
Mohamed, MA and Atty, SA and Banks, Craig (2017)Thermal decomposition
kinetics of the antiparkinson drug “entacapone” under isothermal and non-
isothermal conditions. Journal of Thermal Analysis and Calorimetry, 130 (3).
pp. 2359-2367. ISSN 1388-6150

Downloaded from: http://e-space.mmu.ac.uk/619257/

Version: Accepted Version

Publisher: Springer

DOI: https://doi.org/10.1007/s10973-017-6664-y

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161892504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Mohamed=3AMA=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Atty=3ASA=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Banks=3ACraig=3A=3A.html
http://e-space.mmu.ac.uk/619257/
https://doi.org/10.1007/s10973-017-6664-y
https://e-space.mmu.ac.uk


1 

 

Thermal decomposition kinetics of the antiparkinson drug “entacapone”   

 

Mona A. Mohameda*, Shimaa A. Attya, and Craig E. Banksb 

 

a Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, 

Giza, Egypt 

b Faculty of Science and Engineering, Manchester Metropolitan University, Manchester,                      

M1 5GD, UK 

 

 

             

             

             

         

 

 

 

 

 

*To whom correspondence should be addressed.  

E-mail: nodcar1977@yahoo.com  

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159840
https://www.researchgate.net/researcher/2056987782_Shimaa_A_Atty


2 

 

Abstract 

The thermal decomposition kinetics of entacapone (ENT) have been investigated via 

thermogravimetric analysis (TGA) under non-isothermal and isothermal conditions which provide 

useful stability information for their processing in the pharmaceutical industry and also for 

predicting shelf life and suitable storage conditions. The determination of the kinetic parameters 

for the decomposition process under non-isothermal conditions in a nitrogen atmosphere at four 

heating rates (5, 10, 15, and 20 oC min-1 ) was performed. Kinetic parameters of the decomposition 

process for ENT were calculated through Friedman, Flynn– Wall–Ozawa, Kissinger–Akahira–

Sunose, and Li–Tang methods. This work demonstrates that the activation energies calculated 

from the decomposition reactions by different methods are consistent with each other. Moreover, 

the thermodynamic functions of the decomposition reaction were also calculated.  
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Introduction 

Entacapone, (ENT), (see figure 1) is an adjunct to standard preparations of levodopa/benserazide 

or levodopa/carbidopa for use in patients with Parkinson’s disease who have end-of-dose motor 

fluctuations which cannot be stabilized on those combinations [1]. ENT (Fig. 1) is a specific and 

mainly peripherally-acting catechol-O-methyl transferase (COMT) inhibitor which decreases the 

metabolic loss of levodopa to 3-O-methyldopa and it is reported that ENT increases the bio-

availability of levodopa to the brain by 5 - 10% [2]. ENT is practically insoluble in water, but 

slightly soluble in organic solvents. The aqueous solubility of ENT is very low at acidic pH but 

increases strongly with increasing pH; it is also slightly soluble in organic solvents [3]. 

 

Various analytical methods have been used for ENT determination such as spectrophotometric [4, 

5], HPLC [6-9], micellar capillary chromatography [10, 11] and electrochemical methods [12-15]. 

While mainly used for the analytical determination of target analytes, thermal analytical techniques 

can provide important data regarding the storage and stability of drugs [16-18]. The most widely 

used thermal analysis techniques are thermogravimetry / derivative thermogravimetry (TG/DTG), 

differential thermal analysis (DTA) and differential scanning calorimetry (DSC) [18-20]. These 

techniques are widely used in the pharmaceutical sciences for the characterization of solid drugs 

and excipients. The application of thermo-analytical methods may provide new information about 

the temperature and energy associated with events, such as melting, oxidation and reduction 

reactions, glass transition, boiling, sublimation, decomposition, crystallization, or gel to liquid 

crystal transitions [21-23]. TG can be considered as a quantitative and comparative analytical 

technique which can generate fast and reproducible data which leads to the utilization of TG in the 

quality control of drugs to enhance the final products and for the determination of drug quality via 

technical parameters [24]. The identification of pharmaceutical and organic compounds can be 

also be performed by differential thermal analysis (DTA) [25]. 

  

TG and DTA techniques involve the continuous measurement of physical properties such as 

weight, volume, heat capacity, etc., as the sample temperature is increased at a predetermined rate, 

it is possible to calculate the kinetic constants from these techniques by making a number of 

patterns at different heating rates.  TG and DTA is used in the pharmaceutical industry as an 
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analytic tool of high importance, to identify and to test the purity of the active substances with 

quick and efficient results [26]. Also, DTA can be used to control the quality of the raw materials 

used to obtain pharmaceutical products [27].  

  

The  recommendations  of  the International Confederation for Thermal Analysis and Calorimetry 

(ICTAC) offer guidance for the reliable  evaluation  of  kinetic  parameters  from  data  obtained  

by  thermogravimetry, differential scanning calorimetry and differential thermal analysis [28]. The 

measurement of kinetics and the associated Arrhenius parameters are the essential aspects of the 

characterization of drug and related compounds [29]. The thermal decomposition of drugs allows 

the prediction of the degradation rates at marketing temperatures from data collected on 

accelerated processes that are studied at elevated temperatures. The temperature may increase the 

chemical reactions, providing sufficient energy (activation energy) required to break chemical 

bonds and starts the decomposition process [30, 31]. In this work, the thermal behavior of ENT is 

investigated under non-isothermal and isothermal conditions allowing kinetic information to be 

readily deduced. From isothermal experiments, the activation energy (E) can be obtained from 

slope of ln t vs. 1/T at a constant conversion level. According to the ICTAC recommendations on 

isothermal analysis, isothermal kinetics data usually are easier to analyze and interpret, gaining 

worthy isothermal data typically consumes more time and effort than in case of non-isothermal 

runs [32].  

  

The methods proposed for the kinetic study of thermal decomposition are generally classified as 

model-fitting and model-free methods. In each case, data from isothermal and/or non-isothermal 

experiments can be used [33, 27]. The kinetic analysis based on an isoconversional method is 

frequently referred to as ‘‘model free’’ because it is possible to obtain the apparent activation 

energy (E) as a function of the conversion degree (α) which has a specific interest when the thermal 

decomposition occurs in more than one step [27].  

 

In this paper we report the study of the thermal behavior of ENT via TGA under non-isothermal 

and isothermal conditions. Kinetic parameters are deduced which are of importance to the 

pharmaceutical industry. The thermo-analytical techniques cannot replace the classical stability 

studies that usually require weeks or months, but it can provided an early idea to direct the process 
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toward the most successful formulation [34]. Furthermore, to the best our knowledge, there is no 

report on the thermal behavior and decomposition kinetic of this target drug, ENT. 

Experimental Section 

 

ENT was kindly supplied from Novartis Pharmaceuticals, Egypt. Thermo-gravimetry and 

differential thermal analysis were carried out using simultaneous Shimadzu Thermo-gravimetric 

Analyzer TGA-60 H with TA 60 software in a dry nitrogen atmosphere at a flow rate of 30 mL 

min-1 in a platinum crucible. The experiments were performed from room temperature up to 800oC 

at different heating rates (5, 10, 15 and 20oC min-1). The sample mass was about 5 mg of the drug 

without any further treatment. In the isothermal condition, the temperatures were 160, 170, 180, 

190 and 200oC with 10 oC temperature increments, under dynamic nitrogen atmosphere with the 

flow rate of 30 mL min-1. These values were chosen since according to ICTAC recommendation 

to isothermal analysis, when selecting the temperature range for kinetic experiments one should 

be mindful of possible phase transitions that a reactant may undergo within that range. A solid 

compound can melt. Consequently, we chose temperatures around the melting point as ENT 

melting point is 162-163°. The respective rates and Arrhenius parameters for solid and liquid state 

decomposition can differ significantly. The isothermal holding was monitored based on the time 

to a mass loss of 5.0 % decomposition. The instrument was calibrated at each heating rate 

considered using a dedicated aluminum oxide standard in a platinum crucible. 
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Results and discussions 

 

Thermal behavior of ENT 

The thermo-analytical graphs of ENT are presented in Fig. 2 which show that ENT decomposes 

during three steps. The first step shows a mass loss (m = 23.4 %) in the interval of 185–250oC, 

suggesting the release of a diethyl amine molecule (23.6 %, calc.). The second decomposition step 

shows a mass loss (m = 14.9 %) in the temperature range 251–400 oC, suggesting the release of 

a nitrite molecule (15.1 %, calc.).  The third decomposition step shows a mass loss (m = 61.6 %) 

in the temperature range 401–800 oC, suggesting complete decomposition of ENT.  The DTA 

curve shows key thermal event when this temperature range is applied. The endothermic peak 

observed at 163 oC [3] is likely due to the melting of the compound while the exothermic peak at 

230 oC is attributed to the first decomposition process corresponding to the first mass loss observed 

in TG/DTG thermogram curves as shown in Fig. 2. The sharp exothermic peak at 600 oC is due to 

the pyrolysis of the compound. The suggested pathway of thermal decomposition of ENT is 

depicted within Scheme 1. 

 

Kinetic analysis 

The kinetic parameters were determined from the TG/DTG curves using the following kinetic 

methods: Friedman(Fd) [35, 36], Flynn–Wall–Ozawa (FWO) [37-39], Kissinger–Akahira–Sunose 

(KAS) [40, 41] and Li-Tang (LT) [42]. Figure 3 depcits the –T curves for the non-isothermal 

decomposition of ENT at different heating rates. The model-free methods (e.g. isoconversional, 

KAS and Friedman) allow one to evaluate the activation energy without determining the reaction 

model [43]. These methods yield the effective activation energy as a function of the extent of 

conversion allowing the reaction kinetics over a wide temperature region to be predicted [44, 43]. 

The isoconversional methods give comparable (but not identical) dependences of E on the extent 

of conversion for isothermal and non-isothermal experiments [45].  
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Generally, the kinetics of many reactions (e.g. decomposition, crystallization, polymerization, 

etc.) can be described by the following rate equation [46, 47]: 

 

𝑑𝛼
𝑑𝑡⁄ = 𝑘(𝑇). 𝑓(𝛼) = 𝐴. 𝑒𝑥𝑝 (−

𝐸

𝑅.𝑇
) . 𝑓(𝛼)  (1) 

 

where t is time, α is the extent of conversion, k(T) is the Arrhenius rate constant, A and E are the 

Arrhenius  parameters (pre-exponential factor  and activation energy, respectively), R is the gas 

constant, and f (α) is the reaction model associated with a certain reaction mechanism. In the case 

of non-isothermal conditions dα/dt is replaced with βdα/dT, where β is the heating rate, giving: 

 

𝛽.
𝑑𝛼

𝑑𝑇
= 𝐴. 𝑒𝑥𝑝(

𝐸

𝑅.𝑇
). 𝑓(𝛼) (2) 

 

Taking the logarithmic form of eq. (2), the iso-conversional Friedman method is based on the 

following equation: 

𝑙𝑛 (𝛽
𝑑𝛼

𝑑𝑇
) = 𝑙𝑛[𝐴. 𝑓(𝛼)] −

𝐸

𝑅.𝑇
  (3) 

 

In order to evaluate the activation energy more precisely, the term ln(βdα/dT) was obtained by 

numeric a derivation of the curve α vs. T with respect to T and by subsequently taking logarithms. 

In the case of α = constant, and using various heating rates, the plot ln(βdα/dT) vs. (1/T) is linear, 

as shown in figure 4). The values of the activation energy as obtained from the slopes of the straight 

lines are listed in Table 1. The general equation of the reaction rate for non-isothermal conditions 

at constant heating rate is generally written as: 

 

g(α)=
𝐴.𝐸

𝑅.𝛽
𝑝(𝑥)  (4) 

 

where g(α) is the the conversion integral, p(x) the temperature integral, x = E/(R.T). The 

dependence on α is defined by the reaction model, f(α), which can take a variety of mathematical 

forms [48, 32]. Experimentally the measured rate is adequate to the actual process kinetics only 

when the process variables (α, T, and 𝑝(𝑥))  are controlled accurately and precisely [32]. 
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Many approximations of the temperature integral p(x) have been suggested in the literature and as 

a consequence, it can be approximately represented via different empirical interpolation formulas 

in terms of Doyle, Agrawal, Gorbatchev and Frank–Kameneskii approximation [49]. All these 

methods involve the plot of a logarithmic function (which depends on the approximation for the 

temperature integral used) versus 1/Tα, : 

 

𝑙𝑛
𝛽

𝑇𝛼
𝑘 = −𝐵

𝐸𝛼

𝑅.𝑇𝛼
+  𝐶   (5) 

 

where k is a function describing the temperature dependence of the reaction rate, B and C are 

constants and the subscript α designates values related to a given extent of conversion. The 

literature has considered four linear integral iso-conversional methods as the most accurate and 

promised methods which were used in this article. Equation (5) has been derived assuming a 

constant  activation energy [38]. This assumption obviously introduces some systematic error in 

estimating Eα, if the latter varies with α. This error does not appear in the differential iso-

conversional method of Friedman. For this reason one can estimate the systematic error of an 

integral iso-conversional method by comparing it against the Friedman method [50]. 

 

Flynn–Wall–Ozawa (FWO) method: 

The FWO method is based on Doyle’s approximation for the temperature integral,  𝑝(𝑥) =

exp(−1.052. x − 5.331). For this method, k = 0 and for constant conversion a, the general linear 

Eq. (5) becomes: 

𝑙𝑛𝛽 =  −1.052.
𝐸𝛼

𝑅.𝑇𝛼
+  𝐶  (6) 

 

Utilizing the FWO method, the activation energies were calculated from the slope of the linear 

fitted function of lnβ versus 1/T (as shown within figure 5A). The values of the activation energy 

(Eα) are included in Table 1. The order of reaction was determined by Ozawa’s plots in which 

slope of log heating rate versus 1/T was found to be first order.  
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Kissinger–Akahira–Sunose (KAS) method: 

This method sometimes called the generalized Kissinger method is one of the best iso-conversional 

methods [51] and it is based on the equation: 

 

𝑙𝑛
𝛽

𝑇𝛼
2 = −

𝐸𝛼

𝑅𝑇𝛼
+ 𝐶  (7) 

 

This method utilizes the adequate temperatures (Tα) to certain values of the conversion α for 

experiments effectuated to different rates of heating, β. From the slopes of the straight lines 

obtained by the graphic representation of the ln β/ 𝑇𝛼
2  vs. (1/Tα) the activation energy was 

determined (Figure 5B). The values of activation energy calculated by means of the integral 

methods are listed in Table 1. 

 

Li–Tang (LT) method: 

The approximation proposed by LT for the temperature integral is: -ln p(x) = 0.37774+1.89466 ln 

x - 1.00145x. For this method (k = 1.89466) and at constant conversion α, the general linear Eq. 

(4) becomes: 

 

𝑙𝑛
𝛽

𝑇𝛼
1.894661 = −1.00145

𝐸𝛼

𝑅𝑇𝛼
+ 𝐶 (8) 

 

For α = constant, the values of E (Table 1) were determined from the slope of the linear fitted 

function of 𝑙𝑛
𝛽

𝑇𝛼
1.894661versus 1/Tα, (see Figure 5C). 

Table 1 Values of the activation energy obtained by the Friedman (Fd), Flynn–Wall–Ozawa 

(FWO), Kissinger–Akahira–Sunose (KAS) and Li–Tang (LT) methods for ENT 

Method   E/kJ mol-1, for conversion degree, α    

   0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Mean 

FR   126.20 119.90 114.05 115.66 126.20 107.24 104.03 114.13 115.50 121.52 116.44±7.29 

FWO   119.80 118.86 117.10 111.44 110.05 109.15 110.1 118.50 118.49 122.54 115.60±4.64 

KAS   116.92 116.90 118.5 118.64 108.55 108.58 113.62 118.14 118.05 116.39 115.43±3.89 

Li-Tang   117.48 117.46 119.14 109.07 109.08 109.09 114.15 119.14 119.21 117.48 115.13±4.42 
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The values of the activation energy (E) obtained by the four methods are in good agreement, and 

the weak variation of E vs. α. The values of E show a considerable thermal stability of the ENT-

active substance. According to Galwey [52], the numbers of reactions for which the reported E 

values occurred within steps of equal increment (30.0  kJ  mol-1)  through distribution  of  

magnitudes  of  activation  energies graph, a broad  flat  maximum, for which 65%  were between  

100 <  E  <  230 kJ mol-1. No particularly preferred magnitude of E can be identified.  The overall 

mean magnitude of E was 175 kJ mol-1. There was a small proportion (8%) of relatively large E 

values, > 300 kJ mol-1.  

The change in entropy (ΔS), enthalpy (ΔH), and free energy (ΔG) were calculated using the 

following relations [53, 54]: 

∆S* = R [ln (Ah/KT)]  (9) 

∆H = Ea– RT   (10) 

∆G = H- T ∆S   (11) 

where h is the Planck constant, K is the Boltzmann constant and T is the temperature, A is the 

Arrhenius constant. The calculated kinetic parameters for ENT are also included in Table 2. A 

comparison between the results obtained by applying different kinetic methods reveal that the 

values of activation energies calculated for ENT are very close to each other. The obtained kinetic 

parameters were used to evaluate the thermodynamic parameters of activation. The entropy values 

(ΔS) for the ENT decomposition are negative. In terms of the activated complex theory (transition 

theory) [55, 56], a negative value of ΔS indicates a highly ordered activated complex. The result 

may be interpreted as a ‘‘slow’’ stage. The positive values of ΔH and ΔG for the decomposition show 

that it is connected with the introduction of heat and it is a non-spontaneous process.  

It is known that the thermal decomposition of drugs is a complex process which tends to take place 

in many steps with different heating rates [26]. Through this complex process, simultaneously 

competitive and consecutive reactions (parallel) could occur. For ENT-active substance, the 

competitive reactions can be excluded because the total mass lost for the four heating rates is the 

same. It is difficult to specify the nature of the decomposition products because of a possible 

process of condensation between reacted and non-reacted molecules of the ENT, followed by their 

decomposition process [26]. 
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The isothermal TG curves superimposed of ENT are illustrated in Figure 6 and were recorded at 

160, 170, 180, 190 and 200°C. These curves show mass loss rate dependence in temperature 

function of isothermal, the higher the temperature lower will be the necessary time so that occur 

the same mass loss. The curves were used to obtain the graphic of lnt versus 1/T (K-1) at a constant 

conversion level 5.0% [57, 19]. From this linear regression method, the equation for the line is y= 

–13800.3x+25.47 and R = 0.9993 are obtained. The value of the activation energy can be calculated 

from the product of the slope with the molar gas constant (R = 8.314). The calculated activation 

energy was found to be 114.73kJ mol–1. This result is in agreement with the values obtained from 

the dynamic methods, and this is an important experimental finding, Figure 6. 

 

Table 2.  Kinetic parameters for ENT using Friedman (Fd), Flynn–Wall–Ozawa (FWO), 

Kissinger–Akahira–Sunose (KAS), and Li–Tang (LT) methods  

Parameters FR FWO KAS Li-Tang 

A(s-1) 11.10 x1011 8.97 x1011 8.60 x1011 8.34 x1011 

ΔS (kJ mol-1) -18.54 -20.30 -20.66 -20.91 

ΔH (kJ mol-1) 112.32 111.48 111.31 111.19 

ΔG (kJ mol-1) 121.68 121.53 121.54 121.54 

k(s-1) 4.09x10-9 4.64 x10-9 4.76x10-9 5.22x10-9 

 

 

Calculation of Rate Constant: 

The values of rate constants (k) for thermal decomposition of ENT were calculated at the room 

temperature of 25°C using the following equation and the previously mentioned values for 

activation energies (E) and Arrhenius factors (A) [58]: 

log 𝑘 =  log 𝐴 −  
𝐸

2.3𝑅𝑇
         (9) 

The calculated k values are listed in Table 2.  Through using the calculated values of k, the half-

life of ENT at 25°C was estimated and found to be 4.73 years and deviation from this temperature; 

say as a consequence of storing ENT at higher temperatures will result in reducing its half-life 

progressively. ENT is a more heat-sensitive drug compared with other drugs [59], which require 

more care during storage. 
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Conclusions 

We have explored the thermal decomposition of ENT via TGA allowing thermal decomposition 

kinetics to be readily deduced.  The thermal decomposition mechanism of ENT is deduced to 

proceed through three key steps (see Scheme 1). The half-life of ENT (at 25oC) was deduced to be 

4.73 years indicating that it is largely unaffected by heat in comparison to other drugs – this 

information is valuable to the pharmaceutical industry.   
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