
Werner, Katarzyna and Zank, H (2018)A Revealed Reference Point for
Prospect Theory. Economic Theory. ISSN 0938-2259

Downloaded from: http://e-space.mmu.ac.uk/619610/

Version: Published Version

Publisher: Springer Verlag

DOI: https://doi.org/10.1007/s00199-017-1096-2

Usage rights: Creative Commons: Attribution 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Werner=3AKatarzyna=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Zank=3AH=3A=3A.html
http://e-space.mmu.ac.uk/619610/
https://doi.org/10.1007/s00199-017-1096-2
https://e-space.mmu.ac.uk


A Revealed Reference Point for Prospect Theory1

by Katarzyna M. Werner

Manchester Metropolitan University, United Kingdom,

and Horst Zank2

The University of Manchester, United Kingdom.

Final version: December 17, 2017

Abstract: Without an instrument to identify the reference point, prospect theory includes a degree of

freedom that makes the model difficult to falsify. To address this issue, we propose a foundation for prospect

theory that advances existing approaches with three innovations. First, the reference point is not known a

priori; if preferences are reference-dependent, the reference point is revealed from behavior. Second, the key

preference axiom is formulated as a consistency property for attitudes towards probabilities; it entails both a

revealed preference test for reference-dependence and a tool suitable for empirical measurement. Third, minimal

assumptions are imposed for outcomes, thereby extending the model to general settings. By incorporating these

three features we deliver general foundations for prospect theory that show how reference points can be identified

and how the model can be falsified.
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1 Introduction

Prospect theory (PT; Tversky and Kahneman 1992) is regarded as one of the most successful de-

scriptive theories for risk and ambiguity (Starmer 2000, Kahneman and Tversky 2000, Wakker 2010,

Barberis 2013). Relative to classical expected utility (EU), PT incorporates nonlinear treatment of

probabilities (Preston and Baratta 1948, Allais 1953, Quiggin 1982), or nonadditive event uncertainty

resulting from ambiguity (Ellsberg 1961, Schmeidler 1989), and reference-dependence. The latter re-

quires the existence of a reference point, relative to which outcomes are seen as gains or losses, and

constitutes a distinctive feature and a key assumption of PT. What exactly determines the reference

point has been left unspecified, and not offering a plausible explanation for how the reference point is

derived from primitives, i.e., from preferences over prospects, is regarded as a major shortcoming of

PT (Fudenberg 2006, p. 696 footnote 2; Pesendorfer 2006, pp. 713—716).

We develop a revealed preference technique based on probability midpoints to show that PT can be

obtained from preferences without assuming the reference point as exogenously given. Starting from

an indifference between two prospects, probability midpoints are obtained by shifting probability mass

across outcomes, such that a new indifference results (van de Kuilen and Wakker 2011). By keeping

the outcomes of these prospects ordered in terms of preference and commonly fixed, and repeatedly

shifting probability mass across adjacent outcomes, one can elicit a sequence of probabilities that

are perceived equally far apart in terms of preferences.3 If the reference point is meaningful for

preferences, the elicited probability midpoints will be affected when probability mass is shifted from

losses to gains. This can be used to reveal the location of the reference point. Indeed, this feature

of behavior is exploited to show how the reference point in PT is revealed from choices. It is in this

sense, that we obtain the reference point endogenous to the model.

To position our contribution, let us recall that the von Neumann and Morgenstern (1944) founda-

3This elicitation method is similar to the (dual analog) elicitation technique for utility measurement, where standard

sequences of equally spaced outcomes on the utility scale are obtained (Wakker and Deneffe 1996). For PT-preferences,

probability midpoints are equally spaced on the corresponding probability weighting scales.
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tions for EU imply a linear treatment of probabilities. This means that elicited probability midpoints

are arithmetic midpoints and independent of the type or magnitude of outcomes. The EU-axioms do

not impose a specific interpretation for outcomes or restrictions on utility, except for the latter being

a cardinal measure. For instance, one can interpret real valued outcomes as final wealth positions

(a frequent assumption made in theoretical applications) or as changes relative to a reference point

(usually an implicit assumption made in experimental studies).4 In particular, imposing a utility value

of 0 at the reference point, and treating outcomes with negative utility values as losses and those with

positive utility as gains, is compatible with the EU-axioms as long as probabilities are treated linearly.

The requirement that utility is 0 at the reference point then appears as an arbitrary restriction of

the class of admissible cardinal utilities to a smaller ratio-scale subclass. By contrast, in PT such

restrictions on admissible utility functions follow from the asymmetric treatment of the probabilities

attached to gains and losses, thus, properties that capture deviations from linearity in probabilities.

It is precisely this asymmetric nonlinear treatement of probabilities, revealed as an inconsistency in

elicited probability midpoints, that we exploit in order to provide general foundations for PT.

A nonlinear treatment of probabilities has also been incorporated into the rank-dependent utility

(RDU) model (Quiggin, 1981, 1982, Segal 1987, Wakker 1994). RDU can be seen as a special case of

PT where the presence of a reference point is immaterial for attitudes towards probabilities. General

foundations for RDU were provided by Nakamura (1995), Abdellaoui (2002), Abdellaoui and Wakker

(2005), and Zank (2010), and they can readily be used to derive PT if the reference point is known

in advance. Without knowing that a reference point exists, deriving PT from RDU becomes a chal-

lenge. To achieve foundation for PT, we employ a consistency test for specifically elicited probability

midpoints. Consistency means that the treatment of probabilities is insensitive to replacements of

the stimuli used to elicit midpoints. As our consistency property does not impose restrictions on the

4That the EU axioms were not tied to a specific interpretation of outcomes was also noted by Kahneman and Tversky

(1979, p. 264). A similar argument holds for the rank—dependent utility model of Abdellaoui (2002) who uses the

von Neumann and Morgenstern framework as we do. Although Abdellaoui’s preference conditions allow for a nonlinear

treatment of probabilities, they do not restrict the cardinal family of utility functions in any way nor do they require a

specific interpretation for outcomes.
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admissible probability weighting functions under PT, probability midpoint consistency can accom-

modate a wide range of behavior (e.g., risk behavior captured through the popular inverse-S shaped

probability weighting functions; Prelec 1998).

To give further intuition for our main preference tool, suppose we have identified the reference

point. Then our condition requires that probability midpoints elicited from preferences are indepen-

dent of the outcomes (i.e., the stimuli used in the elicitations), whenever the latter are of the same type

(i.e., either they are all gains or they are all losses). This is a natural requirement for the treatement

of probabilities under PT, where a distinct nonlinear treatment for probabilities of gains as compared

to probabilities of losses is explicitly allowed for; it can be inferred, e.g., from the reflection exam-

ples in Kahneman and Tversky (1979, p. 268). This feature of reference-dependent behavior, which

we call sign-dependence, has been widely documented.5 Sign-dependence can be inferred from the

presence of distinct probability midpoints for gains than for losses, as implied by empirically elicited

parametric forms (e.g., Tversky and Kahneman 1992, Abdellaoui 2000). Conversely, sign indepen-

dence of probability midpoints suggests that the reference point is immaterial for the treatment of

probabilities (as in EU or RDU). Hence, if we do not know the location of the reference point, we

can employ probability midpoints elicited for different outcomes to test for sign independence. This

leads to a revealed preference technique, where replacing a gain by a different gain does not affect

elicited probability midpoints and neither should the replacement of a loss by a different loss affect

such midpoints; inconsistent midpoints are revealed only if a gain is replaced by a loss or vice versa. In

a nutshell, our main preference tool requires that sign independence of revealed probability midpoints

is violated once at the most, in which case we identify the location of the reference point.

In what follows we present preliminary notation and formal expressions for the models of EU,

5For monetary outcomes, the term “sign-dependence” is sometimes used to indicate that the utility for gains (i.e.,

positive outcomes) reveals a different shape than the utility for losses (negative outcomes), e.g., concave versus convex.

Here we use the term “sign-dependence” to indicate that the weighting functions under PT generate different weights

for negative utility (from losses) as compared to the weights for positive utility (from gains). There are plenty of

studies providing empirical evidence of sign-dependence, including Edwards (1953, 1954), Tversky and Kahneman (1992),

Abdellaoui (2000), or Abdellaoui, et al. (2010).
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RDU and PT (Section 2), informally introduce probability midpoints, and look at the distinct predic-

tions for midpoints resulting from these models. In Section 3 we proceed by recalling the preference

conditions shared by all three models. We highlight potential difficulties in deriving PT-foundations

by giving examples of reference-dependent preferences that are similar to PT-preferences, which do

not, in general, allow for the identification of both probability weighting functions. In the literature

such preferences have hitherto been circumvented. In Section 4 we formally generalize the notion

of probability midpoints and present our main preference condition and theorem for the case where

the set of outcomes is finite. Extensions are discussed in Section 5. In particular, we allude to a

procedure that shows how our probability midpoint tool can be employed to identify the location of

reference points. The literature on reference points is growing and different models and approaches

have emerged; for instance, there are choice situations in which the reference point may not be a

unique degenerate outcome as in PT, thus a brief summary of this literature is in order. This is done

in Section 6, where we also discuss issues related to midpoints, the central tool for our PT-foundation.

Concluding remarks are in Section 7. The Appendix contains further elaborations and proofs.

2 Preliminaries

This section recalls the standard framework for decision under risk and the decision models of expected

utility, rank-dependent utility and prospect theory, explaining how the second model extends the first

through deviating from the linear treatment of probabilities and how the latter model extends the

second through the reference point impacting the non-linear probability treatment.

2.1 Notation

Let  denote the nonempty set of outcomes. A prospect is a finite probability distribution over

. Prospects are labeled as  = (1 : 1      : ) with the usual interpretation that outcome

 ∈  is obtained with probability  , for  = 1     . Naturally,  ≥ 0 for each  = 1      and

5



P
=1  = 1. Let L denote the set of all prospects.

A preference relation, denoted < is assumed over L. Its restriction to subsets of L (e.g., all

degenerate prospects where one of the outcomes is received for sure) is also denoted by <. The

symbol < means “weak preference” from which Â (strict preference) and ∼ (indifference) are defined

as usual. The function  represents (or is a representation of) the preference < on L, if  assigns a

real value to each prospect, such that for all  ∈ L we have  < ⇔  ( ) ≥  (). This general

representation  will be required to satisfy several properties including those that reflect the behavior

corresponding to the treatement of probabilities.

Next, we recall the functional expressions of expected utility, rank-dependent utility and prospect

theory, which are specific representations of the preference < on L. In all these models a utility

function, , for outcomes exists that is strictly monotonic (that is,  :  → R satisfies () ≥

()⇔  < ). As a result, outcomes that are indifferent receive the same utility value. To simplify

the exposition we henceforth assume, without loss of generality, that no two distinct outcomes in 

are indifferent. This allows us to strictly rank outcomes from best to worst within a prospect; this

particular ordering of outcomes is meaningful in rank-dependent models.

2.1.1 Expected Utility

Under expected utility (EU) prospects  = (1 : 1      : ) are evaluated and compared using

the representation

( ) =
X

=1

() (1)

for a utility function, , which assigns a real number to each outcome and is strictly monotone. Under

EU the utility is cardinal, i.e., it is unique up to multiplication by a positive number  and addition

of a constant . In EU the probabilities are treated linearly. This can be inferred from the “weight”

 corresponding to the utility for outcome  in the above equation. The next model deviates from

the linear treatment of probabilities.
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2.1.2 Rank-dependent Utility

The nonlinear treatement of probabilities in rank-dependent models is incorporated by making the

relative position of outcomes meaningful for behavior. We can assume, without loss of generality, that

outcomes within a prospect are ordered, as traditionally done, from best to worst in preference or rank-

ordered ; i.e., writing  = (1 : 1      : ) explicitly means that 1 Â · · · Â . Rank-dependent

utility (RDU) holds if the preference is represented by

( ) =
X

=1

[(1 + · · ·+ )− (1 + · · ·+ −1)]() (2)

where we use the convention that the sum
P

=  = 0 for   . Utility in RDU is similar to EU.

Additionally, RDU involves a weighting function,  for (decumulative) probabilities that is uniquely

determined. Formally, the weighting function is a mapping from the probability interval [0 1] into

[0 1] that is strictly increasing with (0) = 0 and (1) = 1. In this paper the axiomatically derived

weighting functions are continuous on [0 1].6

The probability of obtaining a better ranked outcome is referred to as good-news probability

(formally called rank in Wakker 2010, Definition 5.4.1). In Eq. (2) the “decision weight” corresponding

to the utility for outcome  is the difference between transformed good-news probabilities. Denoting

by  :=
P

=1  the decumulative probability of    = 1     , one can rewrite Eq. (2) as

( ) =
−1X
=1

( )[()− (+1)] + ()

Clearly, having () =  for all probabilities  in the latter equation, implies EU. This confirms that

 under RDU captures deviations from linear treatment of good-news probabilities.

6There is, however, empirical and theoretical interest in discontinuous weighting functions at 0 and at 1; see Kahneman
and Tversky (1979), Birnbaum and Stegner (1981), Bell (1985), Cohen (1992), Wakker (1994, 2001), Chateauneuf, et

al. (2007), al-Nowaihi and Dhami (2010), Webb and Zank (2011), Andreoni and Sprenger (2010, 2012); we briefly

discuss such potential extensions in Section 5. Webb (2017) suggests continuous extensions for a class of piece-wise linear

probability weighting functions that are empirically indistinguishable from those with discontinuities at 0 and 1 (see also
Webb (2015) for event weighting under ambiguity).
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To simplify the subsequent exposition, we also present the expression for RDU, which uses the dual

probability weighting function, ̂() := 1− (1− ) for all  ∈ [0 1]. The dual weighting function is

defined over cumulative or bad-news probabilities. Then, we can rewrite RDU for  as follows

( ) = (1) +
X

=2

̂()[()− (−1)]

with transformed cumulative probabilities  :=
P

=   = 1     .

2.1.3 Prospect Theory

The main model of interest in this paper extends RDU by incorporating reference-dependence. That

is, it assumes an outcome,  ∈ , called the reference point, such that outcomes strictly preferred to it

are gains and have a positive utility, and outcomes strictly dispreferred to  are losses with a negative

utility value. The treatment of probabilities depends on whether the latter are associated to gains or

to losses. Specifically, under prospect theory (PT), a prospect  = (1 : 1      : ) is evaluated

according to the rank-ordering of outcomes and also according to the position of outcomes relative to

the reference point. That is, there are two weighting functions + and − and a utility function for

outcomes with () = 0, such that:

• if all outcomes in  are (weakly) preferred to the reference point (i.e., we have no losses), then

 is evaluated by

 ( ) = +( ) using the weighting function +;

• if all outcomes in  are (weakly) dispreferred to the reference point (i.e., we have no gains), then

 is evaluated by

 ( ) = −( ) using the weighting function −;

8



• if  assigns positive probability to both gains and losses, then the PT-value of  is the sum of

 ’s gain and loss parts. That is, with +, the gain part of  , being the prospect “ with all

losses replaced by ” and the loss part, −, being the prospect “ with all gains replaced by

,” the PT-value of  is given by

 ( ) =  (+) +  (−)

where the qualification () = 0 applies. It is custom for PT to express the treatement of

probabilities for losses using the dual weighting function, ̂−. For instance, if  =  for some

2 ≤  ≤ − 1, the PT-value of  is

 ( ) =
P−1

=1 
+( )[()− (+1)] +

P
=+1 ̂

−()[()− (−1)] (3)

From the preceding three cases one can infer that specific uniqueness results apply for PT. Indeed,

if  contains no losses (or if  contains no gains), then RDU holds. Similarly, if + = −, PT

reduces to an RDU-representation irrespective of the interpretation given to outcomes. In all of these

cases we have a cardinal utility and a (single) uniquely determined weighting function capturing the

treatment of probabilities. Thus, as the reference point is meaningless for that treatement so is the

restriction () = 0. However, if  contains gains and losses and + 6= −, we have two weighting

functions that are uniquely determined; (only) in this case () = 0 must hold and, therefore, the

utility is a ratio scale (i.e., it is unique up to multiplication by a positive constant). As a consequence,

gains have positive utility and losses are assigned a negative utility value, hence, we formally refer to

the condition + 6= − as sign-dependence.

Except for Schmidt and Zank (2012), all existing foundations for PT assume the reference point

as given from the outset; hence, also the uniqueness of the reference point is assumed. Here we

drop the assumption of knowing the reference point in advance and we also dispense of structural
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assumptions for outcomes (e.g., requiring outcomes to be real valued) that are usually imposed for

obtaining PT-foundations. Therefore, in our uniqueness results we explicitly state that for PT it is

the sign-dependence that implies the uniqueness of the reference point. This is indeed the feature that

distinguishes PT-preferences from RDU-preferences and, hence, from EU-preferences. The corollary

of this observation is that, in principle, sign-dependence can be used to reveal the reference point from

behavior. To do this, we employ preference conditions that build on revealed or elicited probability

midpoints. Next, we present this tool, and we look at the implication of midpoints for the just

presented models.

2.2 Probability Midpoints

Probability midpoints are measurements revealed from preferences; they are derived using shifts in

probability mass across outcomes. To motivate the midpoint concept, suppose we have two prospects

 over outcomes in the set {1  } ⊂  with the usual ranking 1 Â  Â . Let

 = ( : 1 1− −  :   : ) and  = ( : 1 1−  −  :   : )

be such that    and  ∼  (similar arguments are used if   ). The latter indifference indicates

that the probability mass  −  for 1 compensates for the difference between probabilities  and 

for  in the prospects  and . This can be inferred from Figure 1, which depicts the corresponding

indifference sets in the probability triangle with outcomes 1  and , where probabilities of 

(1) are indicated on the horizontal (vertical) axis and the remaining probability is given to outcome

.

10



mx nx

1x

β

q

1

α

1p

γ

P
Q

'P

'Q

Figure 1: Elicited probability midpoint .

We now shift probability mass  −  from  to 1 in prospect  , which requires a joint shift of

probability mass  −  from  to 1 in prospect  to obtain an indifference between the resulting

prospects, i.e., we have

 0 := ( : 1 1− −  :   : ) ∼ ( : 1 1−  −  :   : ) =: 
0

Considering the vertical axis, Figure 1 illustrates that the “preference-distance” − between  and

 0 is similar to the preference-distance  −  between  and 0. That is, substituting  for  in 

leads to an improvement that is equivalent in terms of the preference to the improvement resulting

from substituting  for  in . Thus, in terms of the measured preference-distance, it means that 

is perceived half-way between  and  based on the probability-outcome pairs ( : ) and ( : ) in

 and , respectively, as gauges. We call  a (revealed) probability midpoint between  and .

The representations introduced in the preceding subsection make specific predictions for prob-

ability midpoints. In particular, they all imply that probability midpoints are, with model-specific

qualifications, independent of the gauges used to reveal those midpoints. We explore these implications

next.
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2.2.1 Model-specific Midpoints

To illustrate the implications of midpoints for our models, consider EU first. Substitution of EU for

the indifferences  ∼  and  0 ∼ 0 used to reveal the probability midpoint  in Figure 1 implies,

respectively,

(1) + (1− − )() + () = (1) + (1−  − )() + ()

and (1) + (1− − )() + () = (1) + (1−  − )() + ()

Taking the difference between the resulting two equations and cancelling common terms yields

 =
+ 

2


proving that, beyond probability midpoints being independent of the outcomes used to elicit them,

EU demands that  is the arithmetic midpoint between  and . By contrast, RDU dispenses of such

linearity in the treatment of probabilities, but maintains the independence of the revealed midpoint

from outcomes. Similar to the preceding derivation, for RDU we obtain

() =
() + ()

2


showing that, on the probability weighting scale,  is perceived half-way between  and .

As with RDU, PT allows for nonlinear treatment of probabilities but it marginally restricts the

independence of probability midpoints from outcomes. Specifically, implementing the preceding elici-

tation of probability midpoints for the case that 1  and  are gains we obtain, similar to RDU,

+() =
+() + +()

2
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The elicitation of midpoints for the case where the gains {1  } are replaced by a set of losses

{1  } can be implemented using the same  and  and initially identifying ̃ and ̃ such that

̃ := ( : 1 1− ̃−  :  ̃ : ) ∼ ( : 1 1− ̃ −  :  ̃ : ) =: ̃

and, subsequently, finding probability ∗ such that

̃ 0 := ( : 1 1− ̃−  :  ̃ : ) ∼ (∗ : 1 1− ̃ − ∗ :  ̃ : ) =: ̃0

Now, substitution of PT in the preceding two indifferences, taking differences of the implied equations

and elimination of common terms, leads to

−() =
−() + −(∗)

2


In general, we have  6= ∗ (unless we have sign independence under PT) and this inconsistency means

that , the probability midpoint of  and  for +, is not necessarily a midpoint of  and  for −.

In the presence of sign-dependence it must be the case that (at least some) probability midpoints for

gains are not identical to those for losses. It is indeed this observation that, in a reversed sense, is

exploited to formulate preference conditions that identify the reference point. Before doing so, we

recall the standard preference conditions that are shared by all the models considered above.

3 Additive Representation

The decision models presented in the preceding section share several properties that, when com-

bined, imply an additive representation over prospects. For our specific framework these properties

of preferences have been presented before (e.g., in Zank 2010); corresponding properties for general

rank-ordered sets were provided in Wakker (1993). For completeness we recall these properties here
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and summarize their implications for preferences in a lemma. This also allows us to highlight some

potential difficulties that are particular to PT-preferences. Since it simplifies the exposition, we as-

sume that the set of outcomes is finite, i.e.,  = {1     } for some natural number . In Section

5 we indicate how our results can be extended to infinite sets of outcomes where, in contrast to the

finite outcome case, preferences may be sign-dependent but the reference point need not be included

in the outcome set. Corresponding examples are then provided.

3.1 Traditional Preference Conditions

It is well known that, for the existence of a representing function for the preference, a necessary

requirement is that the preference relation < is complete ( <  or  4  for all  ∈ L) and

transitive; that is, the preference relation is a weak order. We summarize this property as our first

axiom.

Weak Order: The preference relation satisfies completeness and transitivity.

Further common properties for EU, RDU and PT-preferences are those of (first order stochastic)

dominance and of continuity in probabilities. They are presented next. We say that  first order

stochastically dominates  if
P

∈  ≥
P

∈  and  6= , where  and  refer to the probability

that  , respectively,  assign to outcome  ∈ .

Dominance: The preference relation satisfies dominance (or monotonicity in decumulative proba-

bilities) if  Â  whenever  first order stochastically dominates .

Since Herstein and Milnor (1953), it is custom to regard L as a mixture space endowed with the

operation of probability mixing. That is, for each probability  ∈ [0 1] and all prospects  ∈ L, the

-probability mixture of  and , denoted  + (1− ), which assigns probability  + (1− )

to outcome  ∈ , is also a prospect in L. We use this operation in the definition of continuity for

the preference relation <.
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Continuity: The preference relation < satisfies Jensen-continuity on the set of prospects L if

for all prospects  Â  and  there exist   ∈ (0 1) such that  + (1 − ) Â  and

 Â + (1− ).

A monotonic weak order that satisfies Jensen-continuity on L also satisfies the stronger Euclidean-

continuity on L (see, e.g., Abdellaoui 2002, Lemma 18). Consequently, the three conditions taken

together imply the existence of a continuous function  : L→ R strictly monotonic in decumulative

probabilities, that represents < on L (Debreu 1954).7 The next subsection provides a condition under

which the representation  is additively separable. We present it separately, as the strong formulation

of the property implies EU and, thus, imposes a linear treatment of probabilities, while the weaker

version allows more flexibility for the treatement of probabilities as required in RDU and PT.

3.2 Additive Separability Properties

This subsection presents an independence property that is shared by EU, RDU and PT. It is formulated

as a preference condition involving common shifts of probability mass between outcomes. We have

informally used shifts in probabilities when defining elicited probability midpoints. Probability shifts

can be regarded as substitutions of an outcome with probability  by a different outcome with that very

same probability. Given prospect  = (1 : 1      : ) we denote the prospect resulting from a

shift of probability  from outcome  to outcome  in  as the prospect  := (
0
1 : 1     

0
 : ),

with 0 = − 0 = + and 
0
 =  for ∈ { }. Whenever we use this notation, it is implicitly

assumed that  ≥   0 to ensure that  is a well defined prospect in L.

In terms of the indifference sets of the preference, these substitutions mean that, following a

probability shift, a prospect is moved from one indifference set to a different one. We are interested in

the effect of such substitutions for prospects that are on the same indifference set. For example, EU

satisfies independence of the preferences under common probability shifts, meaning that indifference

7This function may be unbounded when the probability of  approaches 0 or the probability of 1 approaches 1.
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sets of a preference are mapped into new indifference sets when common probability shifts are applied.

This property was termed “replacement invariance” in Machina (1989) and constitutes a sure thing

principle for risky prospects similar to Savage’s (1954) sure thing principle for uncertainty. We adopt

the latter terminology for the next axiom.

Sure Thing Principle for Risk: The preference relation < satisfies the sure thing principle

(STP) for risk if

 < ⇔ +1 < +1

whenever  +1 +1 ∈ L.

STP is necessary for expected utility; it is also sufficient for EU in the presence of weak order, first

order stochastic dominance and Jensen-continuity (see, e.g., Webb and Zank 2011, Theorem 5). The

common consequence effect of Allais (1953) constitutes a violation of the sure thing principle for risk.

Accordingly, RDU and PT, which both can accommodate the Allais paradox, satisfy a restricted

version of the principle:

Comonotonic STP:The preference relation< satisfies the comonotonic sure thing principle (CSTP)

for risk if

 < ⇔ +1 < +1

whenever  +1 +1 ∈ L are such that  =  .

CSTP says that common probability shifts maintain the preference between two prospects if the two

prospects offer identical good-news probabilities for −1. That is, the probability of obtaining , the

outcome from which probability is shifted away, or a better outcome is the same in both prospects.

This is equivalent to saying that the cumulative probability of obtaining +1 or a worse outcome is

the same in both prospects, so they have identical bad-news probabilities too. Hence, a shift of a

common probability in  and  results in new prospects where the outcome  is also of common
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rank. If one writes prospects as (de)cumulative distributions over , one immediately observes that

CSTP translates into an independence requirement on a rank-ordered or comonotonic set of cumulated

distributions, hence the name for this property.

When CSTP is combined with the preference conditions in the preceding subsection, it implies an

additive separability property across outcomes for the representing function  . The result, formally

stated here, generally applies to the preference restricted to all prospects except perhaps the best

prospect (1) and the worst prospect (); the proof follows from Wakker’s (1993, Theorem 3.2)

result for additive representations on comonotonic sets.

Lemma 1 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L\{1 } is represented by an additive function

 ( ) =
−1X
=1

(

 ) (4)

with strictly increasing functions 1     −1 : [0 1] → R which are continuous and bounded

with the exception of 1 and −1, which could be unbounded at 1 and at 0, respectively.8

(ii) The preference relation < is a Jensen-continuous weak order that satisfies dominance and the

comonotonic sure thing principle for risk.

The functions 1     −1 are jointly cardinal, that is, they are unique up to multiplication by

a common positive constant and addition of a real number. The representation can continuously be

extended to hold on L if 1 is bounded from above and −1 is bounded from below. ¤

As shown in Wakker (1993, Proposition 3.5), by adding further preference conditions that imply

a separation of the treatement of probabilities from the utility value assigned to outcomes, one can

generally obtain boundedness of all functions in Lemma 1. This has been exploited, for instance,

8As  = 1 for all prospects, Eq. (4) does not need to include the term (1).
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in the RDU-derivations in Diecidue, et al. (2009) and in Webb and Zank (2011). For PT this also

applies, provided that there are at least two gains and two losses, whence proportionality arguments

can be exploited (see our Theorem 2). As we do not make assumptions about which outcome is the

reference point, we cannot, in general, invoke information about the number of gains and losses from

the outset. This means that the potential unboundedness reported in Lemma 1 cannot a priori be

excluded. Consequently, this leads to difficulties for deriving a standard PT-representation, as we

discuss next.

3.3 Extended Prospect Theory

Based on the additive representation of Lemma 1, in this subsection we further explore the con-

sequences for obtaining PT-foundations when one of 1 or −1 is unbounded. In general, such

unboundedness precludes the identification of probability weighting functions as is required for PT.

Our main result shows that we are able to obtain representations for “extended PT-preferences” where

a reference point can nonetheless be identified and, further, a utility for losses and a corresponding

probability weighting function (if 1 is unbounded), or a utility for gains with the associated proba-

bility weighting function (if −1 is unbounded), can still be derived. In particular, at most one of

1 or −1 can be unbounded. We provide specific examples to illustrate these extreme cases as they

highlight specific types of preferences that are plausible when general outcome sets and reference-

dependence are jointly considered. In the foundational literature on PT such behavior has hitherto

been excluded due to the structural requirements on the set outcomes and the properties reflected in

the corresponding utility functions.

Example 1 Assume that the representation of Lemma 1 holds for  = {1 2 3} with 1 Â 2 Â 3

and that 1 and 2 are bounded. Then, the representation is a PT-functional with  = 2 as the

reference point, unless < is represented by RDU. ¤
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The derivation of the PT-representation in Example 1 proceeds as follows. As 1 and 2 are

jointly cardinal, we can pick the representation of preferences with 1(0) = 0 = 2(1). By setting

+() := 1()1(1) for all  ∈ [0 1] and (1) := 1(1), ̂
−() := 1− 2()2(0) for all  ∈ [0 1]

and (3) := 2(0), and further (2) := 0, we obtain

 (1 : 1 2 : 2 3 : 3) = +(1)(1) + ̂−(3)(3) (5)

which is a PT-representation with reference point  = 2.

If +() = −() for all  ∈ [0 1], one can show that Equation (5) reduces to an RDU repre-

sentation with the corresponding uniqueness results. For the case that + 6= −, one can show that

the values 1(0) and 2(1) are constants that are immaterial for the ranking of prospects, such that

the representation in Eq. (5) is indeed PT with the corresponding uniqueness results; this aspect is

further elaborated on in the Appendix.

For the case of Example 1, we are not aware of a preference condition, that explicitly identifies 2

as a reference point in a manner that pins down PT with a ratio-scale utility, beyond the properties

that imply additive separability as required in Lemma 1.9 More generally, we observe, that it is only

in the case of  = 3 that a reference point may exist but that both 1 and −1(= 2) in Lemma 1

are unbounded. Such unboundedness precludes a separation of utility and sign-dependent probability

weighting functions. Including such representations under a general notion of PT-preferences, means

that Lemma 1 already gives necessary and sufficient conditions for a corresponding representation.

Given this observation, from here onwards we require that  has at least four strictly rank-ordered

outcomes. The next two examples show that the assumption of more than three outcomes restricts

but does not eliminate unboundedness for a representation in the presence of reference-dependence.

9A more powerful result is provided in Abdellaoui (2002), who proposes behavioral conditions that ensure propor-

tionality of the functions 1 and 2, thereby obtaining RDU where sign independence holds (see also Chateauneuf

1999).
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Example 2 Consider the case that  ≥ 4 and that the preference on L\{1} is represented by

 ( ) = 1(1) +
X

=3

̂−()[()− (−1)] (6)

where  and ̂− are as in PT with  = 2 and 1(1) converges to ∞ when 1 approaches 1, e.g.,

1(1) = [
1
1−1 ](1) for some positive number (1). ¤

One can regard the preference in Example 2 as that of a patient who has been diagnosed with a

severe disease, such as cancer. Suppose some potential medical interventions can lead to a range of

outcomes, the best being 1 =“fully cured from cancer,” while other interventions may prolong life

duration but do not offer positive probability for 1. It is conceivable that the latter interventions are

all perceived as leading to losses and, hence, they are perceived unattractive relative to an intervention

with a positive probability for 1. A related example is documented in Thaler and Johnson (1990) and

analyzed in Barberis, et al. (2001). After having faced a series of losses, many investors attempt to

break even by engaging in very risky trades, despite the chances of breaking even being relatively small.

Such investors appear to perceive the event of breaking even as leading to an extremely attractive

outcome while the complementary event is viewed as leading to losses of a tollerable magnitude in

utility terms. The counterpart of Example 2 is the following one.

Example 3 Consider the case that  ≥ 4 and that the preference on L\{} is represented by

̄ ( ) =
−2X
=1

+( )[()− (+1)] + −1(1− ) (7)

where  and + are as in PT with  = −1 and −1 is as in Lemma 1 and converging to −∞ at 0.

Specifically, consider −1(1− ) = [

1− ]() for some negative number (). ¤

The functional in Example 3 can be thought of as a representation for a preference with an extreme

form of aversion or pessimism, where the possible loss  is extremely unattractive (e.g., ruin) and any
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prospect with a positive probability for  will be regarded inferior to a prospect with zero probability

for . Individuals exhibiting this form of pessimism are willing to buy insurance at prices far above

the actuarially fair value to completely avoid the loss . Such behavior is reported in relation to

substantially increased demand for flood and earthquake insurance after a corresponding event has

occurred (Kunreuther, et al. 1978, Palm 1995)10 and in the willingness to pay for the complete

elimination of risk associated with a hazardous product (Viscusi, et al. 1987).

Having elaborated on potential issues for deriving PT when the set of outcomes includes a single

gain or a single loss, we proceed by keeping in mind that in such special cases extreme sensitivity in

probabilities of best or worst outcomes may preclude a derivation of PT in which both probability

weighting functions are uniquely specified. Instead we may obtain what we term extended prospect

theory : preferences are either represented by PT on L, or they are represented on L\{1} by the

functional in Equation (6) with 1 : [0 1) → [0∞) unbounded at  = 1, or they are represented

on L\{} by Equation (7) with −1 : (0 1] → (−∞ 0] unbounded at  = 0. As the preference

conditions presented in the next section show, in such cases we can still identify the reference point

from behavior if preferences are reference-dependent.

4 Consistent Probability Midpoints

We have already established that for EU-preferences probability midpoints are algebraic midpoints,

that they are independent of outcomes and, hence, reference point independent. Similarly, RDU-

preferences imply reference independence although, due to flexibility in the treatment of probabilities,

RDU allows probability midpoints to differ from algebraic midpoints. PT preferences are different.

They allow for elicited probability midpoints to depend on the type (i.e., gain or loss) but not the

magnitude of outcomes.

This section introduces consistency conditions for probability midpoints which, when added to

10Etner and Jeleva (2014) explain underinvestment in prevention schemes through the treatment of probabilities as

captured in RDU.
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Statement (ii) of Lemma 1, allow for the identification of a reference point. To this aim, it is instructive

to explore the implications of elicited probability midpoints for the preference representation in Lemma

1. Recall the indifferences  ∼  and  0 ∼ 0 in Figure 1. After substitution of the additive

representation, subtracting the first equation from the second and cancelling common terms, we obtain

1()− 1() = 1()− 1() or, equivalently,

1() =
1() + 1()

2
 (8)

In terms of 1, which captures the treatement of probabilities associated to outcome 1, Eq. (8)

states that  is a 1-midpoint between  and . The properties of the additive representation imply

that, locally one can always find midpoints and that the latter do not depend on other outcome

stimuli. For instance, taking an outcome 0 6=  such that 1 Â 0 Â  and considering

preferences among prospects over the set {1 0  } ⊂ , one can find probabilities ̄ ̄ such that

̄ = ( : 1 1− ̄ −  : 0  ̄ : ) ∼ ( : 1 1− ̄ −  : 0  ̄ : ) = ̄. Now, shifting  −  from

0 to 1 in ̄ requires an equivalent shift of ̄ −  from 0 to 1 in ̄ to obtain a new indifference,

say ̄ 0 ∼ ̄0. As before, substitution of the representation in Lemma 1 for the indifferences ̄ ∼ ̄

and ̄ 0 ∼ ̄0 subtraction of the resulting equations and cancellation of common terms, gives

1() =
1(̄) + 1()

2


which can only hold if ̄ = , for otherwise Eq. (8) is violated.

The preceding analysis shows that revealed probability midpoints elicited through shifts of prob-

ability mass to 1 are meaningful for 1, i.e., they are consistent and independent of stimuli other

than 1. Similarly, midpoints for each function    = 2     − 1 can be elicited and are meaningful

concepts given the additive separable representation of Lemma 1. Next we present properties that

demand further consistency for elicited probability midpoints.
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4.1 Good-news and Bad-news Midpoint Consistency

The properties presented next demand that probability midpoints derived from probability shifts to

best (worst) outcomes are also midpoints when the same probability mass is shifted to outcomes

of intermediate rank. These behavioral qualifications for preferences are referred to as consistency

properties for probability midpoints.

Good-News Midpoint Consistency: For  ∈ {2     − 1}, the preference relation < satisfies

good-news midpoint consistency (GMC) above , if for  = ( : 1  −  :  +1 :

+1      : ) and  = ( : 1  −  :  +1 : +1      : ) we have

 ∼  & ( − )1 ∼ ( − )1⇒ ( − )̃ ∼ ( − )̃

for all ̃ ∈ {1    } whenever  ≤  ≤  are probabilities such that  ( − )1 and

( − )1 are from L.11

It is worth contrasting the normative content of GMC with that of the more restrictive von Neumann

and Morgenstern independence axiom. In GMC, the probability mass − in (−)1 is additional

good-news probability for 1 relative to  . Based on preferences, this improvement is equivalent to

the additional good-news probability − in (−)1 as compared to . GMC requires that such

good-news probabilities are of equivalent value for preferences when shifted to a common outcome

̃ (i.e., a degenerate prospect) that is ranked between 1 and . The latter aspect indicates that

preferences may be sensitive to the rank-ordering of outcomes when shifting equivalent good-news

probabilities. Such rank-ordering restrictions do not apply to the von Neumann and Morgenstern

independence axiom where probability mass is taken away proportionally from each outcome and

11 In this definition we could have included the cases  = 1 and  =  as the property then trivially holds.
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shifted to another common, and not necessarily degenerate, prospect :

 ∼ ⇔  + (1− ) ∼  + (1− )

for all  ∈ [0 1] and all   ∈ L.12 Clearly, as no further restrictions are placed on the “common

risk” type , the latter property applies more generally than GMC and is, thus, more powerful.

In particular the independence axiom implies that elicited probability midpoints are also algebraic

midpoints, the characteristic property of EU-preferences.

It can be verified that RDU satisfies GMC above  for all  = 2     −1. This has been shown

in Zank (2010). Similarly, this holds for the preference with the representation of Example 3. The

next Lemma shows that PT satisfies GMC above  if all outcomes above  are gains, hence, in

particular if  is the reference point.

Lemma 2 Assume that the preference < on L is represented by PT (or by extended PT on L\{}).

Then < satisfies good-news midpoint consistency above  whenever all outcomes ranked above  are

gains. ¤

The next property is the dual analog of GMC as it focuses on shifting equivalent probability mass

to outcomes of lower rank.

Bad-News Midpoint Consistency: For  ∈ {2      − 1}, the preference relation < satisfies

bad-news midpoint consistency (BMC) below , if for  = (1 : 1     −1 : −1  −  :

  : ) and  = (1 : 1     −1 : −1  −  :   : ) we have

 ∼  & ( − ) ∼ ( − )⇒ ( − )̃ ∼ ( − )̃

for all ̃ ∈ {     } whenever  ≤  ≤  are probabilities such that  ( − ) and

12 In the literature different formulations of the von Neumann and Morgenstern independence axiom have been used,

e.g.,  <  ⇔  + (1 − ) <  + (1 − ) for all   ∈ L and all  ∈ [0 1]. The definition presented here is
equivalent given the employed weak order, continuity and dominance properties of <.
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( − ) are from L.

The preference represented by the function in Example 2 satisfies BMC below  for all  ∈

{2     −1}. Likewise, RDU-preferences satisfy BMC below each outcome. The next lemma confirms

that PT satisfies BMC below all outcomes which are not gains, that is, below all losses and below the

reference point.

Lemma 3 Assume that the preference < on L is represented by PT (or by extended PT on L\{1}).

Then < satisfies bad-news midpoint consistency below  whenever all outcomes ranked below  are

losses. ¤

If we have reference-dependence and we know the location of the reference point, then it is easy to

formulate a sign-dependent midpoint consistency condition that characterizes PT when combined with

the properties in Lemma 1. If there are two or more gains and two or more losses, all we need is GMC

above all outcomes that are not losses and BMC below all outcomes that are not gains. Although

not stated formally, this result is new and provides PT-foundations for general sets of outcomes,

thereby directly extending the RDU foundations of Nakamura (1995), Abdellaoui (2002), Abdellaoui

and Wakker (2005) and Zank (2010). In the case that there is one gain or one loss, we further need

to assume that the additive representation consists of bounded functions; alternatively, the domain of

the preference is limited to all but the best and worst prospects, in which case we obtain foundations

for extended PT. Next we proceed without assuming that we know the location of the reference point.

4.2 Reference-point Revealing Midpoint Consistency

In general, we do not know which of the outcomes in  is the reference point. To obtain PT-

foundations we develop a technique to first reveal the reference point before invoking the appropriate

midpoint consistency properties. For instance, we can take outcomes in turn and verify if probability

midpoints are independent of the outcomes used to reveal those midpoints. For PT-preferences a
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violation of this test of midpoint consistency is allowed once at the most. By starting with probability

midpoint elicitations at best (worst) outcomes and moving sequentially towards lower (better) ranked

outcomes, we can test for “probability midpoint consistency” for all outcomes. Having finitely many

outcomes means that this process will terminate with either universal consistency (i.e., there is no

reference point affecting preferences) or a single violation (i.e., there exists a reference point that

affects preferences). Observing multiple violations of consistency means that PT cannot hold. While

this will be excluded by our main preference condition, it is clear that our consistency test can also

be used to falsify PT. Applying the consistency property repeatedly comes down to an algorithmic

procedure (see also Section 5.3) that allows us to identify outcomes that are gains and outcomes that

are losses if preferences are reference-dependent. This motivates the following property.13

Reference-point Revealing Midpoint Consistency: The preference relation< satisfies reference-

point revealing midpoint consistency (RMC) if for each ∈ {2     −1} the preference satisfies

good-news midpoint consistency above  or bad-news midpoint consistency below −1 (or

both).

Before turning to the main result, we elaborate further on some implications of RMC. Suppose that

max ∈ {2     −1} is the largest index such that GMC above max holds. Then, in the presence of

an additive representation, by repeated application of GMC, one can show that GMC above  holds

for all  ≤ max, that is, for all outcomes ranked above max . Similarly, if min ∈ {2     − 1} is

the smallest index such that BMC below min−1 holds, then BMC below  holds for all  ≥ min−1

in the presence of an additive representation. Therefore, as RMC demands for each  ∈ {2     −1}

that GMC above  or BMC below −1 holds, either max = min = , i.e., a single index

 ∈ {2     − 1} exists such that that GMC above  or BMC below −1 holds, or (as shown in the

Appendix) for all  ∈ {2     − 1} both GMC above  and BMC below −1 hold. In the latter

case we have sign independence, while in the former case we have sign-dependence and  =  is the

13The idea of formulating preference conditions such that they imply the existence of an outcome where behavior

changes suddenly has also been used in Schmidt and Zank (2012).
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unique reference point. Under each of these conclusions one can derive (extended) PT. We conclude

this section by summarizing this result.

Theorem 1 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < is represented by extended PT.

(ii) The preference relation < is a Jensen-continuous weak order that satisfies dominance, the

comonotonic sure thing principle for risk and reference-point revealing midpoint consistency.

Where they exist, the probability weighting functions are uniquely determined. Further, if + = −,

utility is cardinal as preferences agree with rank-dependent utility; otherwise, the utility function is a

ratio scale and there is a unique index  ∈ {2     − 1} such that the reference point is  = . ¤

The proof of the preceding theorem is in the Appendix. The next section looks at extensions of

our main result.

5 Extensions

In the previous sections we have assumed that no outcomes are indifferent. This requirement can

be relaxed if there are at least four strictly ordered outcomes in the finite set . All results remain

valid if we restrict the analysis to the set of representatives for each indifference set of outcomes;

within an indifference set all outcomes have the same utility value. As pointed out in Section 3, our

results also remain valid if we include the case that there are exactly three strictly ordered outcomes,

however, then RMC trivially holds and, given Lemma 1 with boundedness conditions for the additive

representation satisfied, PT follows as indicated in Example 1. If boundedness conditions do not

hold one must allow for extended PT-representations as suggested in Examples 2 and 3, where the

utility of the single gain, respectively, the single loss and the corresponding probability weighting

function cannot be identified separately as the representing functions exhibit asymptotic behavior

27



when approaching extreme probabilities. Such behavior is excluded if preferences agree with RDU,

the special case of PT with sign independence. Finally, we recall that, in the trivial case of having

at most two strictly ordered outcomes, the dominance property ensures the existence of an ordinal

representation; it is well-known that there is insufficient structure on the set of prospects to obtain

more meaningful results for the two outcome case.

In our derivation of PT it has been essential that the weighting functions are continuous at 0 and

at 1. Discontinuities at these extreme probabilities are, however, empirically meaningful. We could

adopt a weaker version of continuity for probabilities that is restricted to prospects that have common

best and worst outcomes each with a positive objective probability. Such conditions have been used

in Cohen (1992) and more recently in Webb and Zank (2011) where probability weighting functions

are derived that are linear and discontinuous at extreme probabilities. These weighting functions

can then be described by two parameters. As Webb and Zank show, this relaxation of continuity

in probabilities comes at a price. They require additional structural assumptions for the preference

in order to obtain consistency of those parameters across sets of prospects with different worst and

best outcomes. Also, specific consistency principles that imply the uniqueness of those parameters

are required. We conjecture that in our framework such consistency principles can be formulated for

nonlinear weighting functions that are discontinuous at 0 and at 1. A formal derivation of PT with

such weighting functions is, however, beyond the scope of this paper.

5.1 Omitting Asymptotic Behavior

In this subsection we provide a variant of the probability midpoint condition that excludes unbound-

edness of the functions 1 and −1 in Theorem 1. If sign-dependence holds, the property can be

seen as a condition that imposes the existence of at least two gains and at least two losses. With a

further outcome that acts as the reference point, this property therefore assumes at least five strictly

ordered outcomes. Under this mild richness assumption for outcomes, the following property demands
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consistent probability midpoints at the two best outcomes and, separately, consistent midpoints at

the two worst outcomes and, additionally, RMC.

Bounded RMC: The preference relation < satisfies bounded RMC (b-RMC ) if RMC holds and

further GMC holds above 3 and BMC holds below −2.

The augmented b-RMC property uses the information that the two best outcomes are of the same

type (both are gains) and that the two worst outcomes are also of the same type (they are losses).

Such information is not usually available to the analyst, although in some cases such assumptions can

plausibly be made. For instance, when a decision maker wishes to sell a good at an auction, there

might be several low prices at which selling would definitely be perceived as making a loss (being

substantially below the reservation price) while there might be several high prices at which selling the

good is perceived as a definite gain.

If the set of outcomes is too small, declaring some outcomes as gains and some as losses may in fact

pin down the model. For example, it should be clear that if there are only four strictly rank-ordered

outcomes in , then b-RMC implies that GMC holds above 3 and BMC holds below 2. For the

additive representation in Lemma 1 this has the implication that probability midpoints for 1 are also

midpoints for 2 (inferred from GMC above 3) and probability midpoints for 3 are also midpoints

for 2 (inferred from BMC below 2). Hence, midpoints are consistent throughout and this excludes

sign-dependence; hence, RDU is implied.

The next result explicitly assumes that there are at least five strictly ordered outcomes, to allow

for reference-dependence when b-RMC is invoked.

Theorem 2 Assume that the finite set of outcomes  has at least five strictly ranked outcomes. The

following two statements are equivalent for a preference relation < on L:

(i) The preference relation < is represented by PT with either sign-dependence (in which case the

reference point is  =  for some  ∈ {3     − 2}) or sign independence (RDU holds).
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(ii) The preference relation < is a Jensen-continuous weak order that satisfies dominance, the

comonotonic sure thing principle for risk and bounded reference-point revealing midpoint consis-

tency.

The probability weighting functions are uniquely determined. Further, if + = −, utility is

cardinal as preferences agree with rank-dependent utility; otherwise, the utility function is a ratio scale

and the reference point is unique. ¤

The proof of the preceding result is in the Appendix. In Theorem 2 we exploit the fact that the set

of outcomes is finite. If  is infinite a property like b-RMC cannot simply be extended because, e.g.,

for uncountable sets identifying the two best outcomes or the two worst outcomes may not be possible.

But RMC can be formulated to hold on specific subsets of prospects as our next subsection shows. We

now proceed to the discussion of how to obtain extended PT-foundations for infinite outcome sets.

5.2 Infinite Outcome Sets

As in the preceding sections, we restrict our analysis to the case that there are no indifferent outcomes.

When  is infinite some of our properties need to be extended. Weak order, continuity and dominance

are as before. CSTP is invoked for each restriction of the preference to sets of prospects over finitely

many common outcomes. For a finite set of outcomes  ⊂  denote by L the set of prospects that

give zero probability to outcomes not contained in  . We now formulate the extension of CSTP.

Comonotonic STP:The preference relation< satisfies the comonotonic sure thing principle (CSTP)

on L if < satisfies CSTP on L for all finite sets  ⊂ .

One implication of (extended) PT is that, if the preference is restricted to prospects over a finite set

of outcomes that contains only gains or the reference point, call it  ( stands for good outcomes),

then RDU represents that restriction of the preference. Similarly, RDU represents the preference

restricted to prospects over a finite set of outcomes that contains only losses or the reference point, say
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 ( referring to bad outcomes). The two RDU functions need not have the same probability weighting

function; in particular, sign-dependence requires distinct weighting functions for the probabilities of

gains and losses. Then, for prospects over L∪
, RMC will be satisfied only when the reference

point is included in the union of the sets  and . For infinite sets of outcomes we, therefore,

propose the following extension of RMC.

Extended RMC: The preference relation < satisfies extended reference point revealing midpoint

consistency (e-RMC ) on L if for each outcome  ∈  one (or both) of the following statements

apply:

(a) For each finite set  with all outcomes ranked above  the preference < restricted to L ∪{}

satisfies GMC above  and BMC below  for each  ∈  .

(b) For each finite set  with all outcomes ranked below  the preference < restricted to L{}∪

satisfies BMC below  and GMC above  for each  ∈ .

Before presenting the next result, we point out that, for obtaining extended PT-foundations for

< on L, we employ similar tools as in the derivation of Theorem 1 but restricted to each set L

for finite  ⊂ . In the presence of weak order, continuity and dominance, CSTP characterizes a

general representation that is additive on each set L for finite  ⊂ . Similar results were provided

in Chew and Wakker (1996) for the general setup with ambiguity. When combined with the other

properties, e-RMC implies extended PT on each set L but it need not imply the existence of a

uniquely determined reference point because the subset  may not contain the reference point. In

general, the lack of structural assumptions on the set of outcomes  means that a reference point

 ∈  may not exist, for instance, as it is not part of the considered outcome set, even though

preferences are sign-dependent. The following example illustrates.
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Example 4 Assume that  = [−50 0) ∪ (0 100] and that the preference < on L is represented by

 (1 : 1      : ) =
−1X
=1

+( )[()− (+1)] ++()()

+̂−(+1)(+1) +
X

=+2

̂−()[()− (−1)]

with strictly increasing and continuous weighting functions + and −, and a utility function defined

as () =  if  ∈ (0 100] and () = 2 if  ∈ [−50 0); and  denotes the number of positive

outcomes in the prospect (1 : 1      : ). ¤

The preference in Example 4 satisfies all properties required for the existence of a general additive

representation (weak order, Jensen-continuity, dominance, CSTP) and also e-RMC. However, the

value 0, which acts as a reference point, is not an outcome that is contained in the set . Hence, the

preferences are sign-dependent but no reference point within  exists; the reference point is “outside

the model.”

Demanding convexity for the outcome set can circumvent the problems alluded to in Example 4.

But even if the set of outcomes is a closed interval, we may have sign-dependent preferences but no

reference point. This can be inferred from the following example that resembles features from Example

3.

Example 5 Assume that  = [0 100] and that the preference < on L\{0} is represented by

 (1 : 1     −1 : −1  : 0) =
−2X
=1

+( )[()− (+1)] + +(−1)(−1)− [


1− 
]

with strictly increasing and continuous weighting functions + and −, and a utility function defined

as () =  if  ∈ (0 100] (that can discontinuously be extended to (0) = −1); and where −1 refers

to the number of positive outcomes in the prospect evaluated by  . ¤
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To exclude preferences that are sign-dependent but where a reference point cannot be identified,

such as the preferences in Examples 4 and 5 one needs to add further structural assumptions for

the set of outcomes or exclude extreme outcomes (e.g., requiring that  is an open interval in R).

Alternatively, one can consider preferences where the reference point is outside the model as in the

extended PT of Example 5 with an “imaginary” reference point ∗. We provide foundations for both

cases. The first result provides a preference foundation for PT for the case that the set of outcomes

is an open interval of the real numbers. As the set of outcomes is a connected separable topological

space that does not contain a best or worst outcome, the reference point can be identified within the

model.

Theorem 3 Assume  = ( ) for some real numbers   , and that the preference over outcomes

agrees with the natural ordering of real numbers. The following two statements are equivalent for a

preference relation < on L:

(i) The preference relation < on L is represented by PT.

(ii) The preference relation < is a Jensen-continuous weak order that satisfies dominance, the

comonotonic sure thing principle for risk and extended reference-point revealing midpoint con-

sistency.

The probability weighting functions are uniquely determined. Further, if + = −, utility is

cardinal as preferences agree with rank-dependent utility. Otherwise, the utility function is a ratio

scale and the reference point  ∈  is unique. ¤

The proof of Theorem 3 is in the Appendix. From that proof one can infer that Theorem 3 also

applies for the case that  = R, which is the most frequent assumption considered in the literature.

The next result, applies to the most general case in which no best and worst outcomes are allowed.

Theorem 4 Suppose  is a set of outcomes that contains no extreme outcomes (i.e.,  has no best

and no worst outcome). The following two statements are equivalent for a preference relation < on L:
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(i) The preference relation < on L is represented by PT with a possibly imaginary reference point.

(ii) The preference relation < is a Jensen-continuous weak order that satisfies dominance, the

comonotonic sure thing principle for risk and extended reference-point revealing midpoint con-

sistency.

The probability weighting functions are uniquely determined. Further, if + = −, utility is

cardinal as preferences agree with rank-dependent utility. Otherwise, the utility function is a ratio

scale and, if the reference point  ∈ , it is unique. ¤

The proof of Theorem 4 is in the Appendix. Having explored how the probability midpoint tool

can be used to obtain information about sign-dependence and reference points from a foundational

perspective, we proceed to a practical application of midpoint consistency. The next subsection

indicates how the midpoint tool can be applied to empirically test for sign-dependence.

5.3 Detecting Reference Points Empirically

Our theoretical results, in particular the application of GMC and BMC as combined in RMC suggests

that it is possible to test for sign-dependence using probability midpoints. Here we present a tool

that can be used to experimentally implement such a test. Suppose, for simplicity of exposition,

that we have the best outcome, labelled  ∈  (which may objectively be seen as a gain), and the

worst outcome, labelled  ∈  (potentially regarded as a loss). Let there be finitely many outcomes

ranked between  and , say  Â 1 Â · · · Â  Â  for some  ≥ 2. Assume that this list of

intermediate outcomes is exhaustive and that we have PT-preferences but do not know if one of the

 ’s is the reference point. An example of a procedure to identify the reference point involves repeated

elicitations of probability midpoints and subsequent checks for consistency for those midpoints. This

results in an algorithm searching for a reference point, as follows.

Step 1: Fix a small probability  (e.g.,  = 015) and probabilities   (e.g.,  = 01  = 02).
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Next consider the prospect 
1 = ( :  1− −  : 1  : ) and elicit the probability  that makes

a subject indifferent between 
1 and 


1 = ( :  1 −  −  : 1  : ). Such elicitations can be

facilitated by using, for instance, choice lists in which outcomes are fixed and probabilities vary, as

suggested in Holt and Laury (2002).

Step 2: Replace  by  in 
1 , hence obtaining 


1 , and elicit  such that 


1 ∼ 


1 . This way

the experimenter obtains a preference midpoint  between  and .

Step 3: Next, replace 1 by 2 in 
1 and obtain the prospect 


2 = ( :  1− −  : 2  : ).

Subsequently, elicit the probability ̃ that makes a subject indifferent between 
2 and 


2 = ( :

 1− ̃ −  : 2 ̃ : ).

Step 4: As in Step 2, replace  by  in 
2 , giving 


2 , and elicit 

∗ such that  
2 ∼ 

∗
2 .

The experimenter obtains a preference midpoint  between  and ∗. If  = ∗ we have observed

a consistency, from which we conclude that 1 and 2 are outcomes with utilities of the same sign;

we proceed to the next step. Otherwise, if  6= ∗ we have an inconsistency, which can occur only if

1 and 2 have utilities of a different sign. Therefore, 1 is identified as the reference point and the

“search algorithm” stops.

Step (3+) ( = 2     ): If  = ∗ at Step (2 +), repeat Steps (1 +) and (2 +), with

+1 and  replacing  and −1, respectively.

If this procedure terminates after Step (3 +∗) for some index ∗ ≤ , we conclude that ∗ is

the reference point; otherwise, there is no reference point that affects the treatment of probabilities.

A few comments on the above procedure are in order. Obviously, there are alternative ways of

implementing the above search procedure. For instance, one can start the procedure in Steps 1 and

2 at any outcome  ∈ {1     } and adjust the subsequent elicitation steps; or, one could elicit

midpoints using outcome  in Steps 3 and 4 in the above procedure and then continue the elicitation

of midpoints by alternation between the remaining best and worst ranked outcomes that have not yet

been identified as gains or losses by the procedure. If  is an open interval in R, one can use this
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procedure to narrow down the interval of outcomes in which the reference point is located by repeating

the procedure on specific finite subsets  of .

While the above search procedure appears compelling and, from a theoretically perspective, feasi-

ble, implementing the procedure in experiments would need to account for some practicalities. First,

the probability interval is narrow such that small changes in stimuli in the form of actual probabilities

may hardly be noticed by subjects. This can be circumvented by “scaling up” the stimuli, e.g., by

framing choices as events resulting from draws using urns containing 100 or even 1000 equally likely

balls. Second, the midpoint procedure is based on eliciting indifferences. Irrespective of whether

indifferences are elicited by varying outcomes or by varying probabilities, such elicitation tasks are

cognitively demanding for many subjects and appropriate experimental procedures are needed. The

aforementioned choice lists design (Holt and Laury 2002), which invokes an final interpolation step,

has proven to be quite an efficient mechanism in dealing with the issue of eliciting indifferences.

Third, the decision criterion in how far to tollerate differences between  and ∗ in Step 4 of

the above elicitation procedure usually needs to be specified as a rule where small differences can be

regarded as a measurement error and large ones as a genuine inconsistency. What determines such

bounds is essentially an empirical question and setting appropriate thresholds can be based on existing

data regarding empirically observed probability weighting functions. Fourth, chained measurements,

as employed in our search procedure, have been criticized on the grounds of incentive compatibility and

error propagation. Both aspects of the elicitation procedure are theoretically important but empirically

these issues are not a serious concern as subjects treat choice tasks in isolation (Kahneman and Tversky

1979, Cubitt, et al. 1998; see also Abdellaoui, et al. 2005, on negligible error propagation).

Finally, in contrast to EU or RDU preferences, the choice of outcome stimuli to detect sign-

dependence is important. The experimenter needs to ensure that the range of outcomes chosen to

implement the above procedure is not too narrow (such that reference points are excluded) and likewise

that the number of stimuli is not too large as this raises the number of required elicitations. This
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calls for a tradeoff between precision of the method and the cognitive demands put on subjects that,

in turn, can influence the precision in the obtained data. Finding the right balance is, however, a

common challenge for all experimental studies.

6 Discussion

Here, we review some of the literature on endogenous reference points before we comment on the

relation of our midpoint principle to midpoint notions developed elsewhere.

6.1 Models with Reference Points

The majority of existing PT derivations assume the reference point is exogenously given (e.g., Tversky

and Kahneman 1992, Wakker and Tversky 1993, Chateauneuf and Wakker 1999, Köbberling and

Wakker 2003, Neilson 2006). In alternative models, attention has been paid to endogenous reference

points that are choice-dependent (e.g., Gul 1991, Sugden 2003, Delquié and Cillo 2006, Bleichrodt

2007, Schmidt, et al. 2008). Such multiple reference points are explicitly allowed for in the reference-

dependent theories of Munro and Sugden (2003) and Sagi (2006) where, motivated by the status-quo

effect, adjustments of preferences to new reference points is permitted. There the decision maker can

be seen as having multiple preferences, each depending on a reference point. Those preferences are

required to be consistent in the sense that they do not generate cyclical choices. Such consistency

requirements for behavior are also appearing in theories that build on the classical revealed preference

approach, however, by using choice functions that are reference-dependent, such as in Apesteguia and

Ballester (2009) and Bossert and Sprumont (2009).

Multiple reference points can also be found in the choice model of Ok, et al. (2015). Those

reference points are feasible alternatives in a choice set, but they are always dominated by some other

alternatives, hence, are never revealed preferred. By contrast, the endogenous reference points in

Shalev (2000, 2002), Kőszegi and Rabin (2006, 2007), and Kőszegi (2010), correspond to a person’s
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rational expectations held in the recent past, which in turn, are determined in the so called “personal

equilibrium.” Since, there may be multiple equilibria, the decision maker is required to choose the

most preferred one, e.g., a preferred personal equilibrium in Kőszegi and Rabin (2006) and Kőszegi

(2010). Beyond the lack of uniqueness, the choice aspect is markedly different to the reference point

concept in PT where, as pointed out by Shleifer (2012, p.1086), the reference point cannot be chosen

deliberately.

Schmidt and Zank (2012) provide an alternative way to identify reference points from primitives by

exploiting PT features, such as diminishing sensitivity of the utility (convexity for losses and concavity

for gains) and consistent utility measurement paired with sign-dependence. The present approach

is complementary to Schmidt and Zank (2012), and, unlike theirs, it does not impose structural

richness on the set of outcomes. As a result, the present foundations for PT can be extended to more

general settings like health and insurance where outcomes might be discrete, thus, allowing for wider

applications of PT.

6.2 Outcome and Probability Midpoints

Consistency requirements for outcomes are familiar in economics and finance and are commonly used

for utility measurements or for comparative analyses. Specifically, the shape of utility functions can

be inferred from preference-based outcome midpoints (Baillon, et al. 2012, Theorem 2.2), where

a strictly concave utility requires that the utility midpoint of two outcomes is always below the

corresponding algebraic midpoint and, further, independent of the probabilities of those outcomes.

Similarly, consistently lower midpoints indicate more concavity of one utility relative to the other.

The utility midpoint tool, which applies likewise to expected utility and nonexpected utility theories,

has been advanced further in Baillon, et al. (2012) to compare the utility for risk with that for

ambiguity.

Similarly to the comparison of utility functions based on outcome midpoints, attitudes towards
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probabilities can be inferred from comparisons of the probability weighting functions for risk and

ambiguity (Abdellaoui, et al. 2011) by adopting an analogous midpoint technique for probabilities.

In van de Kuilen and Wakker (2011) it was demonstrated that probability midpoints are suitable for

experimental studies and their elicitation is relatively easy. In empirical research, however, utility

measurements were required prior to the elicitation of probability weighting functions (Abdellaoui

2000, Bleichrodt and Pinto 2000, and van de Kuilen and Wakker 2011). Our elicitation method

and the derived results suggest that one can completely dispense of utility-based measurements when

employing the probability midpoint tool. Indeed, we advance the probability midpoint tool in three

different ways: our PT foundation delivers in one stroke a new preference tool for experimental testing

and empirical measurements, a tool for comparative analyses and, more fundamentally, a method to

identify reference points endogenously from behavior.

7 Conclusion

A consequence of reference-dependence is that risk behavior in PT is manifested through a combination

of attitudes towards gains and losses, captured by a utility function (e.g., concave for gains and

convex for losses), and attitudes towards probabilities of gains and losses, captured by corresponding

probability weighting functions (e.g., inverse S-shaped), which together imply a four-fold pattern of

risk attitudes (Tversky and Kahneman 1992, Wu and Gonzalez 1996, Prelec 1998).14 Loss aversion,

the component of risk attitude expressed as a stronger sensitivity towards losses as compared to equally

sized gains (Wakker and Tversky 1993, Neilson 2002, Köbberling and Wakker 2005, Blavatskyy 2011),

is a further cornerstone of PT that completes the picture on empirically observed choice behavior

under risk. Yet, without knowledge of the location of the reference point, both loss aversion and the

fourfold pattern become ambiguous concepts. While a model with an unspecified reference point gives

additional flexibility for the analyst (e.g., it leads to an easier organization of experimental and field

14See also Wakker (2010), Abdellaoui, et al. (2011), and the references therein for ambiguity.
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data, or it allows for framing effects to be incorporated), the absence of behavioral conditions that

imply the existence of the reference point renders PT too general and it makes the model difficult to

falsify. This is unwarranted both empirically and foundationally.

The importance of having sound preference foundations for decision models, in particular for PT,

has recently been reiterated by Kothiyal, et al. (2011, pp. 196—197). If a continuous utility is not

available because outcomes are discrete (e.g., as in health or insurance), the relationship between the

empirical primitive (i.e., the preference relation) and the assumptions of PT becomes unclear. In that

case, one can no longer be sure that the PT-predictions are in line with the behavior underlying the

preferences.

Our aim was to make PT falsifiable. We have addressed the foundational aspect of the reference

point in PT under risk and showed that a specific consistency property for probability midpoints can

be formulated in a way that allows for the identification of the reference point and, jointly, of PT. The

conditions presented here are necessary and sufficient for PT, thus, they clarify which assumptions

one makes by invoking the model. In particular, the new foundations highlight the difference between

expected utility, rank-dependent utility and prospect theory in a transparent way. Before, this was not

possible as foundations for PT in the von Neumann and Morgenstern setting were not available. In the

presence of standard preference conditions, the two principles of good-news and bad-news midpoint

consistency, when combined as in our RMC properties, are sufficient to obtain either RDU, a special

case of PT, or PT with sign-dependent probability weighting and a reference point endogenously

revealed from behavior. This way we have obtained a complete foundation for prospect theory.

Appendix

Before presenting the proofs of the lemmas and the theorems, we provide further details on Example

1 as it clarifies the nature of the additive representation when  consists of exactly three strictly

rank-ordered outcomes.
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Three Strictly Ordered Outcomes

Further Elaboration on Example 1: Recall the additive representation  (1 : 1 2 : 2 3 :

3) = 1(1) + 2(1 + 2) in Example 1. For all probabilities  ∈ [0 1], set

+() =
1()− 1(0)

1(1)− 1(0)


which is well-defined as 1 is bounded at 1. Thus defined, 
+ is a probability weighting function. Set

(1) := 1(1)− 1(0)  0, and obtain that

1(1) = +(1)(1) + 1(0)

Next, define

−() =
2()− 2(0)

2(1)− 2(0)


We set (3) = 2(0)− 2(1)  0 and obtain

2(1 + 2) = −(1 + 2)[2(1)− 2(0)] + 2(0)

= −−(1 + 2)(3) + 2(0) + 2(1)− 2(1)

= [1− −(1 + 2)](3) + 2(1)

= ̂−(3)(3) + 2(1)

To obtain the last equation, we have used the dual of − and the fact that 1 + 2 = 1− 3.

Continuity of the weighting functions implies that

lim
+→0
0+1

 ( 1− −  ) = lim
+→0
0+1

[+()(1) + 1(0) + ̂−()(3) + 2(1)]

= 1(0) + 2(1)
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To see that the just obtained sum is immaterial for the preference between prospects, we note that

 <  ⇔ 1(1) + 2(1 + 2) ≥ 1(1) + 2(1 + 2)

⇔ +(1)(1) + 1(0) + ̂−(3)(3) + 2(1) ≥ +(1)(1) + 1(0) + ̂−(3)(3) + 2(1)

⇔ +(1)(1) + ̂−(3)(3) ≥ +(1)(1) + ̂−(3)(3)

By continuity in probabilities,  ∈ (0 1) exists, such that (1 : 2) ∼ ( : 1 1 −  : 3). This

implies 0 = +()(1) + ̂−(1 − )(3). We must, therefore, set (2) = 0. We have obtained a

PT-representation from the additive representation of the preference relation and have identified the

reference point  := 2.

Recall that uniqueness results for additive representations specify joint cardinality of 1 and 2.

Thus, if instead of the latter pair we start our derivation of weighting functions and utility with

1 + 1 and 2 + 2 for some positive  and real 1 and 2, we obtain + and ̂− as above,

showing that the weighting functions are uniquely determined. If + 6= − the constraint (2) = 0 is

binding for all admissible utility functions, such that for a different utility, ̃, we obtain ̃() = (),

thus utility is a ratio scale. It can be shown that, if − is identical to +, this PT-representation is

in fact an RDU-representation to which the corresponding uniqueness results apply. Hence, PT holds

for the case that  contains exactly three strictly ranked outcomes and the preference is represented

by a bounded additively separable function. ¤

Example 1 and the just provided elaborations show that, for the case of exactly three strictly

ordered outcomes, no additional preference requirements are needed to derive PT, provided that we

have an additive representation with bounded functions. If exactly one of those functions is unbounded,

then extended PT holds trivially, while, in the case when both functions are unbounded we can only

identify  = 2 as the reference point but cannot identify the probability weighting functions separately

of utility. Wakker (1993, Theorem 3.2) provides conditions under which an additive representation can
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be obtained for the preference restricted to the set of all prospects except the extreme ones, i.e., for <

on L\{1 3}. Wakker (1993, Proposition 3.5) indicates that, if the additive representation consists

of proportional functions, they can be assumed to be finite at extreme outcomes; then the additive

functions are bounded. Invoking such proportionality requirements comes down to establishing RDU

(see Abdellaoui 2002), i.e., PT without sign-dependence. Thus, to allow for sign-dependence while

excluding unboundedness of the functions 1 and 2, weaker conditions than proportionality are

warranted. For instance, one can require conditions, which can also be formulated for the case of more

than three strictly ordered outcomes, such as those in Wakker (1993, Theorem 3.3(c)), which ensure

that the functions in the additive representation are bounded. Given our general approach, we have

allowed for unbounded additive representations and have provided behavioral conditions under which

extended PT holds.

Having elaborated on the case when the set of outcomes contains exactly three strictly ordered

outcomes, we assume, henceforth, that  contains at least four strictly ordered outcomes. For this

case Lemma 1 gives a preference foundation for an additive representation of the preference < on

L\{1 }. The proof of the lemma follows from Wakker (1993, Theorem 3.2); see also Zank (2010).

Proofs

Proof of Lemma 2: If RDU holds for < on L, then GMC above  follows for all outcomes  ∈ 

as shown in Zank (2010). Thus, for the case when there are no gains or the case when there are no

losses, the statement in the lemma holds. Next we assume that we have sign-dependence and that PT

holds for < on L or that extended PT holds on L\{}. Then, 1 is a gain and  is a loss. Let ,

 ∈ {2      − 1}, be a gain or the reference point. Suppose that  = ( : 1  −  :  +1 :

+1      : ) and  = ( : 1  −  :  +1 : +1      : ) and that the indifferences

 ∼  and ( − )1 ∼ ( − )1

43



hold for      such that  (−)1 and (−)1 are well-defined (the case  =  which

implies  =  is trivial). Let ̃ ∈ {1    } be arbitrary. We show that (−)̃ ∼ (−)̃

must hold.

Substitution of (extended) PT into  ∼  and ( − )1 ∼ ( − )1, taking differences of

the resulting equation and cancelling common terms, gives: +()−+() = +()−+() i.e., 

is a +-midpoint between  and , or equivalently,

+() =
+() + +()

2


Assume, to the contrary, that (−)̃ Â (−)̃. Substitution of (extended) PT into  ∼ 

and ( −)̃ Â ( − )̃, taking differences between the resulting equation and, respectively,

inequality, implies

+() 
+() + +()

2

contradicting the preceding equation. The case ( − )̃ ≺ ( − )̃ leads to a similar

contradiction, hence, ( − )̃ ∼ ( − )̃ must hold. As ̃ ∈ {1    } was arbitrary, it

follows that ( −)̃ ∼ ( − )̃ holds for all ̃ ∈ {1    }. Hence, GMC above  holds.

As  ∈ {2      − 1} was arbitrary chosen such that  is not a loss, this completes the proof of

Lemma 2. ¤

Proof of Lemma 3: This proof is similar to the proof of Lemma 2. ¤

Proof of Theorem 1: The derivation of statement (ii) from statement (i) follows from the fact

that extended PT is an additive representation of the preference < on L\{1}, or on L\{}, or on

L. Then statement (ii) of Lemma 1 applies. RMC follows from Lemmas 2 and 3. This completes the

derivation of statement (ii).

We now prove that statement (ii) implies statement (i) of the theorem. We note that statement

(ii) of the theorem implies statement (ii) of Lemma 1. Hence, we can assume that the preference <
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on L\{1 } is represented by an additive function

 ( ) =
−1X
=1

(

 ) (9)

with continuous strictly increasing functions 1     −1 : [0 1] → R which are bounded except 1

(which can be unbounded at  = 1) and −1 (which can be unbounded at  = 0).

Next we invoke RMC. It says that for each  ∈ {2     − 1} the preference satisfies one of the

following three conditions (I) GMC above outcome  or (II) BMC below outcome −1 or (III) it

jointly satisfies both GMC above  and BMC below −1. We observe that GMC above 2 holds

trivially (and similarly BMC below −1 holds trivially). Next we consider several cases.

Case 1: Suppose that GMC above 3 does not hold. Then, RMC implies that BMC holds below

2. Using similar arguments as in Zank (2010), one obtains by induction, first locally then globally,

that the functions 2     −1 are proportional on (0 1). Following Wakker (1993, Proposition 3.5)

these functions are bounded and can continuously be extended to all of [0 1]. Define

−() :=
2()− 2(0)

2(1)− 2(0)

for all probabilities  ∈ [0 1]. This is a well-defined (continuous and strictly increasing) probability

weighting function. Further, by proportionality of the functions 2     −1 it follows that for all

 = 2     − 1 we have

−() =
()− (0)

(1)− (0)

for all probabilities  ∈ [0 1]. From the latter expression we obtain

() = −()[(1)− (0)] + (0)

for all  = 2     − 1 and for all probabilities  ∈ [0 1].
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As GMC does not hold above 3, 1 cannot be proportional to 2 (or to the  ’s,  = 3     −1).

This means that 2-midpoints exist that are not 1-midpoints. In particular, GMC above  cannot

hold if   2. Therefore, 2 is a reference point. Next we define (2) = 0 and (+1) − () =

(0)−(1)  0 for all  = 2     −1. This way we have obtained a utility function for all outcomes

   = 2     . Then, for all  = 2     − 1 and for all probabilities  ∈ [0 1], we obtain

() = −()[()− (+1)] + (0)

= −()[()− (+1)] + (0)− (1) + (1)

= −()[()− (+1)] + (+1)− () + (1)

= [1− −()][(+1)− ()] + (1)

Substitution into the additive representation for the preference on L\{1} implies that Eq. (9) can

be written as

 ( ) = 1(1) +
−1X
=2

[1− −( )][(+1)− ()] +
−1X
=2

(1)

We observe that the last term in the representation is a constant that cancels out when comparing two

arbitrary prospects, hence it is meaningless for the preference and can be dropped. Further, by the

definition of the dual weighting function, we have [1−−( )] = ̂−(+1). Using these observations,

our representation is rewritten as

 ( ) = 1(1) +
−1X
=2

̂−(+1)[(+1)− ()]

If 1 is unbounded at 1 we cannot extend this representation to the degenerate prospect that gives 1

for sure. For that case, we obtain an extended PT-representation for the preference on L\{1}. As the

functions    = 1     , were jointly cardinal, it follows that 
− is uniquely determined. Further,

because of the requirement that (2) = 0 the utility function is a ratio scale. The outcome  with
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 = 2 is unique with the property that the functions    ≥  have common probability midpoints

that are not common midpoints for the functions     . Hence, the reference point  := 2 is

unique.

If 1 is bounded, we can continuously extend the function to all of [0 1] and we obtain a represen-

tation on L, thus including the extreme outcome 1. Then we define

+() =
1()− 1(0)

1(1)− 1(0)

and obtain

1() = +()[1(1)− 1(0)] + 1(0)

Further, we set 1(1)− 1(0) = (1)− (2)  0, such that our representation is given by

 ( ) = +(1)[(1)− (2)] +
−1X
=2

̂−(+1)[(+1)− ()]

where we have dropped the constant 1(0) as it commonly occurs in the evaluation of each prospect.

Hence, PT represents < on L. Uniqueness results for −  and 2 follow by similar arguments as

in the case where 1 was unbounded. Further, by joint cardinality of the functions in the additive

representation, the normalization used to define +, implies that the latter is unique. This completes

the proof for the case when GMC does not hold above 3.

Case 2: Next we consider the case when BMC does not hold below −2. Then, RMC implies

that GMC holds above −1. Using similar arguments as in Zank (2010), one obtains by induction,

first locally then globally, that the functions 1     −2 are proportional on (0 1). Following Wakker

(1993, Proposition 3.5) these functions are bounded and can continuously be extended to all of [0 1].

We define

+() =
1()− 1(0)

1(1)− 1(0)
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for all probabilities  ∈ [0 1]. This is a well-defined (continuous and strictly increasing) probability

weighting function. Further, by proportionality of the functions 1     −2 it follows that for all

 = 1     − 2 we have

+() =
()− (0)

(1)− (0)

for all probabilities  ∈ [0 1]. From the latter expression we obtain

() = +()[(1)− (0)] + (0)

for all  = 1     − 2 and for all probabilities  ∈ [0 1].

As BMC does not hold below −2, −1 cannot be proportional to −2 (nor to any of the

other  ’s,  = 1      − 3). This means that −2-midpoints exist, which are not −1-midpoints.

In particular, BMC below  cannot hold if    − 2. Therefore,  := −1 is (the uniquely

determined) reference point. We now use similar arguments to those in Case 1, first to define utility

for the reference point ((−1) = 0) and, iteratively, for the gains () − (+1) = (1) − (0)

for  = 1     − 2, and second to obtain the representation

 ( ) =
−2X
=1

+( )[()− (+1)] + −1(−1)

where constant terms that are irrelevant for comparing prospects have been dropped. If −1 is

unbounded at 0 then we have obtained extended PT for < on L\{}. Uniqueness results for + and

 follow from the construction of the corresponding functions and the joint cardinality of functions in

the additive representation. If −1 is bounded at 0 we can continuously extend −1 and obtain an

additive representation with bounded functions for < on L including outcome . Then we define

−() =
−1()− −1(0)
−1(1)− −1(0)

48



for all probabilities  ∈ [0 1]. Setting ()− (−1) = −1(0)− −1(1)  0 and substituting into

the above representation gives PT (after dropping the constant term −1(0)) with the corresponding

uniqueness results. This completes the proof for the case when BMC does not hold below −2.

Case 3: Assume that there is some index ̃ ∈ {3     − 2} such that GMC above ̃ holds but

GMC above ̃+1 does not hold. This means that  consists of at least five strictly rank-ordered

outcomes. By RMC it follows that BMC below ̃ holds. Following a similar line of arguments

as used for the derivations in Cases 1 and 2 above, we first find that ̃     −1, respectively,

that 1     ̃−1 are proportional. Proportionality implies that these functions are bounded and our

additive representation can be extended to L. As GMC above ̃ holds but GMC above ̃+1 does not

hold, the functions ̃−1 and ̃ cannot be proportional. This implies that BMC below ̃−1 cannot

hold. Therefore, ̃ is unique with the property that -midpoints agree for all  ∈ {1     ̃ − 1}

and that -midpoints agree for all  ∈ {̃     − 1}. Hence,  := ̃ is the unique reference point.

As in Cases 1 and 2, we can now uniquely define weighting functions for probabilities of gains and

losses, respectively, and a ratio-scale utility with (̃) = 0. Hence, PT represents the preference on

L. This completes the proof of Case 3.

Case 4: The final case to consider is when two distinct outcomes 0 Â 00 with 000 ∈

{2      − 1} exist, such that GMC above 00 holds and also BMC below 0−1 holds. Then, we

obtain proportionality of 1     00 and proportionality of 0−1     −1. As 0  00 it follows

that all functions in the additive representation are proportional. Using a similar line of argument as in

Zank (2010), we obtain an RDU-representation for preference on L with the corresponding uniqueness

results. This completes Case 4.

Cases 1—4 cover all possibilities. This completes the proof of Theorem 1. ¤

Proof of Theorem 2: The proof that statement (i) implies statement (ii) is similar to the

corresponding proof in Theorem 1. To prove statement (i) from statement (ii) we note that b-RMC

implies RMC. Hence, PT or extended PT holds. Further, as GMC above 3 holds and BMC below
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−2 holds, Cases 1 and 2 in the proof of Theorem 1 do not apply. Therefore, only Cases 3 and 4

need to be dealt with; the proof is completely analogous to the proof of Theorem 1, hence, PT holds.

This proves statement (i) from statement (ii). Uniqueness results also follow from Case 3, respectively,

Case 4 of the proof of Theorem 1. This concludes the proof of Theorem 2. ¤

Proof of Theorem 3: The proof that statement (i) implies statement (ii) is standard. In

particular, for each finite set of at least four strictly ordered outcomes, CSTP follows from Theorem

1 when considering the preference restricted to prospects over that set. Further, if PT holds for <

on L, then either we have sign independence or we have sign-dependence. In the former case RDU

holds and e-RMC follows from Theorem 4 in Zank (2010). In the latter case it must be that RDU

represents < restricted to L ∪{} whenever  consists of gains and RDU represents < restricted to

L{}∪ whenever  consists of losses. That is, for all  < , statement (a) of e-RMC holds and for all

 4  statement (b) of e-RMC holds. Hence, e-RMC holds.

Next we prove statement (i) from statement (ii). In what follows we consider only subsets  of

 = ( ) with at least four strictly ordered outcomes, since prospects that assign positive probability

to fewer outcomes are contained in these sets, such that the derived representations apply to them too.

First we show that the preference on L is represented by a general additive representation. That is,

the preference is represented by a functional  : L→ R that, for each nonempty set  = {1     }

with 1 Â · · · Â  of outcomes, evaluates prospects from L by

 (1 : 1      : ) =
−1X
=1

 
 (


 ) (10)

as in Lemma 1, except that all functions  
 are bounded.  is also a general additive representation

of < on L if and only if for each nonempty set  = {1     } with 1 Â · · · Â  of outcomes, we

have 
 =  

 + for constants   0 and  ∈ R.

Assume an arbitrary subset  = {1     } with 1 Â · · · Â  for a natural number  ≥ 4. We
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consider the restriction of the preference < on the set of prospects over outcomes in  denoted L .

This restriction inherits from < on L all properties stated in statement (ii) of Lemma 1. Hence, the

preference on L has an additive representation  =
P−1

=1 

 . As  was arbitrary, this conclusion

holds for all finite subsets of  that contain at least four strictly ordered outcomes.

Since the set of outcomes  is open, a best or a worst outcome in  does not exist, hence, we can

always find outcomes 0 Â 1 and  Â +1 and consider the additive representation of the preference

on L ∪{1+1} denoted ̃ =
P

=0 ̃
{0}∪ ∪{+1}
 . As both functions are representations of the

preference on L , by the uniqueness results we can set  
 = ̃

{0}∪ ∪{+1}
 for all  = 1     − 1.

In particular this shows that 
{0}∪ ∪{+1}
1 and 

{0}∪ ∪{+1}
−1 are bounded. As before, given that

 was chosen arbitrarily, this conclusion holds for all corresponding additive representations.

Let now   0 be two arbitrary finite subsets of  each containing at least four strictly ordered

outcomes. Consider the corresponding additive representations   and   0 of the preference restricted

to L and L 0 , respectively, and further the additive representation   ∪ 0 of the preference restricted

to L ∪ 0 . As L ⊂ L ∪ 0 and L 0 ⊂ L ∪ 0 the latter representation also represents the preference on

L and on L 0 . Given the uniqueness results for additive representations, we can choose  
 =   ∪ 0



for all  ∈  and, similarly,   0
 =   ∪ 0

 for all  ∈  0. As  and  0 were chosen arbitrary, we

conclude that a general additive representation  for < on L exists.

Next we invoke e-RMC to show that  is a PT-functional. We consider four cases.

Case I: Suppose that for all  ∈  and sets  = {1     } with  Â 1 Â · · · Â  for a natural

number  ≥ 3, BMC below  holds for each  = 1      − 1 and that GMC above  holds for the

preference < restricted to L{}∪ . Then, using arguments presented in Zank (2010), it follows that

RDU holds for the preference on L{}∪ . This implies that, for each set of outcomes  = {1     }

with 1 Â · · · Â  for a natural number  ≥ 3, RDU represents < on L . Hence  is an RDU-

representation of < on L. This is the special case of PT with sign independence. The uniqueness

results for RDU-representations apply.
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Case II: Suppose that for all  ∈  and sets  = {1     } with 1 Â · · · Â  Â  for  ≥ 3, GMC

above  holds and BMC below   for  = 2     . Then, using arguments presented in Zank (2010),

it follows that RDU holds for the preference on L ∪{}. This implies that, for each set of outcomes

 = {1     } with 1 Â · · · Â  for  ≥ 3, RDU represents < on L . Hence,  is an RDU-

representation to which the corresponding uniqueness results apply, i.e.,  is a PT-representation with

sign independence, of < on L.

Case III: Suppose that for an outcome  ∈  and a set  = {1     } with  Â 1 Â · · · Â ,

 ≥ 3, for the preference < on L{}∪ BMC below  does not hold for an outcome  ∈  or GMC

above 0 does not hold for an outcome 0 ∈ . In particular, this means that RDU does not hold for the

preference < on L{}∪ . Then e-RMC implies that for all  = {1     0} with 1 Â · · · Â 0 Â ,

BMC below  holds and GMC above  holds for all  ∈  for the preference < on L ∪{}. By Theorem

4 in Zank (2010) this implies that RDU represents the preference < on L ∪{} for all  = {1     0}

with 1 Â · · · Â 0 Â . That is, RDU holds for < on L{∈|<}. Given our assumption that for the

set  = {1     } and the preference < on L{}∪ BMC below  does not hold for some  ∈  or

GMC above 0 does not hold for some 0 ∈ , it cannot be that for all 0 ∈  RDU holds for < on

L{∈|<0} (for, otherwise, by Case II, RDU holds for < on L and in particular for the preference <

on L{}∪ , in violation of our assumption). Hence, the set

 0 := {0 ∈ | RDU holds for < on L{∈|<0}}

is bounded from below. Let ∗ be the outcome such that RDU holds for < on L{∈|Â∗} and

no outcome ∗∗ exists with ∗ Â ∗∗ such that RDU holds for < on L{∈|Â∗∗}. As ( ) is an

interval in R, thus a connected and separable subset, such an outcome exist. Then e-RMC implies

that for all ∗∗ ranked below ∗ and all sets  00 = {001      0000} with ∗∗ Â 001 Â · · · Â 0000 , 
00 ≥ 3,

BMC below 00 holds and GMC above 00 holds for all 00 ∈  00 when considering the preference < on

L{∗∗}∪00 . Thus, RDU represents < on L{∗∗}∪00 for all ∗∗ ≺ ∗ and all sets  00 = {001      0000} with
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∗∗ Â 001 Â · · · Â 0000 , 
00 ≥ 3. Hence, RDU represents < on L00 for all finite sets  00 with outcomes

below ∗, and therefore, RDU holds for < on L{∈|≺∗}. This means that ∗ is the unique point

with the property that RDU with the weighting function + holds for < on L{∈|Â∗} and RDU

with the weighting function − holds for < on L{∈|≺∗}. That is  := ∗ is the unique reference

point.

Next we show that PT with sign-dependence represents < on L. By e-RMC, one of the following

holds:

(a) For all finite sets  with all outcomes ranked above , BMC below  holds and GMC above 

holds for all  ∈  when considering the preference < on L ∪{}.

(b) For all finite sets  with all outcomes ranked below , BMC below  holds and GMC above 

holds for all  ∈  when considering the preference < on L{}∪ .

If Subcase III(a) holds, we conclude that + with the weighting function + and strictly

increasing utility + represents the preference < on L{∈|<}. Further, we know that − with

the weighting function − and strictly increasing utility − holds for < on L{∈|≺}. Also, we

know that the general additive representation of < on L in Eq. (10) represents the preference on

both L{∈|<} and on L{∈|≺}. This means that, when restricted to the corresponding domain of

prospects, + and− agree with the common representation in Eq. (10) if appropriate cardinal

transformations of the utility functions are chosen. We determine these cardinal transformations.

Consider, for arbitrary finite sets  = {1     −1} of gains and  = {+1     } of losses for

some natural numbers   , such that 1 Â · · · Â −1 Â  Â +1 Â · · · Â , the preference over

L ∪{}∪ . This preference is represented by

 (1 : 1      :       : ) =
−1X
=1


 ∪{}∪
 ( ) + 

 ∪{}∪
 () +

X
=+1


 ∪{}∪
 ( )
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We fix the location parameter for the otherwise jointly cardinal functions as follows:


 ∪{}∪
 (0) = 0 for  = 1      − 1

and 
 ∪{}∪
 (1) = 0 for  =      

and we define the functions

̃
 ∪{}∪
 () := 

 ∪{}∪
−1 (1− )

= 
 ∪{}∪
−1 (−1)

for  =  + 1     . Our additive representation becomes

 (1 : 1      :       : ) =
−1X
=1


 ∪{}∪
 ( ) +

X
=+1

̃
 ∪{}∪
 () (11)

The restriction of the representation in Eq. (11) to L ∪{} and to L also represents the preference

over the corresponding set of prospects. The former representation is obtained when the probabilities

of all losses are equal to 0 while the latter is obtained when the probabilities of all gains and the

reference point are 0. Thus, for probabilities 1      that sum to 1, we have

 (1 : 1      : ) =
−1X
=1


 ∪{}∪
 ( )

represents the preference on L ∪{} and, because + also holds on L ∪{}, unique numbers +  0

and + exist such that

 (1 : 1      : ) =
−1X
=1

+( )
+[+()− +(+1)] +++() ++
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Therefore,

++() ++ = 0

and 
 ∪{}∪
 ( ) = +( )

+[+()− +(+1)]

for  = 1      − 1. We define () = ++() ++ for outcomes  < .

Further, for probabilities +1      that sum to 1

 (+1 : +1      : ) =
X

=+1

̃
 ∪{}∪
 ()

represents the preference on L and, because − also holds on L , unique numbers −  0 and

− exist such that

 (+1 : +1      : ) = − +−−(+1) +
X

=+1

̃−()
−[−()− −(−1)]

We define () = −−() +− for outcomes  ≺ . Substitution into the representation in Eq.(11)

gives

 (1 : 1      :       : ) =
−1X
=1


 ∪{}∪
 ( ) +

X
=+1

̃
 ∪{}∪
 ()

=
−1X
=1

+( )[()− (+1)] +

(+1) +
X

=+1

̃−()[()− (−1)]

which is a PT-representation with the uniquely determined weighting functions. We have fixed the

location parameters for each of the additive functions 
 ∪{}∪
 , which makes them joint ratio scales.

For the utility function  this means that it must be a ratio scale.

As  and  were arbitrary sets of gains and losses, respectively, it follows that the general additive
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representation in Eq. (10) is indeed a PT-representation. Hence, PT represents< on L. This completes

the derivation for Subcase III(a). In particular, as () = 0, it follows that − represents the

preference on the larger set L{∈|4} rather than just on L{∈|≺}.

If Subcase III(b) holds, we conclude that + with the weighting function + and the strictly

increasing utility + represents the preference < on L{∈|Â}. Further, we know that − with

weighting function − and strictly increasing utility − holds for < on L{∈|4}. Also, we know

that the general additive representation of < on L in Eq. (10) represents the preference on both

L{∈|Â} and on L{∈|4}. As in Subcase III(a), we look for specific cardinal transformations for

the utility functions in + and − such that they agree with the common representation in

Eq. (10). The analysis is similar to Subcase III(a) except that − holds on L{}∪ , which means

that when fixing the location parameters for the functions in the additive representation we obtain

−−() +− = 0 = 
 ∪{}∪
 (1)

We conclude that also in Subcase III(b) PT represents < on L. Similar to Subcase III(a) it follows

that + represents the preference on the larger set L{∈|<} (instead of just L{∈|Â}). This

completes the proof for Case III.

Case IV: In this case we consider the remaining possibility, that for an outcome  ∈  and a set

 = {1     } with 1 Â · · · Â  Â ,  ≥ 3, for the preference < on L ∪{} BMC below  does

not hold for an outcome  ∈  or GMC above 0 does not hold for an outcome 0 ∈  . In particular,

this means that RDU does not hold for the preference < on L ∪{}. Exploiting e-RMC and using

similar arguments to those presented in Case III, we can identify the reference point and subsequently

show that PT represents the preference on L. This completes Case IV.

As Cases I—IV exhaust all possibilities, statement (i) of Theorem 3 has been derived. This concludes

the proof of Theorem 3. ¤
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Proof of Theorem 4: That statement (i) implies statement (ii) is standard; it follows from

the properties of the PT-functional. We prove that statement (ii) implies statement (i). That the

preference is represented by a general additive representation follows by similar arguments as in the

proof of Theorem 3. Cases I and II are completely analogous. In particular they follow from the

results in Zank (2010).

For the analog to Cases III and IV, the arguments are similar to those in the proof of Theorem 3,

except that a reference point within  may not exist. From e-RMC it follows that the set of outcomes

contains two sets  and  with  ∪  =  such that the preference on L is represented by +

and the preference on L is represented by −. If the sets  and  are not disjoint they contain

a unique reference point . Then, PT can be derived using arguments similar to those in Case III in

the proof of Theorem 3.

If  and  are disjoint, then  contains only gains and  contains only losses; no reference point

within  exists, even though preferences are sign-dependent (i.e., + 6= −). Similar to Case III in

the proof of Theorem 3, we normalize the additive functions for gains and for losses and choose the

unique cardinal transformations of + and − to obtain PT. Hence, we obtain statement (i)

and the corresponding uniqueness results. This concludes the proof of Theorem 4. ¤
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Kőszegi, Botond, and Matthew Rabin, 2007. Reference-Dependent Risk Attitudes. American Eco-

nomic Review 97, 1047—1073.

Kothiyal, Amit, Vitalie Spinu, and Peter P. Wakker, 2011. Prospect Theory for Continuous Distrib-

utions: A Preference Foundation. Journal of Risk and Uncertainty 42, 195—210.

Kunreuther, Howard, Ralph Ginsberg, Louis Miller, Philip Sagi, Paul Slovic, Bradley Borkan, and

Norman Katz, 1978. Disaster Insurance Protection: Public Policy Lessons. Wiley Interscience.

61



Machina, Mark J., 1989. Dynamic Consistency and Non-expected Utility Models of Choice under

Uncertainty. Journal of Economic Literature 27, 1622—1688.

Munro, Alistair, Robert Sugden, 2003. On the Theory of Reference-dependent Preferences. Journal

of Economic Behavior and Organization 50, 407—428.

Nakamura, Yutaka, 1995. Rank Dependent Utility for Arbitrary Consequence Spaces. Mathematical

Social Sciences 29, 103—129.

Neilson, William S., 2002. Comparative Risk Sensitivity with Reference-Dependent Preferences,

Journal of Risk and Uncertainty 24, 131—142.

Neilson, William S., 2006. Axiomatic Reference-dependence in Behavior Toward Others and Toward

Risk. Economic Theory 28, 681—692.

Ok, Efe A., Pietro Ortoleva, and Gil Riella, 2015. Revealed (P)reference Theory. American Economic

Review 105, 299—321.

Palm, Risa I., 1995. Earthquake Insurance: A Longitudinal Study of California Homeowners. West-

view Press, Boulder, CO.

Pesendorfer, Wolfgang, 2006. Behavioral Economics Comes of Age: A Review Essay on Advances in

Behavioral Economics. Journal of Economic Literature 44, 712—721.

Prelec, Drazen, 1998. The Probability Weighting Function. Econometrica 66, 497-527.

Preston, Malcolm G., and Philip Baratta, 1948. An Experimental Study of the Auction Value of an

Uncertain Outcome. American Journal of Psychology 61, 183—193.

Quiggin, John, 1981. Risk Perception and Risk Aversion among Australian Farmers. Australian

Journal of Agricultural Economics 25, 160—169.

62



Quiggin, John, 1982. A Theory of Anticipated Utility. Journal of Economic Behavior and Organiza-

tion 3, 323—343.

Sagi, Jacob S., 2006. Anchored Preference Relations. Journal of Economic Theory 130, 283—295.

Savage, Leonard J., 1954. The Foundations of Statistics. Wiley, New York.

Schmeidler, David, 1989. Subjective Probability and Expected Utility without Additivity. Econo-

metrica 57, 571—587.

Schmidt, Ulrich, Chris Starmer and Robert Sugden, 2008. Third-generation Prospect Theory. Jour-

nal of Risk and Uncertainty, 36, 203—223.

Schmidt, Ulrich, and Horst Zank, 2012. A Genuine Foundation for Prospect Theory. Journal of Risk

and Uncertainty 45, 97—113.

Segal, Uzi, 1987. Some Remarks on Quiggin’s Anticipated Utility. Journal of Economic Behavior

and Organization 8, 145—154.

Shalev, Johnathan, 2000. Loss aversion equilibrium. International Journal of Game Theory 29,

269—287.

Shalev, Johnathan, 2002. Loss Aversion and Bargaining. Theory and Decision 52, 201—232.

Shleifer, Andrei, 2012. Psychologists at the Gate: A Review of Daniel Kahneman’s Thinking, Fast

and Slow. Book review of: Kahneman, Daniel (2011) “Thinking: Fast and Slow,” Penguin

Books, London. Journal of Economic Literature 50, 1080—1091.

Starmer, Chris, 2000. Developments in Non-Expected Utility Theory: The Hunt for a Descriptive

Theory of Choice under Risk. Journal of Economic Literature 38, 332—382.

Sugden, Robert, 2003. Reference-Dependent Subjective Expected Utility. Journal of Economic

Theory 111, 172—191.

63



Thaler, Richard H., and Eric J. Johnson, 1990. Gambling with the House Money and Trying to

Break Even: The Effects of Prior Outcomes on Risky Choice. Management Science 36, 643—660.

Tversky, Amos, and Daniel Kahneman, 1992. Advances in Prospect Theory: Cumulative Represen-

tation of Uncertainty. Journal of Risk and Uncertainty 5, 297—323.

van de Kuilen, Gijs, and Peter P. Wakker, 2011. The Midweight Method to Measure Attitudes

toward Risk and Ambiguity. Management Science 57, 582—598.

Viscusi, Kip W., Wesley A. Magat, and Joel Huber, 1987. An Investigation of the Rationality of

Consumer Valuations of Multiple Health Risks. The Rand Journal of Economics 18, 465—479.

von Neumann, John, and Oskar Morgenstern (1944, 1947, 1953) Theory of Games and Economic

Behavior. Princeton University Press, Princeton NJ.

Wakker, Peter P., 1993. Additive Representations on Rank-Ordered Sets: II. The Topological Ap-

proach. Journal of Mathematical Economics 22, 1—26.

Wakker, Peter P., 1994. Separating Marginal Utility and Probabilistic Risk Aversion. Theory and

Decision 36, 1—44.

Wakker, Peter P., 2001. Testing and Characterizing Properties of Nonadditive Measures through

Violations of the Sure-Thing Principle. Econometrica 69, 1039—1059.

Wakker, Peter P., 2010. Prospect Theory For Risk and Ambiguity. Cambridge University Press,

Cambridge, UK.

Wakker, Peter P., and Daniel Deneffe, 1996. Eliciting von Neumann-Morgenstern Utilities When

Probabilities are Distorted or Unknown. Management Science 42, 1131—1150.

Wakker, Peter P., and Amos Tversky, 1993. An Axiomatization of Cumulative Prospect Theory.

Journal of Risk and Uncertainty 7, 147—176.

64



Webb, Craig S., and Horst Zank, 2011. Accounting for Optimism and Pessimism in Expected Utility.

Journal of Mathematical Economics 47, 706—717.

Webb, Craig S., 2015. Piecewise Additivity for Non-expected Utility. Economic Theory 60, 371—392.

Webb, Craig S., 2017. Piecewise Linear Rank-dependent Utility. Theory and Decision 82, 403—414.

Wu, George and Richard Gonzalez, 1996. Curvature of the Probability Weighting Function. Man-

agement Science 42, 1676—1690.

Zank, Horst, 2010. Consistent Probability Attitudes. Economic Theory 44, 167—185.

65


