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Abstract 

This study examines the effects of survivor benefits on health status and wealth in households 

of widowed mothers. The analysis relies on the cross-sectional Income and Living Conditions 

Survey (ILCS) in Turkey over the period 2006-2012. We apply Ordered Logit and Probit 

models, and we propose the Bayesian Network (BN) framework to explore the causal effects 

of survivor benefits using observational data. The results show that the widowed mothers 

who receive the benefits are more likely to report higher levels of health status by 0.11 units 

on a scale between 1-5. In addition, their wealth is improved. For the sample of the survivor 

benefit claimants, the effects of the benefits are positive, and they improve health status by 

about 6 per cent.  
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1. Introduction 

 

When a breadwinner dies, a family experiences a loss in earnings and social benefits. 

Several studies conclude that single parenthood, after a matrimonial termination, has harmful 

economic and health consequences. It is well documented that poverty rates among women 

over the years following marital termination are higher than during marriage (Nestel et al., 

1983; Duncan and Hoffman, 1985; Morgan, 1989; Holden and Smock, 1991; Smock et al., 

1999). Waldron et al. (1996) found that married women report better health trends than their 

unmarried counterparts. The authors, using panel data from the National Longitudinal 

Surveys of Young Women in the US, found that marriage has positive effects on health. This 

holds especially for the unemployed women in lack of financial resources. Many studies have 

emphasised both physical and psychological consequences of widowhood, and they found 

that it is one of the most stressful periods in life. Widowhood is associated with lower 

perceived health status, increase in hospitalisation admissions and risk development of 

depression and mental illnesses (Avis et al., 1991). Although changes in physical and mental 

health behaviour were inconsistent with small effect sizes, Wilcox et al. (2003) showed that 

married women reported better physical and mental health than widowed women.   

The relationship between longevity and socio-economic status may partly account for high 

poverty rates among the older widows. Holden and Zick (2000) in the early 1990s found that 

the average income of elderly widows dropped 47 per cent after the death of the husband. The 

authors conclude that losing the partner decreases the household consumption needs, 

however, this is insufficient to balance the drop in income. Holden and Zick (2000) found that 

the income of old women is reduced by 20 per cent, and 17 per cent is fall into poverty 

following the death of their spouses.  
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This study examines whether the survivor benefits help the widows to improve their health 

status. As an added source of income, the survivor benefits may allow the widowed 

households to improve their financial positions and their health conditions. We explore the 

widowed households in Turkey, because it matches the characteristics of the so-called 

Southern European Model of welfare, which comprises Spain, Greece, Italy and Portugal 

(Grütjen, 2006). The Turkish society today faces close socio-economic consequences of 

urbanisation, unemployment and increasing life expectancy, similar to the countries of the 

South European Union. However, Turkey is a developing country and shares similar socio-

economic and cultural characteristics with other countries in the Middle East and North 

Africa (MENA) region. These characteristics include religion and traditional gender roles. 

The husband is the main breadwinner, at least in the old-aged households, and the woman has 

limited access to the labour market. The association among survivor benefits, wealth and 

health status in Turkey can offer useful insights for policy implications to the MENA and to 

South European Union countries. Moreover, in Turkey, the Health Transformation Program 

(HTP), which took place over the years 2003-2008, has improved health care services and 

health outcomes, such as life expectancy and morbidity rates (Chakraborty, 2009; Brown et 

al., 2012; Erus and Aktakke, 2012). This reform was unique, as South European Union and 

MENA countries have not implemented similar policies.   

In Turkey, the first law for the survivor benefits passed in 1957. In May of 2006, the social 

security systems of the public and private sectors merged the employees and the self-

employed into one system, under the new Social Security Institution. The spouse is eligible, 

regardless of any specific age, but being an eligible dependent differs for female and male 

children. The spouse’s survivor pension ceases on remarriage. Survivors are eligible to 

receive only one survivor pension. In the case where they earn a wage, they can keep their 

salaries while taking the pension of their deceased spouse.  

https://www.researchgate.net/researcher/2009857793_Daniel_Gruetjen
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This is the first attempt to examine the effects of survivor benefits on poverty and health 

status of widowed mothers in Turkey using a Bayesian Network framework. Earlier literature 

has not explored these relationships in Europe, the MENA region and in other regions around 

the world, except for the US. Thus, examining those effects, other countries may follow 

Turkey as an example to improve the health status and to decrease the poverty of the widowed 

households. The analysis relies on a detailed micro-level data from the cross-sectional Income 

and Living Conditions Survey (ILCS) of Turkey during 2006-2012. In addition, following the 

ordered Logit and Probit regression analysis, we estimate a Bayesian Network model to 

examine the impact of the survivor benefits on health status and wealth. The causes and 

effects between these variables and other factors are incorporated into a graphical 

representation through Directed Acyclic Graphs (DAGs).  We propose the BN framework, 

because it allows us to test for causal effects without using instrumental variables and when 

the ordering of the events and variables is unknown.  

The results derived from the ordered Probit and Logit models show a significant 

relationship between survivor benefits and health status, equal to 0.053 and 0.109, 

respectively.  In addition, the findings confirm that the survivor benefits reduce the incidence 

of poverty and help the households to avoid poverty traps. BN estimates show a significant 

effect of the survivor benefits to health and wealth. Overall, the results suggest that the 

survivor benefits reduce the poverty rate by 17 per cent. The poverty gap between the 

households receiving the survivor benefits and those that do not is 23 per cent. Those who 

receive the survivor benefits report a higher health status level by 0.11 units, on a scale 

measured from 1 to 5.  

This paper is organised as follows: In the next section, we present a brief literature review 

of the previous empirical researches about the effects of income on poverty and health. In 

Section 3, we present the data, and in Section 4, we describe the methodology followed. We 
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report the empirical results in Section 5, and in the last section, we provide concluding 

remarks.  

 

2. Literature review 

 

The literature has analysed the association between survivor benefits and poverty 

outcomes in the US. The work by Myers et al. (1987) is one of the novel studies on the 

survivor benefits and poverty outcomes. The authors used data from Ten-Year Longitudinal 

Retirement History Study and analysed the effect of joint-and-survivor benefits on poverty 

outcomes of women. They found that, on average, women have higher levels of poverty as 

widows than when they were married (e.g., Sandell and Iams, 1996; Iams and Sandell, 1998). 

A study that analyses the German Social Security system shows that this system is not so 

successful in maintaining the living standards of widowed women compared to married 

counterparts (Hungerford, 2001). Siegenthaler (1996) also emphasised that Germany has a 

serious poverty problem among elder widows, even though it has often been singled out as 

one of the richest European Welfare States. Scholars show that more than a third of Egypt’s 

women-headed households are living below the poverty line (Assaad and Rouchdy, 1999). 

Despite the fact that divorce is uncommon in the developing countries, death and desertion 

produce single parent families, usually headed by women (Kinnear, 1999). Across the 

Western world, about 15.9 per cent of children live in single-parent households. The United 

States is listed as the highest in the single-parent ranking; 25.8 per cent of the children in the 

US live with one parent, which is usually the mother. Turkey, following Finland, Greece, 

Italy and Luxembourg, is the fifth to last country, where 7.2 per cent of the children live with 

the mother and 0.6 with the father.  

Lee et al. (2001) found that it is more likely women to become widowed than men for 

two main reasons. First, women in the majority live longer than men, and, second, they marry 
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older men, although this age gap has been narrowing in recent years. Because of these facts, 

the odds for women to become widowed are much higher. Relevant literature suggests that 

the widows and their children present poorer health status levels and spend more on health 

care compared with the general population (Springer, 1984). Losing a spouse is one of the 

most intensive and dramatic events that a person can experience, next to the loss of a child 

(Bennett et al., 2005). One of the main causes of mental and physical problems is the 

economic hardship and burden, especially for the women whose husband is considered as the 

principal breadwinner. The death of a husband leads to the deprivation and the collapse of the 

family nucleus (Fasoranti and Aruna, 2007). This economic deprivation can have additional 

effects on the health status of women and children. We expect the survivor benefits, as a 

financial contribution and part of personal income, to have positive effects on health 

outcomes. Earlier research studies found a strong relationship between income and health 

status. On average, individuals belonging to the most advantaged social groups are healthier. 

Furthermore, household income is associated with children and youth development (Haveman 

et al., 1991; Huston et al., 1994; Brooks-Gunn and Duncan, 1997). Many of these studies 

show the adverse physical and psychological effects following the death of the spouse but not 

the effects of the survivor benefits. 

Overall, the previous literature explored the effects of other social benefits, including 

parental or maternity leave (Huang and Yang, 2014; Khanam et al., 2016). However, prior 

studies have not explored the relationship of the effects of the survivor benefits on health and 

wealth, especially in Turkey. The main theme of those studies was the income and wealth 

differences exploration between married and unmarried women, including widowed and 

divorced.  

The most relevant study is by Holden and Zick (2000), who found that younger women 

report 15 per cent lower income than older women when they become widows. In addition, 
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Holden and Zick (2000) found that in the early 1990s, the pension income fell by 58 per cent 

on average. This accounts for 21 per cent of the decline in income associated with 

widowhood. The findings of this study show that the poverty gap between households 

receiving survivor benefits and those that do not is 23 per cent, while the poverty is reduced 

by 17 per cent. We extend the previous literature, exploring the effects of survivor benefits on 

wealth and health status of widowed households. Moreover, we propose a Bayesian Network 

framework to explore the effects of the survivor benefits on wealth and health status using 

observational data.  

 

 

3. Data description and variables 

We use the cross-sectional Income and Living Conditions Survey (ILCS) in the period 

2006-2012, covering respondents over 14 years old (Turkish Statistical Institute, 2013). The 

main health outcome is the self-assessed health (SAH), defined by a response to the question 

―What is your general health status: very good/good/fair/bad/very bad?‖ To give meaningful 

interpretations in the coefficients, the health status variable is recoded between 1 (very bad 

health status) and 5 (very good health status). In Table 1, we present the summary statistics of 

the variables used in the analysis. We apply a factor analysis to construct the wealth index, 

based on the household belongings. More specifically, the household belongings refer to: 

whether there is a bath, an indoor toilet, a piped and hot water system in the dwelling, a 

telephone, a washing machine, a refrigerator, a car, leaking and roof problems in the dwelling, 

if the household can afford to go on holiday and whether the household can afford to have a 

meal with meat or fish two days in a row. Other items included in the index are: whether the 

household can keep the house warm, whether the household has the capacity to face 

unexpected financial expense arrears on mortgage, utility bills and hiring purchase 
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instalments, if there is darkness in the rooms and shortage in the space of the dwelling. The 

fuel type for the main heating source of the dwelling and whether the household spends more 

than the 40 per cent of the net income on housing are included too. Higher values correspond 

to greater levels of wealth.  

The index is constructed based on whether the households can afford a set of assets and 

items, such as durable goods and financial expenses, including the utility bills and arrears on 

mortgage we described earlier. In this case, the set of variables takes value 1 if the household 

can afford them and 0 otherwise. Following Filmer and Pritchett (2001), we apply the 

procedure of principal components to determine the weights for an index of the asset and the 

financial capacity variables described so far. Principal components is a technique allowing the 

extraction of orthogonal linear combinations of a set of variables that provide and capture the 

common information most successful. In this procedure, the first principal component of a set 

of variables is the linear index of the variables capturing the largest amount of information 

common to all the variables. Next, using the estimated PCA coefficients, we take the 

predicted or constructed wealth index (for more technical details, see Filmer and Pritchett, 

2001).  

The remaining variables used in the regression analysis are the controls. Based on the 

earlier literature, the main socio-economic variables include age, education level, employment 

status, house tenure, dwelling size and household size. It is well known from the literature that 

age is an important determinant for both health status and wealth. Old-aged people are more 

likely to present negative effects of health. On the other hand, older people can be wealthier, 

because of the wealth accumulation over years, higher wages due to increased productivity 

and working experience. Similarly, education and income are important factors, since more 

educated people have better knowledge about healthy life style and various effects of other 
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factors, including smoking, food diet and sports. Higher income results from high educational 

qualifications, since these people have more opportunities in the labour market, implying 

higher wages. Income allows people to have access and to buy better-quality health services. 

Employment status can be considered as an effect of education, while income can result from 

employment status, as we discussed earlier. Since the employed are more likely to earn more, 

they can be wealthier than the unemployed, retired and those who are disabled and unable to 

work. The house tenure and the house size can be effects of income and education (Avis et al., 

1991; Assaad and Rouchdy, 1999; Huang and Yang, 2014; Khanam et al., 2016) 

In addition, we include in the analysis extra covariates, such as whether the people are 

exposed to air pollution problems in the neighbourhood and whether they have heating 

problems, since these factors can affect the health status. For instance, it is well known that 

air pollution has negative effects on health and the overall well-being of people. Fuel type is 

important, as the coal, dried cow dung and wood have a negative effect on health outcomes.  

We should note that fuel type refers to the source used for heating, including coal, wood, 

electricity, natural gas, fuel-oil and dried cow dung. The main reason we consider this 

variable, is that coal and dried cow dung have a negative effect on an individual’s health, 

including asthma and other respiratory diseases (Ozdamar and Giovanis, 2014). 

(Insert Table 1) 

 

4. Methodology 

4.1 Ordered Logit and Probit models 

 

The first part of this study examines the relationship between the health status and the 

treatment group of survivor benefits. The treatment variable is a dummy indicating whether 

the household receives survivor benefits. Then, we include in the analysis the levels of 
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survivor benefits. In that case, we examine the association between survivor benefits and 

health status, limiting our interest to the sample of the survivor benefit claimants. The 

regression model of health status is:
      

 

 

tjhijtjtjhiththitjhi
TllzydbenHS

,,,,,,,2,,10,,,
')log(  

       
(1) 

 

HSi,h,j,t is the health status for individual i in household h, in the region-area j and in time 

t; dbeni.h,t is the dummy showing whether the individual i in household h receives the survivor 

benefits or not; log(yi,t) 
denotes the logarithm of household income, and z is a vector of 

household and demographic factors, discussed in the next section. Set lj controls for region- 

12 regions, particularly in Turkey, and θt is a time-specific vector of year indicators, while ljT 

is a set of area-specific time trends. In addition, we estimate equation (1), replacing dbenh,t  

with the variable log(ben)i,h,t , which denotes the logarithm of survivor benefits. Here we 

control for the household income reduced by survivor benefits. As the dependent variable is 

an ordered variable, the ordered Probit and Logit models for cross-sectional data are the most 

common and appropriate techniques
1
.  

The next outcome of interest is the wealth. Regression (1) remains the same, with the 

difference that the dependent variable is the wealth index. Since this variable is continuous, 

we use ordinary least squares (OLS). Various methods have been used to measure deprivation 

and wealth. However, according to the data availability, we use a wealth index based on 

deprivation indicators. Townsend (1979) defined a household as deprived if it does not 

possess three or more items. His work has been subject to criticism, because his method does 

not distinguish between the respondents that either cannot afford to have these items or 

                                                             
1
 It should be noticed that, using also the Panel Income and Living Conditions Survey during the period of 2009-

2012, the same conclusions are derived. We preferred the cross-sectional, since the main conclusions of the 

study are not different. Also, in the ILCS cross-sectional dataset, there are more years and additional controls, 

including information at the regional level instead of classifying only at rural and urban areas.     
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because they do not want them. Another important aspect of criticism is that Townsend 

(1979) considered no relevant weight assigned to each item. For example, we assume two 

households possess the following items: computer and TV. The first household, however, also 

possesses a car, while the second has a phone. We conclude that the second household is 

deprived, since the value of a phone is usually lower than the value of a car. Moreover, large 

differences between households having the same items can be present. It makes a difference, 

whether the phone is a smart phone or whether the car is diesel or electric. We construct the 

wealth index using the indicators proposed by Guio (2009), and we apply the principal 

component analysis suggested by Filmer and Pritchett (2001). Next, we follow a propensity 

score matching to test if there is selection bias between the households that receive benefits 

and those who do not (for more details, see Rosenbaum and Rubin, 1983). We used various 

algorithms, including the closest neighbour, Mahalanobis and kernel, leading to the same 

results.  

  

4.2 Bayesian Networks and Directed Acyclic Graphs 

 

This section describes the Bayesian Networks (BNs) and the directed acyclic graphs 

(DAGs) used in this study for causal inference. The BNs framework involves two 

mathematical pieces, the DAG and the probability theory focused on conditional 

independence. We consider BNs in our analysis for three main reasons. First, are graphical 

models, so they contain a part that can be depicted as a graph where a class of models is 

evaluated based on algorithms. Second, as the most applications in the sciences and in 

economics involve uncertainty, BN framework is used based on the probability theory. Third, 

the main purpose of this study is to derive cause-effect relationships from observational data.  

To understand BNs and the associated learning techniques, is important to mention the 

Bayesian approach to probability and statistics. The Bayesian probability of an event X is a 
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person’s degree of belief about that event. The classical probability is a physical property of 

the world, e.g. the probability that a coin will land heads, while the Bayesian probability is a 

property of the person who assigns the probability, e.g. the degree of a person’s belief that the 

coin will land heads. In the traditional statistical modelling, prior knowledge may not be 

desirable, since the data introduced can be irrelevant to the main outcome of interest. 

However, sometimes including prior information can be useful, since an event may depend on 

the probability of an event that took place before and it allows the evaluation of its impact on 

a specific event.  Bayesian networks have been developed based on Bayes’ theorem of 

probability theory to propagate information between nodes-variables. Bayes’ theorem 

describes how prior knowledge about hypothesis A is updated by the observed evidence B. 

The theorem relates the conditional and marginal probabilities of A and B as: 

 




dBABPAP

ABPAP
BAP

)|()(

)|()(
)|(

                                                                                                (2) 

P(A) is the prior probability to the hypothesis or the likelihood that A will be in a particular 

state, prior to consideration of any evidence. P(B|A) is the conditional probability or the 

likelihood of the evidence, given the hypothesis to be tested and P(A|B) is the posterior 

probability of the hypothesis or the likelihood that A is in a state, conditional on the evidence 

provided. The integral in (2) represents the likelihood that the evidence is observed, given a 

probability distribution. Relation (2) refers on a simple problem where only two variables are 

incorporated. However, in real learning problem applications, the main interest is to explore 

the relationships among numerous variables. Bayesian network is an appropriate 

representation tool for this task, which encodes the joint probability distribution, physical or 

Bayesian, for a large set of variables. DAGs were primarily developed in computer science by 

Judea Pearl (1988; 2000; 2009) and Spirtes et al. (2000).  DAGs consist of three elements: 

variables (nodes, vertices), arrows (edges), and missing arrows. Arrows represent possible 
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direct causal effects between pairs of variables and order the variables in time. We present an 

example of a DAG in figure 1.  

(Insert figure 1) 

The arrow between T and F in figure 1 means that T may have a direct causal effect on F. 

Similarly, for the arrow between B and T or A and C or B and C. Where there are missing 

arrows, the strong assumption of no direct causal effect between two variables is rejected, 

which is the so-called ―strong null‖ hypothesis of no-effect. In figure 1 the missing arrow 

between T and Y or B and F, implies the complete absence of a direct causal effect of T on Y 

or of B on F. The variables that are directed caused by a given variable are called children. 

Given figure 1 the only child of F is Y and so on. A parent may have more than one child. For 

example, B has three children, C, D, and T. All variables directly or indirectly caused by a 

given variable are called its descendants. The descendants of T are F and Y, while the 

descendants of B are C, D, T (B’s children), E (D’s and T’s child), F (T’s child) and Y (child 

of A, C, D, E, F). On the other hand, parents are the variables that direct cause another 

variable. Coming back to figure 1 the only parent of F is T, while the parent of T is B. A 

similar definition to descendants, working on the opposite way, is given for the variables that 

directly and indirectly cause of another variable and are called ancestors. For instance, the 

ancestors of F are T and B, while the ancestors of E are B, D, and T. Paths are sequences of 

adjacent arrows that traverse any given variable at most once. The arrows along a path may 

point in any direction. For example if B is the treatment and F is the outcome then BTF is 

the only causal path. Denoting the parents as pari and given the structure in G, the joint 

probability for V is defined as: (see definition 1 in appendix)  





m

i
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1

)|()(                                                                                                            (3) 

Applying the chain rule of probability, we have: 
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The Markov blanket condition is the main important assumption of the Bayesian 

Networks. This is the condition where a node X is a set of nodes composed of the parents and 

children of X and the children’s other parents (Pearl, 2000). The Markov blanket contains the 

variables that shield the node X from the rest nodes of the network. This means that the 

Markov blanket of a node is the only knowledge and information needed to predict the 

behaviour of that node (see definitions 1-2 in appendix). Coming back to figure 1 the Markov 

condition entails the following conditional independence relation for F to B and similar for 

the other relations.  

TBF |                                                                                                                                    (5) 

 

Therefore, F is independent of B given T, where  stands for statistical independence. This 

definition allows us to start with the complete graph, where each node is connected to all 

other nodes. The next step involves the removal of the edges between Xi and Xj iff Xi  Xj|rest, 

where rest denotes the rest of the variables. Based on the definition 3 in appendix we have 

that Xi  Xj| Xr  ρi,j|k. A test for conditional independence is therefore a test for partial 

correlation between the variables. In that case, we can estimate the partial correlations via 

regression analysis. Then we use the Fisher’s Z-Transform test for the conditional 

independence (Spirtes et al. 2000; Kalisch and Buhlmann, 2007): 
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Then it will be: 

 

)1,0(|)|.(|3|| NkjiZkn                                                                                                          (7) 
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For the independence test, we use the significance level α=0.05. We estimate the DAG 

using the PC algorithm, and we present the pseudo-code in box 1 in appendix (Spirtes et al., 

2000). The d-separation condition is very important and useful in the construction of a BN, 

because it controls for possible confounders, as in the form of S described here (see definition 

4 and more details on causation or over-control bias, selection and confounding bias in the 

appendix).  Graphically, d-separation usually exhibits two main cases: first is X→S→Y and 

second, X←S→Y. The intuition in this graphical representation is that X and Y are 

independent from each other conditioned on S. In the first case X causes Y through S, while in 

the second case X and Y have a common cause S. In addition, given the edge X→S it is said 

that the tail of the edge is at X, while the head over the edge is at S.  

However, Bayesian Networks as every other statistical model is not without drawbacks. 

First, while Bayesian models are a useful way to model knowledge, it may be difficult to find 

an agreement on the structure of the model and the nodes important to include in the analysis. 

Following the previous literature, we consider the control variables that can be related to 

health status and wealth. Second, it can be a challenge to express the knowledge in the form 

of the probability distribution (Uusitalo, 2007). Another issue, common to natural and 

randomised trial experiments, is the plausible unobservable variables.  

 

 

5. Empirical results 

5.1 Ordered Probit and Logit regressions 

 

In this section, we report and discuss the empirical estimates. The main coefficient of 

interest is the dummy indicating whether the household receives survivor benefits. The 

coefficient is significant and equal to 0.0532, based on the Probit model in Table 2. The 

concluding remarks stay the same when we apply the ordered Logit model, and the coefficient 
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equals 0.1086. We should note that the magnitude of the coefficients is different, since the 

Logit and Probit models follow a distinct distribution. The marginal effects of the coefficients 

range between 0.093-0.101, implying the widows that receive survivor benefits report better 

health status levels by 0.1 units, on a scale measured from 1 to 5.  

On the socio-economic characteristics, the results show no difference in the health status 

between age groups 25-29 and the reference category group of 20-24 years old. A monotonic 

negative relationship between health status and the age groups of 30 years and older is noted. 

Earlier studies support that age is negatively associated with health status, implying that a 

higher probability of health problems is present in old-aged people (Getzen, 1992). However, 

this does not imply that the decline in health with age is experienced at the same rate, and 

neither implication is homogeneous. Nevertheless, people do not respond the same on the loss 

of a spouse at all ages. Young women who become widows are less emotionally prepared 

than their older counterparts. Furthermore, young widows feel lonelier, as the peer group 

range is smaller. The death of a spouse causes major financial distress to young widows, 

when the savings and wealth are low at a young age (Scannell, 2003). Sevak et al. (2003) 

share the same opinion where they found that the young widows face greater risks of 

economic hardship after widowhood. They conclude that the widowed, especially young 

women, are less financially prepared.  

A strong relationship between socio-economic status (SES) and health status is found in 

earlier research studies. SES is important to health, not only for those in poverty and low-

education levels, but at all levels of SES. On average, the more advantaged individuals are, 

the better their health is, as the social groups are closer to the top of the socio-economic 

status. Well-educated and higher-income classes have lower rates of morbidity and mortality 

and better rates of health status. We confirm these findings from the results in Table 2. 
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Individuals with higher education levels and higher income are more likely to report better 

levels of health status than the less educated and those with low-income levels.  

Education is an important factor, and it has a positive relationship with health status, as is 

associated with health knowledge and certain health behaviours. For instance, well-educated 

people have greater knowledge of health conditions, better self-management skills and higher 

participation rates in prevention programmes, such as cancer screening (Katz, 1997; Van der 

Meer and Mackenbach, 1999; Sabates and Feinstein, 2006). A study exploring the 

relationship between education and obesity found that obese people with a low education 

level were likely to believe it unnecessary to lose weight (Kennen et al., 2005). Individuals 

having low educational qualifications are ignorant of the adverse health effects of smoking 

and of its effects during pregnancy (Logan and Spencer, 1996; Arnold et al., 2001).  

The positive relationship between income and health is well documented in the literature. 

The argument behind this finding is that higher income levels allow individuals to have better 

access to health care and to purchase health inputs of higher quality. Another argument is that 

healthy individuals can work extra hours and can be productive and thus able to earn higher 

wages in the labour market.  

Employment status is another important determinant of health status. Based on the results, 

those who work part time, the retired, students, disabled people and those who fulfil domestic 

tasks present significantly lower levels of health status. This can be explained because full-

time employed people earn extra money and enjoy higher levels of physical and mental 

health. Furthermore, well-educated people may have more opportunities in the labour market 

and can find employment in better jobs, earning more, suggesting interdependence among 

those factors. Stronks et al. (1997) explored the interrelationship between education, 

employment status and health. In particular, when their analysis controls for other socio-

economic factors, the association between income and health is higher than education or 
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employment status and health. Fone et al. (2006) examined the relationship between 

economic inactivity and mental health problems at the ward level utilising the Welsh Health 

Survey. They found that ward deprivation score is associated with mental health. The effect 

becomes stronger for the economically inactive people. Overall, the relationship between 

employment status, socio-economic status and health can be complex. The employment status 

is found to be associated with health, as the unemployed and housewives are less healthy than 

those in paid employment (Bartley et al., 1992; Stronks, 1997; Brown et al., 2012). 

Employment status is related to SES, where people from lower socio-economic groups have a 

higher risk of losing their jobs (Stronks, 1997; Brown et al., 2012). For this reason, we 

apply the proposed Bayesian Network in the next section of the study. Those who have not 

reported problems related to a leaking roof, damp walls or rot in the window frame, heating 

problems in the dwelling, and those that they are not exposed to pollution or other 

environmental problems are likely to present significantly higher levels of health status 

(Ozdamar and Giovanis, 2014). The results show an insignificant association between 

monthly expenses, tenure status and health. We find no significant differences for the fuel 

type of the heating system, including the gas fuel-oil, electricity, natural gas and the reference 

category – wood. The exceptions are coal and dried cow dung, where the findings show that 

the relationship between those types of fuel for heating and health is significant and negative 

(Ozdamar and Giovanis, 2014).  

Those who locate in urban areas are likely to report lower health levels. We could expect 

that these areas offer more opportunities in the labour market, higher income, and centralised 

health services. But the benefits can be partially offset by other factors, such as higher 

unemployment, air and noise pollution, higher crime rates, depression and stress, among 

others. For instance, 30 per cent of the sample that live in urban areas reported being exposed 

to air and other environmental problems. In rural areas, it is 10 per cent. However, rural 
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residents may face significant challenges in accessing health care and necessary support 

services, difficulties related to accessibility due to distance from health centres and the lack of 

proper infrastructure (Arcury et al., 2005; Beck et al., 2009).  Furthermore, the majority of the 

rural residents are poor, low educated, older, less likely to have health coverage and more 

likely to encounter transportation challenges (Glover et al., 2004; Laditka, 2009).  

In Table 2, columns (3) and (4), we report the results when the level of survivor benefits is 

considered. We should note that we include in the regression analysis only widows who 

receive survivor benefits. The concluding remarks remain the same, suggesting that survivor 

benefits can improve health and wealth of the widowed mother households.  

(Insert Table 2) 

One issue with the estimates discussed so far is the possible selection bias among those 

who receive survivor benefits – the treatment group – and those who do not – the control 

group. According to the Heckman selection model (Heckman, 1979)
2
, both groups share 

similar socio-economic and household characteristics. In the control group, widow women are 

uninsured and not eligible for survivor benefits. In addition, endogeneity is not a major issue, 

as the death of the spouse is an exogenous event. Furthermore, the propensity score matching 

presented in Table 3 shows that there was no systemic difference in the characteristics 

between treated and untreated. The exception is house size, which is significant before and 

after matching. We should mention that we applied propensity score matching for household 

income, excluding the amount of survivor benefits. This allows us to use this income as a 

baseline and then to explore the additional effect of the survivor benefits.  

(Insert Table 3) 

Next, in Table 4, we present the ordinary least squares estimates, considering as 

dependent variable the wealth index, which we constructed based on the items mentioned 

                                                             
2
 The study applied a Heckman selection model, but the results are not presented. However, the ρ is insignificant, 

indicating that there are not unobservables that co-occur with the health status improvement and the claiming of 

the survivor benefits. So, the treatment and control groups examined in this study are well chosen. 
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above (for more details, see Guio, 2009). We observe a positive relationship between survivor 

benefits and wealth. Age and education level are associated with wealth in a positive 

direction, showing that older widows are richer, which may result from long-term savings and 

plausible investments on properties. Also, well-educated people are more likely to be 

wealthier and associated with better labour opportunities and higher wages. For employment 

status, the coefficients present the expected signs, where the old and disabled individuals, 

seasonal workers, the unemployed and those who fulfil domestic tasks are less wealthy than 

those who work full time. Those who live in urban areas and are exposed to better air quality 

face a lower risk of poverty. This shows that people in urban areas have additional labour 

opportunities and access to health services, which may lead to improved well-being. 

Household size is negatively correlated with wealth. This is because, as the number of 

household members increases, widowed mothers face a higher financial burden. In column 

(2), we report the same estimates, where the treatment dummy is whether the household 

receives survivor benefits. In addition, we include household income in the regressions. 

Overall, the results in column (2) show that those who receive survivor benefits increase their 

wealth by 0.18 units more, corresponding to a poverty gap of 23 per cent. The results remain 

the same, except for the age, where we found an insignificant relationship to poverty. We 

should note that the number of observations is smaller, when we consider the poverty index. 

This results from the construction of the index which is based on whether the household owns 

an item and whether it has specific financial and dwelling problems. Thus, the reported 

households that have no reason to possess a specific item are not considered, avoiding the 

measurement error followed by Townsend (1979). The findings are consistent with the study 

by Holden and Zick (2000), who found that survivor benefits are beneficial for wealth. 

     

(Insert Table 4) 
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5.2 Bayesian Networks (BN) 

 

In this section, we discuss the results of the BN DAG using the PC algorithm. We present 

the DAG output in figure 2, and we report the effects of the survivor benefits in table 5. We 

do not present the remained estimated coefficients since is not the main subject of interest. 

The results confirm the causal effects of the survivor benefits on health status and wealth.  In 

figure 2, we present the Bayesian Network in a DAG using the dummy of the survivor 

benefits. Based on table 5 the causal effect on health is equal to 0.123 higher, but close, with 

the one found applying the Ordered Logit, and is 0.109. Thus, the BN shows that the 

households that receive the survivor benefits report higher levels of health status. The effect 

on wealth is 0.1370 showing that those who receive the survivor benefits increase their wealth 

by 0.14. Second, it is possible, using graphs, to confirm the determinants of survivor benefits 

eligibility, which include the education level, urban location, employment status and the 

household size. Age has no direct causal effects on survivor benefits, but the effects go 

through the employment status and the causation is: age  employment status  survivor 

benefits. The causal effect of age is blocked-off from employment status. Therefore, we use 

the factorisation relation (4), to identify the effect of age. Also, using the same relation (4), to 

identify the effect of the employment status on the survivor benefits, the regression should 

condition on age, the urban area, the house tenure status, and the education level. 

Consequently, knowing the age, the education level, the house tenure and the area-location of 

the respondent, we can identify the effect of the employment status on the survivor benefits. 

The effect of tenure status goes through the employment status and the urban area, and the air 

pollution problems go through the urban area.  

Third, various other causal paths can be derived. As we discuss in the appendix, the forks 

X←S→Y show that the variables X and Y can be associated if they share a common cause. 
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This is the case of the fork X←S→Y, and is known as confounding bias. In the estimated 

DAG the fork can be represented: health ← survivor benefits → wealth. In other words, the 

confounding bias or omitted variable bias takes place when a variable which causes both 

independent and the dependent variable is omitted. The DAG graph reveals that a direct 

causation from health to wealth is present, avoiding the confounding bias. Fourth, the 

endogenous bias refers to the inverted fork relationship XSY. in this case, X and Y are 

marginally independent, because they do not cause each other and do not share a common 

cause (see appendix). Consequently, conditioning on the common outcome S of the two 

variables X and Y, we cannot identify the causal effect of X on Y, and this is the endogenous 

or selection bias. Let us consider, for example the following relation or the following inverted 

fork in figure 2: urban areasurvivor benefitsemployment status.  In this case, we are not 

able to identify the effect of urban on employment status using the single equation modelling. 

However, figure 2 reveals a causal effect from the urban area to employment status. We 

expect this result, since the area classification can determine the employment status, i.e. in 

urban areas the competition in the labour market may lead to higher unemployment. 

Nevertheless, urban areas offer additional options and possibilities for women to find 

employment, while the women in the rural areas are more likely to stay housekeepers. The 

effect can be mixed because both area of the location and the employment status, share 

common causes, such as the education level and tenure status (edu and tenure_st respectively 

in figure 2). Thus, Bayesian Network framework can overcome the issues with the 

conventional single equation econometric modelling. Moreover, it is possible to examine 

whether there is a causal effect of the variable of interest on the dependent variable and 

whether we should control for specific variables.  

(Insert figure 2) 

(Insert table 5) 
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The causal effect of survivor benefits is the regression of the survivor benefits dummy and 

its parents on health status. Therefore, we identify the effect on health given whether the 

household receives the survivor benefits, given the employment status (emp), the urban 

location (urban), education level (edu), household size (num_member) and the household 

income. When we take the logarithm of the survivor benefits levels, the estimated DAG 

Bayesian Network is similar. We find that the causal effect of the survivor benefits on health 

status is 0.1190, while their effect on wealth is equal to 0.49. More specifically, as the 

survivor benefits are expressed in natural logarithms, the effect on health is 6.21 per cent, 

indicating that the benefits improve the health status by 6.21 per cent. For wealth, a 1 per cent 

increase in survivor benefits increases wealth or decreases poverty by 2.2 per cent.  

 

6. Conclusions 

 

In this study, we examined two main hypotheses. First, whether the widowed mothers 

eligible for survivor benefits present better health status. Second, whether are more likely to 

be at risk of poverty than the widowed mothers who do not claim benefits. Overall, the results 

are classified into two main categories. The first includes the single equation modelling, and 

we applied the ordered Logit and Probit models. We found a significant association between 

health status, wealth and survivor benefits. The second framework was a Bayesian Network 

which we proposed, with purpose to examine the causal effects of survivor benefits on health 

status and wealth.  We conclude that the survivor benefit is a valuable social assistance that 

improves the health status and reduces the risk of poverty of households. We argue that the 

results are important, as they imply that the social security and survivor benefits are beneficial 

for wealth and health outcomes. The consequences of the health gains and wealth 

improvement may lead to economic growth and to the reduction of ill-health traps in poverty.  
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Based on the findings of this study, the policy implications are various. Information on an 

optimal consumption plan should be developed to help families to save enough to smooth the 

standard of living for surviving family members when the major breadwinner dies. This is 

often a result of myopia and risk misestimates, leading to a significant drop in the standard of 

living, and some households might end up in poverty. Mandatory survivor benefit 

programmes intend to limit these outcomes. Another option is the incentives for elimination 

of the mandatory benefits for survivors. This is based on the increasing labour participation of 

women and where each partner can provide for himself or herself. However, this setup 

ignores the children and the fact that women still work less, since men are the major 

breadwinners in Turkey. In addition, this setting ignores the household economies of scale, 

where the costs do not fall by the same proportion when one family member dies. Therefore, 

this is the main reason survivor insurance is necessary as a mutual protection for both spouses 

rather than a simple protection for the wife when the husband dies.  

To summarise, we suggest various policy measures to protect the widows and their 

households that do not have insurance and are not eligible for survivor benefits. One option is 

to widen the health coverage to the uninsured individuals, either by covering the financial 

contributions for the poor or providing services for them. Another policy is to extend tax-

based systems and to improve tax collection efficiency. This will result in extra funds that can 

be used in a more effective way for non-eligible widowed mothers. Also, for a family to be 

eligible for survivor benefits, a minimum of 900 contributory days and five qualifying years is 

required. The required period for civil servants and self-employed people is 1,800 days. 

Therefore, another policy option could be the reduction in the period of contributory days. 

Attention should be paid to young widows with preschool children, who experience in a 

temporary period high childcare expenses. Elder widows is another case group whose 

benefits, if not partially indexed to wages, will fall far behind that of the average current 
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employee. A flat benefit or minimum pension guarantee requires inter-family transfers 

through public funds. Furthermore, the changing role and increasing labour force participation 

rates of women should be recognised to adjust the survivor benefits in a proper way. More 

specifically, in the cases where both spouses work and have their own pensions, survivor 

benefit rates should be less than the unemployed widows. For instance, women who became 

widowed at a young age and do not have young children can work. So, it is no longer 

necessary to give them a higher benefit rate for life. Costs should be measured based on the 

expected present value of lifetime benefits that take the number of years of benefits and not 

the annual amounts. Thus, the above-mentioned policies have a twofold target: First, 

decreasing the probability of being in poverty by dividing the funds and, second, in an 

indirect way by reducing the risk of poverty and increasing the households’ wealth through 

health status improvement. 
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APPENDIX  

 

The causal Markov assumption is the central assumption that defines BN. According to this 

assumption, each node is independent of its non-descendants in the graph, conditional on its 

parents in the graph. In other words, given a node’s immediate cause, we can disregard the 

causes of its ancestors 

 

Definition 1. (Markovian parents) (Pearl, 2000): Let V = {X1, X2, . . . Xν} be set of variables, 

and let P(v) be the joint probability distribution on these variables. A set of variables PAj is 

said to be Markovian parents of Xj if PAj is a minimal set of predecessors of Xj that renders Xj 

independent of all its other predecessors. 

 

Definition 2. (Conditional Independence Graph): The conditional independence graph of X 

is the undirected graph G = (V,E) where V = {X1, X2, . . . Xν} and (i, j) is not in the edge set E 

iff Xi   Xj | Xv\{I,j}. 

 

Definition 3. (Partial Correlation): For i ≠ j ∈ 1, . . . , p, k ∈ rest, let ρi,j|k be the partial 

correlation between Xi and Xj given Xr ;r ∈ k. 

 

Definition 4. (d-separation) (Pearl, 1988; Spirtes et al., 2000; Neapolitan, 2003):  Let G= 

(V,E) be a DAG, a path p is said to be d-separated (or blocked) by a set of nodes S iff: 

 

(i) p contains a chain i → j →k or a fork i ←j → k such that the middle node j is in S, 

or  

(ii) (ii) p contains an inverted fork i→ j ← k such that neither the middle node j nor 

any of its descendants (in G) are in S 

 
Box 1. PC algorithm for the estimated DAG 
Step 1:  

Start with the complete undirected graph, C
~
 with vertices V = X1, . . . ,Xp. Then: 

Step 2:  

Set l = −1 and C = C
~ 

Step 3: 

Increase l by one. For all pairs of adjacent nodes: 

 Check for conditional independence 

 Remove edge (Xi,  Xj) if Xi  Xj|rest 

Step 4: 

Repeat step 2 until l = m or until each node has fewer than l − 1 neighbours 

And let mr each ∈ max l, m denote the stopping level of the algorithm and q be the maximum number of 

neighbours 
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The steps for calculating DAG using the PC algorithm are (for more details on PC algorithm 

see also Spirtes et al., 2000): 

 For each X and Y, see if X Y; if so, remove their edge.  

 For each X and Y which are still connected, and add third variable Z1, see if X Y|ZZ1; if 

so, remove the edge between X and Y.  

 For each X and Y which are still connected, and add third and fourth variables 

 Z1 and Z2, see if X Y|Z1,Z2; if so, remove their edge. For each X and Y which are still 

connected, see if X Y| all the p − 2 other variables; if so, remove, their edge  

In more details it will be:  

Step 1. Form the complete undirected graph G on the set of variables V;  

Step 2. For each pair of variables X and Y that are adjacent in the current G such that adj(G, 

X)\{Y} or adj(G, Y)\{X} has at least n elements, check through the subsets of adj(G, X)\{Y} 

and the subsets of adj(G, Y)\{X}that have exactly n variables. If a subset S is found 

conditional on which X and Y are independent, remove the edge between X and Y in U, and 

record S as separation set- Sepset(X, Y) and repeat until for each ordered pair of adjacent 

variables X and Y , adj(G, X)\{Y} has less than n elements.  

Step 3. Let P be the graph resulting from step 2. For each unshielded triple {A, B, C} in P, 

orient it as A → B ← C iff. B is not in Sepset(A, C). 

Step 4. Execute the following orientation rules until none of them applies:  

a If A → B −C, A and C are not adjacent, orient as B → C.  

b If A → B → C and A −C, orient as A → C.  

c If A → B ← C, A−D −C, D −B, and A and C are not adjacent, orient D −B as D → B.  
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Figure 1. An example of a Directed Acyclic Graph (DAG) 

 

 

 

Figure 2. Estimated DAG with PC Algorithm for the Treatment Group of Survivor Benefits 
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Table 1. Summary Statistics of the Dataset for Widowed Women 

Continuous (1) (2) (3) (4) (5) 

Variables N mean sd min max 

Monthly expenses 11,389 164.7 152.0 0 2,208 

Dwelling Size 11,389 96.02 32.02 25 400 

Number of members in 

Household 

11,389 2.696 1.559 1 16 

Log (Income) 11,389 9.492 0.729 5.938 13.20 

Log (Survivor Benefits) 6,721 8.582 0.475 5.298 12.03 

Log (Other Income) 6,621 9.041 1.062 2.463 13.19 

Categorical Var. Percentage Categorical 

var. 

Percentage Categorical Var. Percentage 

Health (very bad) 8.60 Fuel type 

(wood) 

20.75 Tenure status (owner) 75.26 

Health (bad) 39.04 Fuel type (coal) 50.18 Tenure status (tenant) 11.03 

Health (fair) 35.48 Fuel type 

(natural gas) 

17.65 Tenure status (lodging) 0.30 

Health (good) 16.05 Fuel type (fuel-

oil) 

0.60 Tenure status (rent-free) 13.42 

Health (very good) 0.83 Fuel type (diesel 

oil-gasoil) 

0.25 Employment St. (Full-Time) 6.57 

Gender (Female) 100.0 Fuel type 

(electricity) 

4.43 Emp.St.(Part-Time) 10.51 

Age (20-24) 0.09 Fuel type (dried 

cow dung) 

5.53 Emp.St.(Looking for a job) 10.70 

Age (25-29) 

Age (30-34) 

0.40 

0.81 

Fuel type (other) 0.61 Emp.St.(Student or unpaid 

work experience) 

10.72 

Age (35-39) 1.67 Education 

(Illiterate) 

57.05 Emp.St.(Retirement/giving 

up business) 

5.66 

Age (40-44) 2.90 Education 

(Literate but not 

a graduate) 

12.86 Emp.St.(Seasonal) 0.11 

Age (45-49) 4.98 Education 

(Primary Sch.) 

24.56 Emp.St.(old, permanently 

disabled) 

42.22 

Age (50-54) 7.84 Education 

(Secondary 

Sch.) 

2.20 Emp.St.(Fulfilling domestic 

tasks) 

40.29 

Age (55-59) 9.60 Education (High 

Sch.) 

1.39 Emp. St.(Other inactive 

person) 

1.00 

Age (60-64) 11.45 Education 

(Vocational  

high Sch.) 

1.10 Unmet need for medical 

examination or treatment 

(No) 

75.31 

Age (65 +) 

Urban Area 

60.28 

56.71 

Education 

(Higher edu) 

0.85 Pollution, grime or other 

environmental problems (No) 

78.40 

Leaking roof, damp 

walls or rot in window 

frames problems (No) 

51.72 Heating 

problems 

because of 

insulation (no) 

53.46   

Receipting Survivor 

Benefits  

59.01     
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Table 2. Ordered Probit and Logit Estimates for the Survivor Benefits and Health Status  

 (1) (2) (3) (4) 

Variables Ordered Probit Ordered Logit Ordered Probit Ordered Logit 

Log(Income) 0.1555*** 0.2667***   

 (0.0277) (0.0403)   

Receipting survivor benefits  0.0532** 

(0.0248) 

0.1086** 

(0.0439) 

  

Log (Other Income)   0.0807*** 0.1412*** 

   (0.0190) (0.0335) 

Log (Survivor Benefits)   0.0620** 0.1234** 

   (0.0312) (0.0547) 

Age (25-29) -0.1818 -0.3364 -0.1809 -0.4074 

 (0.2292) (0.4639) (0.2940) (0.5441) 

Age (30-34) -0.8342*** -1.6257*** -0.7286*** -1.4407*** 

 (0.2305) (0.4601) (0.2772) (0.4971) 

Age (35-39) -0.7556*** -1.5028*** -0.6546*** -1.3877*** 

 (0.2118) (0.4290) (0.2447) (0.4395) 

Age (40-44) -1.0276*** -2.0338*** -0.9424*** -1.9052*** 

 (0.2047) (0.4187) (0.2286) (0.4135) 

Age (45-49) -1.2606*** -2.4156*** -1.1642*** -2.2749*** 

 (0.2015) (0.4123) (0.2209) (0.3973) 

Age (50-54) -1.3655*** -2.6447*** -1.2790*** -2.5070*** 

 (0.2003) (0.4104) (0.2200) (0.3956) 

Age (55-59) -1.4739*** -2.8293*** -1.4446*** -2.8026*** 

 (0.1993) (0.4088) (0.2186) (0.3930) 

Age (60-64) -1.5538*** -2.9559*** -1.5112*** -2.9006*** 

 (0.1992) (0.4084) (0.2184) (0.3921) 

Age (65+) -1.7557*** -3.2863*** -1.7108*** -3.2226*** 

 (0.1982) (0.4069) (0.2172) (0.3900) 

Education (Illiterate) 0.0151 0.0267 -0.0117 0.0003 

 (0.0333) (0.0584) (0.0411) (0.0722) 

Education (Literate but not a 

graduate) 

0.1194*** 

(0.0295) 

0.2067*** 

(0.0517) 

0.1208*** 

(0.0369) 

0.2238*** 

(0.0648) 

     

Education (Primary Sch.) 0.0929 0.1467 0.0709 0.1360 

 (0.0715) (0.1227) (0.0835) (0.1446) 

Education (Secondary Sch.) 0.2612*** 0.4914*** 0.2050** 0.4029** 

 (0.0880) (0.1553) (0.1006) (0.1787) 

Education (High Sch.) 0.3974*** 0.6807*** 0.5135*** 0.9021*** 

 (0.1022) (0.1777) (0.1183) (0.1985) 

Education (Vocational High Sch.) 0.1966 0.3247 0.3166** 0.5356** 

 (0.1206) (0.2110) (0.1489) (0.2635) 

Leaking roof, damp walls or rot in 

window frames problems (No) 

0.1581*** 

(0.0363) 

0.2639*** 

(0.0643) 

0.1837*** 

(0.0475) 

0.3088*** 

(0.0839) 

     

Fuel type (coal) -0.0582* -0.0981* -0.0603 -0.1199 

 (0.0299) (0.0524) (0.0426) (0.0744) 

Fuel type (natural gas) 0.0487 0.0890 0.0454 0.0537 

 (0.0490) (0.0859) (0.0627) (0.1099) 

Fuel type (fuel-oil) -0.0549 -0.0744 -0.1986 -0.4126 

 (0.1380) (0.2368) (0.1521) (0.2579) 

Fuel type (diesel oil), gasoil 0.1646 0.2925 0.3168 0.5340 

 (0.2143) (0.3906) (0.2609) (0.4932) 

Fuel type (electricity) -0.0769 -0.1239 -0.0504 -0.1097 

 (0.0608) (0.1052) (0.0757) (0.1317) 

Fuel type (dried cow dung) -0.1123** -0.2328** -0.1270 -0.2722 

 (0.0548) (0.0956) (0.0989) (0.1806) 

Fuel type (other) 0.0394 0.0309 -0.0889 -0.2378 

 (0.1438) (0.2479) (0.1952) (0.3354) 
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Table 2 (cont.) Ordered Probit and Logit Estimates for the Survivor Benefits and Health Status 
 

Variables 

(1) 

Ordered Probit 

(2) 

Ordered Logit 

(3) 

Ordered Probit 

(4) 

Ordered Logit 

Tenure status (tenant) 0.0040 0.0170 0.0215 0.0481 

 (0.0471) (0.0836) (0.0629) (0.1105) 

Tenure status (lodging) -0.1538 -0.3957 -0.1569 -0.4447 

 (0.2154) (0.3285) (0.2453) (0.3704) 

Tenure status (rent-free) -0.0497 -0.0668 -0.0318 -0.0276 

 (0.0305) (0.0531) (0.0408) (0.0707) 

Emp.St.(Part-Time) -0.1336** -0.2350** -0.1811** -0.3206** 

 (0.0647) (0.1130) (0.0871) (0.1498) 

Emp.St.(looking for a job) 0.1132 0.1756 -0.0993 -0.2625 

 (0.2331) (0.4402) (0.3029) (0.5620) 

Emp.St.(Student or unpaid work 

experience) 

-1.1862*** 

(0.3732) 

-2.2240*** 

(0.7763) 

-0.9424*** 

(0.3085) 

-1.8142*** 

(0.6080) 

     

Emp.St.(Retirement/giving up 

business) 

-0.2766*** 

(0.0620) 

-0.4605*** 

(0.1091) 

-0.2105*** 

(0.0787) 

-0.3455** 

(0.1387) 

     

Emp.St.(Seasonal) 0.3365 0.6208 -0.0847 -0.7946 

 (0.3712) (0.7359) (0.7824) (1.7235) 

Emp.St.(old, permanently disabled) -0.7373*** 

(0.0473) 

-1.2968*** 

(0.0837) 

-0.7006*** 

(0.0623) 

-1.2526*** 

(0.1103) 

     

Emp.St.( Fulfilling domestic tasks) -0.1835*** 

(0.0441) 

-0.3303*** 

(0.0781) 

-0.1312** 

(0.0571) 

-0.2496** 

(0.1011) 

     

Emp.St.(other inactive person) -0.4814*** -0.8068*** -0.3642*** -0.6442*** 

 (0.1180) (0.2060) (0.1393) (0.2425) 

Number of member in Household 0.0130 0.0248 0.0163 0.0286 

 (0.0092) (0.0160) (0.0137) (0.0241) 

Dwelling Size 0.0005 0.0014** 0.0009* 0.0020** 

 (0.0004) (0.0007) (0.0005) (0.0008) 

Monthly expenses 0.00076* 0.0001 0.0001 0.0001 

 (0.00039) (0.0002) (0.0001) (0.0002) 

Heating problems because of 

insulation (no) 

0.0976*** 

(0.0349) 

0.1797*** 

(0.0620) 

0.0960** 

(0.0455) 

0.1803** 

(0.0788) 

     

Pollution, grime or other 

environmental problems (No) 

0.0993*** 

(0.0260) 

0.1765*** 

(0.0455) 

0.1027** 

(0.0333) 

0.1872*** 

(0.0586) 

     

Urban Area -0.0614** -0.1172** -0.0559* -0.1088* 

 (0.0271) (0.0478) (0.0282) (0.0633) 

Wald Chi-Square 2,830.01 2,764.42 1,523.03 1,503.21 

 [0.000] [0.000] [0.000] [0.000] 

Observations 11,389 11,389 6,621 6,621 
Robust standard errors within brackets, p-values within square brackets, ***, ** and * indicate significance at 1%, 5% and 10% level.  

 

 

 

 

 

 

 



 

35 
 

Table 3. Propensity Score Test Before and After Matching 
Variables t-test 

Before 

matching 

t-test After 

matching 

Variables  t-test 

Before 

matching 

t-test After 

matching 

Age  0.583 

(0.463) 

0.281       

(0.782) 

Heating problems in the 

house 

1.29   

(0.129) 

-0.83  

(0.421) 

Education Level 1.57 

(0.147) 

1.26  

(0.179) 

Fuel Heat Type 1.77   

(0.123) 

1.37   

(0.172) 

Employment Status 1.80  

(0.121) 

0.84   

(0.345) 

House size  10.45***  

(0.041) 

-5.03***  

(0.533) 

Household Income 1.11  

(0.231) 

-0.85 

(0.461) 

Monthly household 

expenses 

2.15   

(0.0034) 

-0.02   

(0.983) 

Tenure Status -1.03   

(0.232) 

-0.32  

(0.748) 

Unmet doctor needs 16.69***  

(0.000) 

-2.09**  

(0.037) 

Household Size -1.23   

(0.216) 

-1.06  

(0.237) 

Urban and Rural Area 1.58   

(0.104) 

1.00  

(0.231) 

Self-reported Air 

Pollution 

11.58   

(0.094) 

-1.49  

(0.137) 

Region -1.76   

(0.105) 

-1.54   

(0.124) 

Number of Leaking 

problems in the house 

1.24   

(0.175) 

0.78  

(0.546) 

   

p-values within square brackets, *** indicate significance at 1%  level 
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Table 4. Poverty-Deprivation OLS Estimates 

Variables  (1)  (2) 

Dummy of Survivor   0.1790** 

  (0.0840) 

Logarithm of Household Income  2.0646*** 

  (0.0625) 

Logarithm of Survivor Benefits 0.5908***  

 (0.0850)  

Logarithm of Household Income-Survivor Benefits 1.2340*** 

(0.0688) 

 

   

Age (reference category= age group 20-24)   

Age group 25-29 2.5965*** 0.5038 

 (0.4037) (0.8149) 

Age group 30-34 2.7500*** 0.4632 

 (0.4498) (0.7584) 

Age group 35-39 2.8821*** 0.8241 

 (0.4354) (0.7473) 

Age group 40-44 2.7236*** 0.9736 

 (0.3895) (0.7362) 

Age group 45-49 2.3243*** 0.7561 

 (0.3779) (0.7351) 

Age group 50-54 2.3559*** 0.7577 

 (0.3708) (0.7322) 

Age group 55-59 2.4219*** 0.8172 

 (0.3670) (0.7331) 

Age group 60-64 2.7153*** 0.9713 

 (0.3821) (0.7325) 

Age group 65+ 2.7520*** 0.9392 

 (0.3664) (0.7305) 

Education Level (Reference category= Illiterate)   

Literate but not a graduate 0.5779*** 0.3247*** 

 (0.1140) (0.0886) 

Primary School 0.8270*** 0.7288*** 

 (0.1035) (0.0821) 

Secondary School 1.0076*** 0.9256*** 

 (0.2203) (0.1758) 

High School 2.0208*** 1.6967*** 

 (0.2882) (0.2297) 

Vocational/Technical school 1.1731*** 0.9626*** 

 (0.2848) (0.2454) 

Higher Education 1.2101*** 1.1812*** 

 (0.3458) (0.3230) 

Tenure Status (reference category=Owner)   

Tenure Status (Tenant) 0.1606 -0.2326*** 

 (0.1033) (0.0790) 

Tenure Status (Lodging) 1.1332 -1.1117*** 

 (0.7888) (0.3902) 

Tenure Status (Other free-rent accommodation) -0.3653*** 

(0.1083) 

-0.0999 

(0.0864) 
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Table 4 (cont.) Poverty-Deprivation OLS Estimates 
Variables  (1)  (2) 

Employment Status (reference category=Full-Time)   

Employment Status (Part-Time) -0.0270 -0.1704 

 (0.2441) (0.1752) 

Employment Status (Unemployed) -0.0346 -0.7624 

 (0.4769) (0.4997) 

Employment Status (Student or unpaid work experience 0.1643 

(0.3781) 

0.8100 

(0.5184) 

Employment Status (Retired) 0.4892 0.4157 

 (0.4029) (0.3603) 

Employment Status (Seasonal) -0.2408*** -0.7434*** 

 (0.0784) (0.1889) 

Employment Status (Old, permanently disabled) 0.2356 

(0.1584) 

0.0326 

(0.1265) 

Employment Status (Fulfilling domestic tasks) -0.3588*** 

(0.1363) 

0.1597 

(0.1131) 

Employment Status (Other inactive) 0.1658 -0.0570 

 (0.3157) (0.2631) 

Household Size -0.0965** -0.0640*** 

 (0.0375) (0.0237) 

Pollution, grime or other environmental problems (No) 0.0383 

(0.0794) 

0.0767 

(0.0626) 

Urban Area 0.4489*** 0.5141*** 

No. Observations 1,565 3,044 

R-squared 0.5619 0.5913 
Robust standard errors within brackets, *** and ** indicate significance at 1% and 5% level.  

 

 

 

Table 5. Bayesian Network Estimates 
 DV: Health Status 

(1) 

DV: Wealth 

(2) 

Dummy of Survivor Benefits 0.1238** 

(0.0576) 

0.1370*** 

(0.0139) 

Logarithm of Survivor Benefits 0.1190*** 

(0.0239) 

0.4905*** 

(0.0205) 
Standard errors within brackets, *** and ** indicate significance at 1% and 5% level. 

 

 

 

 


