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 24 

ABSTRACT 25 

This paper is part of a special issue of Applied Geochemistry focusing on reliable 26 

applications of compositional multivariate statistical methods. This study outlines the 27 

application of compositional data analysis (CoDa) to calibration of geochemical data from 28 

a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the 29 

last two decades, understanding near-continuous records of sedimentary sequences has 30 

required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both 31 

terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in 32 

‘raw-format’, requiring data processing in order to remove instrument bias, as well as 33 

informed sequence interpretation. The applicability of these conventional calibration 34 

equations to core-scanning XRF data are further limited by the constraints posed by 35 

unknown measurement geometry and specimen homogeneity, as well as matrix effects. 36 

Log-ratio based calibration schemes have been developed and applied to clastic 37 

sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-38 

scanning. This study has applied high resolution core-scanning XRF to Holocene 39 

sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-40 

Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a 41 

sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. 42 

This provides a robust calibration scheme using reduced major axis regression of log-ratio 43 

transformed geochemical data. The application of these techniques to Holocene 44 

sedimentary data offers an improved methodological framework for unravelling Holocene 45 

sedimentation patterns. 46 



 47 

1. GEOCHEMISTRY OF HOLOCENE SEDIMENTARY ENVIRONMENTS 48 

The composition and physical properties of sediments and sedimentary rocks are for the 49 

most part controlled by chemical processes taking place during weathering, transport, and 50 

burial (diagenesis) (Bjørlykke, 2010). Thus, understanding the physical properties of 51 

sediments and sedimentary rocks requires an understanding of the chemical processes 52 

underlying sedimentary deposition. The formation of clastic sediments is a result of the 53 

erosion and weathering of source parent rocks. The dissolved fraction of this clastic 54 

sediment flows into seas or lakes, with subsequent precipitation as biological or chemical 55 

sediments. During transport, grains continue to undergo weathering and abrasion, with 56 

resultant sediments potentially undergoing repeated cycles of deposition and erosion prior 57 

to final deposition. In order to establish the origin of these sediments, and to gain an 58 

understanding of the processes that have operated prior to their deposition, there is a need 59 

to analyse their geochemistry. For Holocene sediments (i.e., those deposited within the last 60 

11.7 ka), environmental geochemistry offers a series of approaches to analyse sediment 61 

geochemistry. For example, the identification of minerals in soils and sediments usually 62 

involves high powered electron microscopy to image crystal forms, and diffraction and 63 

vibrational spectroscopy to determine crystallographic structures (Ryan, 2014). 64 

Understanding the elemental composition of sediment usually involves the analysis of 65 

elemental absorbance, emission, fluorescence or mass (Ryan, 2014). These approaches to 66 

elemental analysis fall into two groups: destructive and non-destructive. The former 67 

involve the dissolution of minerals into an aqueous solution, whilst the latter are 68 

characterised by the analysis of mineral powders (Ryan, 2014). These non-destructive 69 



approaches include X-ray fluorescence (XRF) which this study will examine for the 70 

purposes of the chemometric calibration of element geochemistry from the Sundarbans, 71 

West Bengal, India. This paper provides a background to XRF, XRF core-scanning and 72 

calibration through compositional data analysis (CoDa), with a focus on the sediments of 73 

the Sundarbans, to demonstrate the usefulness of the techniques. Through the application 74 

of CoDa, a number of calibration coefficients can be derived for key proxy geochemical 75 

indicators and used to study sedimentary provenance and depositional processes. The 76 

objective of the study is to investigate how the application of LRCE & PLS to Holocene 77 

sediments of a Delta environment can improve interpretation of geochemical indicators of 78 

grain-size variability. 79 

 80 

2. BACKGROUND TO THE INDIAN SUNDARBANS 81 

The Sundarbans is one of the largest coastal wetland sites in the world (~ 1 million hectares) 82 

covering the western delta of the Ganges and Brahmaputra (G-B) rivers (Fig. 1). The 83 

Sundarbans is a complex network of tidal creeks and deltaic islands with most sediment 84 

arriving indirectly from the G-B river systems (which drain the Himalayas). The Indian 85 

Sundarbans comprises just over 400,000 hectares in the western sector of the G-B delta, 86 

and is cross-cut by a number of approximately north-south estuarine channels (Fig. 2). 87 

Overall, the G-B delta is generally divided into two sub-systems of fluvially and non-88 

fluvially dominated depositional environments (Fig. 1) (Rogers et al., 2013). The eastern 89 

sector of G-B delta comprises the fluvially dominated system, whilst the older abandoned 90 

part of the delta, in the west, comprises the non-fluvially dominated environment that is no 91 

longer directly linked to the G-B river sources (Fig. 1). This western part of the delta (which 92 



underlies the present day Indian Sundarbans) was fluvially abandoned prior to c. 5000 cal 93 

yr BP, as the Ganges River migrated eastward towards its present position (Goodbred and 94 

Kuehl, 2000). Shoreline progradation in the eastern delta complex following the joining of 95 

the Ganges and Brahmaputra rivers in the Meghna Estuary is considered to be fluvially-96 

dominated (Allison, 1998a).  97 

The western extent of the G-B delta is now thought to be undergoing net delta front 98 

erosion (Allison, 1998b; Allison et al., 2003), likely reflecting an eroding environment in 99 

areas distal to areas of contemporary fluvial-deltaic deposition (Allison (1998b).  As the 100 

Ganges river shifted from its former western discharge channel (i.e., Hoogly River) to its 101 

current position in the east, a series of palaeo-distributary channels were left abandoned 102 

(Allison, 1998b). These channels reflect an almost exclusively tidal-driven 103 

geomorphology, with sediments and discharge from the main G-B rivers no longer entering 104 

the western delta front (Allison, 1998b; Bhattacharyya et al., 2013).  105 

In order to fully explore the processes of sedimentation and the potential sources of 106 

variance in sediment composition during the late-Holocene (post Ganges shift), high 107 

resolution data analysis is required. Such analysis has never been performed on 108 

sedimentary cores from the Sundarbans, and this study represents the first attempt at 109 

characterising the sedimentary facies using high-resolution core-scan XRF and 110 

establishing variation in sediment deposition. 111 

 112 

3. INTRODUCTION TO XRF CORE-SCANNING 113 

The application of X-ray fluorescence (XRF) to geological materials is well established, 114 

and recognised as a conventional technique for deriving elemental composition (Ramsey 115 



et al., 1995; Jenkins, 1999; De Vries and Vrebos, 2002; Weltje and Tjallingii, 2008). The 116 

underlying principle of XRF analysis is that excitation of electrons by incident X-radiation 117 

(X-rays) leads to the ejection of electrons from the inner ring of an atomic shell. This 118 

ejection results in a vacancy, which is filled by cascading electrons from the outer shells, 119 

which, in turn, leads to the emission of energy (Weltje and Tjallingii, 2008). The emitted 120 

energy and wavelength spectra are atomically indicative of particular elements, allowing 121 

relative abundances of elemental compositions to be derived (Weltje and Tjallingii, 2008).  122 

In the 1990s, the development of a non-destructive core logging technique which 123 

applies XRF for the determination of major-element concentrations in split sediment cores 124 

was first utilised by the Royal Netherlands Institute for Sea Research (NIOZ) (Jansen et 125 

al., 1998). The most advantageous surface for XRF sample determination is homogeneous, 126 

dry, and smooth (Jansen et al., 1998). Using split-cores surfaces provides comparable 127 

geochemical data to powder samples (Jensen et al., 1998). This is due to the response 128 

depths that vary between elements. However, it has been found problematic that larger 129 

particles tend to attenuate the fluorescent radiation of elements more than fine particles 130 

(Jansen et al., 1998). The ‘ideal’ homogeneity of a sample occurs when the majority of the 131 

material can pass through a 70-mm sieve (Potts, 1987; Jansen et al., 1998), with ‘ideal’ 132 

results derived from silts and clays, rather than from sands (which require careful 133 

interpretation of results) (Jansen et al., 1998). The key advantages of XRF core-scanning 134 

over conventional geochemical analysis of discrete specimens is that element intensities 135 

are obtained directly at the surface of a split sediment core (allowing for the extraction of 136 

near-continuous records of element intensities), and the spatial resolution of ED-XRF core-137 

scanning is much higher than conventional discrete sampling destructive methods (Weltje 138 



and Tjallingii, 2008). However, one of the main drawbacks of the approach has been the 139 

conversion of element intensities measured by ED-XRF core-scanners to element 140 

concentrations (Weltje and Tjallingii, 2008). Thus, the results obtained by ED-XRF core-141 

scanning are generally presented in the form of count rates (counts per unit time per unit 142 

area), or as ratios of counts, count rates, or intensities of elements (Richter et al., 2006; 143 

Rothwell et al., 2006; Thomson et al., 2006; Weltje and Tjallingii, 2008). Within regular 144 

calibration schemes, measurement geometry and specimen homogeneity is very poorly 145 

constrained due to the inhomogeneity of samples and the irregular surface of a split-core 146 

(Weltje and Tjallingii, 2008; Weltje et al., 2015). In addition, in some instances, spatial 147 

variations in the thickness of an adhesive pore-water film which forms directly below a 148 

protective polyester film covering the split core surface should be considered a further 149 

constraining factor on measurement geometry values in the calibration equation (Weltje 150 

and Tjallingii, 2008). Due to these poorly constrained and uncontrollable variations in the 151 

experimental setup, the measurement geometry becomes an ‘unknown’ in the calibration 152 

equation and renders its solution intractable within reasonable limits of uncertainty (Weltje 153 

and Tjallingii, 2008). As a result of this uncontrollable variable in the calibration equation, 154 

the experimental setup of quantitative XRF core-scanning must incorporate control 155 

specimens of known intensities (Weltje and Tjallingii, 2008). However, such calibration 156 

approaches often possess inherent intractability which can make the exercise inappropriate 157 

for fully quantifying core-scan ED-XRF intensities. As a result, calibration requires an 158 

alternative approach within the scope of CoDa in the form of the Log-Ratio Calibration 159 

Equation (LRCE): a univariate log-ratio calibration (ULC) approach that combines 160 

conventional calibration approaches in ratio form (Weltje et al., 2015). 161 



The primary justification for the application of the LRCE and calibration in thist 162 

study is outlined by Bloemsma (2015) in terms of deriving meaningful data. As discussed 163 

by Bloemsma (2015) calibration can be considered going from a not very meaningful data 164 

set illustrated as ‘X’ to a meaningful data set ‘Y’, shown in the Venn diagram Fig. 1a, with 165 

a parametric model used  to capture this overlap. With calibration, X\Y may be interpreted 166 

as noise and Y\X indicates the unpredictable variability in Y which may be interpreted as 167 

a shortcoming of X (Bloemsma, 2015). Since the main goal of such a multivariate 168 

calibration exercise, in the case of this study that of calibrating geochemistry and using 169 

calibrated geochemistry to examine grain-size variability, this is understood through the 170 

prediction of Y from X and Y\X has a different significance than X\Y, since calibration is 171 

an asymmetric exercise (Bloemsma, 2015). Also when both X and Y are meaningful 172 

measures (i.e., quantitatively & compositionally meaningful, and this is illustrated with the 173 

LRCE), then it may be possible to parameterise the overlap between X and Y in order to 174 

gain more insight into their relationship (Bloemsma, 2015). Thus in the case of Fig. 1a, the 175 

unique information (i.e., X\Y and Y\X) is of potential value as both data sets are 176 

quantitatively & compositionally meaningful, which is not the case with XRF intensity 177 

data (Weltje and Tjallingii, 2008; Bloemsma, 2015). 178 

 179 

4. METHODOLOGY 180 

4.1. Quantification of core-scan derived XRF through the LRCE 181 

The LRCE works by using the relationship between elements derived from core-scan and 182 

conventional ED-XRF. Core-scan ED-XRF cannot be calibrated in standard equations due 183 

to unknown coefficients of such models, as it is not possible to correct for grain-size, water 184 



content etc., on a split core log without altering the sample. In principle, calibration of 185 

conventional ED-XRF faces the problems of being a closed dataset (i.e., appropriate data 186 

for compositional data analysis), but still representative of relative quantities of elements 187 

in a sample. However, although core-scan ED-XRF is semi-quantitative (i.e., data are in 188 

form of counts per second) there are also relative abundances of elements (i.e., core-scan 189 

ED-XRF counts are relative to the sum-total of counts that are present between each 190 

element). If a series of points is measured using core-scan ED-XRF and subsequently sub-191 

sampled and processed with conventional ED-XRF, then there are two datasets for the 192 

same sample: conventional ED-XRF and core-scan ED-XRF.  193 

The two datasets that are modelled in the LRCE are the core-scan ED-XRF counts 194 

(i.e., intensity data) for which the concentration is unknown, and the concentration values 195 

(e.g., %, ppm, etc.) dataset from the same set of samples as the intensity data, that form the 196 

reference dataset in the calibration procedure. The way in which the LRCE works is that 197 

the empirical model coefficients α and β are the log-ratio equivalents of the matrix effect 198 

and detection efficiency (this is true in the case of single-element XRF spectrometry), 199 

respectively (Weltje and Tjallingii, 2008). The LRCE uses a number of independent 200 

models for the binary sub-compositions of a given set of elements to the spectrum of 201 

relative XRF intensity data by using major axis regression based on singular value 202 

decomposition (SVD) (Weltje and Tjallingii, 2008). 203 

The LRCE can be considered a form of additive log-ratio transformation (alr) 204 

(Aitchison, 1982; 1986), whereby the transformation is performed on every linear 205 

combination of the sub-compositions examined (Weltje and Tjallingii, 2008). The key 206 

principle however is that the calibration functions in log-ratio space and that these are 207 



linear. After which, inverse log-ratio transformation and closure, the same data can be 208 

expressed in relative intensities against concentrations in binary composition (Weltje and 209 

Tjallingii, 2008). Predictions of the most optimum log-ratio denominator are allowed for 210 

in this approach which reduces any non-linearity introduced by matrix effects (Weltje and 211 

Tjallingii, 2008). Although the calibration process is carried out in log-ratio space it is 212 

possible to inverse-transform the results using the inverse-alr function, giving 213 

compositional data as output (Weltje and Tjallingii, 2008; Bloemsma, 2010). The LRCE 214 

derives multiple element composition estimates from XRF core-scanner output by fitting a 215 

series of mutually independent models for binary sub-compositions of elements to the 216 

spectrum of (relative) intensities (Weltje and Tjallingii, 2008). The variables are only 217 

considered in the form of dimensionless log-ratios, which implies that normalisation prior 218 

to analysis is not relevant, and this is consistent with the key tenets of the CoDa approach 219 

(Weltje and Tjallingii, 2008). With this in mind, the model is unconstrained from the unit-220 

sum and non-negativity problems imposed by a closed dataset (Weltje and Tallingii, 2008). 221 

A full derivation of the LRCE is given in Weltje and Tjallingii (2008) and Weltje et al. 222 

(2015). 223 

In this study the prediction of the ED-XRF core-scan sub-composition was carried out 224 

according to the following scheme: 225 

 The core-scan intensity ED-XRF data and the percentage (%) concentration PXRF 226 

data are examined for the α and β model parameters through major axis regression 227 

by SVD (Press et al., 1994). 228 

 Binary sub-compositions between intensity ED-XRF (core-scan) and % 229 

concentration PXRF are plotted (i.e., the optimum log-ratio denominator that gives 230 



the best linear fit is derived and a series of alr-transformations are used employing 231 

this optimum log-ratio denominator, to derive a linear relationship between % 232 

concentration data and intensity data). 233 

 The best fit model for intensity ED-XRF – the ED-XRF data from both the % 234 

concentration and predicted concentration are permuted and calculated for each 235 

log-ratio pair of linear distances, which derives the best fit for the intensity ED-236 

XRF sub-composition (Weltje and Tjallingii, 2008). This is empirically quantified 237 

by taking the median of the squared discrepancies between the predicted and the % 238 

concentration geochemical composition with discrepancies calculated through the 239 

use of a ‘leave-one-out-cross-validation’ (LOOCV) (Bloemsma et al., 2012). 240 

 The Aitchison distance between predicted and reference composition is used as the 241 

determinant for the optimal denominator element in the sub-composition (i.e., the 242 

residual variance between measurements in both the regression and predicted 243 

models) (Bloemsma et al., 2012). 244 

 The goodness-of-fit of the optimum log-ratio denominator is derived from the 245 

residual variance and the total variance (Weltje and Tjallingii, 2008). 246 

 The relative abundance of each element in the sub-composition from the predicted 247 

weights is determined through an inverse alr-transformation, with data expressed 248 

in a conventional (closed) form (Weltje and Tjallingii, 2008). 249 

Data from core-scan derived ED-XRF are now calculated based on the relative 250 

abundances of the sub-composition. However, to perform any further statistical analysis of 251 

the data, they are required to be subjected to further log-ratio transformation (e.g., alr-, 252 

centred log-ratio (clr), or isometric log-ratio (ilr) transformation). As the LRCE is founded 253 



on the CoDa principles, the use of a common log-ratio denominator is unrestricted and 254 

functions as a normalisation approach (Weltje and Tjallingii, 2008). The use of a common 255 

log-ratio denominator in the calibration model is generally independent of any 256 

environmental or sedimentological considerations (i.e., the log-ratio denominator is 257 

independent of any physical reasoning for use in the calibration model) (Weltje and 258 

Tjallingii, 2008). 259 

 260 

4.3 Joint geochemical and grain-size modelling 261 

Grain-size and geochemical composition of clastic sediments have been found to be highly 262 

correlated as a result of the processes that control the generation of sediment from 263 

crystalline rocks (Bloemsma et al., 2012). The composition of modern sediments and their 264 

grain-size variation is due to four key factors: (i) contributions of mineralogically and 265 

texturally distinct grains from a number of divergent sources (ii) rock fragments being 266 

mechanically weathered into a finer composition, (iii) labile grains being more susceptible 267 

to chemical weathering and (iv) transport associated sorting of compositionally distinct 268 

grains (Whitmore et al., 2004). 269 

Bloemsma et al. (2012) have expanded on this relationship between geochemical 270 

and modal grain-size variation, as geochemical variation is generally considered to reflect 271 

the pervading environmental conditions of sediment genesis. In terms of relating grain-size 272 

variation to bulk geochemical composition, it may be postulated in terms of the chemical 273 

weathering of crystalline rocks, in which the release of unstable elements as solutes takes 274 

place, whereas elements such as Al remain in the solid phase (Nesbitt and Young, 1984; 275 

Bloemsma et al., 2012). 276 



The development of the PLS modelling approach for joint geochemical and grain-277 

size relationships is premised on whether in a series of sediment samples derived from a 278 

source area that, over time the extent of chemical weathering was static, then the bulk 279 

geochemical variation may be attributed to; selective entrainment, transport, and deposition 280 

(Bloemsma et al., 2012). In a sedimentological context, such a one-to-one relationship 281 

between grain-size and geochemistry is rare with geochemical variability being a function 282 

of: chemical weathering; hydraulic/aerodynamic sorting; mixing; and diagenesis 283 

(Bloemsma et al., 2012). In these regards, the variability between grain-size and 284 

geochemistry is considered as being what is shared and what is unshared, in which case if 285 

the former is removed from the data and the residuals calculated, then unknown trends such 286 

as provenance may be distinguished as a result (Bloemsma et al., 2012). 287 

The Partial Least Squares (PLS) modelling approach was developed by Bloemsma 288 

et al. (2012) and has two key assumptions: (1) that there is a monotonic relationship 289 

between grain-size and geochemical composition, and; (2) grain-size distributions and 290 

geochemical compositions are both compositional in nature, necessitating the use of 291 

models in log-ratio space (Bloemsma et al., 2012).  292 

Effectively, geochemical data are considered to contain two parts, with one part 293 

that is correlated with grain-size, and a second part which varies independently from grain-294 

size (Bloemsma et al., 2012). The model is carried out by finding a basis for which 295 

maximizes the geochemical variance explained by the grain-size (Bloemsma et al., 2012). 296 

If then, the mean is subtracted from these geochemical and grain-size data matrices, the 297 

values of the residuals are provided (Bloemsma et al., 2012). If there is significantly high 298 

correlation found in the projection of both datasets onto the basis vectors, then these are 299 



considered to be the ‘shared signals’ (Bloemsma et al., 2012). The residual signal are then 300 

calculated by subtraction of the shared signals from the raw data, giving the variability 301 

unique to each dataset (Bloemsma et al., 2012). The number of uncorrelated (i.e., 302 

orthogonal) components is a hyperparameter that may vary between zero and N-1, with N 303 

being the minimum number of variables (e.g., grain-size bins or chemical elements) 304 

(Bloemsma et al., 2012). The implementation of the PLS modelling approach follows on 305 

from the work of Bloemsma et al. (2012) in which: 306 

 clr-transformation of both the geochemical and grain-size data. 307 

 Detection of replicate samples using the depth attribute. 308 

 Derive the basis Q in ℝD that can maximise the geochemical variance explained by 309 

the grain size through the Partial Least Squares (PLS) (Wold et al., 1982). 310 

 Fit a model onto data matrices X* (where X = L grain size classes) and Y* (where 311 

Y = D variables). 312 

 Subtract the mean from the X* and Y* to derive Xc
* and Yc

* through the SIMPLS 313 

algorithm (de Jong, 1993) and calculate the PLS matrix decomposition. 314 

 Orthogonalise the bases (i.e., the loadings) through SVD with the score matrices 315 

recalculated. 316 

 Test the significance of correlation between geochemistry and grain-size 317 

distribution scores on the k-th basis vector using the Kendall and Stuart (1973) test. 318 

 Derive r for any order of k, where r is the Pearson’s correlation coefficient between 319 

the k-th column and the previously orthogonalised bases. 320 

 With a confidence level of α and p = 1- α , the first k of shared signals is removed 321 

if for the k the Kendall and Stuart (1973) criterion is established. 322 



 The model is applied to all grain-size and geochemical data as the transpose of the 323 

bases are orthonormal, thus the scores of all observed grain-size distributions and 324 

geochemical compositions may then be derived by the matrix product. 325 

 Reduced-rank approximation is used to derive the shared signal in both the grain-326 

size distributions (GSDs) and geochemistry datasets. 327 

 The residuals are calculated and subtracted from the common variability for both 328 

the GSDs and geochemistry input data. 329 

 The mean is added such that the residual signals centre around the mean of their 330 

corresponding raw data matrix as result (Bloemsma et al., 2012). 331 

Thus, through this algorithm implementation it may be possible to derive the grain-332 

size dependent and independent geochemical components from the dataset. It is not the 333 

objective of this study to outline the PLS modelling approach and the reader is referred to 334 

Bloemsma (2010), Bloemsma et al. (2012), and Bloemsma (2015) publications for a more 335 

exhaustive discussion. However, it is only through utilising the calibrated geochemical data 336 

presented here that proxy information for environmental change may be derived, in this 337 

case for grain-size variability and the depositional environment for the Dhanchi Island site. 338 

Grain-size data was gathered from the Dhanchi Island core samples prior to PXRF analysis, 339 

following the methodology of Flood et al. (2015). 340 

 341 

4.3. Data acquisition: Grain-size analysis 342 

GSDs were analysed following Flood et al. (2015) using a MalvernMastersizer 2000 343 

instrument. Data were aggregated into quarter phi intervals (φ scale) over the range of 0.02 344 

– 2000 μm, following collection of measurements from the instrument. The centred log-345 



ratio transformation (clr-transformation) was implemented on all grain-size classes with 346 

any zero-valued bins of quarter phi intervals removed (i.e., where entire column vectors 347 

consisted of 0 row values). Classes of the grain-size distribution containing a zero in any 348 

of the observations (i.e., columns where only some of the row values are > 0), were 349 

amalgamated and the arithmetic mean calculated (cf. Bloemsma et al., 2012). This process 350 

was carried out on the 62.50 μm to 2000 μm fraction (i.e., 4.00 φ to –1.00 φ) for the 351 

Dhanchi Island GSD data. 352 

 353 

4.3. Data acquisition: ITRAX™ core-scanning 354 

Coring was carried out at Dhanchi, Bonnie Camp, and Sajnekhali in November 2011 (sites 355 

shown in Fig. 2). Three cores (one from each site) were extracted using a motor driven 356 

percussion coring device. These cores were analysed using the ITRAX™ core-scanner 357 

(Cox Analytical Systems, Mölndal, Sweden) housed at the School of Geography, 358 

University College Dublin. This is a non-destructive analytical approach which provides 359 

ED-XRF elemental profiles along with optical imagery and micro-density (X-radiography) 360 

information (Croudace et al., 2006). The geochemical data were acquired through an ED-361 

XRF spectrometer consisting of a molybdenum cathode (Croudace et al., 2006). The 362 

voltage and current of the X-ray source was the 3kW Mo tube set to 30 kV and 50 mA 363 

respectively, with a measurement step-size of 300 μm and exposure time of 16 seconds. 364 

The latter setting was employed for expedience, to provide high-resolution scanning of all 365 

the cores (c. 25 m of material length). The element data (table of elements shown in Table 366 

1) were processed using fitting procedures in the Q-Spec spectral analysis package in order 367 

to extract the individual elemental intensities from the spectra output (Croudace et al., 368 



2006). Operation of the software involved selecting elements to be extracted from the XRF 369 

spectra, with any spurious or unnecessary elemental choices or incorrect fitting parameters 370 

adjusted post hoc through a batch-controlled post-processing of the spectra (Croudace et 371 

al., 2006). Invalid readings were noted and not employed in any post-hoc processing (i.e., 372 

invalid readings were not used in the LRCE). The scan-lengths from each of the cores were 373 

666 cm for Dhanchi-2 (hole-depth of 728 cm), 923.2 cm for Bonnie Camp (hole-depth of 374 

1022 cm), and 639.4 cm for Sajnekhali Island (hole-depth of 791 cm). The total number of 375 

readings from each core were Dhanchi-2 with n = 22,129 valid readings from a total output 376 

of 22,201 readings (72 invalid readings), Bonnie Camp with n = 30,517 valid readings from 377 

a total output of 30,773 readings (256 invalid readings), and Sajnekhali with n = 23,822 378 

valid readings from a total output of 24,201 (379 invalid readings). 379 

The LRCE was applied to the global discrete sampling dataset collected (n=568) 380 

with the model then unfolded onto the elemental data from the high-resolution ITRAX™ 381 

ED-XRF (n=76,468). The alpha (α) and beta (β) slope and intercept regression parameters 382 

derived from the LRCE were used to predict the relative concentration of a sub-383 

composition of elements (see 5 Results of this study), for this higher resolution dataset.  384 

 385 

4.4. Data acquisition for calibration: portable X-ray fluorescence spectrometry of reference 386 

samples 387 

Data acquisition using ED-XRF was undertaken using a Bruker S1 TURBO SD portable 388 

X-ray fluorescence (PXRF) spectrometer (Bruker Corporation, Massachusetts, USA) 389 

consisting of a 10 mm X-Flash® SDD Peltier-cooled detector with a 4-watt (W) X-ray tube 390 

consisting of an Ag target and a maximum voltage of 40kV. Analysis was carried out on 391 



discrete samples collected from the Dhanchi-2, Bonnie Camp and Sajnekhali Island cores. 392 

In order to ascertain major and trace element composition, the elemental suite was 393 

generated using two analytical settings for each sample analysed. Major elements were 394 

acquired using a vacuum-pumped, low-energy and high current setting of 15kV and 55μA 395 

instrument setting with no filter. The vacuum-pump was used to remove air from between 396 

the sampling window and the detector and allowed for improved analysis of the material, 397 

in particular increased sensitivity to light major elements, below and including iron (Fe). 398 

The other analytical setting was used for trace element analysis and acquired without a 399 

vacuum-pump and employed a yellow filter (Ti and Al), high-energy instrument setting of 400 

40kV and 19.60μA. With these instrument settings, elemental data are acquired for heavier 401 

elements with little sensitivity for those elements below calcium (Ca). The filter used 402 

consists of a 0.001” Ti and 0.012” Al and is already present in the instrument. Using the 403 

portable XRF, high and low energy data were acquired for each sample. Unknown samples 404 

from the Sundarbans were each measured for 16 seconds, with a set of 22 international 405 

geochemical reference standards (shown in Table 1) measured for 120 seconds, this was 406 

carried out so as to develop a robust calibration line for the PXRF instrument specific 407 

calibration. Since the Bruker software is proprietary, a full disclosure and discussion of the 408 

calibration routine is not possible in this study (cf. Rowe et al., 2012). 409 

The calibration models used in this research depend on the estimation of error of 410 

the covariance matrices, where the magnitude of the uncertainty in the measured variables 411 

is accounted for (Bloemsma 2015; Weltje et al., 2015). With this in mind, due to lack of a 412 

priori knowledge concerning these uncertainties, replicated analysis is required in order to 413 

estimate these uncertainties (Bloemsma 2015). Repeated measurements were carried out 414 



on a total of 9 samples (3 per core) with 30 additional measurements on each of these 415 

samples (n = 270 repeated measurements in total) using the portable ED-XRF. 416 

 417 

4.5. Data acquisition – portable ED-XRF spectra calibration 418 

The raw spectra obtained from the Bruker S1 TURBO SD portable ED-XRF require a 419 

calibration to convert the data into quantitative weight percentages. The calibration for the 420 

portable ED-XRF unit is matrix-specific, so a calibration for major and trace elements of 421 

sediments and soils was developed using a suite of 22 reference materials. The calibration 422 

of the ED-XRF spectra was carried out using the Bruker AXS calibration software 423 

S1CalProcess Version 2.2.32 with the reference concentrations for the low and high energy 424 

calibrations produced for each element being evaluated against the concentration of the 425 

element as derived from the slope and baseline corrected peak heights. Linear regression 426 

analysis of the elemental concentrations quoted by the manufacturers for the international 427 

geochemical reference standards are examined along with elemental composition derived 428 

from the Bruker AXS S1CalProcess. 429 

 430 

5. RESULTS 431 

The results presented in this section reflect the data processing and outline how the LRCE 432 

was applied to the integrated core-scan ED-XRF data along with the discrete samples 433 

analyzed using conventional ED-XRF and grain-size analysis. The LRCE model depends 434 

on comparability of the intensity measured elemental composition (i.e., data from the core-435 

scan ITRAX™ data) along with the % elemental composition (i.e., conventional XRF data) 436 

a sub-composition of the elements were examined for these modelling purposes. 437 



The LRCE model was applied to all of the integrated core-scan samples from the 438 

cores. These input data consisted of the total sample population from the three cores 439 

(Dhanchi, n = 163; Bonnie Camp, n = 228; Sajnekhali, n = 176; with a total sample 440 

population, n = 567) with fifteen outliers removed. These outliers were removed as they 441 

deviated substantially from the general spread of data points and would bias the prediction 442 

of the model. Fig. 3 shows the cross plot of results from the closed, inverse transformed 443 

sub-composition of elements with calcium (Ca), iron (Fe), and potassium (K) depicted in 444 

the top row (a-c) and rubidium (Rb), titanium (Ti), and zirconium (Zr) shown in the bottom 445 

row (d-f). The conventional weighted (reference) ED-XRF composition is on the x-axis 446 

with the integrated ITRAX™ derived intensity (predicted) ED-XRF on the y-axis. 447 

The lack of a full suite of elemental output is due to the fact that the majority of 448 

these elements correspond to the lower energy, and thus atomically lighter, end of the 449 

spectrum with poorer excitation efficiency and detection. Data derived from these lighter 450 

elements are more difficult to calibrate as there tend to be more peak-overlaps. Finally, as 451 

the penetration depth of ED-XRF for the light elements (e.g., Si, Al etc.,)  tends to be ~ 452 

hundreds of μm, there is a risk of not actually measuring sediment (i.e., with core scan 453 

derived ED-XRF, it is possible to measure water pooled under the Mylar® polyester film). 454 

The efficacy of the LRCE is illustrated in Fig. 3, where data appears to be well spread along 455 

the model, with calcium, iron and titanium representing the best spread of data points. 456 

There appears to be some bias in the potassium modelled output where a number of sample 457 

points deviate from the model. This bias may be attributed to the measurement of potassium 458 

in ED-XRF (both core-scan and conventionally derived ED-XRF), where potassium 459 

appears close to calcium and in some cases there may be some peak overlap if the count 460 



time is low (Bloemsma 2015). However, given that the potassium is spread along the x-461 

axis of the known weighted elemental composition, such an artefact of analysis may be 462 

attributed to the conventional ED-XRF. Rubidium data points appear to be spread across 463 

the regression and derive a reduced correlation. There is also a clustering of the data points 464 

from the regression model applied to zirconium. 465 

The calibration coefficients, α and β, for the LRCE model are shown in Table 2 and 466 

Table 3, respectively. These coefficients can be considered to reflect the matrix effect (i.e., 467 

scattering, absorption and enhancement effects introduced during measurement, caused by 468 

the presence of other elements) and detection efficiency (i.e., sensitivity of the ED-XRF 469 

data after pre-processing) in a single-element from ED-XRF derived output (Weltje and 470 

Tjallingii, 2008). The LRCE removes the specimen effects, which relate to the deviations 471 

of measurement from ideal conditions, however not all of these effects are fully removed 472 

(Weltje and Tjallingii, 2008).  The α and β regression parameters reflect physical 473 

parameters such as grain-size, core-surface elevation, and water content (Weltje and 474 

Tjallingii, 2008), and are the main criteria used in the LRCE for calculating the best model 475 

fit for each of the elements (i.e., what is the ‘best’ log-ratio denominator for each of the 476 

elements in the dataset) (Weltje and Tjallingii, 2008).  477 

In Table 4 and Table 5 the residual variances of the regression and prediction of the 478 

dataset used in the LRCE are shown. The residual variance refers to noise as it does not 479 

correlate with the compositional variations in a specimen (Bloemsma, 2010). This variance 480 

is quantified by taking a clr-transformation of a set of measurements from the same core-481 

locations (i.e., replicate measurements) with the Euclidean distance between the 482 

observations measured in order to calculate error estimation (Bloemsma, 2010). Thus, the 483 



residual variance effectively quantifies the level of relative ‘noise’ that may be derived 484 

from the regression and prediction. The residual variance for both the regression and 485 

prediction reveal that calcium accounts for the most consistent variance. 486 

The α and β parameters from the log-ratio transformed dataset shown in Fig. 4 (a-487 

e) with Ca found to be  the best fitting denominator for Fe, K, Rb, Ti, and Zr. The R2 values 488 

of goodness-of-fit in the LRCE denominator are shown in Table 6. The non-linearity found 489 

in the original back-transformed data (Fig. 3, Rb and Zr) along with bias (Fig. 3, K) is now 490 

removed. Ca is found to be the optimal denominator using the Aitchison distance between 491 

the predicted and reference composition. Table 4 shows the median variances and Table 5 492 

depicts the 95% confidence limits corresponding to these residual variances. The non-493 

linearity introduced by the matrix effects has been greatly reduced with log-ratio intensities 494 

now distributed linearly with the log-ratio relative concentration (cf. Weltje and Tjallingii, 495 

2008). As a consequence, the elemental concentration can now be derived from any of the 496 

intensity observations based on the linear model (black line intersecting the point clouds in 497 

Fig. 4) (cf. Weltje and Tjallingii, 2008). 498 

Using the residual variance of the prediction and the regression (Table 4 and Table 499 

5), the sub-composition closure of the high-resolution dataset from the ITRAX™ ED-XRF 500 

has been estimated from the lower resolution calibration dataset. As a result, it is now 501 

possible, through the calibrated intensity derived ED-XRF with the weighted ED-XRF, to 502 

interpolate the high resolution intensity ED-XRF. 503 

Shown in Fig. 5a is the PLS model output for the Dhanchi Island core with the PLS-504 

coefficients of c. 0.3 for grain-size depicted by negative values corresponding to the coarse-505 

clay to coarse-silt size fractions. Positive PLS coefficients of c. +0.3 are indicated by 506 



coarse-silt to sand sized. The PLS-scores for grain-size indicate positive score fluctuations 507 

appear to correspond to coarser sediment coefficients with negative scores found to 508 

correspond to that of finer sediment coefficients. The PLS-coefficients for geochemistry 509 

(Fig. 5b) show positive values for zirconium and calcium, with the highest negative values 510 

found for iron, potassium, rubidium, and titanium. Calcium and zirconium indicate the 511 

highest PLS coefficients at c. 0.4 and 0.3 respectively. In contrast, iron, potassium, 512 

rubidium and titanium are negatively correlated with PLS-coefficient values of between -513 

0.3 and -0.4. The PLS-scores show a decline in grain-size with a concomitant decline in 514 

PLS-scores for geochemistry (calcium and zirconium) (Fig. 5c & d). Furthermore there is 515 

an apparent trend found in the PLS-scores for grain-size, firstly a trend consisting of a form 516 

of oscillation taking place from c. 787 cm to 491 cm that is superseded by a second trend 517 

of PLS-score decline. These trends in light of the PLS-scores may be interpreted as a form 518 

of grain-size variability, in which oscillations in grain-size appear to correlate with 519 

oscillation in zirconium, while a decline in zirconium is reflected in a decline in grain-size. 520 

When the PLS-data are considered along with the PC1-scores and PC1-coefficients for 521 

residual geochemistry (Fig. 5e & f), it is evident that throughout the Dhanchi Island core 522 

there is a consistent decline of calcium taking place. This can be discerned through the 523 

PC1-coefficients for residual geochemistry which depict positive values driven most 524 

strongly by calcium at c. 0.7 with negative values being concomitantly driven by zirconium 525 

at just over -0.6. Furthermore, negative PC1-coefficient values may be discerned for the 526 

rubidium and titanium compositions, with potassium and iron represented by positive 527 

coefficient values. 528 

 529 



6. DISCUSSION 530 

6.1 Reconstructing Late Holocene environmental change from sediments in the West 531 

Bengal Sundarbans, India  532 

The objective of the study is to investigate how the application of LRCE & PLS to 533 

Holocene sediments of a Delta environment can improve interpretation of geochemical 534 

indicators of grain-size variability. The geochemistry derived from the application of the 535 

LRCE to Holocene sediments in the present study illustrates the efficacy of these subset of 536 

elements as useful indicators of environmental change. The LRCE shows that, in the case 537 

of the Sundarbans, K, Rb, Fe, Ti, Zr, and Ca can be calibrated, with Ca found to be the 538 

best-fit denominator. The utility of these elements for interpreting environmental change 539 

within the Sundarbans can be explored by examining the Dhanchi Island core and how 540 

these calibrated data may be employed in order to interpret the depositional environment 541 

through grain-size variability. However, in order to understand the data generated in this 542 

study, there is a requirement to place into the context the key aspects of deltaic 543 

environments and how these aid in the interpretation of facies variability derived through 544 

the LRCE & PLS models for the case study of the Dhanchi Island core. The role of this 545 

discussion is to outline a potential set of circumstances that may characterise a depositional 546 

model for this particular site in the Sundarbans. 547 

 548 

6.2 Contextualising deltaic environments: implications for understanding the Sundarbans 549 

In order to develop any interpretation of facies variability through geochemistry and grain-550 

size analysis, illustrated in this study, an exposition is required on generalised ‘boundary 551 

conditions’ in deltaic environments. This is not an exhaustive discussion on every aspect 552 



of deltaic environments, but rather the principal aspects of these boundary conditions for 553 

understanding the Sundarbans and the results from the Dhanchi Island core. 554 

Through high sediment availability with variability in ocean hydrodynamics and 555 

localised coastal progradation, river deltas develop as coastal features characterised as 556 

‘protuberances’ (cf. Elliott, 1986; Wright, 1978; Hanebuth et al. 2012). Attempts to classify 557 

deltas into a ternary diagram representing endmembers of fluvial, tidal, and wave 558 

dominances have failed to capture the variability represented by the fact that many deltas 559 

do not fall into a singular regime classification (Hanebuth et al., 2012). There is a rather 560 

dynamic relationship in terms of laterally graded intensity between sediment discharge 561 

along defined channels counterbalanced with the influence of tides, waves and longshore 562 

currents (Hanebuth et al., 2012). In these regards, the differentiation of external forces in 563 

this manner leads to more diverse organisation of deltaic environments that are more 564 

locally segmented and temporally complex (Hanebuth et al., 2012). With this, the focus of 565 

deltaic research should consider the individual segments of a delta as opposed to the entire 566 

delta which transitions through different classification schemes (Ta et al., 2005; Yoshida 567 

et al., 2007; Hanebuth et al., 2012). This study attempts to apply this approach to 568 

considering the Sundarbans in this manner of localised variability in terms of sedimentary 569 

deposition as opposed to applying a generalised model over the entirety of the Ganges-570 

Brahmaputra delta. Modern Holocene delta development has been demonstrated to have 571 

commenced between 9 and 7.5 cal ka BP associated with the deceleration of sea-level rise 572 

approximately 1 ka prior to the mid-Holocene sea level maximum (Stanley and Warne, 573 

1994). It has been proposed however, that during this initial stage of delta growth deposits 574 

are, with the exception of the sedimentary facies succession filling central fluvial valley, 575 



not of a deltaic character but have formed under a strong tidal influence, comprised mainly 576 

of tidal flats, mangrove swamps and salt marshes (e.g., Tanabe et al., 2006) (Hanebuth et 577 

al., 2012). Although this proposition stands in contrast to the generally held concept of 578 

supply-dominated, progradational environments, the observation does hold some potential 579 

insight into the conditions that characterise the late Holocene (< c. 4,000 cal yr BP) 580 

environment of the Sundarbans. 581 

In order to better understand geochemical and grain-size variability, and the 582 

implications that these have for teasing-out aspects of environmental change in the 583 

Sundarbans, some general aspects of sediment supply need to be considered. As discussed 584 

by Gao and Collins (2014) it has been found that the occurrence of coastal-shelf deposits 585 

are indicative of the provenance of sediment supply. In their argument, it is put forward 586 

that if the supply of sediment is ‘small’, then the seabed may consist only of bedrock, relict 587 

sediment or reworked materials (Gao and Collins, 2014). This condition is known as being 588 

“sediment starved” (Gao and Collins, 2014, pp. 270). If there is an abundant supply of 589 

sediment, then thick Holocene deposits with a large areal coverage may occur (Gao and 590 

Collins, 2014). Sediment supply is principally provided by rivers, derived from catchment 591 

erosion with the amount of available sediment dependent on the catchment characteristics 592 

(Milliman and Syvitski, 1992; Syvitski et al., 2003; Gao and Collins, 2014). Sediment 593 

supply, in terms of rivers at least, is dependent upon geographical variability at the global 594 

scale (Milliman and Farnsworth, 2011). An example of this can be seen in monsoon-595 

controlled southeastern Asia, where the warm climate favours physical and chemical 596 

weathering and, therefore, generates a high sediment yield with intense rainfall that results 597 

in high river discharges (Liu et al., 2000; Gao and Collins, 2014). Thus, as a result of these 598 



conditions, southeastern Asia in these regards has the highest terrestrial denudation rates 599 

in the world with the majority of sediment input into oceans derived from this region 600 

(Milliman and Farnsworth, 2011; Gao and Collins, 2014). In terms of erosion at the coastal 601 

zone, more than half of all coastlines are undergoing erosion with sediments deposited in 602 

areas adjacent to the shoreline & littoral zone with the transport offshore of the remaining 603 

sediments (Bird, 1984; Gao and Collins, 2014). Combining these general aspects of 604 

sediment supply to understanding deltaic environments may be best considered when 605 

looking at grain-size variability. 606 

Grain-size compositions examined with an experimental microdelta by Endo et al. 607 

(1996) have found that these compositions are strongly controlled by the textural 608 

composition of source sand, analogous to a real-world river system. These results indicate 609 

that textural composition of a depositional system is primarily determined by the textural 610 

composition of sediment input (Swift et al., 1971; Liu et al., 2000). With this the observed 611 

grain-size variability are a result of the transport and deposition processes of sediment 612 

delivery to a system, with subsequent reworking of sediments already deposited (Liu et al., 613 

2000). Thus, the nature and amount of sediment input can therefore determine the textural 614 

characteristics of a depositional system in receipt of these sediments (Liu et al., 2000). 615 

Therefore, the textural characteristics of a marine depositional system, its sources, and 616 

processes by which delivery of sediments takes place and is deposited, may be understood 617 

as being highly connected (Liu et al., 2000). An example of this connected nature of 618 

sediments in depositional environments may be seen with the distributional patterns of 619 

individual grain-sizes on a wave-dominated shoreface by Liu and Zarillo (1990). It was 620 

found that both influence of source and the influence of hydrodynamics that have reworked 621 



and redistributed sediments during transport were discerned (Liu and Zarillo, 1990). Such 622 

unique grain-size distributions therefore highlight the different responses to processes of 623 

hydrodynamics on the shoreface and how these may be utilised in order to examine how 624 

sediments respond to hydrodynamic processes (Liu and Zarillo, 1989). It is therefore now 625 

possible to fully consider the data from the Dhanchi Island core and what may be gleaned 626 

from the geochemical and grain size variability found and how these fit into the present 627 

understanding of deltaic environments. 628 

 629 

6.3 Use of Sundarbans elemental log-ratios as environmental proxies 630 

The calcium variability in the Dhanchi Island sediments may therefore be understood as 631 

declining from a depth of approximately 500 cm to the core surface. This decline in calcium 632 

with the subsequent increase in zirconium, titanium, potassium, and rubidium composition 633 

may be interpreted as terrestrial sediment flux with diminished marine deposition. This 634 

calcium signal is pervasive in the four log-ratio pairs and does not appear to lend to the 635 

interpretation of grain size variability per se in the depositional characteristics of the 636 

Dhanchi Island site. It may be discernible that terrestrial sediment flux appears to be 637 

uncorrelated with calcium, thus, sediment provenance for the fine and coarse sediment 638 

appears to be independent of a marine or a tidally driven source. 639 

In this context, the Dhanchi Island sediments exhibit a predisposition to terrigenous 640 

sediments, in agreement with Rogers et al. (2013) that geographical distance is not 641 

necessarily a limiting factor on sedimentation taking place (assuming the predominance of 642 

terrigenous sediment in the Dhanchi Island sediments). One of the key trends in all of these 643 

log-ratio pairs with calcium as the denominator, is that there appears to be a non-644 



stationarity signal present, in which although the variability between log-ratio values 645 

appears to indicate some form of oscillation throughout the sequence, in each log-ratio pair 646 

however the overall behaviour as noted is an increase in the numerator value at the expense 647 

of the calcium denominator (Fig. 6). Non-stationary signals, in the case of these log-ratio 648 

pairs, implies that the depositional processes taking place are drifting in time, in particular 649 

the increase in zirconium relative to calcium may be derived from the aggradation of the 650 

island surface. 651 

Grain size variation delivered by rivers has also been found to become finer in the 652 

seaward direction and this is more pronounced in an aggradational environment 653 

(Dalrymple and Choi, 2007). However, given that this part of the Sundarbans is an 654 

‘abandoned’ deltaic-estuarine site, it may be classed as being part of the ‘middle estuary’ 655 

which occupies effectively the same environmental location within an estuary as active 656 

delta-plain distributary channels within a delta (Dalrymple and Choi, 2007). In terms of a 657 

deltaic system such an abandoned set of distributary channels are thought of as estuarine 658 

due to the fact that they do not carry as much river discharge and also experience reworking 659 

by tidal currents (Dalrymple, 2006; Dalrymple and Choi, 2007). These areas experience 660 

net landward transportation of sediment from the seaward margin, which is contrast to that 661 

of active delta channels that experience a reverse (Dalrymple and Choi, 2007). It has also 662 

been noted that in terms of evidence for river action in the physical structures present, there 663 

tends to be almost no evidence for seasonality in fluvial discharge (Dalrymple and Choi, 664 

2007). Along with this, there tends to be a case in abandoned channels of such delta plain 665 

estuaries that sediments from somewhat older distributary-mouth-bar deposits experience 666 



reworking within these systems (Dalrymple and Choi, 2007). The overarching presence of 667 

silt and clay would suggest a muddy depositional environment. 668 

As identified by Goodbred and Saito (2011) such environments are generally made 669 

of what are termed ‘sand-mud alterations’ consisting of flaser, lenticular and wavy 670 

laminations or bedding. Furthermore, such tidal flat environments are composed of 671 

bidirectional sedimentary structures such as sand-layer stacking, cross-laminations, mud-672 

drapes, and potentially, double mud-drapes (Goodbred and Saito, 2011). These 673 

depositional features are usually indicative of tidal depositional constraints on a 674 

sedimentary system (Goodbred and Saito, 2011). In this regard, although such sedimentary 675 

structures are difficult to discern from a discrete number of grain size samples, it is possible 676 

to elucidate such a depositional environment, potentially through high-resolution core-677 

scanning as shown in Fig. 6. However, without having a robust chronology, it is still 678 

difficult to discern such tidal sedimentary structures. In a study of grain size characteristics 679 

of tidal-bore deposition in the Qiantang Estuary by Fan et al. (2014), GSDs are found to be 680 

composed of a principal coarse and secondary fine component. The modal size, sorting, 681 

and proportions found in these coarse and fine components are ascribed to different 682 

depositional processes on the tidal flats (Fan et al., 2014). Sandy laminae were found to be 683 

well sorted compared to those of muddy laminae, reflecting disparate depositional stages 684 

of waning flow and slack tides (Fan et al., 2014). 685 

The dominant, upward-fining in GSDs as shown in Fig. 5 & 6 may be attributed to 686 

what Dalrymple et al. (1992) refer to as ‘lateral shifting of channel bedforms’. Such lateral 687 

shifting leads to this trend in grain size as currents tend to be higher at greater depths and 688 

weaker when over bar crests (Dalrymple et al., 1992). These fining-up sequences 689 



comprising muddy tidal flats may actually cap subtidal sand ridges (Wells, 1995). A similar 690 

model of facies succession has been proposed by Goodbred and Saito (2011), where the 691 

migration of tidal channels and creeks across tidal flats, contribute to this fining up facies 692 

succession. The clay fraction elucidated from the first and second principal components 693 

may represent the mud-drapes and fluid-muds which may be attributed to slack water or 694 

poor water flows (cf. Wells, 1995).  695 

Sediment that may have terrigenous origins may also be indicative of a fining-up, 696 

when considered with the Ca decline throughout the sequence. The element profile of Ca 697 

in sedimentary depositional environments is generally considered to reflect the 698 

predominant abundance of biogenic carbonates (CaCO3) in marine sediments (Arz et al., 699 

1998; Tjallingii, 2007; Tjallingii et al., 2010). There is known to be poor preservation of 700 

of CaCO3 in the Sundarbans especially in the progradational lower delta plain sequence 701 

relative to the marsh and mangrove deposits of other deltaic systems around the world (see 702 

Allison et al., 2003). In the case of the Sundarbans however, the presence of Ca may be 703 

interpreted as indicative of the solubility of Ca in water. Since Ca has a low ionic potential 704 

it is unable to break the bonds in the water molecule and remains in solution as a hydrated 705 

cation (Bjørlykke, 2010). The result of this is that the Ca ion is surrounded by water 706 

molecules with the negative dipole towards the Ca cation (Bjørlykke, 2010). As water 707 

molecules have a strong dipole this causes them to be attracted to cations with the resulting 708 

cation, in this case, Ca becoming hydrated (Bjørlykke, 2010). This small cation is therefore 709 

less likely to be adsorbed to clay minerals that are negatively charged (Bjørlykke, 2010). 710 

Finally, Al has been known to replace Ca as the dominant exchangeable cation where the 711 

acidity of soil increases, thus, high Al concentrations are usually correlated with reduced 712 



Ca concentrations (Salminen et al., 2005). In this regard, Ca may be interpreted as a proxy 713 

for marine flux in the Sundarbans sedimentary environment; given the ionic potential and 714 

physical properties outlined. 715 

There appears to be greater agreement found between sediment provenance 716 

proposed by Rogers et al. (2013) and sediment depositional model outlined here in terms 717 

of distal sediment transport from fluvial sources, reflected in the log-ratio pairs discussed. 718 

The non-stationary signals found in elemental log-ratio pairs may be attributed to tidal 719 

processes in the manner described by Dalrymple and Choi (2007). However, what is further 720 

elucidated through the joint geochemical and grain-size analysis approach is tha the 721 

Sundarbans, through the Dhanchi Island example presented in this study reflects a locally 722 

segmented & temporally complex system that does not fall into a singular regime 723 

classification given the complex relationship that is exhibited by tidal variability (Hanebuth 724 

et al., 2012). Furthermore, although sediments may undergo reworking, what has been 725 

found is a predominantly terrestrial source for sediments present in the Sundarbans; this 726 

does not fit closely with the implication that the Sundarbans are ‘sediment starved’ as 727 

outlined by Gao and Collins (2014). Rather, geographically (Milliman and Farnsworth, 728 

2011) and climatically (Liu et al., 2000; Gao and Collins, 2014) variable processes operate 729 

in producing a complex depositional environment. Sedimentary facies variability in the 730 

form of tidal processes can only be inferred in this study by the diminished calcium 731 

variability found. These tidal processes do not appear to operate in isolation and may be 732 

coupled to some form of monsoonal variability in the manner proposed by Liu et al. (2000) 733 

for Asia and by Rogers et al. (2013) more specifically applied to the Sundarbans. 734 



The utility of these calibrated geochemical proxies from the Sundarbans is 735 

illustrated in Fig. 6 from the Dhanchi Island core. Through plotting the log-ratio pairs there 736 

appears to be some oscillating trend throughout the core, in particular with log-transformed 737 

Zr and Rb (see Fig. 5). There is a steady decline in Zr nearer to the top of the core (from a 738 

depth of 450 cm to the core surface). This indicates a decline in zirconium, and potentially 739 

an increase in rubidium. It is only through CoDa however that such a trend can be 740 

illustrated in the first place as ratios by themselves possess the undesirable property of 741 

asymmetry, meaning that conclusions based on evaluation of the ratio of two elements 742 

(e.g., A/B), cannot be directly translated into equivalent statements about B/A (Weltje, 743 

2012; Weltje et al., 2015). Taking this approach further, the Rb and K log-transformed data 744 

shown in Fig. 5, appear to reflect the trend found in rubidium and zirconium; with an 745 

oscillating trend throughout the core. However, there does not appear to be any discernible 746 

increase or decrease in rubidium up core, with the log-ratio data remaining somewhat 747 

unvarying. 748 

The overarching trend would suggest a strong relationship between zirconium and 749 

coarse grained sediment, as these sites are considered to reflect upward fining sequences 750 

(e.g., Allison et al., 2003; Flood et al., 2015). In particular the trend consists of coarse/very 751 

coarse-silt and sand with a concomitant relationship between coarse clay and 752 

medium/coarse-silt for rubidium. Furthermore, the variability of rubidium with potassium 753 

would suggest an unvarying relationship between the fine-grained sediments. This might 754 

indicate that fine-grained provenance is tied to rubidium and potassium, with coarse 755 

grained sediment provenance strongly linked to zirconium. Ca geochemistry (shown in Fig. 756 

5) may be linked to some external environmental control, such as sea-level or tidal 757 



inundation as calcium is generally only present in liquid form in the marine environment. 758 

Ca appears to correlate negatively with Zr, Ti, K, and Rb in the Dhanchi Island core. This 759 

decline in calcium with concomitant increases in Zr, Ti, K, and Rb (Fig. 5) may be 760 

interpreted as reflecting terrestrial derived sediment flux with diminished marine or 761 

carbonate deposition (or at least a marine source of variability). Terrestrial sediment flux 762 

therefore appears to be uncorrelated with Ca, implying that sediment provenance is 763 

independent of a marine or tidally driven source. 764 

 765 

7. CONCLUSION 766 

Through CoDa it has been possible to calibrate core-scan derived XRF data, and produce 767 

useful elemental proxies for analysing a clastic sedimentary environment. When using the 768 

LRCE calibration model coefficients to examine such clastic sedimentary environments in 769 

the Indian Sundarbans quantified data outputs are possible, and combined with grain-size 770 

data a broader understanding of the depositional environment is possible. The lack of a full 771 

elemental suite, attributed to a poorer linear fit between weighted concentration and 772 

intensity data, does not detract from the approach to XRF core-scan calibration. The 773 

elements that have been calibrated through the LRCE in this study may be used to 774 

demonstrate provenance (e.g., Zr, Rb, Ti, etc.) and processes of sedimentation (e.g., Ca) in 775 

this area of the G-B delta. Ca has been found to be the optimum log-ratio denominator, and 776 

when examined in a log-ratio framework, it may be used to distinguish between marine-777 

terrestrial sediment fluxes in a high-resolution XRF dataset. Future research should focus 778 

on building a more constrained calibration model for the G-B delta, with more sedimentary 779 

cores from different facies sequences and employing other geochemical analyses tools 780 



(e.g., ICP-OES/MS). The LRCE & PLS approaches applied in this study for calibration of 781 

sediments represent a robust application of the principles of CoDa, and it is recommended 782 

that future studies in the G-B delta and other delta environments should seek to refine core-783 

scanning XRF and grain-size analysis in light of the approaches outlined in this study. 784 
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