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ABSTRACT  

The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static 

millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the 

feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive 

devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target 

which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd 

surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical 

horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with 

known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The 

orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than -

35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be 

measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the 

Kennaugh matrix to investigate incoherent full polarimetry.  

Keywords: Concealed weapons detection, FMCW radar, Mono-static radar, full polarimetry, millimetre wave radar, 

non-imaging sensor, Sinclair matrix, security screening. 

1. INTRODUCTION  

In a stand-off security screening scenario potential threats concealed under clothing are likely to have an angular size 

smaller than the diffraction limited beam size (/D), for a sensor aperture size D. As an imaging sensor this constitutes 

essentially a single pixel and therefore the scope for extracting spatial information in the usual way via image processing 

is rather limited. As a result interest turns to other dimensions whereby information from a single spatial pixel may be 

extracted. Depth (or range) resolution (by increasing radio frequency bandwidth) and polarimetry (by using more 

sophisticated transceivers) are two options whereby more information about a target can be accumulated.  

 

The benefits of millimetre wave polarimetric sensing for concealed weapons detection on persons has been examined by 

a number of researchers [1], [2]. The potential for portability of such sensors has been explored for the screening of 

people in crowds for concealed metal and non-metallic threats, such as metal and ceramic knives and guns and person 

borne improvised explosive devices (PBIED)[3],[4],[5].  

 

Extending the capability to one of full polarimetry, by measuring the phase and amplitude of all combinations of co and 

cross-polar responses enables the full polarimetric Sinclair scattering matrix (a 2x2 complex matrix) to be populated. 

This area has been extensively researched and reported on for remote sensing applications, typically for sensors based on 

aircraft and satellite [6][7][8][9], so has been ripe to be exploited by the security sensing community. Full polarimetry 

for security screening was initially investigated in [10], [11] using a pseudo monostatic (transmitter and receiver co-

located). This used adjacent transmitter and receiver antennas and ran a number of decomposition algorithms on 

experimental data.   

 

The work presented here is concerned with the development of a true monostatic full polarimetric measurement 

capability, by the use of an orthomode transducer (OMT)[13]. The paper presents performance measurements made on 

the OMT, describes the full polarimetric monostatic radar configuration and presents initial measurement at close range, 
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typically one or two metres, and their interpretation. Interpretation will take the form of comparing measured Sinclair 

matrices with those expected from the theory for a variety of targets, such as plane, dihedral, trihedral and helical 

structures. Understanding of signatures should then enable the technique to be refined, extending it to longer ranges.  

2. FULL POLARIMETRY 

A simple example of how polarimetry can be useful in a security screening scenario can be made by considering the 

single bounce reflection from the human body. Single bounce reflections from the human torso or a smooth flat 

conductive surface tend to cause co-polar reflection, (VV) and (HH). Objects that can cause multiple reflections such as 

metal targets with sharp edges and angular features, an example being a PBIED with embedded shrapnel tend, to 

produce strong cross polar reflection (HV) and (VH), as reported by [3][4][5]. Furthermore, by following techniques 

from the remote sensing radar community there are techniques to determine whether reflections are a result of odd or 

even numbers of reflections [9].   

Making full polarimetric radar measurements is concerned with stimulating a target with one polarisation and measuring 

the phase and amplitude response in both co- and cross-polar returns, before stimulating the target in the orthogonal 

polarisation and measuring both co and cross-polar response. In doing this a 2x2 (complex) polarimetric scattering 

matrix is measured, commonly referred to at the Sinclair (back) scatter matrix, as indicated in Eq. 1.  
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If measurements are made using two orthogonal linear polarisations, the system is said to measure in the linear 

polarisation basis. If measurements are made using two orthogonal circularly polarised waves (right hand and left hand) 

the system measures in the circular polarisation basis. Measuring in the linear basis generates the Sinclair matrix as 

indicated in Eq.1.  

There are an infinite number of orthogonal polarisation bases and data recorded in one basis can be converted to another 

basis using a unitary similarity transformation [8]. This means any basis can be used, but experimentally the linear or 

circular are the easiest to generate with precision using standard transmission line components and waveguides. Using 

this transformation [9], converting from the measurements made in the linear basis into the circular basis can be 

performed using Eq. 2. 
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Full polarimetry from the field of optics (where historically only intensity could be measured) full polarimetry is defined 

as measuring the response indicated by the Stokes parameters (a four element vector fully defining the polarimetric state 

of radiation), to a simulation of the target in all possible combinations of polarimetric excitation. This generates a 4x4 

real matrix, referred to in a backscatter configuration as the Kennaugh matrix, or in the forward direction as the Mueller 

matrix [12]. Using intensities to measure the Stokes parameters is referred to as an incoherent method, as phase of the 

optical wave is not measured. 

The four Stokes parameters correspond to: 1) radiation intensity, 2) degree to which radiation is horizontally polarised 

(as opposed to vertically), 3) degree to which radiation is linearly polarised at 45 to the horizontal (as opposed to -45), 

4) degree to which the radiation is right-hand circularly polarised (as opposed to left-hand circularly polarised). 

Examples of measuring these in a passive system in the millimetre wave band are given in [14].   

The essential difference between the Sinclair matrix and the Kennaugh matrix is that the former is measured using 

coherent radiation and the latter measured using incoherent radiation. As such the former can characterise the response 

to unpolarised radiation and measure the level of depolarisation of polarised states of radiation. As a means to derive a 

Kennaugh matrix from the Sinclair matrix it may be possible to average multiple measurements of the Sinclair matrix 

taken during the depolarisation of coherent waves by a target and thereby create a coherency matrix [8]. This under 

certain conditions may be converted to the Kennaugh matrix, as measured by incoherent optical methods.    

A monostatic measurement configuration is one which lends itself readily to the stand-off security screening scenario. 

Here the transmitter and receiver are co-located, as opposed to a bistatic configuration, where the two are at separate 



 

 
 

 

locations. Under these conditions the Sinclair matrix become complex symmetric (ie symmetrical about the leading 

diagonal), so contains only six independent numbers. Also under a monostatic configuration redundancy is introduced 

into the Kennaugh matrix, reducing it to a total of nine independent real numbers. 

One of the key issues in polarimetry is something referred to as depolarisation. In this context depolarisation is a change 

in the target which causes a change in the Sinclair matrix. It is an assumption by the remote sensing community that 

depolarisation is caused by physical movement, of the target or the radar or both. Part of the work will be to determine if, 

how and why depolarisation occurs in the monostatic security screening scenario. 

Understanding the level of depolarisation is important, as if there is no depolarisation, or if depolarisation can be 

minimised below a certain level, it is possible to use the techniques of coherent processing to analyse data. If there are 

considerable levels of depolarisation, a wave coherency matrix approach needs to be taken, whereby multiple samples of 

the Sinclair matrix need to be processed.    

The Sinclair matrix when measured can be measured at single frequency, or at a range of frequencies. The measurements 

can be calibrated using measurements of background and the response from a known target. Fourier transforming the 

calibrated measurements from the frequency domain, into the time domain, creates the delta function response. This 

effectively is the response of bandlimited pulse having a length, the inverse of the frequency bandwidth.   

3. METHOD 

The radar presented in this paper is of the monostatic non-imaging type, based around Sinclair matrices generated from 

measurements made using a Keysite PNAX VNA, with a swept frequency range covering 18 to 26 GHz (K-band). The 

radar is of the frequency modulated continuous wave (FMCW) type. Figure 1 shows a block diagram of the radar, 

indicating the key elements: the VNA, the orthomode transducer (OMT) and the corrugate conical horn antenna. Figure 

2 shows photographs of the experimental set up, indicating the layout with VNA, the OMT and horn antenna. The OMT 

is of the linear polariser turnstile type and is of ‘split block’ construction, the internal architecture is shown in Figure 3 

[13].  

The system exploits the two ports of the VNA to send out and measure separately the return from two coherent waves. 

The OMT is arranged to combine orthogonally these two waves in a single waveguide, so that one becomes the 

horizontal polarisation and the other the vertical linear polarisation. The system thus constitutes a true monostatic 

measurement system, set to measure in the orthogonal linear polarisation basis. This enables horizontal polarisation to be 

transmitted to the target and simultaneous measurements to be made on both the horizontal and vertically polarised 

returns. The VNA calculates the S-parameters in the standard way, so with the OMT on the frontend, these parameters 

constitute directly the elements of the Sinclair back scatter matrix.     

 

 

     Figure 1. A schematic of the full polarimetric monostatic FMCW radar system 
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Figure 2. A photograph of the full polarimetric monostatic FMCW radar (left) and a close up of the OMT and conical scalar horn 

antenna (right). 

The internal architecture of the OMT and the turnstile junction can be seen in Figure 3. It comprises four single mode 

waveguides with a single circular waveguide port at the intersection, the circular waveguide being connected to the 

conical horn antenna. At the base of the circular waveguide can be seen a rectangular block used as a tuning stub to 

optimise return loss over a broad band of radiation frequencies. The circular waveguide supports propagation of two 

fundamental TE11 modes (Pol1 and Pol2 in the figure) as two independent orthogonal linear polarisation states. In 

receive mode the junction splits Pol1 equally between rectangular waveguides Pol1a and Pol1b with a 180° phase shift 

between them, with no coupling to 2a or 2b. Conversely Pol2 is split equally between Pol2a and Pol2b. Signals exiting 

the turnstile junction are recombined in an E-plane power combiner and exit the rectangular waveguide via a tapered 

section which matches the standard WR42 (WG20) waveguide size. 

  

Figure 3. The internal waveguide structure of the OMT (left) and a more detailed illustration of the turnstile junction and E-plane 

power combiners (right). [13] 

The radar is designed around the operation of the VNA, and many of the specifications arise from the settings on this 

and are summarised in Table 1. The frequency is swept from 18 GHz to 26 GHz and this bandwidth sweep of 8 GHz, 

gives the system its unambiguous range resolution of c/2B of 1.875 cm. In the frequency sweeping process, each data 

point is an average of 10 samples and the complete spectrum comprises a total of 801 points. The frequency sweep time 

is 99 ms and the video bandwidth is set to 10 kHz.  

 

 

 

 

 

 



 

 
 

 

     Table 1 Radar specification. 

Radar Type FMCW 

Frequency Range 18 to 26 GHz 

Number of points in spectrum 801 

Number of samples per spectral 

point 

10 

Transmit power 0 dBm (1mW) 

Range resolution 1.875 cm 

Sweep time 98.859mS 

Video bandwidth 10 KHz 

Antenna gain 20 dBi 

Antenna 3dB full beamwidth 13° 

 

The antenna has a half power full beam width of 13 with a nominal gain of 20 dBi determined by simulation.  

       

Table 2 Measured polariser r.f characteristics over 18 to 26 GHz (K-Band).   

  

Input Return 

Loss (dB)  

Worst case Input 

Return Loss (dB) 

Transmission 

Loss (dB)  

Polarisation (Isolation) 

(dB)  

CH1 -22.87 -15.49 -0.3 -37.04 

CH2 -23.08 -16.72 -0.26 -37.05 

Circular Port -23.11 -15.29     

 

4. CALIBRATION 

 

An internal calibration of the VNA is required to account for reflections, leakage and cross coupling between 

components inside the VNA. This is performed using a full twelve term standard through, reflect, line (TRL) calibration, 

using a set of calibration standards comprising: a quarter-wavelength waveguide section, a couple of waveguide short 

circuits and a couple of 50Ω loads.   

 

Since it is the response of that in front of the antenna which is to be determined and the OMT and the horn antenna 

introduce phase errors, these effects need to be removed. Furthermore, the beam is generally larger than the target, so 

there will be background reflections from this much wider field. Compensating for these is a two stage process. Firstly 

the target is measured followed by the scene without the target. The former is subtracted from the latter to get the 

response of the target alone. Secondly the response of an object with no dispersion is measured. The spectral response of 

the target is then divided by the spectral response of the dispersionless object. This removes the phase effects in the 

OMT and the horn antenna, so that which remains belongs only to the target. It also has the effect of zeroing the phase at 

the location in space where the dispersionless object was placed.  

 

When the background and phase effects of all but the target have been removed, that which remains is the calibrated 

Sinclair matrix of the target alone. Given the configuration in Figure 1, this means that the standard s-parameters of the 

network (ie that which is in front of the horn antenna) becomes the Sinclair matrix of the target measured in the linear 

polarisation basis, as indicated in Eq. 1. The above calibration is made in the frequency domain, so there are a whole 

series of nominally different Sinclair matrices.  

 

Interpretation of the Sinclair matrices it is sometimes easier in the time domain, as data can be thought of as the 

propagation of a pulse to and back from the target. The time domain form of the Sinclair matrix can and be made by 

taking the Fourier transform of the frequency representation. By plotting the complex square of the time domain form of 

the Sinclair matrix, the dispersion effects of a bandwidth limited pulse, equivalent to that of the frequency sweep, can be 



 

 
 

 

assimilated. The result of the above calibration in the time domain has the effect of making the zero time delay 

correspond to the physical location of the dispersionless object. The experimental data from this work is plotted in the 

results section of the paper in the time domain. This is for ease of interpretation and data validation.  

5. RESULTS 

Measured Sinclair matrices were generated for the following calibration targets; 

 

1. Flat metal plate. 

2. Dihedral reflector angled at 45°between orthogonal polarisations. 

3. A metal sphere 

4. A long horizontal wire (referred to as the dipole) 

5. Helical coils 

6. Wall of microwave absorber. 

 

To remove unwanted internal reflections produced by the horn and polarizer, the Sinclair matrices for all targets 

including both the metal plate and dihedral calibration reflectors, are subtracted from a reference background matrix 

measured from a wall of microwave absorber.  

 

The linear response of the radar has its co-polar calibration performed using a flat metal plate, a dispersionless object. 

The metal plate produces a strong co-polar reflection when illuminated with linearly polarized radiation. The cross polar 

calibration is performed using a dihedral reflector oriented at an angle of 45°; the dihedral reflector produces a strong 

cross polar reflection and is a dispersionless object. The circular response of the radar has its co-polar response 

calibrated by the dihedral reflector. The dihedral reflector produces a strong co-polar reflection in this instance. The 

cross polar response being calibrated using the flat metal plate. This reflector produces a strong cross polar reflection to 

circularly polarized radiation.  

 

Accurate alignment of targets, in particular the dihedral in the beam of the radar is essential to avoid significant errors in 

the measured response [15], [16]. Alignments of all targets were performed using a laser pointer and tape measure. 

Figures 4 show linear basis and circular basis Sinclair matrices (in the time domain, laid out as in Eq. 1 and Eq. 2) for a 

metal plate target. These measurements confirm the expected result that a flat metal plate produces no change in the 

orientation of linearly polarised radiation. However, measurements confirm the expected result that right-hand circular 

polarisation is converted to left-hand polarisation upon reflection from a plane metal surface.  

 

Figure 4. Measured linear polarisation basis Sinclair matrix (left) for a flat metal plate and conversion to circular polarisation basis 

(right). 



 

 
 

 

The Sinclair matrices for the dihedral with its ridge located at 45 to the horizontal as indicated in Figure 5 are shown in 

Figure 6, for the measured linear polarisation basis, and the derived circular polarisation basis. Confirmation is that 

linear polarisation is flipped from horizontal to vertical, but that the handedness of circular polarisation is unchanged 

upon reflection. This is what would be expected from the double bounce reflection from a dihedral in this orientation [9]. 

 

 

 

 

 

 

 

 

Figure 5. The dihedral reflector orientated at an angle of 45° to the horizontal 

Figure 6. Measured linear polarisation basis Sinclair matrix (left) for a dihedral reflector orientated at an angle of 45° and 

conversion to circular polarisation basis (right). 

 



 

 
 

 

An 86 mm diameter stainless steel sphere as a target is suspended in the beam of the radar, as illustrated in Figure 7. The 

Sinclair matrices from this, shown in Figure 8, show a strong co-polar response and a much smaller cross-polar response, 

as would be expected from a single bounce reflection [9]. The sphere has depth and there is evidence that the waves 

travel around the sphere, with part of the radiation being delayed by up to 1 ns. This is consistent with the creeping wave 

response [17], whereby some portion of the radiation travels around the sphere, before being re-radiated back towards 

the transmit/receive antenna.  
 

 

 

 

 

 

 

 

 

Figure 8. Measured linear polarisation basis Sinclair matrix (left) of the stainless steel sphere and conversion to circular polarisation 

basis (right). 

Figure 7. The 86 mm diameter stainless steel sphere suspended on a thin thread of nylon 



 

 
 

 

 

The Sinclair matrices for the horizontal dipole (short horizontal wire) of Figure 9 are shown in Figure 10. The wire has a 

large return in SHH and a smaller return in SVV. This would be expected, as the wire is much longer in the horizontal 

direction than its diameter in the vertical direction.  

 

 

 

 

 

Figure 9. The horizontal wire (dipole). 

Figure 10. Measured linear polarisation basis Sinclair matrix (left) for a horizontal wire and conversion to circular polarisation 

basis (right). 
 



 

 
 

 

 

 

Figure 11 shows ten helical antennas arranged in a hexagonal arrangement in the beam of the radar. All the 5 turn coils 

are wound in the same direction and are tuned to work at K-band in axial radiation mode. The circular response is shown 

in Figure 12. Note the largest response occurs in the SRR component of the Sinclair matrix, as would be expected as this 

is the wind direction of the helix. 

                        

6. FUTURE WORK 

The future work will concentrate on identifying the full polarimetric signatures of the human body alone, threat items 

alone, and when threats are concealed under clothing on the human body. These measurements will be made whilst these 

objects or any items in the immediate surroundings are not moving, to determine the reproducibility of the Sinclair 

matrices. If the matrices are perfectly reproducible there is no depolarisation in the system, so coherent decomposition 

Figure 12. Measured linear polarisation basis Sinclair matrix (left) for the helical antennas and conversion to circular 

polarisation basis (right). 

Figure 11. The ten helical antennas. 



 

 
 

 

algorithms might then be used on the data. Under these conditions it may be possible to determine the coordinates of the 

Huynen polarisation fork [6] for each target separately as a means to identification. Movement is expected to introduce 

depolarisation into the system, which results in changes to the Sinclair matrices. Movement of objects could then be 

made and changes to the matrices will be noted and compared with theory. In the presence of depolarisation incoherent 

decomposition algorithms will be investigated, which includes creating from the Sinclair matrices the coherency or 

covariance matrices [8]. In the case of the human body alone it may be useful to investigate the possibility that the skin 

of the human body has chirality in its response, which would be detected in the response to circular polarisation, as 

shown in [18]. 
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