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Abstract 

While dual-fuel engines reduce transportation costs and CO2 emissions by using alternative 

energy sources e.g. natural gas, the exhaust streams often contain quantities of emissions that 

exceed limits and therefore require removal. Pd- and Ni-hydroxyapatite (HAP) catalysts were 

prepared using a soft-templating method and tested in the dry reforming of methane (DRM) 

in a fixed bed reactor that simulates an exhaust from a diesel-natural gas dual-fuel engine. 

XRD revealed the characteristic HAP crystal structure of all the prepared materials. The HAP 

phase was further confirmed by TEM, which also showed the presence of submicron sized 

particles. The BET surface areas of HAP prepared using a single surfactant was 27.7 m
2
g

-1
 

and increased to 84.9 m
2
g

-1
 when mixed surfactants were used. Active metals were added to 

HAP using either incipient wetness impregnation, ion-exchange or solid dispersion. All the 

catalysts tested were active in DRM with the optimal samples converting over 85% of 

methane at 650 °C. 
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1. Introduction 

Methane is a major component of natural gas and a widely used fuel source for domestic 

heating and electricity generation. The process of fracking has allowed previously 

unrecoverable natural gas reserves to be extracted from shale beds and it is predicted that the 

USA currently has sufficient natural gas reserves to last at least a century at current usage.[1]  

Dual-fuel engines provide the opportunity of using alternative energy sources in diesel based 

compression ignition engines.[2] During dual-fuel operation the engine is fuelled by two 

fuels simultaneously, whereby combustion of the secondary fuel occurs alongside the 

conventional compression-induced ignition of diesel.[3] The operating costs of the diesel 

engine are reduced by adding natural gas in the form of compressed natural gas (CNG) or 

liquefied natural gas (LNG).[4] While fracking currently allows access to a plentiful supply 

of CNG, additional renewable pathways exist for natural gas e.g. biomethane, which may in 

time be a viable substitute for fossil fuels.[5] Dual-fuel operation using CNG produces less 

CO2 than the equivalent diesel engine, making such applications highly desirable in the 

search for decarbonisation of transport systems, but give higher carbon monoxide and 

hydrocarbon emissions.[6, 7] The main problem relates to the high quantity of methane in the 

feedstock that produces levels of unburned methane in exhaust gasses that exceed those 

permitted by current emissions legislation (developed for single fuel engines); the abatement 

of this methane is the focus of much research.[8, 9] It is possible to decompose methane by 

an oxidation process using techniques such as steam reforming, partial oxidation, autothermal 

reforming, and dry reforming of methane (DRM) with carbon dioxide.[10-13] DRM over 

precious metal heterogeneous catalysts has received much attention and a number of reviews 

have been published.[14-16] 

Calcium hydroxyapatite (HAP), Ca10(PO4)6(OH)2, has an elemental composition similar to 

that found in teeth and bones, and has been used as a substitute material in dental and 

orthopaedic medical fields.[17] HAP possesses a characteristic hexagonal structure of PO4 

tetrahedrons, with the P63/m space group, whereby charge-balancing Ca
2+

 and OH
-
 ions 

reside on the c-axis.[18] Their high structural stability, bifunctionality of acidic and basic 

sites, and the possibility of isomorphous substitution mean that HAPs are excellent catalyst 

supports, as summarised in a recent review.[19] Their hydrophilic properties allow them to be 

used directly as heterogeneous catalysts in dehydration reactions e.g. reaction of lactic acid to 

produce acrylic acid, an important intermediate for acrylate polymers and other key 

molecules,[20, 21] and also in the Guerbet coupling of alcohols.[22-24] The addition of 
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metals, either as nanoparticles and/or substituted into the framework, greatly increases the 

range of reported reactions to include; acetone condensation,[25] water-gas shift,[26] alkane 

dehydrogenation/oxidative coupling,[27-31] alcohol synthesis/transformation[32, 33] and the 

oxidation of (a) volatile organic compounds[34-36] (b) alcohol[37,38] (c) carbon 

monoxide[39] and (d) methane[40-42]. Ni loaded HAP has been reported to be active in 

DRM with 100% methane conversion at approximately 700 °C.[43] Yoon and co-workers 

studied the effects of adding cerium to Ni/HAP catalysts with a view to reducing the well-

established tendency for Ni to generate carbon deposits during reaction. Results showed that 

temperatures in excess of 700 °C were required for >90% conversion and that cerium doped 

samples enhanced the catalytic stability due to the oxygen storage capacity of ceria 

preventing excessive carbon deposition.[44]  

In this paper we report the successful preparation of Pd- and Ni-HAP catalysts using a soft-

templating synthesis route. Our results confirm that these materials are active catalysts in the 

DRM reaction. To our knowledge, this is the first report of DRM over a Pd-HAP 

heterogeneous catalyst. 

 

2. Experimental 

2.1 Materials and chemicals 

All chemicals; calcium nitrate tetrahydrate (>99%), potassium phosphate monobasic (>99%), 

ammonia solution 25% (v/v), polyoxyethylene(20) sorbitan monostearate (10% in H2O), 

nonaoxyethylene dodecyl ether, nitric acid 70% (v/v), ethanol (98%), palladium nitrate 

dehydrate (40% of Pd content), palladium chloride (99%), nickel nitrate hexahydrate 

(>98.5%) and nickel oxide (99%) were obtained from Sigma-Aldrich, Dorset, UK and used 

as received without any further purification. All solutions were made using deionised water 

with resistivity not less than 18.2 MΩ cm. 

 

2.2 Catalyst synthesis 

Hydroxyapatite (HAP) synthesis was based on a method reported elsewhere.[45] Ca(NO3)2 

(7.88 g) was mixed with KH2PO4 (2.72 g), dissolved in deionised water (26.60 mL) and 

acidified by concentrated HNO3 (13.60 mL) to avoid precipitation of Ca2(PO4)3. This acidic 

solution was then added to a mixture of either polyoxyethylene(20) sorbitan monostearate 

(Tween 60, 26 g), or Tween 60 and nonaoxyethylene dodecyl ether (C12EO9, 26 g and 10.66 

g, respectively) and heated to 60 °C with stirring until a clear solution was formed. The 
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solution was cooled to room temperature and treated with NH3 (44.0 mL) added dropwise to 

precipitate HAP. The suspension was stirred overnight, filtered, washed with ethanol and 

water, dried and calcined in air for 5 hours at 550 °C.  

For ion exchanged catalysts, 50 mg of metal salt (PdCl2, Pd(NO3)2 or Ni(NO3)2) was 

dissolved in 100 mL deionised water (dispersed in the case of NiO), added to 1 g HAP and 

the resulting mixture stirred for three days at room temperature, filtered, vacuum dried and 

calcined at 550 °C for 3 hours. For incipient wetness impregnation, 50 mg of metal salt was 

dissolved in a minimal amount of deionised water and dripped onto 1 g of calcined HAP, 

mixed, filtered, vacuum dried and calcined at 550 °C for 3 hours. Table 1 summarises all 

synthetic routes of the catalysts prepared. 

 

2.3 Characterisation 

X-Ray diffraction (XRD) was conducted in powder spinning mode at ambient conditions 

using a Panalytical X’Pert Powder diffractometer with Cu Kα radiation (λ = 1.5406 Å). All 

powder diffraction patterns were recorded with step size 0.052° and step time 200 s, using an 

X-ray tube operated at 40 kV and 30 mA with fixed 1/2° anti-scatter slit. XRD patterns for 

HAP 1 and HAP 2 were taken before catalyst testing while all Ni- and Pd-HAPs were 

analysed after reaction due to the low quantities available. Nitrogen adsorption/desorption 

measurements were carried out using a Micromeritics ASAP 2020 Surface Analyser at -196 

°C. Samples were degassed under vacuum (p < 10
-5

 mbar) for 3 h at 300 °C prior to analysis. 

BET surface areas of the samples were calculated in the relative pressure range 0.05-0.30. 

Microscopic images were recorded using a Supra 40VP (Carl Zeiss Ltd, UK) scanning 

electron microscope (SEM) or JEOL JEM 210 transmission electron microscopy (TEM). 

Semi-quantitative chemical analysis was performed by energy-dispersive X-ray spectroscopy 

(EDAX) using an Apollo 40 SDD instrument. Thermogravimetric analysis (TGA) 

measurements were recorded using a Perkin Elmer 4000 instrument heated at 10 °C min
-1

 

from 25-820 °C in 40.0 mL min
-1

 flowing air or nitrogen. 

 

2.4 Catalytic tests 

The catalyst activity of each sample was studied in a quartz fixed bed reactor, Figure 1, 

placed inside a temperature controlled furnace (Carbolite type 3216, Tempatron, 

PID500/110/330). A sample of catalyst (0.2 g) catalyst was placed in a quartz tube (10 mm 

diameter, 1 mm thickness) between quartz wool plugs. A feed mixture of 100 mL min
-1
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comprising CH4:CO2:He equal to 5:5:90 was used in all catalytic tests. Gases were supplied 

from lecture bottles (CKGAS filled to 200 Bar at 15 °C) and regulated using single stage 

CONCOA 302 series gas regulators. The flow of each gas was maintained using Bronkhorst 

UK model F-201CV mass flow controllers. Prior to reaction the catalyst was reduced in 30 

mL min
-1

 H2 for 1 hour at 300 °C. The reaction products were monitored by a Hewlett 

Packard 5890 series II gas chromatograph equipped with a GS-GASPRO column (60 m x 

0.32 mm) connected via a 6-way gas sampling valve to a thermal conductivity detector. 

Measurements were recorded at 50 °C intervals (after holding at that temperature for 5 mins) 

between 205 and 650 °C using a heating rate of 10 °C min
-1

.  The determination of methane 

conversions was calculated as follows:  

 

 

3. Results and Discussion 

3.1. Synthesis and characterisation 

XRD patterns are shown in Figures 2 and 3, grouped based on metal added, Pd and Ni 

respectively. HAP 1 and HAP 2 are shown for comparison only e.g. Ni catalysts were 

prepared on both HAP 1 and HAP 2 (see Experimental section 2.2). All samples show the 

characteristic peaks corresponding to the P63/m hexagonal arrangement of HAP and conform 

to the HAP standard pattern (JCPDS pattern 01-072-1243). The patterns for the catalysts 

confirm that the crystallinity is preserved after the DRM reaction up to 650 °C. Pd and Ni are 

also proven to be present in their metallic forms as evidenced by their characteristic 

reflections in Figures 2 and 3. The mean metal particle sizes were calculated using the 

Scherrer equation and the results are presented in Table 1. For Cat 2 to Cat 9 the particle size 

varied in the range 16.1-34.7 nm. The particle size of Pd in Cat 1 was too low to be 

accurately distinguished from the underlying HAP support due to signal overlap. The Ni 

particles in Cat 10 are significantly larger than those of the other catalysts, with average 

dimension 296 nm; this difference is due to its preparation using an insoluble salt, nickel 

oxide, which is dispersed as a solid over the HAP support as opposed to being 

precipitated/exchanged from solution as in the other samples. XRD peaks for phases other 

than HAP, Pd or Ni were also detected for some of the catalysts. For example, Cat 10 shows 

2 such peaks that are identified by the symbol ▲ in Figure 3. There is insufficient data here 

to assign these peaks definitively. However, while the presence of these peaks is obviously 
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due to impurities, the signals are relatively weak so the impurities constitute a minor part of 

the sample. SEM images, Figures 4A and 4B, show the agglomerated and crystalline nature 

of sub-micron sized HAP particles. Such morphology remained practically the same after 

addition of Pd on the HAP surface (Figures 4C and 4D). TEM analysis of HAP 2, Figure 5A, 

confirms that there are also irregularly sized porous particles present with dimension <100 

nm, while the regular structure of HAP can be clearly seen in Figure 5B as described by Opre 

et.al.[37] 

Each catalyst was examined for semi-quantitative metal content using EDAX at three 

different areas, which provides an estimate of the metal distribution from the % relative 

standard deviation (%RSD) values. Table 1 summarises these data, together with metal 

loading approach and BET surface area of each sample. The surface area of HAP 1, which 

was synthesised using one surfactant (Tween 60), is 27.7 m
2
g

-1
 and increases significantly to 

84.9 m
2
g

-1
 when using mixed surfactants (Tween 60 and C12EO9). Overall, the addition of 

metals to both HAP 1 and HAP 2 caused variations in surface area. The surface areas for 

catalysts prepared using the HAP 1 single surfactant method showed a minimum value <1 

m
2
g

-1 
for Cat 8 and maximum of 45.6 m

2
g

-1
 for Cat 1. The surface areas for catalysts prepared 

using the mixed surfactant method were all lower than that for the HAP 2 support (84.9 m
2
 g

-

1
) where the values alternated from 14.4 m

2
 g

-1
 for Cat 6 to 46.2 m

2
g

-1
 for Cat 3 suggesting 

the addition of metals caused partial pore blockage. It is important to note, that all Pd- based 

samples exhibited higher surface areas than Ni-based. 

 

3.2. Catalytic activity. 

The catalysts were investigated in the DRM reaction. All catalysts were found to be active as 

evidenced by the % conversion of methane as a function of temperature shown in Figure 6. 

There was no significant reaction detected at temperatures below 450 °C, and thereafter the 

methane conversion increased with temperature. The relative catalyst activities may be 

assessed by comparing their maximum conversions, which occurred in all samples at the 

maximum temperature 650 °C. These values for Pd modified HAP were 43% for Cat 1, 57% 

for Cat 2, 62% for Cat 5, and the most active catalyst was Cat 3, which converted 88% of the 

methane feed. Ni modified HAP had corresponding values of 31% for Cat 6, 57% for Cat 8, 

72% for Cat 9 and a maximum activity of 87% for Cat 10. It is interesting to note that for 

both metals the highest activity was shown by the catalysts with the highest surface area (46.2 

m
2
g

-1
 for Cat 3 and 19.8 m

2
g

-1
 for Cat 10). Boukha et al. also investigated methane reforming 

over Ni-HAP catalysts but with lower reactant flow rates and catalyst mass (CH4/CO2/He = 
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2/2/60, 0.1 g) than those reported here (CH4/CO2/He = 5/5/90, 0.2 g).[43] While the different 

experimental conditions make it difficult to make an exact comparison between both studies 

it is remarkable that the conversions observed are broadly similar; Cat 10 decomposes 87 % 

of methane at 650 °C versus 85-96% conversion at the same temperature for the range of 

catalysts reported by Boukha. Our results are also broadly similar to those reported by Yoon 

and co-workers who studied different feed compositions over 0.2 g catalyst.[44] 

Approximately 77% methane was decomposed in a feed stream comprising CH4/CO2/He = 

10/10/80 at 650 °C; this is less than observed for Cat 10 (87%). Furthermore, the relatively 

high conversion of Cat 10 is interesting in that the catalyst was prepared by stirring the HAP 

in a dispersion of an insoluble salt. This is not the conventional method of catalyst 

preparation but, nonetheless, the results using the experimental conditions here confirm the 

activity and stability of this catalyst in DRM. To our knowledge, there are no previous reports 

showing the reforming of methane with CO2 using Pd-apatite catalysts. Numerous studies 

have shown that Pd based catalysts show similar activity but superior stability to that of Ni 

based catalysts.[14-16] Based on this, the Pd-HAP samples presented here will be tested in a 

follow-on study to assess their stability in the CO2 reforming of methane. 

 

3.3 TGA 

TGA was performed to test for the presence of coke on the surface of each sample after 

reaction. The coking process plays a major role in the initial deactivation of the catalysts by 

covering the catalytically active metal surface.[46] It is possible to estimate the quantity of 

coke using TGA, as heating in air causes its combustion at temperatures approximately 450 

°C and above. However, the active metal and underlying HAP support also undergo reactions 

when heated, namely oxidation to metal oxide and dehydroxylation, respectively. TGA of Cat 

10 in N2, Figure 7, prevents both Ni oxidation (mass increase) and coke combustion (mass 

decrease) so this can be used to measure the mass of water lost to HAP dehydroxylation; for 

Cat 10 this is approximately 5 wt% over the full temperature range. TGA of Cat 10 in air 

shows a pronounced increase in mass from 400-700 ᵒC, confirming that the mass of oxygen 

gained by the Ni is greater than the sum of that consumed by the coke and the mass of water 

lost to dehydroxylation. Overall, this is consistent with Cat 10 containing a minimal amount 

of coke, which matches well with Cat 10 having the highest recorded activity in the DRM 

reaction (Figure 6). Similar increases in mass during TGA, and relatively high activity in 

DRM, are also observed in Cat 2, Cat 3, and Cat 9; these samples also showed lower overall 
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mass losses than the remaining samples and were among the more active catalysts. Overall, 

the low mass loss (approximately 5 wt% of which is due to HAP) suggests resistance of the 

materials to coke formation under the conditions studied here. 

 

 

4. Conclusions  

The methane emissions in a simulated diesel-natural gas dual-fuel engine exhaust were 

reduced by up to 88% using heterogeneous catalytic DRM. A range of Ni and novel Pd 

catalysts were prepared over hydroxyapatite (HAP) supports using both ion exchange and 

incipient wetness impregnation. XRD and TEM confirmed the characteristic crystal structure 

of HAP. These materials were active heterogeneous catalysts in DRM reaching maximum 

methane conversions of 87% for Ni-HAP and 88% for Pd-HAP at an operating temperature 

of 650 °C. This is the first reported example of Pd-HAP catalysing the CO2 reforming of 

methane. 
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Figure 1. Schematic representation of plug-flow catalyst testing reactor. 
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Figure 2. XRD powder patterns of HAP 1 and Pd-HAP catalysts, ■ Pd. 
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Figure 3. XRD powder patterns of HAP 2 and Ni-HAP catalysts, ● Ni, ▲non-HAP/Pd/Ni phase. 
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Figure 4. SEM images HAP 1 (A, B), Cat 3 (C, D) and Cat 10 (E, F). 
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Figure 5. TEM images for HAP 2. 

 

 

 

 

 

 

 

 

 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

 

 

Figure 6. CH4 conversion over Pd- (top) and Ni- (bottom) HAP as a function of reaction 

temperature. 
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Figure 7. TGA profiles of Pd- based samples in air (top), Ni-based samples in air (middle) and 

Cat 10 in air and N2 (bottom). 
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Table 1: Preparation methods, metal loadings and surface areas. 
a
IW incipient wetness 

impregnation, IE ion exchange; 
b
relative standard deviation. 

Sample Surfactant/support 

used 

Metal salt, 

loading method
a
 

Metal loading 

(wt%) 

RSD (%)
b
 Surface area 

(m
2
 g

-1
) 

Mean metal 

particle size (nm) 

HAP 1 Tween 60 - - - 27.7  

HAP 2 Tween60 + C12EO9 - - - 84.9  

Cat 1 HAP 1 Pd(NO3)2, IW 4.7 12.7 45.6 - 

Cat 2 HAP 2 Pd(NO3)2, IE 13.2 2.5 
 

34.6 

 

 

18.3 

Cat 3 HAP 2 Pd(NO3)2, IW 13.8 17.8 46.2 16.1 

Cat 5 HAP 1 Pd(NO3)2, IE 4.6 5.6 34.6 30.4 

Cat 6 HAP 2 Ni(NO3)2, IW 15.3 4.0 14.4 25.0 

Cat 8 HAP 1 Ni(NO3)2,IE 9.4 39.4 <1 34.7 

Cat 9 HAP 2 Ni(NO3)2, IE 35.1 19.3 16.5 20.4 

Cat 10 HAP 1 NiO 6.0 27.5 19.8 296 
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