accuracy

Table 7.15 demonstrates an overview of ANEESAH produced database queries during

phase two testing. The column “Correct Queries” shows queries produced by the

system with correct records, “Incorrect Queries” were either missing user desired

results or led to a system error, “Queries with Excessive Information” included

results/information in addition to user requirement. In total, prototype two

produced 513 database queries during test experiments with 10 incorrect queries

followed by 4 queries which were produced with excessive information. Table 7.15

shows the effectiveness of the SQL query engine and overall performance of the

prototype two system. The participants from both groups were presented with

database information in response to scenario tasks during experiments. Scenario 1

and 4 were accomplished with no errors by both group participants. The number of

queries executed to achieve scenario 1 and scenario 4 by both participants does not

significantly differ. Table 7.15 reflects that on three occasions prototype two

produced queries with excessive information during Scenario 2 and Scenario 3.

Scenario 5 was highest in terms of incorrect queries. In total, there were 7 incorrect

queries during scenario 5 testing followed by scenario 6 and scenario 7 with a total

of 6 incorrect queries for both participants’ groups.

S
c
e
n

a
rio

s

C
o

rre
c
t

Q
u

e
rie

s

(G
ro

u
p

 A
)

In
c

o
rre

c
t

Q
u

e
rie

s

Q
u

e
rie

s
 w

ith

E
x
c
e

s
s
iv

e

In
fo

rm
a
tio

n

C
o

rre
c
t

Q
u

e
rie

s

(G
ro

u
p

 B
)

In
c

o
rre

c
t

Q
u

e
rie

s

E
x
c
e

s
s
iv

e

In
fo

rm
a
tio

n

T
o

ta
l C

o
rre

c
t

Q
u

e
rie

s

T
o

ta
l

In
c

o
rre

c
t

Q
u

e
rie

s

T
o

ta
l

E
x
c
e

s
s
iv

e

Q
u

e
rie

s

 Group A Group B

184

Scenario 1 16 0 0 16 0 0 32 0 0

Scenario 2 16 0 0 15 0 1 31 0 1

Scenario 3 39 0 2 37 0 1 76 0 3

Scenario 4 40 0 0 38 0 0 78 0 0

Scenario 5 40 2 0 36 3 0 76 5 0

Scenario 6 39 1 0 39 1 0 78 2 0

Scenario 7 65 1 0 63 2 0 128 3 0

Total
Queries

255 4 2 244 6 2 499 10 4

Total Queries Executed by the System 513

Table 7.15: System produced queries for each scenario

Following sections will focus on query distribution, Precision, Accuracy and F-

Measure metrics to further analyse reliability and robustness of ANEESAH system.

7.13.5 Queries Distribution Between Group A and B Participants

Figure 7.14 shows distribution of ANEESAH produced database queries for both

participants’ groups during the second evaluation phase. The total number of queries

generated by the system are shown for each completed scenario. At the outset, chart

lines in Figure 7.14 reflects that Group B (participants with no SQL and database

knowledge) participants have completed test scenarios with a somewhat lower

(overall) number of queries than their counterparts (participants with SQL and

database knowledge). The Scenario 1 was completing by both participants’ groups

with sixteen database queries. Scenario 2 was completed by both groups with the

difference of one database query. In completion of Scenario 3 and Scenario 4, there

is a difference of two database queries between both groups. The Scenario 5 shows

difference of four database queries followed by Scenario 6 with equal number of

queries. Scenario 7 has difference of two database queries.

185

Figure 7.14 - Queries distribution for each scenario between both groups

7.13.6 Precision, Recall and F-Measure

The precision is the ratio of the number of relevant records retrieved to the total

number of irrelevant and relevant records retrieved. Like precision measure

(discussed in section 2.2.5 chapter 2), recall measure (discussed in section 2.2.5

chapter 2) has been used to determine the number of relevant records retrieved to

the total number of relevant records in the database. Accuracy (discussed in section

2.2.5 chapter 2) has been used to determine the proportion of overall correct results.

7.13.6.1 Precision, Recall and Accuracy for Group A

The precision for Group A participants with knowledge of structured query language

and database is rated at 98%. The recall for Group A participants is measured at 99%.

The system accuracy for queries produced database information by ANEESAH

prototype two has been rated at 96%.

7.13.6.2 Precision, Recall and Accuracy for Group B

The participants from Group B had a diverse background and possessed no

structured query language or database knowledge. The log file information was

analysed to determine precision, recall and accuracy for Group B participants. The

precision measure for Group B participants has been rated at 97% with one percent

difference when comparing to Group A participants. The Recall has been measured

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Group A 16 16 39 40 40 39 65

Group B 16 15 37 38 36 39 63

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

Group A Group B

186

at 99% same as Group A participants followed by Accuracy measure at 99% again like

Group A participants.

7.13.6.3 F-Measure Comparison for Prototype one and two

Finally, the F-Measure (discussed in section 2.2.5 of chapter 2) value recorded for the

prototype one was calculated at 88%. The results show significant improvement

made to the system with further development and enhancements with F-Measure

value recorded as 98%. There is no definition for what constitutes to a correct query

in the field of NLIDB. The literature shows (in chapter 2) that for the study of some

NLIDBs, queries with excessive information have been considered as accurate, and

for others queries with only accurate and concise information have been assumed as

correct. The queries recorded in the ANEESAH’s log file were analysed and only

queries with correct and concise information have been considered when measured

for robustness and accuracy. The queries with excessive or inadequate results were

excluded from correct queries list. This rule was also adopted during the evaluation

of prototype one.

7.14 Results Conclusion

The results highlight that the improvements and further development of ANEESAH’s

architecture (the prototype two) have a substantial impact on the effectiveness and

performance when compared to prototype one. The results also show, for certain

key evaluation metrics such as dialogue naturalness, precision, accuracy and recall

prototype two performed better than prototype one. The results highlight that

further development of new components and enhancement of existing architecture

were relevant to the improvement of key evaluation metrics.

In addition, the results show that improvements, enhancements and new

components added to ANEESAH’s architecture have improved its conversational and

query formulation abilities. Prototype two performed better than ANEESAH

prototype one for key evaluation metrics from subjective and objective perspectives.

The results show that new components such as query refinement, and the spell

187

checker had the intended impact on the overall architecture of ANEESAH. The

enhancements and new components come together to make ANEESAH’s

architecture more effective and robust when compared with the prototype one in

conversation-based query formulation, and query produced information refinement.

The key findings of the results of statistical analysis reveal that prototype two of

ANEESAH system has fewer unrecognised utterances when compared with prototype

one. The system’s ability to formulate database queries and ability to present users

with information is improved. The query refinement also performed as expected as

a feature added after the first evaluation.

Furthermore, the results also show improvements in subjective metric evaluation

during phase two evaluation. The questionnaire comparison revealed that the

prototype two not only improved its weaknesses recorded (such as failure to

recognise user requirements, dialogue naturalness) during phase first evaluation but

was perceived as better by test participants from various subjective perspectives

such as dialogue naturalness, request handling, user interface, system

understanding. In addition, all metrics that were evaluated through questionnaire

during phase first evaluation were perceived as better during phase two evaluation

and received an improved rating from test participants.

The evaluation data from both experiments was analysed distinctly for the

participant groups (A and B) revealing an interesting (but not significant) difference

in how both participant groups interacted or perceived the second prototype. For

example, Group B (participants with no SQL and database knowledge) found

prototype two more user friendly than their counterparts. The Group B participants

also managed to complete test experiments with fewer database queries than Group

A participants.

Overall the system showed improvement in test participants’ perception, which is

evidenced by the ratings reflected in Table 7.7 (prototype one) and Table 7.8

(prototype one), highlighting that enhancement and further development of

prototype two collectively had a positive impact on ANEESAH’s underlying

188

architecture and further improved the user experience. The comments from the

system participants also show that they enjoyed their interaction with ANEESAH and

ratings from participants supported the system as useful tool retrieving and refining

information from the database.

189

Chapter 8 - Conclusions, Key Findings, Contributions and

Future Work

This chapter concludes the thesis by summarising the work, key findings and

contributions with regards to the research hypothesis and objectives. The significance

and implications of the research are given. Finally, recommendations for the direction

of future research are summarised.

8.1 Overview

This research presented in this thesis has brought together the main areas of Natural

Language Interfaces to Databases (NLIDBs), Conversational Agents (CAs) and language

processing techniques including Natural Language Processing (NLP), Pattern Matching

(PM), Sentence Similarity Measures. The main aim of this research was to contribute to

the understanding of existing NLIDBs by developing a novel conversational NLIDB

architecture for sustained dialogues to automate query formulation, information

refinement process and perform an evaluation of the implemented prototype. The

research investigations revealed several challenges in relation to the development of

existing NLIBD applications such as social adaptabilities, conversational abilities,

information refinement, and other language-specific issues. Based on the study (in

chapter 2 section 1.2.1) into the NLIDBs development technique; the PM approach was

considered as an appropriate candidate for building a conversational NLIDB due to its

advantages and flexibilities. The PM approach was used to develop a novel text-based

conversational NLIDB, called ANEESAH. The development of ANEESAH was completed in

two parts e.g. prototype one and two. The ANEESAH's framework has been

implemented with several components such as User Interface, Knowledge base, SQL

engine and a CA, which comprises several sub-components such as PM engine, response

analyser, query refinement module.

ANEEESAH prototype one was developed to validate the design and implementation of

a novel framework to build a conversational NLIDB. Prototype one allowed users to

communicate using natural language. Prototype one understood, and translated user

190

utterances to formulate SQL queries to produce desired information stored in the

dataset. Initial experiments revealed ANEESAH’s ability to recognise users’ requests

followed by dynamic formulation of SQL queries to produce database stored

information.

Further research and development decisions were made to overcome weaknesses and

problems highlighted during initial experiments (chapter 5) such as failure to understand

user requirements. Rectification efforts led to the investigation and development

number of new components and enhancements of the existing framework. The initial

evaluation of prototype one also helped in recording participants' perception about

ANEESAH. Some participants' perception about ANEESAH was noted as negative e.g.

their conversation lacked naturalness, ANEESAH’s responses were machine-like, etc.

Also, the initial evaluation results of prototype one (recorded value as 87.42%) revealed

that query formulation features and information accuracy required improvement.

ANEESAH’s frontend end interface also received criticism during the initial experiments.

The front end of was disliked by participants and expressed as basic and unfriendly.

Moreover, the scope of the initial/preliminary evaluation was not positioned to answer

all research questions due to the functional limitations of prototype one. Further

research and development also included an extension of features that would enable

ANEESAH's framework to be evaluated/used to answer all research questions. Several

new features such as information refinement, querying the query operation, spelling

mistake detection were included in the existing framework. During initial experiments,

the results showed that users choice of variation/variable words (to express database

named entities) had a negative impact on ANEESAH’s understanding. Further scripting

of the knowledge base was carried out with new patterns to allow users to use

variable/combination of words to express database requirement. Also, common spelling

mistakes from users’ utterances also showed a detrimental effect on the accuracy and

robustness of ANEESAH. This issue was resolved by the implementation of a language

dictionary to detect and fix spelling errors in an intelligent manner.

191

The second evaluation results showed that enhancements and further development

(which constituted to prototype two) of the existing (ANEESAH) framework had a

positive impact on overall performance and increased its accuracy, robustness and

effectiveness. The second evaluation revealed that objective metrics ratings had

improved significantly. Prototype two showed improved conversation experience with

participants, the accuracy of information/responses has also improved, and the ability

to handle refinement requests was successful/proven.

The survey questionnaire results showed that the end user's perception about the

second ANEESAH prototype was improved in relation to all evaluation metrics

measured. The questionnaire analysis shows that all subjective metrics have improved

when compared with the questionnaire results collected for the prototype one.

Improvement in the end users' perception shows that enhancement and further

development of existing framework had a positive impact on addressing the weaknesses

and issues highlighted through initial experiments on measured subjective metrics.

Moreover, it was shown in evaluation 2 that ANEESAH can engage users conversationally

and lead the conversation to achieve their desired information from domain database.

ANEESAH guides users conversationally to ensure users stay on the path pre-determined

to serve its in-built purpose (e.g. to serve as a conversational NLIDB). ANEESAH can

detect and deal with out of context conversations intelligently (i.e. user desire to talk

about weather etc.). If the user utterance is detected as off topic, ANEESAH can steer

the direction of conversation from out of context towards its goal of query formulation.

ANEESAH has proven its abilities to understand user requirements followed by dynamic

formulation of an SQL query to retrieve database information and further refine query

produced results on a continual basis. This has only come to realisation through the

novel research, investigation and development of components and algorithms that are

specifically engineered to address the historical NLIDB challenges such as social

adaptability, sustaining dialogues, information refinement, querying the query.

The research stimulated some novel contributions (such as the CA enabled NLIDB

framework, novel query formulation and information refinement algorithms, SQL

192

engine to dynamically formulate queries and perform querying the query operations) to

address the key challenges (highlighted in chapter 2) in the field of NLIDB applications.

The user utterance matching and query refinement algorithm have helped in mitigating

challenges posed by the development of NLIDB applications. The developed framework

can be easily applied in real-life environments with minimal scripting efforts. Features

such as sustained dialogues, information refinement and querying the query operations

are proof of concept that how prototype framework can adopt cross-contexts/domains

with complex database structure for inexperienced users to interact and run the

meaningful analysis.

Consequently, this research has resulted in the development of a conversation based

NLIDB (ANEESAH) that mitigates several of the identified challenges such as social

adaptabilities, conservational abilities, sustained dialogue for information refinement

and dynamic querying the query operations. The research also helped in answering the

main question that a general user can interact with a Natural Language Interface to

Database to formulate a query to retrieve and refine desired information from a

relational database. This research has provided foundational/structure for further work

in the field of NLIDB to build on top.

8.2 Key Findings and Limitations

The main aim of the second evaluation was to determine if enhancements and new

components added to the ANEESAH's existing framework had any impact on the

effectiveness, overall performance and abilities as a conversational natural language

interface to a database. The second evaluation results presented in chapter 6 reveal that

the ANEESAH prototype two performed significantly better with respect to the

subjective and objective metrics when compared to ANEESAH prototype one. The

second prototype was well received in terms of objective task completion, the

information refinement features and the querying the query operation by the test

participants. The second evaluation results were used to test the following hypothesises:

193

The research hypothesis with subsidiary research hypotheses refers to subjective and

objective features of the updated architecture of ANEESAH. The main hypothesis (H1)

“a general user can interact with a NLIDB to formulate a query to retrieve and refine

desired information from a relational database, successfully “is accepted or rejected

based on the results of the subsidiary hypotheses (H1-A, H1-B, H1-C and H1-D).

For each subsidiary, there is a null hypothesis that there is no evidence to support the

H1 variants.

H1-A. A Natural Language Interface to Database allow users to retrieve desired

information from a database interactively.

H1-B. A Pattern Matching approach be used successfully to build a conversational NLIDB,

capable of automating complex query formulation process.

H1-C. A Natural Language Interface to Database allow users to sustain dialogues and

refine query produced information.

H1-D. A conversational Natural Language Interface to Database generate comparable

results to those produced conventionally by a database expert.

The log file analysis reveals that ANEESAH’s ability to handle user requests and query

formulation strengths have improved significantly. The 97% of formulated queries were

correct and in line with the users' requirements towards completing the assigned test

scenarios. The results analysis from Table 7.11 in chapter 7 and Table 5.4 in chapter 5

show that the number of incorrect responses produced by the second prototype have

reduced to 3% from the original 7% noted during the initial evaluation. The second

evaluation results suggest that enhancements made to the algorithm and existing

framework had a positive impact on effectiveness and robustness of the second

prototype. Analysis of the survey questionnaires also reveals that the second prototype

was well received and users' interaction experience with ANEESAH (during second

evaluation) has improved. The second evaluation results provide evidence to support

that H1 – A can be accepted.

194

The development of the existing framework and new components were developed

through further research and findings of the initial evaluation. The initial evaluation

results revealed that the implementation of the Pattern Matching (PM) technique based

engine as part of the Conversational Agent (CA) had proven its ability to understand user

utterances and perform mapping onto the scripted patterns in the knowledge base to

formulate query and non-query based responses. The initial prototype evaluation

revealed few weaknesses such as unrecognised/partially unrecognised user

utterances/inputs and ability to recognise spelling mistakes. The results reflected in

Table 5.4 in (chapter 5), 7.9 and 7.10 (in chapter 7) illustrate that, during second

evaluation, the PM engine handled 47.55% more user utterances when compared with

the initial evaluation results. The second evaluation results show significant

improvement in the framework and different components such as PM engine, SQL query

engine, and knowledge base that have contributed to improve/strengthen overall

conversational abilities of ANEESAH. Based on the evaluation results, there is

satisfactory evidence that H1 – B can be accepted.

The enhancements and new components worked together to aid ANEESAH to perform

more robustly and effectively when compared to the first prototype. The test scenarios

required participants to engage with ANEESAH to produce specific database information

requiring the use of multiple dialogues for refinement and queries. During second

evaluation, ANEESAH two handled 1140 user utterances/inputs in total. The user

utterances were divided over 32 participants (with the average of 71 utterances per

participant) dealt with by the system. The log file analysis revealed (as showing in Table

7.9 and 7.10 of chapter 7) ANEESAH understood 98.70% of the overall users' utterances

during second evaluation, which involved ANEESAH in handling multiple refinement

requests and performing of information refinement by using querying the query

operations. Based on the log file analysis and test results there is satisfactory evidence

to accept H1-C.

The log file analysis presented in Table 7.10 of chapter 7 show that the SQL query engine

formulated a total of 513 database queries. The log file analysis reveals that 97% of

195

overall formulated queries attributed in steering the conversation toward successful

scenario results. The 97% correct query formulation rating has improved by 13% when

comparing to the first prototype results (84% noted during first evaluation). The results

also show that the SQL engine abilities are strengthened with a reduction in incorrect

results and excessive information to 3% from the original 16% noted for the initial

prototype. The refactoring, improvement and further development led to the

formulation/execution of 77.55% more database queries during the second evaluation

than the first prototype's evaluation. The information accuracy metrics rating has also

improved from 80% to 96.48% during the second evaluation. Based on the gathered

results, there are satisfactory evidence to accept H1-D.

The comparative analysis of the second evaluation results with the first prototype

results shows that the second prototype performed better in most aspects such as

reduced number of unrecognised utterances and increased correct system responses.

The second prototype failed to recognise 2.45% of the overall user utterances during

second evaluation, that has been substantially reduced during second evaluation when

compared with the original 7% unrecognised utterances recorded during the initial

evaluation. The accuracy in query produced information has also improved significantly

to 98% during the second evaluation when compared with 87% noted for the first

prototype. Additionally, the second evaluation results show that further development

and newly added components to the framework enabled ANEESAH to sustain dialogues

with the end users and offered information refinement operations (querying the query)

on a continual basis. Therefore, the evaluation results provide evidence that the overall

null hypothesis should be rejected and the overall alternative H1 hypothesis that “a

general user can interact with a NLIDB to formulate a query to retrieve and refine

desired information from a relational database, successfully” should be accepted.

8.3 Research Contributions

This main research contribution is the development of a proof of concept that a

conversational NLIDB can mimic a human structured query language expert to engage

users conversationally to retrieve and refine their desired information from a database.

196

The research and development of ANEESAH inevitably revealed several language and

database specific challenges that had to be resolved so that a functional conversational

NLIDB could be developed. The algorithms, development, evaluation and testing

mythologies driven from this research constitute as new knowledge and contributions,

which can be used as a foundation by future researchers and practitioners in the field of

NLIDBs. The architecture, algorithms and methodologies developed in this research are

domain independent. Therefore, this can be adapted to work with other/multiple

domains. The key contributions of the research include:

8.3.1 ANEESAH - Conversational NLIDB Development

The most significant contribution of this research is the development of ANEESAH NLIDB

itself, which can mimic a human structured query language expert to engage users

conversationally and understand their requirements, dynamically formulate queries to

retrieve their desired information stored in a database, sustain dialogues for information

refinement and perform querying the query operation. Two prototypes were developed

namely; prototype one (chapter 4) and prototype two (chapter 6). The development of

ANEESAH steered the engineering of several novel NLIDB components such as rule-

based CA that combines pattern matching and sentence similarity techniques along with

newly introduced algorithms to process user utterances. Additional components of the

proposed framework include the SQL engine for the dynamic formulation of queries to

extract database information and perform querying the query operations to support the

information refinement (discussed in chapter 3 and 5).

8.3.2 Framework and Methodology for Conversational NLIDB

Development

The research and development have led to the design of a novel CA enabled NLIDB

framework/methodology. The proposed methodology is generic by nature and can be

adapted by future researchers and practitioners to develop similar conversational NLIDB

applications. The proposed methodology provides a foundation to develop similar NLIDB

197

systems for other domains/databases. The proposed methodology can help researchers

and practitioners in overcoming historical NLIDB related development challenges such

as sustained dialogues, dynamic query formulation, information refinement with

querying the query operations as shown in implementation and evaluation of ANEESAH.

8.3.3 The PM engine

Among other components, ANEESAH’s CA uses a PM engine. The PM engine works

following pattern matching principles that incorporate novel algorithms and similarity

measures to process user utterance. The PM engine has been developed to work as a

rule-based response engine (discussed in chapter 3) to process user utterances in the

English language. For rule-based/pre-scripted response processing, the PM engine

utilises a sentence similarity technique that calculates the match strength value of a

pattern against a user utterance. The implementation of sentence similarity technique

has been implemented to strengthen the PM engine’s matching abilities and response

accuracy. The PM engine can also extract and map user utterance onto database

relevant information to build a manual query response, if it fails to attract/match a rule-

based/pre-scripted response. The manual response building technique extends the PM

engine’ conventional matching abilities to deal with some of the language specific

challenges such as implicit information.

8.3.4 Scripting Language

A new scripting language has to be developed as the review on CA scripting languages

(chapter 2) revealed that existing techniques did not contain features necessary to be

applied to NLIDB problems such as conversational limitations, conflict resolution,

querying the query operations, etc. The CA component utilises the proposed scripting

language. The scripting language is developed to represent two separate sections of

ANEESAH's knowledge base namely; set of rules that further comprise of scripted

patterns with appropriate responses and other section contains domain scripts used to

build query response manually. The proposed scripting language includes new language

features such as the ability to deal with free word order user inputs. Moreover, the

198

proposed scripting language includes variables that allow it work with implemented

algorithms (discussed in chapter 3).

8.3.5 Query Formulation and Refinement Algorithm

To date, to the author's knowledge, there is not NLIDB that uses conversation with the

user to refine queries. The research has led to the development of two novel algorithms.

These two algorithms were demonstrated namely; first algorithm (discussed in chapter

3) implemented in prototype one and second algorithm (discussed in chapter 6) in

prototype two. The first part demonstrated dynamically formulation of queries followed

by their execution to extract database results (see chapter 3). The second part

demonstrated an enhanced version of this algorithm by looking at refinement/querying

the query operation, which meant that users could engage in conversation to refine a

query which they received back from ANEESAH. The developed algorithm can be

adapted by researchers and practitioners to produce similar conversational NLIDB

applications for different domains.

8.3.6 The SQL Engine

The SQL engine component (chapter 5) plays a fundamental role in ANEESAH's

framework to perform operations such as the dynamic formulation of database queries,

information retrieval and querying the query operations. The SQL engine works in

conjunction with other sub-components (i.e. SQL analyser etc.) to detect and formulate

database queries based on syntax information received from ANEESAH'S CA. Before the

query formulation process is executed, the syntax information is used by the SQL engine

to determine its type and complexity i.e. requirement for query joins, use of any

condition or filters, etc. The dynamic query formulation approach implemented in the

SQL engine can be utilised by researchers and practitioners in the similar field to produce

NLIDB applications with dynamic query formulation and refinement abilities (chapter 5).

8.4 Future Research

The research presented in this thesis has outlined a novel approach to developing a

Conversational Agent enabled Natural Language Interface to Database with the ability

199

to converse with users to perform dynamic formulation of queries to retrieve and refine

database information. The proposed novel approach is not the definitive solution for

developing conversation-based NLIDB with the ability to sustain dialogues and querying

the query operation to refine database information. Rather it proves that it is possible

to design and develop a conversational NLIDB. Further research that could be

undertaken to enhance and strengthen ANEESAH’s framework are listed below:

8.4.1 Voice Recognition

An interesting extension to this work would be to extend ANEESAH's conversational user

interface to integrate speech recognition feature. The speech recognition feature will

increase flexibility and widen access to the audience from diverse backgrounds i.e.

people who cannot use computers, or people with disabilities, etc. The speech

recognition will also help in reducing the errors resulted from mistakes user inputs such

as spelling errors and other related mistakes etc. The voice recognition feature has been

described useful in improving human machine experience. A similar spoken dialogue

system can be developed and deployed in any information/database operating

environment (Jurafsky and Martin, 2014). Furthermore, speech recognition could be

accomplished for use on portable devices, thus reducing the load on other components

and computational complexity that will add to its scalability and deployment on a wider

scale.

8.4.2 Universal Web Service

The introduction of a universal web service from the CA component can transpose

ANEESAH into a platform independent application, which means that it can access from

any internet enabled device. This feature will make ANEESAH more flexible and

susceptible for its deployment in cross platform real life environments. The framework

can be deployed in cloud service to take advantages of modern day hosting platforms

such as Platform as a Service (PaaS), Software as a Service (SaaS) etc. An application

programming interface based extension would enable ANEESAH to receive and handle

user requests coming through cross-platform devices and send responses encoded with

relevant information (i.e. query/non-query based information, etc.) using platform

200

independent data-interchange format such JavaScript Object Notation (JSON). The

responses will be translated depending on the device in question, thus making ANEESAH

usage less processor intensive on the client side.

8.4.3 Dynamic Knowledgebase for Link Responses/Analysis

Further work can be directed to extend ANEESAH's abilities to entertain complex user

requests that are currently not possible for example as a user request asking to

formulate query with multiple aggregation functions or refinements operations.

Moreover, following up from a query produce response, ANEESAH seeks user agreement

to determine if the information displayed is correct. The user agreement on the query

produced information is used as a trigger to store both user utterance and query in the

knowledge base and is used for future matching. Further work can be carried to enable

ANEESAH to use machine learning techniques to predict link responses based on

historical chat sessions and query patterns. The information stored in the knowledge

base combined with the log file can be used to predict most commonly asked

questions/queries and then fire link responses based on usage pattern/behaviour. This

feature will enable ANEESAH to behave reactively in conversation and be suggestive

about analysis and information that might be of interest to its intended users.

8.4.4 Graphical Representation of Query Results

Graphical representation of information is vastly used in every type of data or report,

which makes it easier for the reader to understand and it has its advantages. Another

interesting extension to the ANEESAH’s framework would be for it to represent query

produced information in the graphical format (such as “show me regional sales for all

products in a bar chart format”) i.e. pie, charts, etc. Graphical representation of query

produces information will help in several scenarios such as comparative analysis,

decision making, less effort and time to review information. The users of ANEESAH can

conversationally choose/switch to view query produced results in a table view or

graphical format. The existing framework can provide the foundation work for this

feature to further engineered with minimal efforts.

201

8.4.5 Knowledge base expansion

Another interesting direction that future research could take is to expand the knowledge

base for wider coverage of topics and business areas. The knowledge base is modular by

nature, therefore would support knowledge scripting of other/different domains. For

evaluation, ANEESAH's framework was developed with a database containing sample

Sales records for an imaginary computer/electronics business. Further enhancements,

configuration and importing of knowledge from of a different business can make

ANEESAH a single point of entry to access all business information or queries such as

Customer Relationship Management (CRM), Human Resources (HR), etc.

8.4.6 Evaluation Framework for Conversational NLIDB

There exists no universally accepted benchmark or standard for the evaluation of NLIDB

applications. Therefore, the proposed evaluation framework was developed, which

combines evaluation of CA enabled/conversational NLIDB from subjective and objective

aspects to determine the overall performance of developed systems. The framework

employs Goal Question Metric (GQM) software evaluation methodology in conjunction

with the selection of evaluated metrics to determine the expected

outcome/performance from a developed system. The framework enables evaluation of

similar NLIDB systems to be uniquely/individually tested. For example, development of

two similar natural language systems aimed to achieve different goals and objectives

would require combinations of different/relevant subjective and objective metrics for

appropriate evaluations. The evaluation framework offers the flexibility and is adaptable

to suit development specific goals such as the development of a similar system. The

proposed evaluation framework can be used as a benchmark by future researchers and

practitioners to evaluate the development of similar conversational NLIDB systems.

These research contributions are expected to be of value to researchers and

practitioners in the fields of CAs and conversational NLIDBs.

202

8.4.7 Cross-database searching

There are significant challenges involved in searching knowledge fused from multiple

independent databases. Conversational features of ANEESAH could assist in instructing

the SQL Engine in combining the databases.

8.5 Take Home Message

The main challenge of previous work on NLIDB has been in dynamically and

automatically formulating a query in response to natural language input, as opposed to

selecting a pre-written template from a library (or failing to respond where no match is

available). This thesis provides evidence that it is possible for an automated system to

produce a bespoke query in response to natural language and to refine or correct such

a query through further dialogue. Consequently, it makes a novel and valuable

contribution to the NLIDB field.

203

References

AKULA, A., SANGAL, R. & MAMIDI, R. A Novel Approach Towards Incorporating

Context Processing Capabilities in NLIDB System. IJCNLP, 2013. 1216-1222.

ALGHAMDI, A., OWDA, M. & CROCKETT, K. 2017. Natural Language Interface to

Relational Database (NLI-RDB) Through Object Relational Mapping (ORM).

Advances in Computational Intelligence Systems. Springer.

ALOBAIDI, O. G., CROCKETT, K. A., O'SHEA, J. D. & JARAD, T. M. Abdullah: An

intelligent arabic conversational tutoring system for modern islamic education.

Proceedings of the World Congress on Engineering, 2013.

ANAND, P. and FAROOQUI, Z., 2017. Rule based Domain Specific Semantic Analysis

for Natural Language Interface for Database. International Journal of Computer

Applications, 164(11).

ANDROUTSOPOULOS, I., RITCHIE, G. D. & THANISCH, P. 1995. Natural language

interfaces to databases–an introduction. Natural language engineering, 1, 29-81.

BATES, M. Rapid porting of the parlance natural language interface. Proceedings of the

workshop on Speech and Natural Language, 1989. Association for Computational

Linguistics, 83-88.

BECKER, C., KOPP, S. & WACHSMUTH, I. 2007. Why emotions should be integrated

into conversational agents. Conversational informatics: an engineering approach,

49-68.

BINOT, J., DEBILLE, L., SEDLOCK, D. & VANDECAPELLE, B. 1991. Natural

language interfaces: a new philosophy. SunExpert Magazine, 2, 67-73.

BROM, C. & LUKAVSKÝ, J. Towards more human-like episodic memory for more

human-like agents. International Workshop on Intelligent Virtual Agents, 2009a.

Springer, 484-485.

BROM, C. & LUKAVSKÝ, J. 2009b. Towards More Human-Like Episodic Memory for

More Human-Like Agents. In: RUTTKAY, Z., KIPP, M., NIJHOLT, A. &

VILHJÁLMSSON, H. H. (eds.) Intelligent Virtual Agents: 9th International

Conference, IVA 2009 Amsterdam, The Netherlands, September 14-16, 2009

Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg.

CAI, G., WANG, H., MACEACHREN, A. M. & FUHRMANN, S. 2005. Natural

conversational interfaces to geospatial databases. Transactions in GIS, 9, 199-

221.

CARBONNELL, J. G., JOSHI, A., KAPLAN, J., WALTZ, D. L. & PETRICK, S. 1982.

Gary G. Hendrix, Chairperson. American Journal of Computational Linguistics,

8, 57.

CASSELL, J. 2000. Embodied conversational agents, MIT press.

204

CASTILLO, O., MELIN, P., PEDRYCZ, W. & KACPRZYK, J. 2014. Recent Advances

on Hybrid Approaches for Designing Intelligent Systems, Springer.

CHU, H.-C., HWANG, G.-J., HUANG, S.-X. & WU, T.-T. 2008. A knowledge

engineering approach to developing e-libraries for mobile learning. The

Electronic Library, 26, 303-317.

CHURCH, K. & PATIL, R. 1982. Coping with syntactic ambiguity or how to put the

block in the box on the table. Computational Linguistics, 8, 139-149.

COHEN, P. R. The role of natural language in a multimodal interface. Proceedings of

the 5th annual ACM symposium on User interface software and technology, 1992.

ACM, 143-149.

COPESTAKE, A. & JONES, K. S. 1990. Natural language interfaces to databases. The

Knowledge Engineering Review, 5, 225-249.

CROCKETT, K., BANDAR, Z., O’SHEA, J. & MCLEAN, D. 2009. Bullying and debt:

Developing novel applications of dialogue systems. Knowledge and Reasoning in

Practical Dialogue Systems (IJCAI), 1-9.

CROCKETT, K., LATHAM, A., MCLEAN, D. & O'SHEA, J. A fuzzy model for

predicting learning styles using behavioral cues in an conversational intelligent

tutoring system. Fuzzy Systems (FUZZ), 2013 IEEE International Conference

on, 2013. IEEE, 1-8.

CROCKETT, K., O‘SHEA, J. & BANDAR, Z. 2011. Goal Orientated Conversational

Agents: Applications to Benefit Society. In: O’SHEA, J., NGUYEN, N. T.,

CROCKETT, K., HOWLETT, R. J. & JAIN, L. C. (eds.) Agent and Multi-Agent

Systems: Technologies and Applications: 5th KES International Conference,

KES-AMSTA 2011, Manchester, UK, June 29 – July 1, 2011. Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg.

CUI, H., KAN, M.-Y. & CHUA, T.-S. 2007. Soft pattern matching models for definitional

question answering. ACM Transactions on Information Systems (TOIS), 25, 8.

DAMLJANOVIC, D., AGATONOVIC, M. & CUNNINGHAM, H. FREyA: An

interactive way of querying Linked Data using natural language. Extended

Semantic Web Conference, 2011. Springer, 125-138.

DOANE, D. P. & SEWARD, L. E. 2011. Measuring skewness: a forgotten statistic.

Journal of Statistics Education, 19, 1-18.

ELMASRI, R. & NAVATHE, S. 2010. Database systems: models, languages, design, and

application programming. 6th Global Education. Pearson Education (US), New

Jersey.

FADER, A., ZETTLEMOYER, L. S. & ETZIONI, O. Paraphrase-Driven Learning for

Open Question Answering. ACL (1), 2013. Citeseer, 1608-1618.

205

FARAJ, A., ZUBI, Z. S., ALMAGROUS, A. A. & EL-FEGHI, I. S. 2009. Generic

interactive natural language interface to databases (ginlidb). International Journal

of Computers, 3.

FENTON, N. & BIEMAN, J. 2014. Software metrics: a rigorous and practical approach,

CRC Press.

FENTON, N. E. & PFLEEGER, S. L. 1998. Software Metrics: A Rigorous and Practical

Approach: Brooks. Cole.

FORBES-RILEY, K. & LITMAN, D. 2011. Designing and evaluating a wizarded

uncertainty-adaptive spoken dialogue tutoring system. Computer Speech &

Language, 25, 105-126.

GIORDANI, A. & MOSCHITTI, A. Semantic mapping between natural language

questions and SQL queries via syntactic pairing. International Conference on

Application of Natural Language to Information Systems, 2009. Springer, 207-

221.

GRAVETTER, F. J. & WALLNAU, L. B. 1999. Essentials of statistics for the behavioral

sciences . Pacific Grove, CA: Brooks. Cole Publishing Company. Copyright

restrictions may apply. doi, 10, 0278-7393.31.

GROSZ, B. J., APPELT, D. E., MARTIN, P. A. & PEREIRA, F. C. 1987. TEAM: an

experiment in the design of transportable natural-language interfaces. Artificial

Intelligence, 32, 173-243.

HAMAZ, K. & BENCHIKHA, F. 2017. A novel method for providing relational

databases with rich semantics and natural language processing. Journal of

Enterprise Information Management, 30, 503-525.

HARRINGTON, J. L. 2016. Relational database design and implementation, Morgan

Kaufmann.

HENDRIX, G. G., SACERDOTI, E. D., SAGALOWICZ, D. & SLOCUM, J. 1978.

Developing a natural language interface to complex data. ACM Transactions on

Database Systems (TODS), 3, 105-147.

HILLIARD, R. 2000. Ieee-std-1471-2000 recommended practice for architectural

description of software-intensive systems. IEEE, http://standards. ieee. org, 12,

2000.

JOHNSON, T. 1984. Natural language computing: the commercial applications. The

Knowledge Engineering Review, 1, 11-23.

JURAFSKY, D. & MARTIN, J. H. 2014. Speech and language processing, Pearson.

KALEEM, M., O'SHEA, J. D. & CROCKETT, K. A. Word order variation and string

similarity algorithm to reduce pattern scripting in pattern matching conversational

agents. Computational Intelligence (UKCI), 2014 14th UK Workshop on, 2014.

IEEE, 1-8.

http://standards/

206

KARANDE, N. & PATIL, G. 2009. Natural language database interface for selection of

data using grammar and parsing. World Acad Sci Eng Tech, 3, 11-26.

KAUR, A. & BHATIA, P. G. 2010. Punjabi Language Interface to Database.

KERRY, A., ELLIS, R. & BULL, S. 2009. Conversational agents in E-Learning.

Applications and Innovations in Intelligent Systems XVI. Springer.

KHOURY, R., KARRAY, F. & KAMEL, M. S. 2008. Keyword extraction rules based

on a part-of-speech hierarchy. International Journal of Advanced Media and

Communication, 2, 138-153.

KONDRAK, G. Combining evidence in cognate identification. Conference of the

Canadian Society for Computational Studies of Intelligence, 2004. Springer, 44-

59.

KUMAR, R., AI, H., BEUTH, J. & ROSÉ, C. Socially capable conversational tutors can

be effective in collaborative learning situations. Intelligent tutoring systems,

2010. Springer, 156-164.

LATHAM, A., CROCKETT, K. & MCLEAN, D. 2014. An adaptation algorithm for an

intelligent natural language tutoring system. Computers & Education, 71, 97-110.

LATHAM, A., CROCKETT, K., MCLEAN, D. & EDMONDS, B. 2010. Predicting

Learning Styles in a Conversational Intelligent Tutoring System. In: LUO, X.,

SPANIOL, M., WANG, L., LI, Q., NEJDL, W. & ZHANG, W. (eds.) Advances

in Web-Based Learning – ICWL 2010: 9th International Conference, Shanghai,

China, December 8-10, 2010. Proceedings. Berlin, Heidelberg: Springer Berlin

Heidelberg.

LATHAM, A., CROCKETT, K., MCLEAN, D. & EDMONDS, B. 2012. Adaptive

tutoring in an intelligent conversational agent system. Transactions on

Computational Collective Intelligence VIII. Springer.

LI, F. & JAGADISH, H. V. NaLIR: an interactive natural language interface for querying

relational databases. Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, 2014. ACM, 709-712.

LI, Q., NAKANO, Y., OKAMOTO, M. & NISHIDA, T. Highlighting multimodal

synchronization for embodied conversational agent. the 2nd International

Conference on Information Technology for Application (ICITA 2004), 2004.

LI, Y., YANG, H. & JAGADISH, H. 2007. NaLIX: A generic natural language search

environment for XML data. ACM Transactions on database systems (TODS), 32,

30.

LIAPIS, C. G. 2013. Human threading search engine. Google Patents.

LIN, D. An information-theoretic definition of similarity. ICML, 1998. Citeseer, 296-

304.

207

LLOPIS, M. & FERRÁNDEZ, A. 2013. How to make a natural language interface to

query databases accessible to everyone: An example. Computer Standards &

Interfaces, 35, 470-481.

LOPEZ, V., FERNÁNDEZ, M., MOTTA, E. & STIELER, N. 2012. Poweraqua:

Supporting users in querying and exploring the semantic web. Semantic Web, 3,

249-265.

LOPEZ, V., UNGER, C., CIMIANO, P. & MOTTA, E. 2013. Evaluating question

answering over linked data. Web Semantics: Science, Services and Agents on the

World Wide Web, 21, 3-13.

MA, C., OSHERENKO, A., PRENDINGER, H. & ISHIZUKA, M. A chat system based

on emotion estimation from text and embodied conversational messengers.

Active Media Technology, 2005.(AMT 2005). Proceedings of the 2005

International Conference on, 2005. IEEE, 546-548.

MAIRESSE, F., WALKER, M. A., MEHL, M. R. & MOORE, R. K. 2007. Using

linguistic cues for the automatic recognition of personality in conversation and

text. Journal of artificial intelligence research, 30, 457-500.

MARIETTO, M. D. G. B., DE AGUIAR, R. V., BARBOSA, G. D. O., BOTELHO, W.

T., PIMENTEL, E., FRANÇA, R. D. S. & DA SILVA, V. L. 2013. Artificial

intelligence markup language: A brief tutorial. arXiv preprint arXiv:1307.3091.

MARTINEZ, F. F., BLÁZQUEZ, J., FERREIROS, J., BARRA, R., MACIAS-

GUARASA, J. & LUCAS-CUESTA, J. M. Evaluation of a spoken dialogue

system for controlling a hifi audio system. Spoken Language Technology

Workshop, 2008. SLT 2008. IEEE, 2008. IEEE, 137-140.

MICHIE, D. & SAMMUT, C. 2001. Infochat scripter’s manual. Technical Repoort,

Convagent Ltd, Manchester, UK.

MINOCK, M. 2010. C-Phrase: A system for building robust natural language interfaces

to databases. Data & Knowledge Engineering, 69, 290-302.

MOLLER, S., ENGELBRECHT, K.-P., KUHNEL, C., WECHSUNG, I. & WEISS, B. A

taxonomy of quality of service and quality of experience of multimodal human-

machine interaction. Quality of Multimedia Experience, 2009. QoMEx 2009.

International Workshop on, 2009. IEEE, 7-12.

NIELSEN, J. & MOLICH, R. Heuristic evaluation of user interfaces. Proceedings of the

SIGCHI conference on Human factors in computing systems, 1990. ACM, 249-

256.

NOLAN, S. A. & HEINZEN, T. 2011. Statistics for the behavioral sciences, Macmillan.

O'SHEA, K., BANDAR, Z. & CROCKETT, K. A semantic-based conversational agent

framework. Internet Technology and Secured Transactions, 2009. ICITST 2009.

International Conference for, 2009. IEEE, 1-8.

208

O’SHEA, J., BANDAR, Z. & CROCKETT, K. 2011. Systems Engineering and

Conversational Agents. In: TOLK, A. & JAIN, L. C. (eds.) Intelligence-Based

Systems Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.

O’SHEA, J., BANDAR, Z., CROCKETT, K. & MCLEAN, D. 2008. A comparative

study of two short text semantic similarity measures. Agent and Multi-Agent

Systems: Technologies and Applications, 172-181.

O’SHEA, K., BANDAR, Z. & CROCKETT, K. 2010. A conversational agent framework

using semantic analysis. International Journal of Intelligent Computing Research

(IJICR), 1.

O’SHEA, K., CROCKETT, K., BANDAR, Z. & O’SHEA, J. 2014. Erratum to: An

approach to conversational agent design using semantic sentence similarity.

Applied Intelligence, 40, 199-199.

OTT, N. 1992. Aspects of the automatic generation of SQL statements in a natural

language query interface. Information Systems, 17, 147-159.

OWDA, M., BANDAR, Z. & CROCKETT, K. Conversation-based natural language

interface to relational databases. Proceedings of the 2007 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent Technology-

Workshops, 2007. IEEE Computer Society, 363-367.

OWDA, M., BANDAR, Z. & CROCKETT, K. Information extraction for SQL Query

generation in the conversation-based interfaces to relational databases (C-BIRD).

KES International Symposium on Agent and Multi-Agent Systems: Technologies

and Applications, 2011. Springer, 44-53.

PALLANT, J. 2013. SPSS survival manual, McGraw-Hill Education (UK).

PAZOS R, R., GONZÁLEZ B, J., AGUIRRE L, M., MARTÍNEZ F, J. & FRAIRE H, H.

2013. Natural language interfaces to databases: an analysis of the state of the art.

Recent Advances on Hybrid Intelligent Systems, 463-480.

PAZOS R., R. A., GONZÁLEZ B., J. J., AGUIRRE L., M. A., MARTÍNEZ F., J. A. &

FRAIRE H., H. J. 2013. Natural Language Interfaces to Databases: An Analysis

of the State of the Art. In: CASTILLO, O., MELIN, P. & KACPRZYK, J. (eds.)

Recent Advances on Hybrid Intelligent Systems. Berlin, Heidelberg: Springer

Berlin Heidelberg.

PEREIRA, M.J. & COHEUR, L., 2013. Just. Chat-a platform for processing information

to be used in chatbots.

POPESCU, A.-M., ARMANASU, A., ETZIONI, O., KO, D. & YATES, A. 2004.

Modern natural language interfaces to databases: composing statistical parsing

with semantic tractability. Proceedings of the 20th international conference on

Computational Linguistics. Geneva, Switzerland: Association for Computational

Linguistics.

209

RAMASUBRAMANIAN, P. & KANNAN, A. 2004. Temporal Event Matching

Approach based Natural Language Query Processing in Temporal Databases.

International Journal of Information Technology, 10.

RAO, G., AGARWAL, C., CHAUDHRY, S., KULKARNI, N. & PATIL, D. S. 2010.

Natural language query processing using semantic grammar. International

journal on computer science and engineering, 2, 219-223.

RAUSCHENBERGER, M., SCHREPP, M., COTA, M. P., OLSCHNER, S. &

THOMASCHEWSKI, J. R. 2013. Efficient measurement of the user experience

of interactive products. How to use the user experience questionnaire (ueq).

example: spanish language version. IJIMAI, 2, 39-45.

REIS, P., MATIAS, J. & MAMEDE, N. 1997. Edite - A Natural Language Interface to

Databases A new dimension for an old approach. In: TJOA, A. M. (ed.)

Information and Communication Technologies in Tourism 1997: Proceedings of

the International Conference in Edinburgh, Scotland, 1997. Vienna: Springer

Vienna.

REVUELTA-MARTÍNEZ, A., RODRÍGUEZ, L., GARCÍA-VAREA, I. & MONTERO,

F. 2013. Multimodal interaction for information retrieval using natural language.

Computer Standards & Interfaces, 35, 428-441.

ROY, B. & GRAHAM, T. N. 2008. Methods for evaluating software architecture: A

survey. School of Computing TR, 545, 82.

RUSSELL, S., NORVIG, P. & INTELLIGENCE, A. 1995. A modern approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25, 27.

RZEPKA, R. & ARAKI, K. 2015. ELIZA Fifty Years Later: An Automatic Therapist

Using Bottom-Up and Top-Down Approaches. In: VAN RYSEWYK, S. P. &

PONTIER, M. (eds.) Machine Medical Ethics. Cham: Springer International

Publishing.

SADEK, D. Design considerations on dialogue systems: From theory to technology-the

case of artimis. ESCA Tutorial and Research Workshop (ETRW) on Interactive

Dialogue in Multi-Modal Systems, 1999.

SAHA, D., FLORATOU, A., SANKARANARAYANAN, K., MINHAS, U. F.,

MITTAL, A. R. & ÖZCAN, F. 2016. ATHENA: an ontology-driven system for

natural language querying over relational data stores. Proceedings of the VLDB

Endowment, 9, 1209-1220.

SAMMUT, C. 2001. Managing context in a conversational agent. Linkoping Electronic

Articles in Computer & Information Science, 3.

SHAALAN, K., MONEM, A. A., RAFEA, A. & BARAKA, H. Syntactic Generation of

Arabic in Interlingua-based Machine Translation Framework. Third workshop on

Computational Approaches to Arabic Script-based Languages (CAASL3),

Machine Translation Summit XII, 2009. ACL.

210

SHABAZ, K., O'SHEA, J. D., CROCKETT, K. A. & LATHAM, A. Aneesah: A

Conversational Natural Language Interface to Databases. Proceedings of the

World Congress on Engineering, 2015.

SIJTSMA, W. & ZWEEKHORST, O. Comparison and review of commercial natural

language interfaces. Proceedings, TWLT5, 1993. 43-58.

SILVERVARG, A. & JÖNSSON, A. Subjective and objective evaluation of

conversational agents in learning environments for young teenagers. Proceedings

of the 7th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue

Systems, 2011.

SKANTZE, G. & HJALMARSSON, A. 2013. Towards incremental speech generation in

conversational systems. Computer Speech & Language, 27, 243-262.

SRIRAMPUR, S., CHANDIBHAMAR, R., PALAKURTHI, A. & MAMIDI, R.

Concepts identification of an NL query in NLIDB systems. Asian Language

Processing (IALP), 2014 International Conference on, 2014. IEEE, 230-233.

STRATICA, N., KOSSEIM, L. & DESAI, B. C. 2005a. Using semantic templates for a

natural language interface to the CINDI virtual library. Data & Knowledge

Engineering, 55, 4-19.

STRATICA, N., KOSSEIM, L. & DESAI, B. C. 2005b. Using semantic templates for a

natural language interface to the CINDI virtual library. Data Knowl. Eng., 55, 4-

19.

SUJATHA, B. & RAJU, S. V. 2016. Natural Language Query Parser using First Order

Logic for Querying Relational Databases. International Journal of Computer

Applications, 134, 43-48.

TANG, L. R. & MOONEY, R. J. 2001. Using Multiple Clause Constructors in Inductive

Logic Programming for Semantic Parsing. In: DE RAEDT, L. & FLACH, P.

(eds.) Machine Learning: ECML 2001: 12th European Conference on Machine

Learning Freiburg, Germany, September 5–7, 2001 Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg.

TENNANT, H. R., ROSS, K. M., SAENZ, R. M., THOMPSON, C. W. & MILLER, J.

R. Menu-based natural language understanding. Proceedings of the 21st annual

meeting on Association for Computational Linguistics, 1983. Association for

Computational Linguistics, 151-158.

THOMPSON, B. H. & THOMPSON, F. B. Introducing ask, a simple knowledgeable

system. Proceedings of the first conference on Applied natural language

processing, 1983. Association for Computational Linguistics, 17-24.

THOMPSON, B. H. & THOMPSON, F. B. 1985. Ask is transportable in half a dozen

ways. ACM Transactions on Information Systems (TOIS), 3, 185-203.

TURING, A. M. 1950. Computing machinery and intelligence. Mind, 59, 433-460.

211

TURUNEN, M., HAKULINEN, J. & KAINULAINEN, A. Evaluation of a spoken

dialogue system with usability tests and long-term pilot studies: similarities and

differences. INTERSPEECH, 2006.

VAN SOLINGEN, R., BASILI, V., CALDIERA, G. & ROMBACH, D. 2002. Goal

Question Metric (GQM) Approach, Encyclopedia of Software Engineering

(Marciniak, JJ ed.), online version@ Wiley Interscience. John Wiley & Sons.

WALKER, M. A., LITMAN, D. J., KAMM, C. A. & ABELLA, A. PARADISE: A

framework for evaluating spoken dialogue agents. Proceedings of the eighth

conference on European chapter of the Association for Computational Linguistics,

1997. Association for Computational Linguistics, 271-280.

WALLACE, R. S. 2008. ALICE: Artificial Intelligence Foundation Inc. Received from:

http://www. alicebot. org.

WALLACE, R. S. 2009. The Anatomy of A.L.I.C.E. In: EPSTEIN, R., ROBERTS, G. &

BEBER, G. (eds.) Parsing the Turing Test: Philosophical and Methodological

Issues in the Quest for the Thinking Computer. Dordrecht: Springer Netherlands.

WALTS, D. Natural Language Access To A Large Data Base: An Engineering Approach.

IJCAI, 1975. 868-872.

WALTZ, D. L. 1978. An English language question answering system for a large

relational database. Communications of the ACM, 21, 526-539.

WARREN, D. H. & PEREIRA, F. C. 1982. An efficient easily adaptable system for

interpreting natural language queries. Computational Linguistics, 8, 110-122.

WEIZENBAUM, J. 1966. ELIZA—a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9, 36-

45.

WOODS, W. An Experimental Parsing System for Transition Network Grammars.< u>

Natural Language Processing. Courant Computer Science Symposium, 1973.

WOODS, W. A. 1972. An experimental parsing system for transition network grammars,

Computer Science Division, Bolt Beranek and Newman.

WU, Q., HU, Y. & WANG, Y. Research on Data Persistence Layer Based on Hibernate

Framework. 2010 2nd International Workshop on Intelligent Systems and

Applications, 22-23 May 2010 2010. 1-4.

YAGHMAZADEH, N., WANG, Y., DILLIG, I. & DILLIG, T. 2017. Type-and Content-

Driven Synthesis of SQL Queries from Natural Language. arXiv preprint

arXiv:1702.01168.

ZELLE, J. M. & MOONEY, R. J. Learning to parse database queries using inductive

logic programming. Proceedings of the national conference on artificial

intelligence, 1996. 1050-1055.

http://www/

212

Web references

Carpenter, R. (2007). Jabberwacky – live chat bot. [Online] [Accessed on 22 May

2017] http://www.jabberwacky.com/

Convagent Ltd. (2005) Convagent. [Online] [Accessed on 24 May 2017]

http://www.convagent.com/

http://sapinsider.wispubs.com/Assets/Blogs/2011/October/Visualizing-SAP-The-

Connected-SAP-Universe?openlogin=true [Accessed 20 May. 2017].

Docs.oracle.com, (2017). [online] Available at:

http://docs.oracle.com/cd/B28359_01/server.111/b28328/img/comsc010.gif [Accessed

20 May. 2017].

Hunspell Dictionary, (2017). [online] Available at:

http://hunspell.github.io/ [Accessed 20 May. 2017].

Microsoft.com, (2017). Download Northwind and pubs Sample Databases for SQL

Server 2000 from Official Microsoft Download Center. [online] Available at:

http://www.microsoft.com/en-us/download/confirmation.aspx?id=23654 [Accessed 21

May. 2017].

Usabilitynet.org. (2017). UsabilityNet: Definition of usability. [online] Available at:

http://www.usabilitynet.org/management/b_what.htm [Accessed 30 Dec. 2017].

http://www.jabberwacky.com/

213

Appendices
Appendix – A - Questionnaire for phase two evaluation prototype one

MANCHESTER METROPOLITAN UNIVERSITY

Evaluation Questionnaire – ANEESAH Natural Language Interface to Database (NLIDB)

Dear Participant,

I am a PhD researcher at Manchester Metropolitan University. As part of my research project, I

am currently conducting evaluation of project development to date. The purpose of this

evaluation is to examine and determine the usability, design and effectiveness of the ANEESAH

Natural Language Interface to Databases that you have recently used.

This questionnaire will take only few minutes to complete and I would appreciate it if you

would care to complete it. The questionnaire is divided into two parts. The first part comprises

of scale based feedback against every question. An answer of 1 on the scale would be

strongly/very negative and an answer of 5 would be very positive. The second part of the

questionnaire includes questions which can be answered in “Yes” or “No”.

Please be assured that information you provide will be used only for academic purpose. We

can ensure full confidentiality of your information and its safety. The information collected will

be kept on records for one year and later destroyed.

Thank you very much for your participation.

214

Participant No:

“Please rate the degree to which you agree with the following on a scale from 1 to 5 where 1 means

strongly/very negative and 5 means very positive.”

1 2 3 4 5

1
Are you satisfied with interface
design & level of dialog naturalness
during conversation?

Very Low

Very
High

2
It was easy to understand and use
the system.

strongly
disagree

 strongly
agree

3
I can effectively complete my work
using this system

strongly
disagree

 strongly
agree

4
I am able to complete my work
actively using this system.

strongly
disagree

 strongly
agree

5
I am able to complete my work
quickly using this system.

strongly
disagree

 strongly
agree

6 I found this system to be useful
strongly
disagree

 strongly
agree

7
ANEESAH’s level of understanding
your requirement

Very Low

 Very
High

8 I feel comfortable using this system
strongly
disagree

 strongly
agree

9
Are you satisfied with ANEESAH’s
dialog responses?

Very Low

 Very
High

10
Are you satisfied with information
produced from domain Database?

strongly
disagree

strongly
agree

11. Would you use these kind of systems in the future?

YES NO

12. Would you use ANEESAH system instead of taking help from a SQL expert?

YES NO

Any further comments you may have:

__

__

Thanks!

0

0

0

0

0

0

0

0

0

0

215

Appendix – B- Test Scenarios for the evaluation prototype one

Test Scenarios for the evaluation of ANEESAH

(NLIDB).

Total Scenarios: 7

216

Scenario – 1

You are a sales advisor at Manchester Computer Store Ltd. You don’t know what products

your company sell? Ask the system to assist you with this information?

Scenario - 2

You a new sales advisor at Manchester Computer Store Ltd. A customer has just asked you

about what countries your company is operating in?

Take help from the system to see which countries your company is operating in.

Scenario - 3

You are required to provide a list of customer names, emails and contact numbers from

Barcelona for marketing purpose. Ask the system to give you these customer details?

Scenario - 4

As a sales manager at the Store you need to find total turnover generated from sales in

Japan? Take help from the system to give you this information.

Scenario - 5

You are assigned to compare the total profit made from different countries. Ask system to

give you these figures?

Scenario - 6

As part of product analysis you are required to find company’s top five bestselling products

in France during the year 1999? Ask the system to give you this information.

Scenario - 7

As sales manager you are required to find out the total sold quantity of mouse pads in Asia.

Ask the system to give this figure?

217

Appendix – C – Phase one evaluation data histograms

Interface and Level of dialogue naturalness during conversation.
(Group-A)

Interface and Level of dialogue naturalness during conversation. (Group-B)

It was easy to understand and use the system.(Group-A)

It was easy to understand and use the system.(Group-B)

218

I can effectively complete my work using this system. (Group-A)

I
can effectively complete my work using this system.(Group-B)

I am able to complete my work actively using this system.
(Group-A)

I am able to complete my work actively using this
system. (Group-B)

219

I am able to complete my work quickly using this system.
(Group-A)

I am able to complete my work quickly using this system.
(Group-B)

I found this system to be useful. (Group-A)

I found this system to be useful. (Group-B)

220

ANEESAH’s level of understanding your requirement.
(Group-A)

ANEESAH’s level of understanding your requirement. (Group-
B)

I feel comfortable using this system. (Group-A)

I feel comfortable using this system. (Group-B)

221

Are you satisfied with ANEESAH’s dialogue responses?
(Group-A)

Are you satisfied with ANEESAH’s dialogue responses? (Group-
B)

Are you satisfied with information produced from domain
Database? (Group-A)

Are you satisfied with information produced from domain
Database? (Group-B)

222

Appendix – D- Questionnaire for phase two evaluation

MANCHESTER METROPOLITAN UNIVERSITY

Evaluation Questionnaire – ANEESAH Natural Language Interface to Database (NLIDB)

Dear Participant,

I am a PhD researcher at Manchester Metropolitan University. As part of my research project, I am

conducting evaluation of a developed prototype system. The purpose of this evaluation is to examine and

determine the usability, design and effectiveness of this developed system (ANEESAH Natural Language

Interface to Databases).

This questionnaire will take only few minutes to complete and I would appreciate it if you would care to

complete it. The questionnaire is divided into two parts. The first part comprises of scale based feedback

against every question. An answer of 1 on the scale would be strongly/very negative and an answer of 5

would be very positive. The second part of the questionnaire includes questions which can be answered

in “Yes” or “No”.

Please be assured that information you provide will be used only for academic purpose. We can ensure

full confidentiality of your information and its safety. The information collected will be kept on records

for one year and later destroyed.

Thank you very much for your participation.

223

Participant No:

 I write my own database queries.

 I create my own reports based on queries written by other people.

 I use database reports and queries developed by other people/applications.

 To the best of my knowledge I have never used a database

“Please rate the degree to which you agree with the following on a scale from 1 to 5 where 1 means strongly/very

negative and 5 means very positive.”

 1 2 3 4 5

1 I found this system to be useful?
strongly

disagree

 strongly

agree

2
I am able to complete my work actively and

quickly using this system?

strongly

disagree

strongly

agree

3
Overall, how would you rate your

satisfaction level about using the system?

strongly

disagree

strongly

agree

4
I think that I can effectively complete my

work using this system.

strongly

disagree

strongly

agree

5

To what extent do you agree with the

system’s ability to entertain/handle

requests?

strongly

disagree

strongly

agree

6
To what extent do you agree with the

system s ability to refine information?

strongly

disagree

strongly

agree

7
I think it was easy to understand and use the

system.

strongly

disagree

strongly

agree

8
I am confident about the system’s level of

understanding my inputs.

strongly

disagree

strongly

agree

9 I found this system to be user friendly.
strongly

disagree

strongly

agree

10

I am satisfied with the results produced

from database and information refinement

as part of completing the scenarios.

strongly

disagree

strongly

agree

11
I am satisfied with the overall system’s

responses.

strongly

disagree

strongly

agree

12
The system’s dialogue during the

conversation was natural.

strongly

disagree

strongly

agree

13. Would you use a similar system again in the future?

YES NO

14. Would you use ANEESAH system instead of taking help from a Database expert??

YES NO

Any further comments you may have:

Thanks!

0

0

0

0

0

0

0

0

0

0

224

Appendix – E- Test Scenarios for the evaluation

Test Scenarios for the evaluation of:

ANEESAH Natural Language Interface to Database

(NLIDB)

Scenarios mentioned in the following sections have been prepared for test users to

retrieve appropriate information from Aneesah. The benchmark answers against below

scenarios will be compared and evaluated with system produced answers during the

testing phase.

Total Test Scenarios: 7

225

Scenario – 1

You don’t know what products your company sells?

i. Get the system to list the products available from the company?

(Note: Make note of any one product name, as this will be used later)

Product Name……………………………………………………………………

Scenario - 2

You don’t know what products your company sells?

i. Ask the system list the names of regions company trades in?

(Note: Make note of one region name, as this will be used later)

Region Name……………………………………………………………………

Scenario - 3

You need to determine which sales channel has been most successful for the company

in selling the product that you note in TEST SCENARIO - 1.

i. Get help from the system to show overall sales the for product that you noted

above?

ii. Now get help from the system to include sales channels into this.

Make a note of the best sales channel

Best Sales Channel Name ………………………………………………………

Scenario - 4

There is a requirement to find most profitable month for the company in 1998 (fiscal

year) for the region that you noted in TEST SCENARIO - 2.

i. Ask the system to show overall profit made by the company for above year for

the region that you noted in TEST SCENARIO - 2.

ii. Get the system to add monthly breakdown in the results.

Make a note of month with highest monthly profit

Month Name…………………………………………………….

226

Scenario - 5
You are asked to find the following:

i. Get help from the system to see the average sale for either “Mouse Pad” or
“Deluxe Mouse” for the October, 1998. (fiscal period)

ii. Now ask the system to add product that you noted in TEST SCENARIO – 1.
Make a note of highest average sales product name
Product Name…………………………………………………….

Scenario - 6
You are asked to perform the following:

i. Get help from the system to discover top five products from Spain and Italy.

ii. Instruct the system to remove one country of your desire from shown results.
Make a note of the country names that you can see on screen
Country name…………………………………………………….

Scenario - 7
You are asked to perform the following:

i. Get help from the system to count total orders quantity for ‘y box’ or ‘Laptop
Carrying Case’ (product) received by the company in calendar year 1998.

ii. Get help from the system to replace y box with the product that you noted in
TEST SCENARIO – 1.

iii. Now ask to add region that you noted in TEST SCENARIO – 2
Make a note of the total orders quantity

Total Order Quantity…………………………………………………….

227

Appendix – F – Phase two evaluation data histograms

Group-A Participants Group-B Participants

I found this system to be useful? I found this system to be useful?

I am able to complete my work actively and quickly using this
system?

I am able to complete my work actively and quickly using
this system?

228

Overall, how would you rate your satisfaction level about using
the system?

Overall, how would you rate your satisfaction level about
using the system?

I think that I can effectively complete my work using this
system.

I think that I can effectively complete my work using this
system.

229

To what extent do you agree with the system’s ability to
entertain/handle requests?

To what extent do you agree with the system’s ability to
entertain/handle requests?

To what extent do you agree with the system s ability to refine
information?

To what extent do you agree with the system s ability to
refine information?

230

I think it was easy to understand and use the system. I think it was easy to understand and use the system.

I am confident about the system’s level of understanding my
inputs.

I am confident about the system’s level of understanding my
inputs.

231

I found this system to be user friendly. I found this system to be user friendly.

I am satisfied with the results produced from database and
information refinement as part of completing the scenarios.

I am satisfied with the results produced from database and
information refinement as part of completing the scenarios.

232

I am satisfied with the overall system’s responses. I am satisfied with the overall system’s responses.

The system’s dialogue during the conversation was natural. The system’s dialogue during the conversation was natural.

233

Would you use a similar system again in the future? Would you use a similar system again in the future?

Would you use ANEESAH system instead of taking help from a
Database expert?

Would you use ANEESAH system instead of taking help from
a Database expert?

234

Appendix – G –ANEESAH’s Log File

Below are few dialogue examples from ANEESAH’s logfile illustrated after formatting.

Example 1: ANEESAH greeted the user (Rebecca) followed by example response and information refinement example after confirmation from the user.

L
O

G
_
IN

D
E

X

L
O

G
_
S

E
S

S
IO

N
_
ID

L
O

G
_
D

A
T

E

L
O

G
_
T

IM
E

L
O

G
_
A

P
P

S
T

A
R

T

L
O

G
_
A

C
T

O
R

L
O

G
_
A

C
T

_
IO

P
U

T

L
O

G
_
M

A
T

C
H

_
H

E
A

D
E

R

L
O

G
_
IT

E
M

_

L
O

G
_
D

E
S

C
R

IP
T

IO
N

L
O

G
_
C

O
N

V
_
IN

D
E

X

L
O

G
_
M

A
IN

_
C

O
N

T
E

X
T

L
O

G
_
S

C
E

N
A

R
IO

_
N

O

L
O

G
_
M

A
T

C
H

_
S

T
E

N
G

T
H

L
O

G
_
P

A
R

T
IC

IP
A

N
T

_
N

O

L
O

G
_
S

Q
L

_
K

N
O

W
L

E
D

G

E

1 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

Aneesah: Aneesah: Welcome to Aneesah NLIDB.
My name is Aneesah, What is your name?

12897

1

1 3

2 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

User: User: my name is rebecca

12898

1

1 3

3 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

Aneesah: Aneesah: Nice to meet you Rebecca,
What would you like to know about the
sales?

12899

1

1 3

4 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

Rebecca: Rebecca: can you tell me what products
you sell?

12900

1

1 3

7 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

Aneesah: Aneesah: I have discovered information
reflected in 'ResultsView' window relevant
to your input.

Is this what you
were looking to find out from the
database?

SQLQUERY SELECT
PRODUCTS.PROD_NAME FROM
PRODUCTS

Executed
query
response.

12905 DOMAIN 1 1 1 3

8 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:45 28/10/2016
16:45

12906

1

1 3

9 38b5e87e-
b0a0-44bc-

28/10/2016 16:46 28/10/2016
16:46

Rebecca: Rebecca: can you tell me in what region
you offer these products?

12907

2

1 3

235

9ff0-
c75d083fd840

10 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

Aneesah: Aneesah: Is this in connection with your
previous request?

12908

2

1 3

11 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

Rebecca: Rebecca: no

12909

2

1 3

15 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

Aneesah: Aneesah: I have discovered
10000 records in response to your
input.
 Would you like to limit these
records.
 You can say like top 100
etc?

12914

2

1 3

16 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

Rebecca: Rebecca: can you tell me what regions
you have in the database?

12915

2

1 3

21 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

Aneesah: Aneesah: I have discovered information
reflected in 'ResultsView' window relevant
to your input.

Is this what you
were looking to find out from the
database?

SQLQUERY SELECT
COUNTRIES.COUNTRY_REGION
FROM COUNTRIES

Executed
query
response.

12921 DOMAIN 2 0.9 1 3

22 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:46 28/10/2016
16:46

12922

2

1 3

23 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:47 28/10/2016
16:47

Rebecca: Rebecca: what are the total sales results
for y box

12923

3

1 3

24 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:47 28/10/2016
16:47

Aneesah: Aneesah: Is this in connection with your
previous request?

12924

3

1 3

25 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:47 28/10/2016
16:47

Rebecca: Rebecca: no

12925

3

1 3

236

29 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:47 28/10/2016
16:47

Aneesah: Aneesah: I have discovered information
reflected in 'ResultsView' window relevant
to your input.

Is this what you
were looking to find out from the
database?

SQLQUERY SELECT * FROM (SELECT
PRODUCTS.PROD_NAME, SUM(
PROFITS.AMOUNT_SOLD)
FROM PRODUCTS INNER JOIN
PROFITS ON
PRODUCTS.PROD_ID =
PROFITS.PROD_ID WHERE
PROD_NAME = 'Y Box' GROUP
BY PRODUCTS.PROD_NAME)

Executed
query
response.

12931

3 1 1 3

30 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:47 28/10/2016
16:47

12932 DOMAIN 3

1 3

31 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:48 28/10/2016
16:48

Rebecca: Rebecca: in what way have the company
made these sales

12933

3

1 3

32 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:48 28/10/2016
16:48

Aneesah: Aneesah: Is this in connection with your
previous request?

12934

3

1 3

33 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:48 28/10/2016
16:48

Rebecca: Rebecca: yes

12935

3

1 3

41 38b5e87e-
b0a0-44bc-
9ff0-
c75d083fd840

28/10/2016 16:48 28/10/2016
16:48

Aneesah: Aneesah: I have discovered information
reflected in 'ResultsView' window relevant
to your input.

Is this what you
were looking to find out from the
database?

SQLQUERY SELECT * FROM (SELECT
PRODUCTS.PROD_NAME, SUM(
PROFITS.AMOUNT_SOLD),
CHANNELS.CHANNEL_DESC
FROM PRODUCTS INNER JOIN
PROFITS on
PRODUCTS.PROD_ID =
PROFITS.PROD_ID INNER JOIN
CHANNELS on
PROFITS.CHANNEL_ID =
CHANNELS.CHANNEL_ID
WHERE PROD_NAME = 'Y Box'
GROUP BY
PRODUCTS.PROD_NAME,
CHANNELS.CHANNEL_DESC)

Executed
query
response.

12942 DOMAIN 3 1 1 3

237

Example 2: Example shows ANEESAH performing conflict resolution.

L
O

G
_
IN

D
E

X

L
O

G
_
S

E
S

S
IO

N
_
ID

L
O

G
_
D

A
T

E

L
O

G
_
T

IM
E

L
O

G
_
A

P
P

S
T

A
R

T

L
O

G
_
A

C
T

O
R

L
O

G
_
A

C
T

_
IO

P
U

T

L
O

G
_
M

A
T

C
H

_
H

E
A

D
E

R

L
O

G
_
IT

E
M

L
O

G
_
D

E
S

C
R

IP
T

IO
N

L
O

G
_
C

O
N

V
_
IN

D
E

X

L
O

G
_
M

A
IN

_
C

O
N

T
E

X
T

L
O

G
_
S

C
E

N
A

R
IO

_
N

O

L
O

G
_
M

A
T

C
H

_
S

T
E

N
G

T
H

L
O

G
_
P

A
R

T
IC

IP
A

N
T

_
N

O

L
O

G
_
S

Q
L

_
K

N
O

W
L

E
D

G
E

441
2

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Jake: Jake: I want you to call
overall profit information
made by company for year
1998

18581

4

16 1

441
3

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Aneesah: Aneesah: Is this in
connection with your
previous request?

18582

4

16 1

441
4

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Jake: Jake: no

18583

4

16 1

442
0

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Aneesah: Aneesah: I have found
duplicate records for 1998
in database:
1.
1998 in
calendar_year
<i>A period of time
containing 365 (or 366)
days or period combining
12 calendar months</i>
2. 1998 in
fiscal_year
<i>Accounting or Tax
period of 12 months of the
company</i>

Please select which record
did you mean or enter
record number to select
appropriate record?

18585

4

16 1

442
1

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Jake: Jake: make a selection of
option 2

18586

4

16 1

238

442
2

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:43 26/11/201
6 11:43

Aneesah: Aneesah: I have discovered
information reflected in
'ResultsView' window
relevant to your input.

Is this what you
were looking to find out
from the database?

SQLQU
ERY

 SELECT * FROM (SELECT
TIMES.FISCAL_YEAR ,
SUM(AMOUNT_SOLD -
UNIT_COST) AS PROFIT
FROM PROFITS INNER JOIN
TIMES ON PROFITS.TIME_ID
= TIMES.TIME_ID WHERE
FISCAL_YEAR = '1998'
GROUP BY
TIMES.FISCAL_YEAR)

Executed
query
response.

18591 DOMAIN 4 0.
95

16 1

442
4

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Jake: Jake: was there any from
Africa region

18593

4

16 1

442
5

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Aneesah: Aneesah: Is this in
connection with your
previous request?

18594

4

16 1

442
6

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Jake: Jake: yes

18595

4

16 1

443
5

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Aneesah: Aneesah: I have found
duplicate records for Africa
in database:
1.
Africa in
country_region
<i>Region is often known
as continent that based on
geographical location i.e.
Europe etc.</i>
2.
Africa in
country_subregion
<i>Subregion is a part of
a larger region or continent
and based on location i.e.
Western Europe etc.</i>

 Please select
which record did you mean
or enter record number to
select appropriate record?

18598

4

16 1

443
6

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Jake: Jake: option 1

18599

4

16 1

239

443
7

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:44 26/11/201
6 11:44

Aneesah: Aneesah: I do not think
there are any records
present in database
meeting your input. Would
you like to ask information
about something else?

SQLQU
ERY

 SELECT * FROM (SELECT
TIMES.FISCAL_YEAR,
COUNTRIES.COUNTRY_REGI
ON , SUM(AMOUNT_SOLD -
UNIT_COST) AS PROFIT
FROM times INNER JOIN
profits on times.time_id =
profits.time_id INNER JOIN
customers on profits.cust_id =
customers.cust_id INNER JOIN
countries on
customers.country_id =
countries.country_id WHERE
FISCAL_YEAR = '1998' and
COUNTRY_REGION = 'Africa'
GROUP BY
TIMES.FISCAL_YEAR,
COUNTRIES.COUNTRY_REGI
ON)

Executed
query
response.

18604 DOMAIN 4 1 16 1

443
9

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:45 26/11/201
6 11:45

Jake: Jake: I want you to include
month names in it

18606

4

16 1

445
0

d3beb7ff-7be8-4ded-b627-
d68c793f569e

26/11/201
6

11:45 26/11/201
6 11:45

Aneesah: Aneesah: I do not think
there are any records
present in database
meeting your input. Would
you like to ask information
about something else?

SQLQU
ERY

 SELECT * FROM (SELECT
TIMES.FISCAL_YEAR,
COUNTRIES.COUNTRY_REGI
ON,
TIMES.CALENDAR_MONTH_
NAME , SUM(AMOUNT_SOLD
- UNIT_COST) AS PROFIT
FROM times INNER JOIN
profits on times.time_id =
profits.time_id INNER JOIN
customers on profits.cust_id =
customers.cust_id INNER JOIN
countries on
customers.country_id =
countries.country_id WHERE
FISCAL_YEAR = '1998' and
COUNTRY_REGION = 'Africa'
GROUP BY
TIMES.FISCAL_YEAR,
COUNTRIES.COUNTRY_REGI
ON,
TIMES.CALENDAR_MONTH_
NAME)

Executed
query
response.

18616 DOMAIN 4 1 16 1

240

Appendix – H –Author Publications

241

242

243

244

245

