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Abstract

An improved immersed boundary method is proposed and applied to simulate fluid-structure interactions

by combining a level set method for free water surface capturing. An efficient Navier-Stokes equation solver

adopting the fractional step method at a staggered Cartesian grid system is used to solve the incompressible

fluid motion. A new efficient algorithm to search forcing points near the immersed body boundary is de-

veloped. The searching schemes for forcing points located both inside and outside the solid phase with the

linear interpolation schemes for the determination of velocities at forcing points are presented and compared

via the case of dam break over obstacles. The accuracy and effectiveness of the proposed forcing point

searching schemes are further demonstrated by the study of wave propagation over a submerged bar and

more challenging cases of wedge with prescribed velocity or falling freely into the water. By the extensive

comparison of present numerical results with other experimental and numerical data, it suggests that the

present improved immersed boundary method with the new forcing point searching scheme has a better

performance and is very promising due to its accuracy, efficiency and ease of implementation. Furthermore,

the present numerical results show that the outside forcing scheme is superior over the inside forcing scheme.

Keywords: Immersed boundary method, Level set method, Forcing point searching scheme, Dam break,

Free fall wedge

1. Introduction1

Fluid-structure interaction (FSI) is a classical hydrodynamic problem and has a wide range of applications2

in many ocean and coastal engineering problems. Numerical simulations gain its popularities to handle3

the FSI problems. However, numerical simulation of fluid-structure interactions is extremely complicated,4

especially when involving moving objects with irregular boundaries and complex free surface evolutions. With5

the rapid advance in computing technology, more researchers and engineers have paid extensive attentions6

to the development of efficient numerical methods to study fluid-structure interactions. Traditionally, the7
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problems can be solved by the boundary-fitted method (Yan and Ma, 2007; Yang et al., 2008), which8

generates the curvilinear structured or unstructured grids conforming to the body boundary. However, grid9

regeneration is entailed with a heavy cost in computational time as well as manpower. The drawback of the10

method due to its inapplicability to the multi-grid acceleration solver is also obvious.11

Over the last few decades, Immersed Boundary Method (IBM) becomes increasingly popular among12

the numerical methods to simulate bodies in fluid domain. It introduces a body force to the momentum13

equations at certain points in the domain, without the necessity of performing the mapping procedures,14

aiming to simulate the effect of the investigated body in the flow. As a result, generation of grids is greatly15

simplified. The immersed boundary method was firstly proposed by Peskin (1972), based on which Goldstein16

et al. (1993) and Saiki and Biringen (1996) introduced a feedback forcing mechanism to enforce the desired17

boundary condition at the immersed boundary. It can be implemented into an existing Navier-Stokes solver18

with relative ease due to its advantage of being formulated relatively independent of the spatial discretization.19

However, this technique may induce high-frequency spurious oscillations and restrict the computational time20

step, which makes the simulation of flow fields in complex domains very expensive.21

To address the issue of too small time step, Mohd-Yusof (1997) proposed a discrete-time immersed22

boundary method combining with a B-spline spectral method, which allows the implementation of complex23

moving geometries in the pseudo spectral codes. Due to the expense of calculating the B-spline coefficients at24

each time step, it requires much memory so that the availability is restricted. Fadlun et al. (2000) applied the25

discrete-time forcing scheme on a staggered grid and compared with the feedback forcing scheme proposed26

by Goldstein et al. (1993) and Saiki and Biringen (1996). The comparison indicated that the discrete-time27

forcing scheme is more efficient than the feedback forcing scheme. In addition, Fadlun et al. (2000) imposed28

the forcing term inside the flow field while in Mohd-Yusof (1997) the momentum forcing was applied only29

on the body surface or inside the body. Fadlun et al. (2000) also tested the three interpolation procedures,30

stepwise geometry, volume fraction and linear interpolation. It was shown that linear interpolation can yield31

most accurate solution.32

Kim et al. (2001) developed a new immersed boundary method by introducing a mass source/sink as well33

as a momentum forcing applied on the body surface or inside the body. Although Kim et al. (2001) adopted34

both the linear and bilinear interpolation schemes, no comparison was given to determine which scheme is35

better. Furthermore, the combination of the immersed boundary method and the free surface simulation36

was not tested in Kim et al. (2001). Based on the direct forcing scheme, Balaras (2004) performed large37

eddy simulations around complex boundaries on fixed Cartesian grids. In his method, the forcing term was38

added to the points in the flow field near the body boundary. Chiu et al. (2010) developed a differential-39

based interpolation scheme for the direct forcing term in the immersed boundary method and compared to40

the algebraical interpolation method. Although the differential-based interpolation can obtain high order41

accuracy, it requires iterations to get the velocity for the direct forcing term, which may demand large42

computer resource.43
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Before the work in Balaras (2004), Mohd-Yusof (1997), Fadlun et al. (2000) and Kim et al. (2001) only44

described little about the procedure of locating the forcing points. Balaras (2004) proposed a tedious scheme45

to determine the forcing points. First step is to tag all the velocity points in the vicinity of the immersed46

boundary with −1 (fluid phase) and +1 (solid phase) flags according to the normal vector. Second step47

is to examine all the points with −1 flag to find out if they have at list one neighbour with +1 flag. If48

the points with −1 flag satisfy the requirement, they are determined as forcing points. Recently, Mittal49

et al. (2008) described a highly versatile immersed boundary method (based on a discrete-forcing scheme)50

by the calculation of variables on ‘ghost-cells’ inside the body to satisfy the boundary conditions. In spite51

of a ‘sharp’ representation of the moving immersed boundary, Mittal et al. (2008) only applied the model to52

flows without the free surface. At the same time, Zhang et al. (2010) developed a new level set immersed53

boundary method to investigate the interaction between free surface flows and structures. In their model, an54

algorithm to locate exactly the forcing points inside the solid phase was proposed. However, the algorithm55

of searching forcing points via a bounding box with triangular grids is complicated to implement and it is56

not easy to locate forcing points around a sharp boundary. Similar to the approach of Balaras (2004), Zhang57

et al. (2010) still required additional steps to exclude the flagged solid points which do not have one or more58

neighbouring points in the fluid phase.59

From the above discussion, one may note that the importance of searching algorithm to locate forcing60

points can be easily overlooked in the previous work, or the searching algorithm is quite complicated for61

implementation, which motivates this piece of work. In fact, an accurate and efficient searching scheme is62

essential for the success of the immersed boundary method. In the present paper, a simple and straight-63

forward forcing point searching scheme is proposed, which exhibits the advantage of simplicity and ease of64

implementation with remaining desirable accuracy. For a node around the immersed body boundary to be65

identified as a forcing point, it may lie in either the solid phase or the fluid phase. However, there is no66

generally accepted standard in choosing forcing points inside or outside the solid phase so far. This work67

attempts to shed light on this issue by the comparison of forcing points both inside and outside the solid68

phase, and come out with a recommendation. The developed immersed boundary method is used to study69

the complicated multi-phase flows in conjunction with a level-set method for free surface capturing developed70

by Archer and Bai (2015), which is also rare in the previous studies. Four testing examples involving both71

fixed and moving bodies with irregular geometries are used to demonstrate the effectiveness of the newly72

developed forcing point searching schemes. Extensive comparisons are made to confirm the accuracy of the73

present numerical model.74
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2. Mathematical formulation75

2.1. Governing equations76

In the study of two dimensional incompressible viscous flows, the motion of the fluid is governed by the77

Navier-Stokes equations,78

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

(
− ∂p

∂xi
+
∂τij
∂xj

)
+ gi + fi, (1)

and the continuity equation,79

∂ui
∂xi

= 0, (2)

where the Cartesian tensor notation is used, ui is the fluid velocity, p is the pressure, xi is the spatial80

coordinate, t is the time, gi is the gravitational acceleration, fi is the momentum forcing component used81

to enforce the desired boundary condition on an immersed boundary interface in the present study. ρ is the82

fluid density and τij are the viscous stress components given by83

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3)

where µ is the fluid viscosity.84

2.2. Free surface simulation85

As the present study focuses on the investigation of flows with free surface undergoing topological changes,86

splitting and merging, the level set method is adopted to capture the air-water interface in the frame of two-87

phase flow model. In the level set method, a scalar level set function φ is defined throughout the domain to88

represent the location of grid cell relative to the water surface. The level set function is a signed distance89

function, which measures the shortest distance from the grid cell to the water surface (i.e. |∇φ| = 1) and is90

positive in one fluid phase and negative in the other. The evolution of the level set function φ is governed by91

∂φ

∂t
+ ui

∂φ

∂xi
= 0. (4)

In the Navier-Stokes equations, both ρ and µ depend on the local fluid phase properties. If ρ and µ are92

discontinuous, the numerical solution of the Navier-Stokes equations may yield instabilities at the interface.93

In order to avoid the possible numerical instability caused by the sharp gradients of fluid properties, ρ and94

µ are smoothed over a small distance ε = 2∆x across the interface by the use of a Heaviside function H,95

where ∆x is the typical grid size. We calculate ρ and µ by96

ρ (φ) = ρair +H (φ) (ρwater + ρair) , (5)

µ (φ) = µair +H (φ) (µwater + µair) , (6)
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where the subscripts air and water denote values of the air and water respectively, and the Heaviside function97

is defined by98

H(φ) =


0 if φ < −ε
1

2

[
1 +

φ

ε
+
sin (πφ/ε)

π

]
if |φ| ≤ ε

1 if φ > ε

. (7)

3. Numerical method99

3.1. Navier-Stokes equation solver100

The Navier-Stokes equations are discretized using a finite difference method on a staggered grid, in which101

the velocity components are defined at the centre of cell face in the x and y directions respectively, with all102

the other variables, i.e. p, φ, ρ and µ defined at the grid cell centre. With a second-order Runge-Kutta Total103

Variation Diminishing (RK-TVD) scheme adopted to discretize the temporal gradient, the Navier-Stokes104

equations can be solved by using a fractional step method,105

u∗∗i = uni + ∆t

(
1

ρn (φ)

(
∂τnij
∂xj

)
− unj

∂uni
∂xj

+ gi + fi

)
, (8)

∂

∂xi

(
1

ρn (φ)

∂pn

∂xi

)
=

1

∆t

(
∂u∗∗i
∂xi

)
, (9)

ûn+1
i = u∗∗i −

∆t

ρn (φ)

∂pn

∂xi
, (10)

where u∗∗ is the predicted velocity and the superscript n denotes values at the time step n. The computed106

pressure field is used to predict the new velocity field ûn+1
i in Eq. 10. The same procedure is then repeated107

based on the predicted velocity field, and another new velocity field ûn+2
i can be determined, by which the108

corrected velocity field at the time step n+ 1 can be eventually calculated by averaging the velocity field at109

the time step n and the second prediction,110

un+1
i =

1

2

(
uni + ûn+2

i

)
. (11)

As it is essential to avoid the introduction of numerical instabilities due to the sharp gradients at the111

interface, the first-order upwinding scheme is adopted to discretise the convective term in Eq. 8. The spatial112

gradients are discretized with a second-order central difference scheme.113

3.2. Free surface solver114

Accurate solution of the level set equation (Eq. 4) is crucial to capture the air-water interface accurately.115

Here, the velocity gradients in Eq. 4 is discretised by a fifth-order HJ-WENO scheme (Jiang and Peng,116
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2000), with a third-order RK-TVD scheme for the temporal gradient. Since only the location of free surface117

is of interest, the level set function φ can only be solved in a narrow band around the interface. In the118

present study the narrow band occupies six cells at each side of the interface (Peng et al., 1999). As the119

evolution of the level set function in time may cause φ deviate from being a signed distance function (i.e.120

|∇φ| 6= 1), the reinitialisation is required. Here, we reinitialize φ using an efficient fast marching technique121

at every time step, see Sethian (1996) for details.122

4. Immersed boundary method123

Fluid flow over a body can exert a force on the no-slip body surface and the body will, in turn, apply a124

force with the same magnitude but in the opposite direction on the local flow. As a result, the fluid flow can125

be brought to rest on the body surface (Goldstein et al., 1993). Determination of momentum force exerted126

by the body on the fluid at the immersed body boundary is the key issue and also the main difficulty in the127

development of an immersed boundary method.128

4.1. Identification of forcing points129

The first step in the immersed boundary method is to predict the forcing points on which the momentum130

force is applied on the fluid. In the present searching method, the boundary of the solid body is represented131

by a series of straight line segments defined in an anti-clockwise direction, such that the solid phase is always132

located at the left hand side of the line segments. The present algorithm is applied to each boundary line133

segment. For the purpose of demonstration, the line 1-2 shown in Figs. 1 and 2 is a boundary segment, and134

the shadowed areas in the figures represent the solid phase, where Figs. 1 and 2 show the forcing points135

located inside and outside the solid phase respectively. The angle between the line 1-2 and the x direction136

needs to be first calculated. According to the angle being located at each quadrant, there are four possible137

situations,138

Quadrant =



1, when x1 > x2 and y1 < y2

2, when x1 > x2 and y1 > y2

3, when x1 < x2 and y1 > y2

4, when x1 < x2 and y1 < y2.

. (12)

In Figs. 1 and 2, only the situation when the line 1-2 is located at the first quadrant is discussed in detail,139

which can be extended easily to the other three quadrants. After identifying the quadrant that the line140

segment belongs to, we further consider two possibilities by comparing the line segment with the diagonal141

line in that quadrant, and discuss these two possibilities separately.142

If the angle between the line segment and the x direction is smaller than that of the diagonal line in the143

corresponding quadrant (or equivalently the line segment is ahead of the diagonal line), the forcing points144
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solid point fluid point

1 (x1, y1)

2 (x2, y2)

(a) Line segment slope < diagonal line slope

u forcing point

2 (x2, y2)

v forcing point

1 (x1, y1)

(b) Line segment slope > diagonal line slope

Figure 1: Demonstration of searching procedure for forcing points located inside the solid phase. The red dash line

is denoted as the diagonal line.

around the solid boundary are searched along the x direction. Otherwise, the searching along the y direction145

would easily lead to the missing of forcing points because the vertical distance between Point 1 and Point146

2 (shown in Figs. 1(a) and 2(a)) is much smaller than the horizontal distance. In the searching process, an147

imaginary Lagrangian point travels from Point 1 along the line segment. When the Lagrangian point meets148

the first vertical grid line, the intersection between the line segment and the vertical grid line is recorded.149

Depending on the forcing points chosen to be inside or outside the solid phase, the nearest u velocity position150

in the corresponding phase is identified, and defined as a u forcing point. The Lagrangian point continues151

to travel by a half grid in the x direction, such that it locates on the same vertical line with the v velocity.152

Along this vertical line, the nearest v velocity position in the corresponding phase is recorded as a v forcing153

point. When the Lagrangian point eventually reaches Point 2, all required forcing point information can154

be gathered, which will be used in the interpolation. The rule discussed and corresponding results are155

demonstrated by the blue arrows in Figs. 1(a) and 2(a). Discussion on the forcing points inside or outside156

the solid boundary indicates that the difference between the two types of forcing point searching schemes157

is very little, which is physically just a cell apart between them. The main difference between these two158

searching schemes lies in the interpolation, which will be discussed later.159

The searching procedure is also applicable to the case when the slope of the line segment is larger than160

1 (or equivalently the line segment is behind the diagonal line), as shown in Figs. 1(b) and 2(b), but the161

searching direction should be changed to the y direction. The similar procedure can be implemented in the162
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solid point fluid point

1 (x1, y1)

2 (x2, y2)

(a) Line segment slope < diagonal line slope

u forcing point

2 (x2, y2)

v forcing point

1 (x1, y1)

(b) Line segment slope > diagonal line slope

Figure 2: Demonstration of searching procedure for forcing points located outside the solid phase. The red dash line

is denoted as the diagonal line.

other 3 quadrants. Especially, if the line segment is horizontal or vertical, which is identical to the horizontal163

or vertical grid line, the nearest u and v velocity positions in the corresponding phase can be simply chosen164

as the forcing points. In addition, for a very sharp corner, the forcing points obtained by searching along two165

different line segments might overlap. In this situation, the momentum forces obtained by the interpolation166

with respect to the two different line segments are averaged to provide a unique value at this forcing point,167

which is different from the method proposed by Mittal et al. (2008) who selected the forcing point closest to168

the boundary and applied the momentum forcing on it.169

It should be noted that the numerical exercise indicates that no obvious additional computer time is170

required in the current new forcing point searching algorithm, as all the calculations are quite straightforward,171

without any complicated searching and sorting operations.172

4.2. Determination of momentum forcing component173

It is noted that the forcing term fi in Eq. 8 needs to be determined prior to the computation of velocities174

u∗∗. This forcing term is prescribed at each time step to satisfy the desired boundary velocity ub on the175

boundary surface. To achieve the expression of the forcing term, the discretized momentum equation can be176

reformulated as177

un+1
i − uni

∆t
= RHSn

i + fi, (13)
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where RHS includes all the convective, viscous, pressure gradient and body force terms in the governing178

equations. When the grid line coincides with the immersed solid boundary, the forcing term fi must yield179

un+1
i = ub on the immersed solid boundary by having the formulation as180

fi =
ub − uni

∆t
−RHSn

i . (14)

This forcing term is direct in the sense that the desired boundary condition can be satisfied at every time181

step but only holds when the immersed solid boundary coincides with the grid line. However, in the general182

situations the Eulerian grid does not necessarily conform to the immersed boundary geometry, where the183

prescribed momentum forcing term acts only on the points adjacent to the immersed boundary. Therefore,184

fi needs to be computed at the forcing points that are close to but not exactly located on the immersed185

boundary. The velocity at the forcing point, uf , has to be constructed using the information from the186

boundary condition and surrounding field. With the velocity at the forcing point, the forcing term at the187

forcing point can be expressed as188

fi =
uf − uni

∆t
−RHSn

i . (15)

4.3. Interpolation technique189

If the forcing point coincides with the immersed boundary, uf should be equal to the velocity of the190

moving body, ub, and it is zero when the body is fixed. Otherwise, the interpolation scheme ought to be191

used to obtain uf . In Kim et al. (2001), the linear interpolation was implemented to calculate the enforced192

velocity at the forcing point. Zhang et al. (2010) proposed a method of second-order accuracy that requires a193

point on the immersed boundary which possesses a normal passing through the forcing point to be identified194

for every forcing point.195

We continue to consider the velocity u in the x direction as an example to demonstrate the implementation196

of the linear interpolation. The different situations are shown in Fig. 3, where B and F denote the vertical197

coordinates of boundary and forcing point respectively. In addition, A and C in the figure are the positions198

of u nodes in the water phase adjacent to the solid boundary and next to A, and the vertical distances199

between various nodes are also indicated in the figure. We first look at the linear interpolation scheme when200

the forcing point is inside the solid phase, as seen in Figs. 3(a) and 3(b).201

We can notice that when A and B are close, the linear interpolation may lead to a velocity uf at the202

forcing point with large error, which may cause the numerical instability. Therefore, we consider two separate203

situations by comparing the distances between B and A (defined as h) and between B and F (defined as204

hA). If the distance between A and B is relatively small in Fig. 3(a), i.e. h 6 hA, we can calculate uf205

directly by206

uf = − h

hA
· uA +

h+ hA
hA

· ub. (16)
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uA

ub

uf

h

hA

F

A

B

(a) Inside solid phase when h 6 hA

u
C

ub

uf

h

hA

F

A

B

uf’

uA
F’

hC

C

h

(b) Inside solid phase when h > hA

u
C

uf

hA
F

B

hC

C

ub

(c) Outside solid phase

Figure 3: Sketch of linear interpolation scheme for u velocity at forcing points inside and outside the solid phase.

Here, F´is a virtual mirror point of F about the solid boundary B in the vertical direction.

Otherwise, the following linear interpolation is used for a relatively large distance between A and B when207

h > hA in Fig. 3(b),208

uf = − (hC − h)uA + (h− hA)uC
hC − hA

+ 2ub. (17)

It should be noted that in Eq. 17, the velocity uC at C and the distance hC between B and C are also209

adopted in the formulation to minimize the possible error in the prediction of uf . To achieve this, a virtual210
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mirror point F´of the point F about the solid boundary B in the vertical direction is required, on which the211

velocity is interpolated by using Points A and C.212

However, if the forcing point is outside the solid phase, the issue discussed above does not exist, as the213

distance between B and F is always smaller than that between B and C, as shown in Fig. 3(c). Therefore,214

the linear interpolation can be simply expressed as215

uf =
h

hC
(uC − ub) + ub. (18)

It should be noted that when the forcing point is inside the solid phase, the term “interpolation”actually216

means “extrapolation”. It is known that the extrapolation scheme may be less accurate than the interpolation217

scheme, although an improvement has been proposed for the forcing points inside the solid phase in Eqs. 16218

and 17.219

5. Numerical results220

5.1. Comparison of forcing point schemes via dam break221

The dam break test presents an extreme challenge, as the flow experiences strong overturning, splitting222

and merging. This test case becomes even more complicated due to the presence of a fixed body in the223

domain, which may be very suitable to assess the strengths of the present immersed boundary method. Here224

we choose a circular cylinder that consists of many line segments of different slopes, and in this case, we225

focus on testing the accuracy of forcing point allocation schemes. The sketch of dam break over a circular226

cylinder is shown in Fig. 4, with a computational domain measured as 2.4m× 2.4m. The initial volume of227

the dam is 0.6m× 1.2m. In the numerical simulations throughout the study, a non-uniform grid is adopted228

to achieve a better performance. In this case, 150×150 cells are used to discretize the domain, and the mesh229

near the circular cylinder is much finer with the size of 0.01m× 0.01m.230

To begin with, the comparison of forcing points inside and outside the solid phase can help to determine231

which forcing point searching scheme can achieve a better efficiency. Fig. 5 gives the distribution of forcing232

points for the u and v velocities around the circular cylinder. In this case, 12 line segments are employed233

to approximate the boundary of the circular cylinder. As can be seen in the figure, the forcing points are234

located adjacent to the cylinder surface, and they are at the correct side of the boundary by not crossing the235

boundary when different searching schemes are considered. Furthermore, we can observe that the distance236

between forcing points inside and outside the solid phase is just one grid.237

Fig. 6 shows the snapshots of the dam break at several time instants obtained by the two different238

searching schemes, from which the whole process of the dam break can be observed. At the beginning, the239

dam breaks and flows towards the circular cylinder. After hitting the cylinder, the flow separates: part of the240

water volume jumps over the cylinder; while the other flows underneath the cylinder and impacts on the right241

wall, as shown at T = 1.0s. The water column on the right wall overturns and flows back to contact with the242
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Figure 4: Sketch of dam break over a circular cylinder.

1.4 1.6 1.8

0.2

0.4

 Outside forcing
 Inside forcing
 Line segment

y

x

(a) u velocity

1.4 1.6 1.8

0.2

0.4

y

x

(b) v velocity

Figure 5: Position of forcing point inside and outside the solid phase around the circular cylinder.

cylinder again. As a result, the opposite water jump develops at T = 2.0s. After T = 2.0s, the water sloshes243

between the left and right side walls, and eventually calms down. Generally, the two searching schemes244

for forcing points inside and outside the solid phase can provide similar results. However, after careful245
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observation we can notice that the inside forcing scheme can cause much more unrealistic water flow into246

the body volume, especially after T = 2.0s, which indicates that larger error occurs. In principle, the water247

should not flow into the cylinder volume if the forcing term in the governing equations is predicted without248

any error. However, in the immersed boundary method different forcing point searching and interpolation249

schemes can definitely affect the unavoidable numerical error produced during simulations.250

To further quantize the water volume in the circular cylinder (which is the numerical error) with the use251

of different forcing point searching schemes, Fig. 7 shows the ratio of water volume in the cylinder to the252

cylinder volume against the time. As can be seen in the figure, the difference of water volume between the253

two different searching schemes becomes obvious from T = 1.5s. The water volume caused by the outside254

forcing scheme reduces after T = 2.5s, and it eventually tends to a steady value of 2%. However, the error255

in the inside forcing scheme keeps increasing with time, and it may reach over 10%, which is significantly256

larger than that in the outside forcing scheme. The main reason lies in that the inside forcing scheme257

actually adopts an extrapolation to predict the velocities at forcing points, which can easily cause large258

errors, compared to the interpolation in the outside forcing scheme. Therefore, the numerical results suggest259

that the outside forcing scheme performs better in this case.260

5.2. Dam break over a rectangular bar261

To further demonstrate the accuracy of the proposed immersed boundary method, another classical dam262

break over a cuboid is presented in this section. This case was investigated experimentally by Koshizuka263

et al. (1995). Fig. 8 provides the schematic view of the case. The dimension of the tank is the same as264

that in the experiment, and a rectangular obstacle is located in the middle of the tank, with the dimension265

h × 2h where h = 24mm is adopted in the numerical simulation to be consistent to the experiment. For266

more details, please refer to Koshizuka et al. (1995). In the numerical simulation, the obstacle is represented267

by 3 vertical or horizontal line segments. The grid size of 0.002m× 0.002m is adopted around the obstacle268

to ensure the accurate approximation of the geometry.269

The ratio of water volume in the cuboid volume against time is tracked for different forcing point searching270

schemes, as shown in Fig. 9. It can be seen from the figure that the outside forcing scheme shows less271

volume of water entering the solid phase, indicating its better performance in controlling the numerical error272

compared to the inside forcing scheme, which is consistent to the conclusion drawn in the last section. Fig.273

10 shows the process of dam break when it hits the cuboid, where the comparison of free surface profile274

at several time instants between the present and others’ results is provided. The left column in the figure275

shows the experimental results captured by Koshizuka et al. (1995). The right column presents the numerical276

results by the present numerical model. At T = 0.1s, the water column collapses and impacts the obstacle,277

and then runs up to a certain level due to block effect of the obstacle at T = 0.2s. Following the further278

development, the jet occurs and hits the right wall. Finally, the water falls off the right wall, and it calms279

down gradually, as shown in the last two instants.280
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Figure 6: Snapshot of the dam break at several time instants: left column for the outside forcing scheme and right

column for the inside forcing scheme.
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Figure 7: Ratio of water volume Vin in the cylinder to the cylinder volume obtained by two searching schemes.

Figure 8: Sketch of dam break over a rectangular obstacle.

Generally speaking, good agreement is obtained between the present numerical results and the experi-281

mental measurement. Snapshot of the present numerical results at t = 1.0s differs slightly with that of the282

experiment where less air is entrapped in the water. On the other hand, the numerical results by PFEM283

(Particle Finite Element Method) in Larese et al. (2008) is shown in the middle column of the figure for the284

purpose of comparison. It is obvious that the present numerical results agree better with the experiment285

than that in Larese et al. (2008), especially when t = 0.4s and t = 0.5s. For example, the snapshot at286

t = 0.5s from Larese et al. (2008) appears to have too many zigzags and less air pocket.287
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Figure 9: Ratio of water volume Vin in the cuboid to the cuboid volume Vb in different forcing search schemes.

5.3. Wave propagation over a submerged bar288

In this section, a progressive wave travelling over a submerged bar is tested and compared with the289

experimental data. This case is a classical benchmark for the numerical method, which has been widely290

adopted by many researchers, such as Huang and Dong (1999), Lin and Li (2002) and Beji and Battjes291

(1994). In the present study, the model setup is the same as the physical experiment of Beji and Battjes292

(1994), as shown in Fig. 11. At the inlet boundary, the velocity according to the linear wave theory is293

specified to generate a wave with the period of 2s and amplitude of 0.01m. The non-uniform mesh is also294

adopted in the simulation, where much finer cells are distributed around the submerged bar, so as to capture295

the accurate body shape. In addition, the mesh is also finer around the free water surface, where 8 cells are296

adopted in the vertical direction to cover one wave height.297

The performance of different forcing point searching schemes is compared to further validate the effective-298

ness of the outside forcing scheme, as shown in Fig. 12. As the wave elevations at x = 14.5m and x = 15.7m299

experience strong nonlinearity, they can be more convincing to assess the accuracy of various schemes than300

that at other stations. From the figure, we can see that the result by the outside forcing scheme shows301

slightly better agreement with the experimental data, although these two searching schemes can provide302

almost identical results, as this case is less challenging compared to the case of dam break past an obstacle.303

It should be mentioned that the numerical results shown above are obtained at a mesh denoted as Mesh 2304

where the horizontal mesh size ∆x = 0.04m is adopted around the body. To test the mesh convergence of305

the present numerical model with the linear interpolation and outside forcing scheme, two other meshes are306

used: a coarser mesh with the horizontal mesh size ∆x = 0.08m denoted as Mesh 1 and a finer mesh with the307

horizontal mesh size ∆x = 0.02m denoted as Mesh 3, and the vertical mesh size is constant at ∆y = 0.0025m308

for all the three meshes to capture the relatively small wave amplitude. The time history of wave elevations309

at x = 14.5m and x = 15.7m is again shown in Fig. 13 for the three different meshes. In the simulation at310
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Figure 10: Comparison of free surface profile at different time instants for the dam break over an obstacle. Left

column: experimental results in Koshizuka et al. (1995); middle column: numerical results by PFEM in Larese et al.

(2008); right column: present numerical results.
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Figure 11: Sketch of computational domain for wave propagation over a submerged bar.
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Figure 12: Time history of wave elevations at two stations obtained by different forcing point searching schemes.

Mesh 1, the time series of wave elevation obviously cannot agree with the experimental data, whereas the311

results at Mesh 2 and Mesh 3 are very close and the fine meshes tend to provide better agreement with the312

experimental data. It indicates that the result at Mesh 2 is convergent with respect to computational mesh,313

and the convergence rate is fast in the proposed numerical model.314

Fig. 14 shows the final comparison of wave elevations at all the six stations. At the first two stations, the315

wave elevation is regular and sinusoidal, due to the fact that the submerged bar is far from the two stations316

and possesses little impact on the wave elevation at these two stations. The free surface at the third and317

fourth stations shows the nonlinear phenomenon, i.e. sharper wave crest and flatter trough. When the wave318

travels to the topside of the submerged bar, the reduction in water depth leads to larger wave heights. The319
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Figure 13: Time history of wave elevations with three different meshes to test the mesh convergence.

last two stations lie in the lee side of the submerged bar, where the wave elevation becomes very complicated320

because of the higher order wave harmonics induced. Overall, the numerical results agree well with the321

experimental data.322

From the close comparison, we can notice that the present numerical results are better than that in323

Huang and Dong (1999) using the MAC method, although little discrepancy at the last two stations can324

be observed for both of the numerical results. At the same time, the same problem has been investigated325

in Shen and Chan (2008), where the direct forcing method based on Mohd-Yusof (1997) was adopted to326

impose the forcing term on the points nearest to the boundary. In their work, the numerical results under a327

finer mesh with the grid size of 0.02m× 0.002m were compared with the experimental data, which seem to328

provide a similar accuracy compared to the present numerical results under Mesh 2. However, the present329

Mesh 2 is coarser than that in Shen and Chan (2008); this reflects the importance and effectiveness of the330

proposed forcing point searching scheme.331

5.4. Water entry of a wedge with prescribed velocity332

To further validate the present numerical model in terms of the convergence and accuracy, impact of333

a rigid V -shaped wedge moving with a constant downward speed V into the water is investigated in this334

section. The impact loading and hydrodynamic pressure on the wedge with different dead-rise angles β335

and various downward speeds V are compared with the analytical solution and other numerical results in336

literature. Fig. 15 shows the schematic diagram of the problem, in which the water penetration of wedge h(t)337

and the resulting wetted length on the horizontal projection r(t) are defined. The typical Reynolds number338
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Figure 14: Comparison of time history of wave elevations at six stations with experimental data.

is Re = V D/ν = 3000, where D is the maximum wetted surface length and ν is the kinematic viscosity. The339

Mach number is Ma = 0.02 here, which confirms that the viscosity and compressibility are considerably low340

for this case.341
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Figure 15: Sketch of water entry of a rigid wedge with prescribed velocity.

Firstly, the mesh convergence test is carried out on three different grids: the coarse grid (4x × 4y =342

0.01m× 0.01m), the median grid (4x×4y = 0.005m× 0.005m) and the fine grid (4x×4y = 0.0025m×343

0.0025m). Fig. 16 shows the hydrodynamic load versus the horizontal projection of the wetted semi-length344

r(t) on these three different grids for the wedge with the dead-rise angle β = 15◦ and penetration velocity345

V = 10m/s. It is observed that the results on the median grid almost coincide with those on the fine346

grid, which indicates that the median grid can provide the convergent numerical results and is used in the347

following calculations for this problem. It should be noted that the convergent grid used here is much coarser348

than that used in De Rosis et al. (2014) adopting the Lattice Boltzmann model, and the comparison of the349
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impact load between the two models will be presented below.350

Figure 16: Hydrodynamic load versus the horizontal projection of the wetted semi-length on three different grids for

the case with the dead-rise angle β = 15◦ and velocity V = 10m/s.

For the demonstration of accuracy of the numerical model, the present results of hydrodynamic load351

are compared with the analytical solutions presented in Von Karman (1929) and Wagner (1932), and the352

numerical results in De Rosis et al. (2014). Fig. 17 shows the comparisons for different dead-rise angles and353

penetration velocities. From the figure, it can be seen that compared to the analytical solutions the present354

numerical results are closer to the numerical results in De Rosis et al. (2014). However, with the small355

dead-rise angle at β = 15◦ the present results are slightly over-estimated compared to the numerical results356

in De Rosis et al. (2014) at the last phase of the simulation. With the larger dead-rise angle at β = 25◦, the357

comparison is favorable for the small speed, but the present results seem to be under-estimated. Generally,358

the present results fall into the range of the two analytical solutions, and agree reasonably well with other359

numerical results.360

As shown in Fig. 18, the pressure coefficient Cp = p/(0.5ρwaterV
2) for the wedge with β = 30◦ and361

β = 45◦ respectively is compared with the analytical solution in Mei et al. (1999), the similarity solution in362

Dobrovol’Skaya (1969), and the numerical results obtained using the Lattice Boltzmann model in Zarghami363

et al. (2014). It can be found that when β = 30◦, the present numerical results agree better with the analytical364

solution in Mei et al. (1999) than the similarity solution and the other numerical results, especially in terms365

of the peak value. For β = 45◦, the present numerical results are also closer to the analytical solution. The366

good comparison shown in the figure again confirms the accuracy of the present numerical model.367

5.5. Free fall of wedge368

The free falling of a wedge is another challenging test case to every numerical model, as this problem369

involves a complicated free surface interface induced by a moving body, and therefore, an air-water-solid three370

phase model should be considered. In the present study, the water entry of a free fall wedge is simulated371

by the proposed numerical model, and compared with the experimental and numerical work conducted by372
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Figure 18: Slamming pressure coefficient Cp along the wetted semi-wedge with the speed V = 10m/s.
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Zhao et al. (1997) and Zhang et al. (2010). The experiment setup in Zhao et al. (1997) is shown in Fig. 19,373

in which the breadth of the free fall V-shaped wedge is 500mm with a 30°dead-rise angle. The weight of the374

drop rig is 141kg with a ballast weight of 100kg. The wedge can fall freely in the vertical direction only,375

and five pressure gauges are installed with the configurations shown in the figure to measure the pressure376

distribution at various time instants (see more detailed description of the experiment in Zhao et al., 1997).377

The numerical simulations are carried out in a numerical tank of 2m × 1m in width and depth, with the378

specified water and air dynamic viscosity to be 1 × 10−3kg/m/s and 1.8 × 10−5kg/m/s, respectively. The379

density of water and air is set as 1000kg/m3 and 1kg/m3, and the initial velocity of the wedge is prescribed380

as V = −6.15m/s.381
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Figure 19: Wedge section adopted in the experiment and numerical simulation and arrangement of pressure gauges

P1 − P5.

Firstly, the grid convergence tests are presented in Fig. 20. The grid sizes varying from ∆x = ∆y =382

0.0025m to ∆x = ∆y = 0.01m are adopted and the results are compared with the experimental data in383

Zhao et al. (1997). Here, we define the coarse mesh ∆x = ∆y = 0.01m as Mesh 1, the intermediate mesh384

∆x = ∆y = 0.005m as Mesh 2 and the fine mesh ∆x = ∆y = 0.0025m as Mesh 3. From the water surface385

profile shown in Fig. 20(a), it can be observed that the better water jet can be captured at the fine mesh,386

where more detailed information can be presented, and the result at Mesh 2 approaches closely to that at387

Mesh 3. Furthermore, the free fall velocity in Fig. 20(b) and the slamming force in Fig. 20(c) are very388

close at these three grids, except that the slamming force at the fine mesh is much smoother than that at389

the other two coarser grids. It indicates that the global hydrodynamics, such as the free fall velocity and390

force, converge very fast with regards to computational mesh, whereas the detailed free surface profile is391

more sensitive to the density of computational grid.392

It is also seen from Fig. 20 that the body motion and the hydrodynamic force on the body exhibit two393

main stages during the whole process. At the first stage when 0 < t < 0.016s, the impact of the free fall394

wedge leads to an increase in the slamming force, until the force reaches its maximum when the wedge is395

fully submerged in the water. After that, when the wedge further slows down during 0.016s < t < 0.025s,396
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(a) Free surface profile at t = 0.0202s

(b) Velocity of the free fall wedge (c) Slamming force on the wedge

Figure 20: Grid convergence tests for the free fall wedge.

the fully submerged wedge experiences a decreased slamming force, as the wetted surface remains the same.397

The present numerical results agree well with the experiment data before t = 0.01s and after t = 0.017s.398

Between these two time instants, the force is over-predicted, which generates a larger deceleration and slows399

down the motion of wedge falling into the water.400

In addition, the comparison of two forcing point searching schemes with the same linear interpolation is401

shown in Fig. 21, where the outside forcing scheme shows better agreement with the experimental data in402

Zhao et al. (1997) for both the free fall velocity (Fig. 21(a)) and the slamming force (Fig. 21(b)), especially403

after t = 0.016s. Before t = 0.016s the results obtained by these two schemes are quite close. Therefore,404

the conclusion drawn from the previous three cases that the outside forcing scheme can perform better still405

stands for this case.406

To further test the accuracy of the present combined immersed boundary and level set method, Fig. 22407
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(a) Velocity of the free fall wedge (b) Slamming force on the wedge

Figure 21: Time history of flow characteristics for the free fall wedge obtained by two different forcing point searching

schemes.

shows the pressure distribution at three different time instants, and the comparison with the experimental408

measurement by the five pressure gauges located at the wedge surface. At the time instant t = 0.00435s,409

the numerical simulation cannot capture the pressure at the gauge P2. It should be noted that at this time410

instant the water just inundates the gauge P2 in the experiment. Any small delay in the body motion could411

significantly influence the pressure at this position. It seems that the present numerical prediction of the body412

motion is slightly slower than that in the experiment. However, the present result still possesses the advantage413

over that in Zhang et al. (2010) where the inside forcing scheme was used. At t = 0.0158s, the numerical414

simulation over-predicts the pressure at the first four pressure gauges compared to the experimental data,415

but the present results are closer to the numerical work in Zhao et al. (1997) where the boundary element416

method was adopted to predict slamming loads on a general two-dimensional body. However, the result in417

Zhang et al. (2010) is unable to capture the peak pressure at the gauge P5. At t = 0.0202s, the present418

numerical model shows the best performance over the other two numerical simulations according to the419

comparison with the experimental data.420

In Fig. 22 the present numerical results under both Mesh 2 and Mesh 3 are shown, from which the good421

convergence can be seen, and Mesh 2 seems to be able to provide the satisfactory simulation. However, the422

results shown in the same figure from Zhang et al. (2010) for the purpose of comparison are obtained under423

the fine Mesh 3. Therefore, it indicates that the present outside forcing point searching scheme has a better424

performance than the one proposed in Zhang et al. (2010).425

Finally, Fig. 23 shows the snapshots of free surface profile when the wedge penetrates the still water426

obtained at the fine mesh. It can be seen that the body shape remains the same to the initial geometry when427

the wedge moves into the water, and no unrealistic water is observed to flow into the wedge, which proves428

the capability of the present immersed boundary method in modelling a moving body with complicated429
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(a) t = 0.00435s

(b) t = 0.0158s

(c) t = 0.0202s

Figure 22: Comparison of pressure distributions on the wedge surface at three different time instants. P is the

pressure, V represents the wedge vertical velocity, y is the vertical coordinate along the wedge surface, and yd is the

draft of the wedge.
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geometry. At t = 0.015s, the bottom of the wedge is fully submerged in the water, which is consistent to430

the discussion on two phases shown in the global hydrodynamic features in Fig. 21. The water jet becomes431

visible as the time reaches 0.020s, while at t = 0.025s the jet is fully developed. At the last time instant,432

the water jet starts to split, a water splashing thus occurs.433

(a) t = 0.005s (b) t = 0.010s

(c) t = 0.015s (d) t = 0.020s

(e) t = 0.025s (f) t = 0.030s

Figure 23: Free surface profiles of free fall wedge in water at various time instants.

6. Conclusions434

A new immersed boundary method is proposed to simulate complicated interactions between fluid and435

fixed or moving structures, in conjunction with the level set method for free surface capturing. In the present436

numerical model, an effective and straightforward forcing point searching scheme is developed for forcing437

points located both inside and outside the solid phase. This simpler searching scheme for the determination438
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of velocities at forcing points proposes an advantage of ease of implementation, with remaining desirable439

accuracy. To validate the effectiveness of the present numerical model, five testing cases, including dam440

break past a circular cylinder, dam break over a rectangular obstacle, wave travelling over a submerged bar,441

water entry of a wedge with prescribed velocity and free fall of a wedge with initial velocity are considered.442

The dam break cases suggest that the outside forcing points searching scheme leads to better results.443

Further, comparisons of free surface profile between the numerical and experimental results show considerably444

good agreement. In the case of wave propagation over a submerged bar, the accuracy of the proposed445

numerical model is validated by the comparison of wave profile with the experimental results. The numerical446

results again reveal that the outside forcing scheme is superior over the inside forcing scheme, even though447

there is only little difference between the results of the two schemes. In addition, the case of water entry of448

a wedge with prescribed velocity also demonstrates the convergence and accuracy of the proposed numerical449

model, through the comparisons with the analytical solution and other numerical results. After the extensive450

validation and comparison through the final case of free fall wedge that is more difficult to simulate due to the451

existence of both free surface and moving body, the overall numerical results suggest that the present outside452

forcing point searching scheme is more efficient and shows better performance than the other immersed453

boundary method in literature.454
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