Daily Rhythms 1: Population Denominators and Spatio-Temporal Crime Hotspots

Manchester Metropolitan University Crime & Well-Being Big Data Centre

Muhammad Salman Haleem, Won Do Lee and Jon Bannister

EuroCrim2017: 14th September 2017

Contents

- 1. Population denominators and crime hotspots literature
- 2. Our Contribution
- 3. Results
- 4. Conclusion

Population measures

- 1. Residential Population
- 2. Workplace Population (Malleson & Andresen, 2016)
- 3. Ambient Population (Mburu & Helbich, 2016; Andresen, 2011; Bogomolov et al., 2014)

Research Questions

Q1. Do these population estimates capture the daily rhythms of the city?

Q2. Do they represent the population-at-risk?

Our Greater Manchester data

- Mobile Phone Origin Destination (MPOD) matrices from Transportation of Greater Manchester (TfGM)
 - Average number of persons travelling per trip from Origin A to Destination B in different time bins (T₀, T₁,...,T_N)!
 - Each trip assigned with a flag to represent final Destination (1- YES, 0-No)
- Crime Data from Greater Manchester Police (GMP)
- Attributes: Crime records with spatial coordinates and time-stamps / (non domestic)
 Man Met Crime & Wild Feinent crime Big Data Centre

The spatial patterning of violent crime counts

Conventional correlation analysis (daily population measure)

Total crime	Residential pop	Workplace pop
Pearson Correlation	.202**	.626**
Sig. (2-tailed)	.000	.000
Ν	1673	1673
**. Correlation significant at 0.01 level (2-tailed).		

The temporal patterning of violent crime

Big Data Centre

Ambient (total) population

- Based on the incremental flows of the residential population in different time bins (T₀, T₁,...,T_N)!
- Assuming the ambient population to be equivalent to residential population at To (midnight)
 - Amb_pop_To = Resid_pop + Inflows_To -Outflows_To]
 - Amb_pop_T₁ = Amb_pop_T₀ + Inflows_T₁ -Outflows_T₁]

Exposed (mobile) population

- Based on determining the street based population at different time bins (T₀, T₁,...,T_N)!
- This excludes the population who have reached their final destination or have left the area (initial origin) at particular time
- Exp_pop_To = Inflows_To + Outflows_To - Inflows_To_FD -Outflows_To_FO

Time sensitive ambient and exposed populations T1 = 7 am to 10 am

Time sensitive correlation analysis

Hotspot analysis

- Gi* statistics (Getis-Ord's Gi*)
- Z-score of Gi* (p-value <0.05) enables identification of high or low value clusters of spatial units.
- Question to what extent does the method of spatiotemporal clustering impact on the detection of hotspots?

Violent Crime Count and Crime Rate Hotspot Analysis by Different Population Denominators in Different Time Bins

T2 = 10 am to 16 pm

Conclusion

- The daily rhythms of the city ambient and exposed populations.
- The exposed (theoretically correct?) population holds a higher correlation with the violent crime than the ambient population across multiple time bins.
- Different population denominators generate markedly different hotspots.
- Population denominators require to be sensitive to crime type.

Questions?

Contact Details:

M. Salman Haleem Manchester Metropolitan University Crime and Well-Being Big Data Centre Manchester, UK m.haleem@mmu.ac.uk

Man Met Crime & Well-Being Big Data Centre