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Abstract

Accurate monitoring of sedentary behaviour and physical activity is key to investigate their

exact role in healthy ageing. To date, accelerometers using cut-off point models are most

preferred for this, however, machine learning seems a highly promising future alternative.

Hence, the current study compared between cut-off point and machine learning algorithms,

for optimal quantification of sedentary behaviour and physical activity intensities in the

elderly. Thus, in a heterogeneous sample of forty participants (aged�60 years, 50%

female) energy expenditure during laboratory-based activities (ranging from sedentary

behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calo-

rimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms

and a Random Forest machine learning model were developed and cross-validated using

the collected data. Detailed analyses were performed to check algorithm robustness, and

examine and benchmark both overall and participant-specific balanced accuracies. This

revealed that the four models can at least be used to confidently monitor sedentary behav-

iour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algo-

rithm outperformed the cut-off point models by being robust for all individual’s physiological

and non-physiological characteristics and showing more performance of an acceptable

level over the whole range of physical activity intensities. Therefore, we propose that Ran-

dom Forest machine learning may be optimal for objective assessment of sedentary behav-

iour and physical activity in older adults using thigh-mounted triaxial accelerometry.
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Introduction

Ageing is associated with a decline in physical function and recent evidence not only suggests

that this is largely attributable to increased sedentary behaviour (SB) in old age, but also states

that breaking prolonged SB by carrying out physical activity (PA) of at least light-intensity

may prove to be a promising counteraction strategy [1]. It is surprising that though most

elderly exhibit high SB and low PA levels, leading to deleterious health outcomes, strategies to

minimise poor lifestyle choices in this age group has only received relatively little scientific

attention [1–3]. Ahead of this however, studies must first focus on improving the accuracy and

validity of activity monitoring in older adults [4,5]. To evaluate the exact health effects of SB

and PA, including their role in healthy ageing, it is important to accurately and objectively

monitor these aspects of habitual mobility or lack thereof [6]. Motion-sensing technologies

using accelerometers are typically used in mobility monitoring since they are assumed to be

objective, and measurements can be carried out over a number of days [6–11].

The concept of accelerometry to assess SB and PA is derived from Newton’s Second

Law, which gives the interaction between force, mass and acceleration by the formula:

force = mass � acceleration [12]. In the context of human movement, this formula can be

expressed as: an activity is characterised by moving a mass (i.e. body (segment)) at changing

velocity over time (= acceleration). This acceleration results from forces generated by (and on)

the muscles at the expense of energy [10]. Several studies have shown positive linear relation-

ships between energy expenditure (EE) and movement acceleration in people of different ages,

while performing activities under standardised test conditions with the accelerometer close to

the centre of mass [13–18]. This allows EE to be estimated from acceleration signals and the

classification of habitual daily activity as sedentary, light and moderate-to-vigorous, by using,

until recently, cut-off point models. To illustrate this, when presenting the amount of move-

ment acceleration as counts per minute, these models will classify an outcome of<100 as sed-

entary, 100–1951 as light and�1952 as moderate-to-vigorous [6].

However, with the preferred accelerometer mounting location shifting away from centre of

mass sites such as the hip or waist [19–21], towards wrist-worn devices for the most part, the

premise of a linear relationship between EE and movement acceleration and thus, the use of

cut-off point models has become questionable. This commercially-led shift forces researchers

to focus on posture detection only (i.e. the ‘Sedentary Sphere’ [22]) or to start looking into

other, more sophisticated and complex, methods to analyse acceleration signals by e.g.

machine learning [2,23,24]. Machine learning is already used for activity recognition and has

only recently been explored in PA research [2,24]. By focusing on patterns and regularities,

pattern recognition for example, can handle complex and non-linear data [6,25,26], potentially

providing opportunities for SB and PA research [27].

Although some experts have advised to stop developing cut-off point algorithms and start

using machine learning [4,28], to date the use of cut-off points remains preferred for intensity

classification [29]. One reason to continue using cut-off point models lies in the complex

nature of machine learning, and the ease to understand and widespread adoption of cut-off

points [30]. Although proprietary cut-off points are not necessarily well understood either, the

desire to compare results with previous cut-off point-based studies could be another reason.

Notwithstanding, studies have already shown machine learning to outperform traditional cut-

off point algorithms for activity recognition not only in healthy adults, but also in niche popu-

lations such as the young or the overweight/obese [6,27]. However, validation of machine

learning needs to be confirmed for all intended end-users/study populations, e.g. the elderly,

prior to general adoption [10]. Rosenberg et al. [31] recently showed high levels of accuracy

and concurrent validity using Random Forest classifiers in older women.
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The decision of researchers to choose a simpler, but less accurate method over a more chal-

lenging and accurate one for activity intensity classification can possibly be justified when

using thigh-mounted triaxial accelerometry. Since the thigh is relatively close to the centre of

mass, cut-off point models might still be valid in this situation, especially when adding posture

detection to these models, which then enables distinguishing between sedentary activity and

standing for instance. Whilst the activPAL inclinometer is a good example of a valid thigh-

mounted activity monitor [20,22], it uses black-boxed proprietary algorithms, thereby ham-

pering progress in thigh-mounted accelerometer algorithm development. To date, cut-off

point models for thigh-mounted accelerometers are understudied, hence further investigation

and detailed comparison with machine learning is needed.

All algorithms require value calibration and the eventual utility of an algorithm depends on

the specific activities and intensities included in the calibration study [30]. To ensure high

accuracy of the algorithm in the general population, it is recommended to perform the calibra-

tion on a heterogeneous sample, matching the population of interest, and including a broad

range of common activities ranging from sedentary to vigorous intensity [4,24,30,32]. Algo-

rithm performance is generally expressed in terms of overall accuracy and when it reaches

�80% for example, an algorithm is deemed acceptable [2]. However, even in possession of the

overall (i.e. group) accuracy, algorithm performance on an individual (i.e. single end-user)

level, remains unknown. Theoretically, performance can be unacceptable in some individuals

where algorithm robustness is lacking. If algorithm inaccuracy disproportionately affects some

demographic groups over others, it may lead to misinterpretation of associations between

either SB or PA and health. Thus, it is important to check robustness and benchmark end-

user-specific performance of accelerometer algorithms developed on heterogeneous pooled-

data sets prior to applying them to daily-life data. To date, evidence regarding this type of tri-

angulation is sparse.

The main aim of the present study was to compare between traditional cut-off points and

machine learning, for the provision of the best performing algorithm to classify SB and PA in a

heterogeneous population of older adults using thigh-mounted triaxial accelerometry. It was

hypothesised that machine learning outperforms cut-off point based algorithms through

being robust for individual’s physiological and non-physiological characteristics, more accu-

rate and showing acceptable accuracies for all activity intensities. To test this hypothesis, this

paper 1) examines overall balanced accuracy and robustness of four heterogeneous pooled-

data algorithms, 2) compares participant-specific balanced accuracies between all four algo-

rithms, and 3) benchmarks both overall and participant-specific balanced accuracies of the

algorithms.

Materials and methods

Participants

Forty healthy older adults (73.5 (6.3) years; 50% female) participated in this study (Table 1).

Participants were excluded if they were:<60 years of age, terminally ill or receiving cancer

treatment, diabetic, suffered from any central nervous system disease or condition, had a heart

attack in the past 12 months or any currently unstable cardiovascular condition, had any pul-

monary disease or condition that did not allow expired gas sampling, recently (within the past

three months) injured or had surgery on either of their lower limbs, were not independently

mobile or at least not able to complete a laboratory-based activity protocol without a (walking)

aid, had been advised by their physician not to take on any physical activity or exercise, or

were not competent to make an informed decision about study participation.
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This study was approved by the local ethics committee of the Manchester Metropolitan

University, UK. All participants gave written informed consent prior to their participation in

this study.

Baseline characteristics

From each participant, the following baseline characteristics were recorded: age, sex, body

mass, body height, body mass index (BMI), prandial state, resting energy expenditure (REE),

presence of prosthetic lower limb joints, use of heart rate controlling medication, physical fit-

ness level, preferred walking speed and risk of falling (Table 1). Age (years), sex (female/male),

prandial state (fasting/non-fasting), presence of prosthetic lower limb joints (yes/no) and use

of cardiovascular (heart rate controlling) medication (yes/no) was determined through a

health questionnaire or orally on the day of testing. Body mass was assessed in kilograms using

a digital body mass scale (Seca GmbH & Co. KG., Hamburg, Germany) and body height was

measured in centimetres using a stadiometer (Holtain Ltd., Crymych, UK). Both measures

were determined up to the closest decimal with the participant barefoot and wearing light

clothing only. The body mass index (BMI) was calculated by dividing body mass by squared

body height (kg�m-2). REE was estimated by assessing oxygen consumption (VO2) (ml�kg-

1�min-1; STPD conditions: standard temperature and dry gas at standard barometric pressure)

while sitting quietly on a chair for four minutes, together with resting heart rate (beats per

minute). Both REE and resting heart rate were expressed as the arithmetic mean of the read-

ings taken during the third and fourth minute of sitting. To increase the accuracy of REE base-

line estimates, only data from fasted participants were used. Since resting heart rate served to

estimate baseline physical fitness levels, participants who were on heart rate controlling medi-

cation were not taken into account. Classification of the physical fitness levels was done using

a standard resting heart rate table [33]. Preferred walking speed (km�h-1) was based on the self-

selected speed during treadmill walking in participants without prosthetic lower limb joints.

Risk of falling (low/medium/high) was determined using the falls risk assessment tool (FRAT)

[34].

Table 1. Study sample characteristics.

Age (years) 73.5 (6.3)

Sex 20 Female 20 Male

Body mass (kg) 72.2 (13.7)

Body height (m) 1.67 (0.10)

BMI (kg�m-2) 25.6 (4.3)

Prandial state 20 Fasting 20 Non-fasting

REEfasting (VO2 ml�kg-1�min-1) 2.82 (1.00)

Prosthetic lower limb joints 2 Yes 38 No

Cardiovascular medication 20 Yes 20 No

Physical fitness levelno cardiovascular meds 9 Less than good 11 Good or better

Preferred walking speed (km�h-1)no prosthetic lower limb joints 3.7 (1.0)

Falls risk 32 Low 8 Medium or high

Values represent arithmetic mean (SD) when normally distributed data, else median (IQR).

SD, standard deviation; IQR, interquartile range; BMI, body mass index; REE, resting energy expenditure;

VO2, oxygen consumption.

https://doi.org/10.1371/journal.pone.0188215.t001
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Instrumentation

During the laboratory-based activity protocol participants were equipped with different instru-

ments. First, two GENEActiv Original triaxial accelerometers (Activinsights Ltd., Kimbolton,

UK) with range ±8 g (1 g = 9.81 m�s-2) and weighing 16 grams each, were fitted bilaterally on

the anterior mid-thigh (at 50% of the distance between trochanter major and lateral femur epi-

condyle). Both accelerometers were mounted using Tegaderm™ transparent film dressing (3M

Health Care, St. Paul, MN, USA) and set at a sample rate of 60 Hz. This frequency respects the

Nyquist-Shannon sampling theorem, which states that the sample frequency should at least be

twice the maximum frequency at which sampling is required. Since essentially all human body

movement occurs below 20 Hz, the sampling rate should be�40 Hz [35,36]. Orientation of

the accelerometer axes during standing was: X = mediolateral, Y = vertical and

Z = anteroposterior. The devices were used as calibrated by the manufacturer. Next, partici-

pants wore a Polar T31 chest belt to monitor heart rate, which would then remain in place for

the entirety of the test protocol (Polar Electro Oy, Kempele, Finland). To estimate energy

expenditure during the activities (see below) we used indirect calorimetry. Expired gas samples

were collected per activity via a standard mouthpiece and two-way T-shape non-rebreathing

valve (2700 series) (Hans Rudolph Inc., Kansas City, MO, USA) into a Douglas Bag (DB)

(Plysu Industrial Ltd., Milton Keynes, UK). Expired gas sample concentrations of oxygen and

carbon dioxide inside the DB were determined using a Servomex 5200 gas analyser (Servomex

Group Ltd., Crowborough, UK). The gas analyser was calibrated prior to each participant’s

testing session. The total volume of expired gas inside the DB was analysed using a calibrated

dry gas meter (Harvard Apparatus Ltd., Edenbridge, UK).

Laboratory-based activity protocol

Participants were asked to perform ten laboratory-based activities of daily living which were

assumed to be representative for older adults. Half of the participants (N = 20, 50% female)

were instructed to arrive in a fasting condition, allowing to drink water up to a maximum of

250 ml only, while the other half received no instructions. The protocol started with 20 min-

utes rest in a supine position. Then, the following ten standardised activities of daily living

(four minutes each) were executed in the specified order: 1) lying supine on a treatment bed,

2) sitting on a chair, 3) standing upright, 4) shuffling sideways, 5) free over-ground walking at

self-selected speed, 6) cycling on an ergometer at a preferred pace (Monark Exercise AB, Vans-

bro, Sweden), 7) treadmill walking at 3.2 km�h-1, 8) treadmill walking at self-selected speed, 9)

treadmill walking at self-selected speed wearing a weighted vest (15% of body mass) and 10)

brisk treadmill walking at a maximum speed of 6.5 km�h-1. All treadmill walking was per-

formed on a slat-belt treadmill (Woodway USA Inc., Waukesha, WI, USA). The first two min-

utes of each activity were used to reach a steady state in EE. During the second half of the

activities, two one-minute expired gas samples were taken. To prevent any carry-over effects of

fatigue, participants were seated between the activities until their heart rate returned to resting

level. The total duration of the protocol was approximately 90 minutes. A standard digital

video camera was time-synchronised and used to record the entire testing session, which

served as a criterion measure and allowed direct observation of all activities post laboratory

protocol completion.

Accelerometer data pre-processing & feature selection

Analysis of the triaxial accelerometer data required multiple steps. Firstly, raw acceleration sig-

nals per axis were filtered twice using a zero-phase fourth order low pass Butterworth filter: 1)

a cut-off frequency of 20 Hz was applied to remove any noise and 2) a cut-off frequency of
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0.5 Hz was used to split the noise-filtered signal into static and dynamic acceleration signals,

allowing determination of monitor orientation and movement [6,37]. Secondly, two one-

minute periods (identical to the gas sampling minutes) of both static and dynamic acceleration

signals per axis were extracted per performed activity. Next, twenty time- and frequency

domain based features per non-overlapping 10-s windows were determined per axis for each

of the samples extracted from both the dynamic and static acceleration signals. These time-

and frequency domain based features included: arithmetic mean, standard deviation (SD),

minimum, maximum, median, interquartile range (IQR), skewness, kurtosis, root mean

square, cross-correlation, roll, pitch, yaw, peak-to-peak amplitude, peak intensity, zero-

crossings, lag one autocorrelation, dominant frequency, amplitude of dominant frequency and

entropy. Also, two resultant vectors were calculated over the three axes, one using arithmetic

means and the other SDs. (Please see Liu et al. [38] for the applied formulas.) All data pre-

processing was done using R 3.2.5 [39].

After data pre-processing, the 10-s window features were used to model four algorithms

based on methods using either cut-off points or machine learning. Three algorithms including

posture classification (based on the 10-s window arithmetic mean static acceleration of the

Y-axis (static Ymean)) were derived from cut-off point analyses using dynamic acceleration

data. The first algorithm used the sum of vector magnitudes (SVM) as an outcome,

SVM ¼
X600

d¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd2 þ yd2 þ zd2

p

where d represents the data-point number within the 10-s window. The second algorithm

used summation of the time integrals of the moduli of the triaxial accelerometer signal (IMA),

where

IMA ¼
Z t0þT

t¼t0

jxjdt þ
Z t0þT

t¼t0

jyjdt þ
Z t0þT

t¼t0

jzjdt

where T represents 10 seconds. The last cut-off point algorithm was adapted from our previous

postural balance studies that focus on total movement (TM) using force plate balancing tasks

[40], which is calculated as

TM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSD2 þ ySD2 þ zSD2

p

where SD represents the 10-s window standard deviation of the dynamic acceleration signal

per axis. For the only machine learning algorithm we used Random Forest in this study, which

is known for its high performance [24,41–43]. Briefly, Random Forest is an ensemble method

using the bootstrapping of multiple decision trees to predict an outcome. Prior to developing a

Random Forest model, analyses were performed to select optimal features for the Random

Forest classifier. Firstly, pairwise correlations between features were studied, removing either

one of the factors when r>0.75, then feature selection was performed in R 3.2.5 [39] using the

Boruta package [44]. Eventually, 55 features were selected for the Random Forest model.

Activity intensity classification

To classify activity intensities, we used metabolic equivalent (MET) values. These values were

calculated per participant for all the one-minute expired gas samples taken during the activity

protocol. Due to individual differences, this was done by dividing the VO2 (in ml�kg-1�min-1)
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during a one-minute activity sample by the participant’s calculated REE. Thus,

MET1 min act sample ¼
VO2 1 min act sample

REEparticipant

Intensity classification for each one-minute sample (6 x 10-s windows) was done by check-

ing 1) the MET value and 2) the participant’s posture using the video recording. Practically,

when the one-minute sample’s MET value was�1.5, the laboratory-based activity was classi-

fied as either sedentary activity or standing, depending on the posture. Classification of light-

intensity PA (LIPA) and moderate-to-vigorous PA (MVPA) was based on the MET value only,

meaning if >1.5 and<3 then an epoch was classified as LIPA, while epochs with MET values

�3 were classified as moderate-to-vigorous PA (MVPA) [10]. Intensity classification of the

laboratory-based activities per this system represented the reference classification used for

algorithm development and cross-validation.

Algorithm development and cross-validation

The initial step in cut-off point based algorithm development was to create a scatterplot in MS

Office Excel 2016 (Microsoft Corp., Redmond, WA, USA) using the 10-s window data, with

either SVM, IMA or TM values on the horizontal axis and MET values on the vertical axis.

Next, trend line-analysis was performed and the line-of-best fit (i.e. showing the highest pro-

portion of explained variance (R2)) was chosen. The calculated cut-off points for SVM, IMA

and TM represented MET values of 1.5 and 3, which allow classification of activity intensities

per 10-s windows based on SVM, IMA and TM values, either or not combined with posture

detection. Briefly, these cut-off point algorithms only use two steps in their classification struc-

ture: 1) comparing SVM, IMA or TM values with the calculated cut-off points and 2) if neces-

sary, posture detection (Table 2).

Random Forest model development on 10-s window features was performed in R 3.2.5 [39]

using the randomForest package [45]. The 10-s window reference classifications of the labora-

tory-based activities were used to train the Random Forest classifier (supervised machine

learning) with the number of trees set to 100. This number was derived from out-of-bag error

analyses (Fig 1).

For this study, pooled-data algorithms were developed using the leave-one-subject-out

method. This means that the 10-s window data of N = 39 (training sample; on average 1427

(8.6) data points for SB, 620 (7.4) for standing, 761 (19.9) for LIPA and 2937 (35.5) for MVPA)

was used to develop the pooled-data algorithms, while the data of N = 1 was used to cross-

validate the algorithms. With N = 40 this cross-validation procedure was repeated 40 times

with another participant to be left out each iteration. Based on the performed 10-s window

cross-validations, confusion matrices were created per participant per algorithm. Eventually,

Table 2. Cut-off point algorithm classification scheme.

Rules Classification

1 If MET value�1.5 and not upright, then: Sedentary

2 Else: If MET value�1.5 and upright, then: Standing

3 Else: If MET value >1.5 and <3, then: LIPA

4 Else: MET value�3, then: MVPA

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical

activity.

https://doi.org/10.1371/journal.pone.0188215.t002
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these matrices were used to determine balanced accuracy per intensity for each algorithm

from two perspectives: 1) participant-specific and 2) overall (all participants’ confusion matri-

ces summed).

Balanced accuracy ð%Þ ¼
Sensitivity þ Specificity

2

Sensitivity %ð Þ ¼
True positives ðNÞ

True positives ðNÞ þ False negatives ðNÞ
� 100

Specificity %ð Þ ¼
True negatives ðNÞ

True negatives ðNÞ þ False positives ðNÞ
� 100

where N represents the number of cases. Apart from the cross-validation, all algorithms were

also tested on their own training samples to check for overfitting. Balanced accuracies of

�80% were considered of an acceptable level [2].

Statistical analyses

Prior to summarising or testing data, we checked its distribution for normality. Since we had a

data sample of N = 40, the Shapiro-Wilk test was used for this purpose. Baseline characteristics

Fig 1. Out-of-bag error analyses for Random Forest modelling.

https://doi.org/10.1371/journal.pone.0188215.g001
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are presented as the arithmetic mean (SD) (or median (IQR)). To test robustness of the four

pooled-data algorithms we assessed if continuous baseline characteristics were correlated with

balanced accuracy values (either Pearson or Spearman correlation). Differences in balanced

accuracy values between categories of categorical baseline characteristics were tested with the

independent T-test (or Mann-Whitney U test). For the comparison between the four pooled-

data algorithms the one-way ANOVA repeated-measures test (or the Friedman test) was per-

formed. Balanced accuracy levels from these analyses are reported as arithmetic mean (95%-

confidence interval (95%-CI) (or median (~95%-CI)). In case multiple comparisons were nec-

essary for hypothesis testing, either Bonferroni or Sidak correction was used to adjust P-val-

ues.

Adjusted P � valueBonferroni ¼ Pvalue � k

Adjusted P � valueSidak ¼ 1 � ð1 � PvalueÞ
k

where k is the number of comparisons. For the current study, P-values were considered statis-

tically significant when P<0.05.

With data variability, even within-subject under controlled conditions, and variance being

one of the components for algorithm prediction errors, detailed data reliability checks were

deemed highly important. Since 24 × 10-s windows bilateral accelerometer data and two one-

minute expired gas samples were collected per laboratory-based activity, reliability of both

main triaxial accelerometer (static Ymean, SVM, IMA & TM) and oxygen consumption data

was determined by calculating a coefficient of variation (CV) per activity per participant.

CV %ð Þ ¼
SDactivity=participant

Arithmetic meanactivity=participant
� 100

where SD represents standard deviation. To check for consistency across the activity protocol,

all CVs were checked for correlation with MET values. If a correlation was found, data disper-

sion was determined (SD or IQR). Finally, depending on the distribution, either the arithmetic

mean (95%-CI) or median (~95%-CI) was calculated over the moduli of all CVs per outcome

variable to get sample-based reliability measures. In this study, a CV of<10% was considered

acceptable.

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0

(IBM Corp., Armonk, NY, USA).

Results

Data reliability

Relationships with MET values were only found for the CVs of accelerometer outcomes SVM

and static Ymean, ρ -0.105 (P = 0.046) and ρ -0.382 (P<0.001) respectively. IQRs for these vari-

ables were between 3.4% and 8.5% (SVM), and between 0.4% and 2.1% (static Ymean). The

sample-based CVs of static Ymean, SVM, IMA and TM were 0.8% (0.7%, 1.0%), 5.5% (5.1%,

6.0%), 5.6% (5.2%, 6.2%) and 6.2% (5.7%, 7.0%) respectively. CVs of oxygen consumption data

collected using the DB method also showed a negative relationship (ρ -0.495 (P<0.001)) with

MET values. As shown by the IQR, VO2 CVs were typically between 2.2% and 7.5%. The sam-

ple-based CV of the DB method was 4.4% (3.4%, 5.3%). For all variables, the CVs within the

IQR were<10%.
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Overall balanced accuracy

The confusion matrix shows that all algorithms classified sedentary activity with overall bal-

anced accuracies of�99.5% (Table 3). Sensitivity and specificity values were�99.2%.

Classification of standing was�95.5% accurate in all four models. Sensitivity was 92.5% in

the cut-off point algorithms and 92.0% for Random Forest, while specificity was equal over the

four algorithms (99.1%).

Most variation in overall balanced accuracies was found for LIPA, ranging from 74.3%

(TM) to 80.6% (Random Forest). The confusion matrix revealed that the models’ sensitivity

was only 57.4%, 60.1%, 51.0% and 63.7%, for SVM, IMA, TM and Random Forest respectively.

On the other hand, specificity values were�97.5% for all algorithms.

Finally, overall balanced accuracies of�93.3% were found for MVPA classification. Sensi-

tivity was�97.3% in all models, while specificity varied from 88.8% (TM) to 92.9% (Random

Forest).

The overall balanced accuracies per intensity per algorithm were comparable between the

cross-validation and training sample, except for Random Forest (Table 3). Standing, LIPA and

MVPA showed overall balanced accuracies of 100.0% on the training sample against 95.5%,

80.6% and 95.1% during cross-validation.

Robustness

Random Forest was the only algorithm not showing any changes or differences in balanced

accuracies per intensity for all individual’s baseline characteristics. The cut-off point algo-

rithms did show changes for a single baseline characteristic each, namely body height. More

Table 3. Algorithm cross-validation confusion matrix.

Cross-validation Individual

results

Training sample

Method Intensity Reference Sensitivity

(%)

Specificity

(%)

Balanced

accuracy (%)

Acceptable level

(%)

Balanced

accuracy (%)Sedentary Standing LIPA MVPA

SVM Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8

LIPA 1 48 448 61 57.4 97.8 77.6 62.5 78.0

MVPA 0 0 272 2951 98.0 90.6 94.3 100.0 94.4

IMA Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8

LIPA 1 48 469 66 60.1 97.8 78.9 65.0 79.2

MVPA 0 0 251 2946 97.8 91.3 94.5 100.0 94.6

TM Sedentary 1454 0 12 0 99.3 99.7 99.5 100.0 99.5

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8

LIPA 10 47 398 67 51.0 97.6 74.3 57.5 74.5

MVPA 0 1 322 2945 97.8 88.8 93.3 100.0 93.3

Random

Forest

Sedentary 1463 0 34 0 99.9 99.2 99.6 100.0 100.0

Standing 0 585 48 0 92.0 99.1 95.5 92.5 100.0

LIPA 1 47 497 82 63.7 97.5 80.6 80.0 100.0

MVPA 0 4 201 2930 97.3 92.9 95.1 100.0 100.0

SVM, sum of vector magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement; LIPA, light-intensity physical activity; MVPA,

moderate-to-vigorous physical activity.

https://doi.org/10.1371/journal.pone.0188215.t003
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specifically, balanced accuracies for standing were positively correlated with body height (all

three algorithms ρ 0.392 (P = 0.047)).

Algorithm comparison

Overall, differences in participant-specific balanced accuracies between algorithms were found

for one intensity only (Fig 2). More specifically, participant-specific balanced accuracies for

LIPA classification were different in three occasions, where SVM, IMA & Random Forest

appeared superior over TM. The differences found were 4.1% (1.5%, 6.6%) (P = 0.006), 6.3%

(2.6%, 10.0%) (P<0.001) and -11.2% (-18.0%, -4.4%) (P = 0.030) respectively.

Fig 2. Pairwise comparisons between algorithms per intensity using participant-specific balanced accuracies. SVM, sum of vector

magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; Error bars represent 95%-confidence intervals; Dashed line represents no difference; *P <0.05.

https://doi.org/10.1371/journal.pone.0188215.g002
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Algorithm benchmarking

Applying the critical 80%-threshold to the overall balanced accuracies of the pooled-data algo-

rithms per intensity showed that all algorithms reached the threshold for sedentary activity,

standing and MVPA classification (Table 3). However, only the Random Forest model also

met the criterion for LIPA classification.

Benchmarking the participant-specific balanced accuracies per intensity for each algorithm

revealed that all models had a perfect score (100.0%) for sedentary activity and MVPA

(Table 3). The balanced accuracy for standing classification was acceptable for 92.5% of the

participants in all algorithms. LIPA classification, however, showed acceptable balanced accu-

racies for only 62.5% (SVM), 65.0% (IMA) and 57.5% (TM) of the participants in the cut-off

point algorithms, while this was 80.0% in Random Forest.

Discussion

The main aim of the current paper was to compare between traditional cut-off points algo-

rithms and a machine learning approach, to provide the best performing heterogeneous

pooled-data algorithm to study SB and PA in older adults using thigh-mounted triaxial accel-

erometry. It is encouraging to note that all models showed acceptable overall balanced accura-

cies for classification of sedentary activity, standing and MVPA. As hypothesised however,

Random Forest outperformed the cut-off point classifiers, being robust for all individual’s

physiological and non-physiological characteristics and the only algorithm with acceptable

(�80%) overall balanced accuracies over the whole range of activity intensities. In addition,

participant-specific balanced accuracies of Random Forest were superior over TM when classi-

fying LIPA.

The fact that Random Forest algorithm performance was better than cut-off point models

of SB and PA intensity detection is likely owing to its ability to recognise patterns in non-linear

and complex data by using a combination of multiple decision trees, each trained on a random

set of features [6,30]. To illustrate the difference with cut-off point algorithms, these models

were developed using only two parameters from the triaxial accelerometer data, whereas

modelling of the Random Forest algorithm used 55 parameters. Despite this, the differences in

performance found between the cut-off point algorithms and Random Forest were rather

small only. When comparing balanced accuracies between the cut-off point algorithms tested,

an explanation for the results might come from the variability of the parameters used to

develop the algorithms. Since oxygen consumption data was used similarly for all models, this

parameter did not result in any differences. Nevertheless, with a CV of 4.4% (3.4%, 5.3%), DB

proved to be a reliable method in the current study. The fact that all algorithms used the same

parameter for posture detection, static Ymean respectively, means that it can also be ruled out

as a possible explanation for algorithm performance differences. With a CV of only 0.8%

(0.7%, 1.0%) in this study, this parameter was considered highly reliable. Based on the balanced

accuracies, TM is the lowest performing algorithm showing either similar or inferior balanced

accuracy results per intensity when compared to the other cut-off-point algorithms. Although

the CV of TM as a parameter is only 6.2% (5.7%, 7.0%), it is slightly higher than the CVs of

SVM and IMA, 5.5% (5.1%, 6.0%) and 5.6% (5.2%, 6.2%) respectively. The use of a parameter

representing dataset dispersion (the SD in TM), rather than a summation or integration of all

data points may well be the explanation for comparatively poorer performance. As reflected by

their CVs, SVM and IMA are equally performing classifiers. Although not all parameter CVs

showed consistency with increasing MET values, the CVs within the IQR of all parameters

were of an acceptable level (<10%), which might have resulted in acceptable overall balanced

accuracies (�80%) for all intensities of the cut-off point algorithms, except LIPA. Generally,
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when looking at the overall balanced accuracies per cut-off point algorithm, a similar pattern

can be discovered. Sedentary activity and standing are the most accurately classified intensities,

then MVPA and ultimately LIPA. The main issue with LIPA classification, for as well cut-off

point algorithms as Random Forest, is the poor sensitivity (51.0%–63.7%), which is predomi-

nantly caused by misclassification with MVPA. Since the MET value range for LIPA classifica-

tion is relatively small compared to MVPA’s, the LIPA/MVPA threshold is easily surpassed

and therefore any amount of movement is more likely to be classified as MVPA instead of

LIPA.

The positive relationships found between balanced accuracies and body height for standing

classification in all three cut-off point algorithms during robustness analyses, may be due to

another reason than body height. Although we standardised accelerometer mounting position

by using 50% of the femur length, absolute measures show different positions, which could

affect accelerometer signals. Namely, the distance to the centre of rotation (hip and knee joint

respectively) influences accelerometer measurements proportionally [46]. For identical move-

ments, the larger the distance to the centre of rotation (as in taller people), the greater the

dynamic acceleration compared to that measured at positions closer to the centre of rotation

(as in smaller people). This over-registration of dynamic acceleration could lead to false classi-

fication of activities with higher intensities instead. Looking at the confusion matrices, stand-

ing does show lower sensitivity values for the cut-off point algorithms, which results from

misclassification with LIPA. Altogether, this implies that taller people would have lower bal-

anced accuracies than smaller people, but frankly, we found positive correlations. Moreover,

we only saw the robustness issues for standing and no other intensities. Therefore, it is plausi-

ble to assume that it was not body height to cause any changes in balanced accuracies of stand-

ing for the cut-off point algorithms. Further analysis showed that there were only three people

with considerably lower balanced accuracies for standing (75% vs.�96.2%). Interestingly, they

were amongst the smallest study participants (�1.60 m). In addition, the confusion matrices

showed that all the standing misclassifications happened in these three participants, while ten

others of�1.60 m body height showed balanced accuracies like taller participants. Hence,

when leaving the three out of the correlation analyses, no significant relationships between bal-

anced accuracies of cut-off point algorithms for standing classification and body height were

found anymore. When looking into more detail at the raw data, we noticed that the misclassifi-

cations in fact occurred during sideways shuffling, for which the three involved participants

also happened to exhibit EE�1.5 MET. As a result of the latter, the reference classification for

this activity was standing but the algorithms classified it as LIPA due to motion sensing. Thus,

it was not the ‘body height’ parameter, which negatively affected the algorithm robustness

results in these rare cases. Therefore, it is safe to say that all algorithms in this current study are

robust, which is most probably the result of using a heterogeneous study sample.

Whilst it was encouraging to note that all algorithms showed acceptable overall balanced

accuracies for classification of sedentary activity, standing and MVPA, Random Forest was the

only model that also achieved the critical 80%-threshold for LIPA classification. Despite the

generally good results, the disadvantage of an overall measure is that it can mask unacceptable

algorithm performance on an individual basis. For that reason, it is also important to check

the percentage of acceptable participant-specific balanced accuracy per intensity for each

model. This revealed that individual classification of sedentary activity and MVPA was always

of an acceptable level, which allows categorisation of people based on the amount of SB and

MVPA, such as active, inactive and active couch potato. Moreover, standing classification was

acceptable for 92.5% of the participants in all algorithms. On the contrary, LIPA classification

was acceptable in only�65.0% of the participants when using a cut-off point algorithm, while

this number rose to 80.0% in case Random Forest was used. To summarise, these results show
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that the cut-off point algorithms presented in the current study, can be used to detect SB,

standing and MVPA in older adults confidently. The Random Forest algorithm, however, can

be used for the same outcomes, including LIPA classification too. This latter is exciting,

because LIPA might play an important role in gaining health benefits by counteracting SB

through PA in elderly [1]. Moreover, performance of MVPA may have negative physiological

effects, such as increased inflammation, and not necessarily elicit any greater physiological

benefits over LIPA in the older adult population [47]. Additionally, performing MVPA may

have a high threshold as well as poor long-term adherence in elderly.

Compared to recent research that, similarly to our present one, conducted laboratory-based

testing to validate activity intensity identification algorithms including machine learning, our

results are in fact a further improvement on these classifiers because we also focus on algo-

rithm robustness and benchmark individual accuracies [2,23,48]. Although comparing results

between studies is complicated by differences in populations, monitor placement (mainly hip

or wrist, against us thigh) that may influence classification [2], and outcome variables (e.g.

Kappa statistic vs. balanced accuracy) [42], our overall finding is in agreement with Ellis et al.

[6]. They also showed improved free-living activity intensity classification with machine learn-

ing over traditional cut-off point models (without posture detection). However, it must be

noted that their machine learning algorithm was developed using free-living accelerometer

data only, while the traditional cut-off points were derived in the laboratory.

One could consider the development of algorithms under laboratory conditions as a limita-

tion, given the fact that when laboratory-based, performance during real-life mobility moni-

toring is compromised [2,6]. However, in the laboratory, conditions can be controlled and a

whole range of activities and intensities can be studied allowing calibration, while simulta-

neously providing proof-of-concept such as thigh-mounted triaxial accelerometry in older

adults [2,24]. To improve the matching of performance from laboratory-based with free-living

based accelerometer algorithms one may match the amount of data collected on each behav-

iour with its prevalence in free-living and train the algorithms with bout lengths similar to true

daily life behaviour [24]. Although our use of steady-state data of activities with predefined

length will improve algorithm accuracies [2], this may not be directly translated to data col-

lected outside the laboratory, since steady-state is not necessarily reached in free-living condi-

tions with activities being more sporadic [24]. Also, Gyllensten and Bonomi [49] found that

activities in free-living conditions exhibit a higher degree of overlapping characteristics in

their acceleration features when compared with activities performed in the laboratory. Some

free-living activities even show substantially different acceleration signals in comparison to

when performed in the laboratory [2,24]. Although we agree that true performance of our

algorithms in real-life conditions cannot necessarily be derived from the balanced accuracies

seen under laboratory settings and it will probably be lower in free-living, we do not expect the

dramatic decrease (~13%–46%) reported elsewhere [2,6,24,48,49]. There are several reasons

supporting this expectation. Firstly, most of these studies are either not comparable to our

study in terms of study population, modelling techniques/settings, extracted features, and

accelerometer placement, or suffered from serious methodological issues such as using the

same sample to both develop and validate algorithms [2,6,24,48,49]. Secondly, we included

few, but common basic activities for elderly persons in our protocol [50–52], and instructed

participants to perform them as ‘naturally as possible’ i.e. using self-selected speed and/or

intensity. Next, instead of activity classification, we used intensity classification (based on indi-

vidual REE corrected MET values) in our study, which is a more generic system providing less

options, and thus expected to be less prone to error when applied outside the laboratory [24].

Finally, we used a heterogeneous sample, representing the true healthy older adult population,

to develop the algorithms.
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Another potential study limitation may be the fact that our models have been developed for

application in a single thigh-mounted accelerometer, which does not allow perfect monitoring

of PA, as perhaps wobbling of thigh mass or the lack of upper-body movement detection

results in classification errors [10,27]. Although it has been suggested that mounting multiple

sensors could address the latter issue [10,27,53], study compliance may become compromised

[48], something that is less of a problem with a single accelerometer [21,27]. Moreover, thigh

mounting can accurately distinguish between sitting and standing, which is not possible with

traditional monitor placement at the hip or waist [19,20,54,55]. This placement is thus superior

to detect upright stationary activities common in the household, that tend to be more metabol-

ically demanding than activities that recruit only the upper body. Thigh mounting is also rela-

tively close to the centre of mass, which is vital for good prediction of EE and monitoring of

locomotion [10,16]. Capturing locomotion is important in elderly, because it provides infor-

mation about physical independence [10]. Generally, a combination between thigh-mounted

accelerometry and machine learning is considered ideal, because the latter in fact makes sensor

placement less relevant [27].

The major strength of our current approach is that its design and protocol are largely in

accordance with the recommendations for accelerometry-based studies done by Welk et al.

[32]. To highlight these compelling elements, despite being modestly sized (~16.4 hrs of algo-

rithm training data only), a study sample containing a large variety of physiological and non-

physiological characteristics was used to develop four different accelerometer algorithms. The

analyses were performed in more detail (such as focusing on robustness and benchmarking

individual accuracies) than usually seen in the literature. The use of leave-one-subject-out

cross-validation, ideal for smaller datasets, minimises the risk of overfitting with Random For-

est machine learning and enhances the general applicability of the algorithms to new data [56].

Additionally, by using a reliable method for measuring oxygen consumption (CV 4.4%

(5.3%)) and correcting for individual metabolic baselines, coupled with direct observation, the

reference intensity classification is highly accurate. Since both raw accelerometer data and vid-

eos were collected, post-study analyses will be possible such as algorithm tuning, epoch length

optimisation or activity classification, but also comparisons with other monitors. Most impor-

tantly, this is the first study to conduct detailed analyses of heterogeneous pooled-data algo-

rithms, ranging from simple cut-off point to complex machine learning, for the quantification

of SB and PA in older adults using thigh-mounted triaxial accelerometry.

Future studies should focus on further analysis and development of the Random Forest

algorithm to classify activities qualitatively. This will not only result in better prediction of EE

[57], but also provide information not captured by intensity classification [4,6,24]. Moreover,

the Random Forest algorithm should be validated in a free-living set-up and compared to a

similar algorithm developed on free-living data. Furthermore, comparisons with proprietary

algorithms of commercially available activity monitors would be interesting, not least to allow

direct comparison of data from different laboratories and hence the creation of large data sets.

Overall, these suggestions would 1) improve understanding of the associations between

human activity and health that will inform future recommendations and guidelines for older

adults to support healthy ageing [4,6,24] and 2) help to improve current industry standards in

activity monitoring in elderly.

Conclusions

Unlike the cut-off point algorithms, under laboratory conditions the Random Forest machine

learning model showed acceptable algorithm performance throughout the whole range of activ-

ity intensities in older adults wearing a thigh-mounted triaxial accelerometer. Its performance
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of LIPA classification in particular, makes the algorithm highly relevant for this age group. The

fact that this pattern recognition technique 1) does not require subgroup-specific calibrations

and/or specific accelerometer body part positioning, 2) is capable of recognising actual human

activities and 3) works independent of accelerometer brand/settings, signifies its potential

large-scale applicability to distinguish SB and different levels/types of PA in older adults.
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29. Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current prac-

tices and issues. Br J Sports Med. 2015 Feb; 49(4):219–23. https://doi.org/10.1136/bjsports-2013-

093407 PMID: 25370153

30. Bassett DR, Rowlands A, Trost SG. Calibration and validation of wearable monitors. Med Sci Sports

Exerc. 2012 Jan; 44(SUPPL. 1):S32–8.

31. Rosenberg D, Godbole S, Ellis K, DI C, Lacroix A, Natarajan L, et al. Classifiers for Accelerometer-Mea-

sured Behaviors in Older Women. Med Sci Sports Exerc. 2017 Mar; 49(3):610–6. https://doi.org/10.

1249/MSS.0000000000001121 PMID: 28222058

32. Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activ-

ity monitors. Med Sci Sports Exerc. 2012 Jan; 44(SUPPL. 1):S39–49.

33. Sport TE. Resting Heart Rate Table [Internet]. Vol. 2015, Unknown. 2015 [cited 2016 Sep 21]. http://

www.topendsports.com/testing/heart-rate-resting-chart.htm

34. PROFESSIONAL M. Assessment of falls risk in older people (Side 1) (Falls Risk Assessment Tool-

FRAT) [Internet]. Qeen Mary College London. 2004 [cited 2014 Dec 17]. p. 1–2. http://www.

1000livesplus.wales.nhs.uk/sitesplus/documents/1011/FRATtool.pdf

35. Bouten CVC, Koekkoek KTM, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable

data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997 Mar;

44(3):136–47. https://doi.org/10.1109/10.554760 PMID: 9216127

Algorithm performance and activity intensities in elderly

PLOS ONE | https://doi.org/10.1371/journal.pone.0188215 November 20, 2017 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/9588623
http://www.ncbi.nlm.nih.gov/pubmed/19299836
https://doi.org/10.1080/02640410802334196
https://doi.org/10.1080/02640410802334196
http://www.ncbi.nlm.nih.gov/pubmed/18949660
https://doi.org/10.1080/17477160701408809
https://doi.org/10.1080/17477160701408809
http://www.ncbi.nlm.nih.gov/pubmed/17852552
http://www.ncbi.nlm.nih.gov/pubmed/20440028
https://doi.org/10.1249/MSS.0b013e31820ce174
https://doi.org/10.1249/MSS.0b013e31820ce174
http://www.ncbi.nlm.nih.gov/pubmed/21233777
https://doi.org/10.1136/bjsports-2014-093546
http://www.ncbi.nlm.nih.gov/pubmed/24782483
http://www.ncbi.nlm.nih.gov/pubmed/24263980
https://doi.org/10.1088/0967-3334/35/11/2191
http://www.ncbi.nlm.nih.gov/pubmed/25340969
http://www.ncbi.nlm.nih.gov/pubmed/27089222
https://doi.org/10.1088/0967-3334/30/4/R01
http://www.ncbi.nlm.nih.gov/pubmed/19342767
https://doi.org/10.3390/s100807772
http://www.ncbi.nlm.nih.gov/pubmed/22163626
https://doi.org/10.1088/0967-3334/35/11/2183
http://www.ncbi.nlm.nih.gov/pubmed/25340887
https://doi.org/10.1136/bjsports-2013-093407
https://doi.org/10.1136/bjsports-2013-093407
http://www.ncbi.nlm.nih.gov/pubmed/25370153
https://doi.org/10.1249/MSS.0000000000001121
https://doi.org/10.1249/MSS.0000000000001121
http://www.ncbi.nlm.nih.gov/pubmed/28222058
http://www.topendsports.com/testing/heart-rate-resting-chart.htm
http://www.topendsports.com/testing/heart-rate-resting-chart.htm
http://www.1000livesplus.wales.nhs.uk/sitesplus/documents/1011/FRATtool.pdf
http://www.1000livesplus.wales.nhs.uk/sitesplus/documents/1011/FRATtool.pdf
https://doi.org/10.1109/10.554760
http://www.ncbi.nlm.nih.gov/pubmed/9216127
https://doi.org/10.1371/journal.pone.0188215


36. Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG. Implementation of a real-time human

movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol

Biomed. 2006 Jan; 10(1):156–67. PMID: 16445260

37. Bayat A, Pomplun M, Tran DA. A study on human activity recognition using accelerometer data from

smartphones. Procedia Comput Sci. 2014; 34(C):450–7.

38. Liu S, Gao RX, Freedson PS. Computational methods for estimating energy expenditure in human

physical activities. Med Sci Sports Exerc. 2012 Nov; 44(11):2138–46. https://doi.org/10.1249/MSS.

0b013e31825e825a PMID: 22617402

39. R Development CT. R: A language and environment for statistical computing. Vol. 2.2.0. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2005.

40. Onambele GL, Narici M V, Maganaris CN. Calf muscle-tendon properties and postural balance in old

age. J Appl Physiol. 2006 Jun 19; 100(6):2048–56. https://doi.org/10.1152/japplphysiol.01442.2005

PMID: 16455811

41. Bedogni L, Di Felice M, Bononi L. By train or by car? Detecting the user’s motion type through smart-

phone sensors data. In: IFIP Wireless Days. IEEE; 2012. p. 1–6.

42. Attal F, Mohammed S, Dedabrishvili M, Chamroukhi F, Oukhellou L, Amirat Y. Physical Human Activity

Recognition Using Wearable Sensors. Sensors. 2015 Dec 11; 15(12):31314–38. https://doi.org/10.

3390/s151229858 PMID: 26690450

43. Ellis K, Godbole S, Marshall S, Lanckriet G, Staudenmayer J, Kerr J. Identifying Active Travel Behaviors

in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms. Front

Public Heal. 2014 Apr 22; 2.

44. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. J Stat Softw. 2010; 36(11):1–13.

45. Liaw a, Wiener M. Classification and Regression by randomForest. R news. 2002; 2(December):18–22.

46. Bernmark E, Wiktorin C. A triaxial accelerometer for measuring arm movements. Appl Ergon. 2002

Nov; 33(6):541–7. PMID: 12507338
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