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Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in
both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent
cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production,
contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging.
Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the
dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of
promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that
tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing
a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful
avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and
related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.

1. Introduction

The vascular endothelium modulates vascular structure,
thrombolysis, vasoconstriction, and vasodilation and main-
tains internal homeostasis through synthesizing and releas-
ing several active biomolecules [1]. A loss of function of the
endothelium represents a key risk factor for cardiovascular
disease (CVD) and initiates the development of atherosclero-
sis [2]. Endothelial dysfunction is associated with functional
changes that diminish nitric oxide (NO) bioavailability and
consequently leads to CVD [1]. Sustained failure to counter-
act the excessive production of reactive oxygen species (ROS)
and dysregulation of the antioxidant defence system in the
endothelium elicits cellular damage and dysfunction [2].
However, the original concept that all free radicals are
damaging disease-causing entities have, over recent years,
been replaced by an understanding of the important signal-
ing role they play within and between cells. The production
and control of free radicals need to be tightly regulated to

prevent cytotoxicity, and the imbalance, caused by exoge-
nous sources of free radicals with chronic upregulation and
endogenous production, contributes to many pathological
conditions and also to more general processes involved in
aging [3–5]. There are multiple cellular defence strategies to
prevent free radical toxicity, which are dynamically regulated
to protect from oxidative insults and preserve cell function
[6]. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly
known as Nrf2 [7]) has been identified as a major regulator
of the oxidant/antioxidant balance.

The Nrf2 was first discovered in 1994 by Moi et al. during
studies on regulation of the β-globin gene [7]. It was subse-
quently identified to be profoundly involved in the regulation
of oxidant and antioxidant gene expression, through binding
to the antioxidant response element (ARE) [8, 9]. Nrf2/ARE
signaling is highly conserved in all species and controls a
wide panel of genes that include cytoprotective and detoxify-
ing phase II enzymes [10]. Nrf2 coordinates the cellular
response to oxidative insults, preventing damage to cellular
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components sensitive to redox changes (i.e., proteins, lipids,
and DNA).

2. Regulation of Nrf2 Activity

Nrf2 activity is highly regulated, suggesting that either
hypoactivation or hyperactivation of Nrf2 may be detrimen-
tal to the cell, for example, unrestricted Nrf2 activity, elicited
by knockout of Kelch-like ECH-associated protein 1
(KEAP1) in the mouse, results in postnatal lethality [11],
while Nrf2 knockouts are viable but hypersensitive to oxida-
tive stressors. The regulation of Nrf2 has been extensively
reviewed elsewhere [12–14] but is briefly summarized here
and in Figure 1 and Table 1. Nrf2-regulated gene expression
is primarily controlled by KEAP1. In a situation without oxi-
dative stimuli, Nrf2 is mostly sequestered in the cytosol
through binding to the Kelch domain of KEAP1 [15]. KEAP1
acts as an adapter molecule for CUL-E3 ligase and mediates
the ubiquitination and degradation of Nrf2 protein. Exposure
of oxidative/electrophilic stress causes a modification of the
cysteine groups on KEAP1 (particularly C151), relaxing the
structure of KEAP1 causing dissociation of KEAP1 from
CUL-E3 ligase [16–18]. It is unclear if Nrf2 protein

dissociates from KEAP1 or if modification of C151 simply
blocks further processing of Nrf2 [18]. De novo synthesized
Nrf2, or protein released from KEAP1, is then free to translo-
cate to the nucleus. In addition, p21, p62, and the tumor sup-
pressor WTX also potentiate Nrf2 activation through
sequestration of KEAP1 or binding to Nrf2 to prevent associ-
ation with KEAP1 [19–21]. Upon entry into the nucleus,
Nrf2 heterodimerizes with a number of transcription factors,
including small Maf proteins (allowing formation of full
basic zipper, summarized in Figure 1 and Table 1), and binds
to the ARE (core sequence RTGACnnnGCA) to induce gene
transcription [22, 23].

Dissociation of KEAP1 from the CUL-E3 ligase complex
can be induced by a large range of compounds, including oxi-
dized phospholipids [24], nitric oxide (NO), zinc, alkenals
[25], and cigarette smoke, or fresh aqueous extracts of
cigarette smoke [26–28]. However, not all forms of ROS
appear to be able to modify KEAP-1/Nrf2 interactions, with
data suggesting this is both cell type and context specific.
Of particular relevance to CVD, laminar shear stress causes
the activation of Nrf2 in endothelial cells [29], through lipid
peroxide and COX2-derived 15-deoxy-12,14-prostaglandin
J2 (15d-PGJ2) intermediates, enhanced by phosphoinositol
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Figure 1: Nrf2 and KEAP1 structure. Nrf2 is a cap‘n’collar-basic region leucine zipper (CNC-bZIP), and its human sequence contains 605
amino acids, divided into seven domains: Neh1 to Neh7. Neh1 contains a CNC-bZIP motif, allowing heterodimerization with Maf
proteins and DNA binding [54]. The Neh2 domain contains the Keap1 binding site (DLG and ETGE motifs), necessary for its cytoplasmic
retention and degradation [55]. The Neh3 domain is fundamental for Nrf2 transcriptional activation through binding with chromo-
ATPase/helicase DNA-binding protein 6 (CHD6) [56]. Neh4 and Neh5 provide an interaction site for nuclear cofactor RAC3/AIB1/SRC-3
[57] and CREB-binding protein (CBP) [58] which enhances the Nrf2/ARE activation pathways, partially by promoting acetylation of Nrf2
[59]. Additionally, Nrf2 possesses a redox-sensitive nuclear exporting signal within the Neh5 transactivation domain able to regulate its
cellular localization [60]. The serine-rich Neh6 domain contains two motifs (DSGIS and DSAPGS) involved in the negative regulation of
Nrf2. Glycogen synthase kinase 3 (GSK-3) phosphorylates serine residues within Neh6 enabling the interaction with the β-transducin
repeat-containing protein (β-TrCP) which acts as a substrate receptor for Skp1–Cul1–Rbx1/Roc1 ubiquitin ligase complex, leading to
KEAP1-independent degradation [41]. Neh7 domain interacts with retinoid X receptor alpha (RXRα), responsible for Nrf2/ARE signaling
inhibition [61]. Human Kelch-like ECH-associated protein 1 (KEAP1) is a 69 kD protein, containing 27 cysteine residues. It is a substrate
adaptor for cullin (Cul3) which contains E3 ubiquitin ligase (E3). KEAP1 is composed of five domains starting from the N-terminal
region, a BTB dimerization domain (Broad-Complex, Tramtrack, and Bric-à-brac) which contains the Cys151 residue, a cysteine-rich
intervening region (IVR) domain with two cysteine domain residues Cys273 and Cys288, critical for stress sensing. A Kelch domain/
double glycine repeat (DGR) domain possessing 6 Kelch repeats and ending with a C-terminal region [62]. KEAP1 needs a domain
capable to homodimerize and interact with Cul3, forming the Nrf2 inhibitor complex (iNrf2), and this is the BTB domain [63]. The
Cys151 in the same domain plays an important role on Nrf2 activation in response to oxidative stress [64]. Furthermore, the IVR domain
is highly sensitive to oxidation and contains three cysteines, 273, 288, and 297 which regulate Nrf2 activation and repression [16, 65]. The
DGR domain acts as an Nrf2 repressor; it contains six repetitive Kelch structures that specifically bind to the Neh2 domain on Nrf2 [15].
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3-kinase/Akt signaling, but is surprisingly independent of
endothelial nitric oxide synthase (eNOS) activity [30–33].
In addition, laminar shear stress increases the nuclear locali-
zation of Nrf2 via a KLF2-dependent mechanism [34].
Finally, tumor necrosis factor alpha (TNF-α) increases the
activation of Nrf2 in human endothelial cells [28] and mono-
cytes [35]. A number of naturally occurring compounds have
been shown to release Nrf2 from KEAP1 [36], for example,
sulforaphane [37], sulfuretin [38], 2-trifluoromethyl-2-meth-
oxychalone [39], and isoliquiritigenin [40], suggesting that
dietary modulation of ARE-dependent gene expression could
play a potential role in modulating disease.

3. Additional Regulatory Systems

In addition to KEAP1-mediated sequestration and degrada-
tion of Nrf2 within the cytoplasm, there are a number of
additional layers of regulation on Nrf2-dependent gene
expression. Degradation of Nrf2 can also be induced by
β-TrCP–Skp1–Cul1–Rbx1 E3 ubiquitin ligase complex
[41, 42], triggered by phosphorylation of Nrf2 within the
Neh2 domain. Subsequently, the E3 ligase complex ubiqui-
tinates Nrf2 and causes its destruction by the proteasome.
Mitra et al. also observed that the inhibition of P38
mitogen-activated protein kinase (MAPK) highly decreased
Nrf2 nuclear translocation, with a corresponding reduction
of Nrf2-dependent gene expression [43]. While the majority
of KEAP1 is normally present in the cytoplasm, 10–15% has
localized to the nucleus [44]; prothymosin-alpha (ProTα)
binds KEAP1, shuttling it into the nucleus, where it can bind

Nrf2 and promote its degradation [45]. Within the nucleus,
B-zip proteins BACH1 and BACH2 can form dimers with
Maf proteins through their BTB domain and compete for
binding to the ARE, preventing Nrf2 binding and activation
of transcription [46–48]. BACH1 is universally expressed,
while BACH2 expression is predominantly limited to
monocytes and in neural cells. Phosphorylation of BACH1
on Y486 provokes nuclear export of BACH1 increasing
Nrf2-dependent gene expression [49, 50]. Nuclear export of
Nrf2 is controlled through a GSK-3β-controlled phosphory-
lation cascade. GSK-3β phosphorylates Src family kinases
(Src, YES, and Fyn), in turn phosphorylating Nrf2 on Y568
triggering nuclear export and degradation [51–53].

4. Nrf2 and Mitochondrial Dynamics in
Cardiovascular Disease

Cardiovascular disease is the main cause of death worldwide
[78], and it covers a wide array of disorders. The most com-
mon causes of CVD morbidity and mortality are stroke,
ischemic heart disease (IHD), and congestive heart failure
(CHF). Several risk profiles are involved in CVD where
ROS is a central mediator and a common denominator,
upregulated by multiple risk factors such as diabetes, inflam-
mation, and smoking [79–81]. ROS can cause EC apoptosis
and activate nuclear factor kappa-B (NF-κB), increasing
adhesion molecules and cytokines that enhance monocyte
adhesion [82, 83]. Oxidative stress is involved in mitochon-
drial dysfunction, which is related to bioenergetic defects
and an alteration in mitochondrial dynamics. This provokes

Table 1: List of proteins that bind to and modulate the activity of Nrf2.

Gene Function Reference

KEAP1 Retention in cytoplasm and degradation [15]

CDH1/CTNNB1 Enhances KEAP1 interaction [66]

CRF1 Ubiquitination and degradation [67]

ATF4 Activation of gene expression [68]

BRG1 Selective activation of gene expression [69]

CBP Activation of gene expression [58]

CHD6 Activation of gene expression [56]

JUN Activation of gene expression [9]

MAFF Heterodimer activates gene expression [70]

MAFG Heterodimer activates gene expression [71]

MAFK Heterodimer activates gene expression [71]

PMF1 Activation of gene expression [72]

RAC3/AIB1/SRC-3 Activation of gene expression [57]

PKC Phosphorylation increases nuclear translocation [73, 74]

HDAC1/2/3 Repression of gene expression [75]

MYC Repression of gene expression [76]

PPARG Repression of gene expression [77]

RXRα Repression of gene expression [61]

FYN Phosphorylation and nuclear export [52]

SRC Phosphorylation and nuclear export [53]

YES Phosphorylation and nuclear export [53]
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transcription impairment and cell damage. Blockage of the
mitochondrial electron transfer in complex III in diabetes
leads to the release of electrons which reduce molecular
oxygen to superoxide (O2•) and increases intracellular ROS
production [84]. Furthermore, ROS can activate membrane
oxidases with a subsequent increase in the levels of asymmet-
ric dimethylarginine that competes for the L-arginine
transporters and active sites on eNOS [85]. Nrf2 modulates
the activity of the mitochondrial respiration chain [86], with
pharmacological activation of Nrf2 protecting against toxic-
ity and maintaining mitochondrial homeostasis possibly via
ablation of Akt2 signaling [87]. Liu and colleagues discovered
acrolein, a component of cigarette combustion, inactivated
the KEAP1/Nrf2 pathway, and decreased mitochondrial
membrane potential [88], while Zou et al. demonstrated the
ability of Nrf2 to prevent mitochondrial dysfunction, using
hydroxytyrosol to activate Nrf2 [89].

5. Nrf2 in Endothelial Dysfunction

The vascular endothelium modulates vascular homeostasis
through synthesizing and releasing several active biomole-
cules [1]. A loss of endothelium integrity represents a key
risk factor for CVD, initiating atherosclerosis [2] and is
associated with functional changes that diminish NO bio-
availability and, consequently, lead to CVD [1]. Hypoxia,
flow disturbances, and oxidative stress are important
contributors to endothelial dysfunction [90]. Failure to
counteract excessive production of ROS and modulation
of the anti-oxidant defence system in the endothelium
elicits cellular damage and dysfunction [2].

Normal vascular endothelial physiology is dependent
on NO production via coupling of the eNOS heme group
with L-arginine using tetrahydrobiopterin (BH4) as a
cofactor [91]. Excess ROS induce the conversion of BH4
to 7,8-dihydrobiopterin (BH2) with subsequent eNOS
uncoupling and synthesis of O2• instead of NO [91]
(Figure 2). O2• can react with NO to produce the versatile
oxidant peroxynitrite (ONOO−) [92]. The upregulation of
iNOS and uncoupling of eNOS under hyperglycemic con-
ditions are now well established [93, 94]. L-arginine is also
a substrate for arginase [95] which is upregulated in the
endothelium of coronary arterioles in hypertension and
contributes to the impaired NO-mediated dilation [96].

In addition, ONOO− and hydrogen peroxide (H2O2) were
reported to increase the activity/expression of arginase in
endothelial cells [97], thus exacerbating the defects in
myogenic tone. Therefore, ROS can trigger eNOS uncou-
pling through depletion of the substrate L-arginine. This
notion has been supported by the study of Romero et al.
[98] where increased arginase activity elicited L-arginine
depletion and contributed to endothelial dysfunction in
diabetes. ONOO− can also activate NADPH oxidases and
influences further generation of ROS [99]. Additionally,
blockage of the mitochondrial electron transfer in complex
III in diabetes leads to the release of electrons, which
reduce molecular oxygen to O2• and increase intracellular
ROS production [84]. Furthermore, ROS can activate
membrane oxidases with a subsequent increase in the
levels of asymmetric dimethylarginine that competes for
the L-arginine transporters and active sites on eNOS [85].

Nrf2 in the endothelium can be activated via increased
ROS production and PI3K-Akt signaling triggered by lam-
inar shear stress [32]. In human arterial endothelial cells,
Nrf2 activation resulted in increased intracellular HMOX1,
GPx, GSH, GCLM, SRXN1, NQO1, PAR4, and OSGIN1
[27, 28, 100]. Adenoviral overexpression of Nrf2 in
endothelial cells infected showed decreased expression of
TNF-α, IL-1β, MCP1, and VCAM1, pointing to the anti-
inflammatory potential of Nrf2 [28, 101]. When shear
stress is disturbed at bifurcations, curved sections of
arteries or distal to regions of stenosis, NO bioavailability
decreases, O2• generation increases [102], and Nrf2-
activated genes are diminished, causing the endothelium
to become predisposed to atherogenesis [103]. Our recent
studies have demonstrated that free fatty acid- (FFA-)
induced excessive ROS production diminished both the
gene and protein expression of Nrf2, NQO1, and HO-1
in endothelial cells [104]. In addition, upregulation of
Nrf2/ARE/HMOX1 signaling protected the human endo-
thelial cells against TNF-α activation [105]. It could be
that mitochondrial ROS may trigger a protective response
via Nrf2 activation in endothelial cells. The study of Lo
and Hannink [106] suggested that Nrf2–KEAP1 complex
binds to the mitochondria through interaction with mito-
chondrial outer membrane protein PGAM5 and directly
senses mitochondrial ROS production.

Another possibility through which Nrf2 can protect the
endothelium against the cytotoxic ROS involves regulating
the catalytic subunit of GCLC which reduces GSH biosynthe-
sis [107]. In this context, impaired Nrf2–KEAP1–GCLC has
been demonstrated in high glucose-induced retinal endothe-
lial cells from diabetic donors [108]. In the human brain
microvascular endothelial cells (HBVEC), GSH conferred
protection against FFA-induced oxidative stress and apopto-
sis by activating the Akt pathway [109]. Human umbilical
vein endothelial cells (HUVECs), human coronary artery
endothelial cells (HCAECs), and endothelial progenitor cells
exposed to cytotoxic ROS showed apoptosis and cell death
accompanied by diminished nuclear localization and tran-
scriptional activity of Nrf2 [2]. These findings highlight the
crucial role of Nrf2 activation in protecting endothelial cells
against oxidative stress-induced dysfunction.
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Figure 2: ROS-induced uncoupling of eNOS and the generation
of O2•. Excess ROS induce the conversion of BH4 to BH2
with subsequent eNOS uncoupling and synthesis of O2• instead
of NO. eNOS: endothelial nitric oxide synthase; ROS: reactive
oxygen species; NO: nitric oxide; O2•: superoxide; BH4:
tetrahydrobiopterin; BH2: dihydrobiopterin.
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6. Nrf2 in Atherosclerosis

Atherosclerosis is a focal inflammatory disease of the arterial
system involving a number of different cell types. The focal
nature of atherosclerosis highlights the involvement of local
haemodynamics factors acting on the endothelium in the ini-
tiation and progression of atherosclerosis, which develops in
regions that experience disturbed flow at bifurcations and
curved sections of artery [110–113]. Straight sections of
artery that experience normal laminar blood flow are rela-
tively spared from disease through a coordinated modulation
of gene expression, predominantly controlled by the tran-
scription factors KLF2 and KLF4 and activation of Nrf2
[29, 32, 114–116]. By contrast, endothelial cells exposed to
disturbed flow adopt a phenotype that amplifies endothelial
dysfunction and increases permeability. While ROS are
essential signaling molecules regulating vascular homeosta-
sis, excessive ROS, elevated by many of the risk factors asso-
ciated with the development of atherosclerosis, promote
endothelial dysfunction and decrease NO availability. Thus,
Nrf2-regulated antioxidant gene expression may play an
atheroprotective role in endothelial cells.

Consistent with this hypothesis, the Nrf2-regulated gene,
heme oxygenase 1 (HMOX1), demonstrates significant cyto-
protective and anti-inflammatory effects that result in a
reduction of atherosclerosis in mouse models [117], possibly
through production of low levels of carbon monoxide.
Hypercholesterolemic mice, deficient in both HMOX1 and
ApoE (HMOX1−/−/ApoE−/−), demonstrated enhanced devel-
opment of atherosclerosis compared to ApoE−/− single
knockout mice [118]. HMOX1 expression in macrophages
plays a protective role in atherosclerosis [119] with macro-
phages from HMOX1−/− mice displaying increased ROS
generation, production of inflammatory cytokines, and
increased foam cell formation when treated with oxLDL,
attributable in part to increased expression of scavenger
receptor A (SR-A). Smooth muscle cells from HMOX1−/−

mice not only displayed increase neointimal formation but
also enhanced cell death potentially due to greater suscepti-
bility to oxidant stress [118]. Pharmacological modulation
of HMOX1 expression also demonstrates a protective role
of HMOX1 in atherogenesis [120, 121]. In addition to the
anti-inflammatory effects of carbon monoxide, hydrogen sul-
phide also elicits an anti-inflammatory antiatherogenic effect
[122]. Hydrogen sulfide activates the release of Nrf2 from
KEAP1, increasing Nrf2-dependent gene expression [122].

Despite the antioxidant function of Nrf2 and the anti-
atherogenic function of the key Nrf2 target gene HMOX1,
the global knockout of Nrf2 (Nrf2−/−) developed less rather
than more atherosclerosis [123, 124]. Barajas et al. attributed
this to an effect of Nrf2 in lipid metabolism, lowering plasma
cholesterol and reducing foam cell formation [123], while
Sussan et al. did not find a difference in serum cholesterol
but attributed the effect to a reduction in scavenger receptor
CD36 reducing foam cell formation [124]. The role of Nrf2 in
NLRP3 inflammasome induction by cholesterol crystals
within the atherosclerotic plaque may also be a contributing
factor that explains the counterintuitive net detrimental
effect of Nrf2 in hypercholesterolemic mouse models of

atherosclerosis [125]. It might also explain why the expres-
sion of the Nrf2-regulated gene HMOX1 is highest in human
plaques with the highest markers of plaque instability [121].

7. Nrf2 in Vascular Calcification

The presence of vascular calcification is often detected in
atherosclerotic plaques and in patients with end-stage renal
disease. Both of these pathologies have been targeted for
prevention using pharmacological and genetic approaches
by modulation of Nrf2 antioxidant pathways. For example,
studies in vitro using rodent vascular smooth muscle cells
show that dimethyfumarate or resveratrol could attenuate
the deposition of a mineralised matrix and suggest protection
against oxidative stress-induced mitochondrial damage, via
activation of Nrf2 and SIRT1 signaling and downregulation
of osteogenic transcription factors [126, 127]. In contrast,
glucose-induced oxidative stress enhances the osteogenic
differentiation and mineralisation of human embryonic stem
(ES) cells, by the upregulation of runt-related transcription
factor 2 (Runx2), Nrf2, and HMOX1, which was inhibited
by Nrf2 knockdown [128] highlighting a context-specific
regulation of the calcification process. Given the links
between Nrf2 and bone homeostasis, it is not surprising to
have an association between Nrf2 signaling and vascular
calcification. Whether these initial in vitro studies can trans-
late into the in vivo situation needs further study.

8. Nrf2 in Hypertension

Angiotensin II and associated renin-angiotensin system
(RAS) are involved in the regulation of blood pressure, vaso-
constriction, sodium intake, and potassium excretion [129].
Inappropriate activation of the RAS is the main cause of
profound hypertension and cardiovascular morbidity.
Angiotensin II increases the expression of NADPH oxidase
and the generation of ROS potentially mediating some of
the effects in renin-angiotensin-induced hypertension
[130, 131]. It has been suggested that hypertension could be
one of the causes of Nrf2 misregulation and not vice versa
[132] through enhanced oxidative stress and vascular
dysfunction in a hypertensive rat model [133]. This would
suggest that the Nrf2 anti-oxidant defence system is insuffi-
cient to counteract the effects of oxidative stress, possibly
due to elevated levels of Nrf2 repressors in hypertensive
animals. Research is now moving from the adaptive and pro-
tective changes in the Nrf2 antioxidant response to focusing
on the alternative mechanisms intrinsic to upstream and
downstream molecules associated with a defective Nrf2
signaling system. Enhancing Nrf2 activity may have a thera-
peutic potential for a meliorating hypertension.

9. Nrf2 in Diabetic Cardiomyopathy

The heart is particularly vulnerable to oxidative damage
compared to other organs, due to its low basal levels of anti-
oxidant defences [134]. Diabetic cardiomyopathy (DCM)
and other cardiovascular complications account for more
than 80% of deaths among patients with diabetes [135].
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DCM is characterized by impaired diastolic function, hyper-
trophy, apoptosis, and fibrosis of cardiomyocytes [136] and
involves several mechanisms and pathogenic factors, with
oxidative stress thought to be the common link [137–140].
Hyperglycemia generates excess ROS/RNS from activation
of NADPH oxidases, PKC, leakage of the mitochondrial
electron transport chain, eNOS uncoupling, AGE/RAGE
signaling, xanthine oxidase, and 12/15-lipoxygenase (LOX)
[141], impairing antioxidant defences in the diabetic heart
[138, 140] (Figure 3).

Studies have established the importance of Nrf2/ARE
signaling in the prevention of diabetic complications
[142–144] and oxidative stress-induced cardiomyocyte injury
[145, 146]. Significantly reduced Nrf2 expression has been
observed in the left ventricle of diabetic patient heart by histo-
logical analysis [147], which has also been observed in a dia-
betic mouse model after 5 months [147]. These findings
suggest adaptiveoverexpressionofNrf2 tocombat earlyoxida-
tive damage in diabetes, which is overcome by sustained ROS
production and exhaustion of the antioxidant defences [148].
This concept is supported by our findings in palmitate-
treated endothelial cells, where reduced Nrf2 expression and
antioxidant defences are observed with surplus ROS [104].

Furthermore, it has been demonstrated that Nrf2 and
its downstream target genes are downregulated in cardio-
myocytes from diabetic (db/db) mice [146, 147], which
may occur via extracellular signal-regulated protein kinase
(ERK) 1/2 activity [149, 150]. Isoproterenol-stimulated
contraction of primary cardiomyocytes from adult diabetic
mice was also shown to be dependent on Nrf2 [151].
Hence, hyperglycemia-induced loss of Nrf2 function exac-
erbates oxidative stress and leads to severe myocardial
damage [151]. Nrf2 knockout mice exhibit structural and
functional abnormalities under conditions of pathological
stress [152], and cardiomyocytes from Nrf2-knockout mice

showed significantly increased apoptosis following incuba-
tion with high glucose [151]. These findings highlight the
importance of the Nrf2 protective mechanisms, and thus,
novel therapeutics to enhance Nrf2 could be beneficial in
this scenario. The proteasome inhibitor MG-132, which
increases Nrf2 signaling, was reported to decrease left ven-
tricle hypertrophy by reducing inflammation and lowering
the risk of cardiomyopathy [153]. In addition, in a mouse
model of type I diabetes mellitus, Nrf2 activation by sulfo-
raphane reduced heart weight and decreased diabetes-
induced atrial natriuretic peptide (ANP) expression, thought
to be related to induction of DCM [154]. Therefore, enhanc-
ing endogenous Nrf2 and subsequent antioxidant pathways
in the heart is a potential strategy to prevent DCM [138, 155].

10. Nrf2 in the Aging Heart

Aging, a progressive decline of cellular functions, is related to
the loss of homeostasis via a combination of epigenetic alter-
ations and genetically programmed processes resulting in
death [156, 157]. Heart capacity declines with age, with a
concomitant increased CVD risk [158]. Herman’s free radi-
cal theory proposes that the accumulation of damaged
biomolecules by ROS/RNS plays a central role in aging
[159–161]. In turn, this leads to activation of NF-κB [162],
eliciting an inflammatory response via TNF-α, IL-6, and C
reactive protein (CRP), reported to be associated with aging
[163], and further stimulation of ROS production through
activation of NADPH oxidase [164, 165] and NF-κB [166].
In support of this, elderly patients demonstrate an impaired
endothelial-dependent dilation, associated with excess ROS,
activated NADPH oxidase, and increased NF-κB [167].

Elevated ROS also increase the rate of apoptosis and
necrosis in cardiomyocytes [168], resulting in functional
and phenotypic changes, including decreased remodelling

Mitochondrial ETC leakage & MPTP formation

NADPH oxidase

Activation of PKC eNOS uncoupling

Xanthine oxidase

AGE/RAGE axis

12/15-Lipoxygenase

Cardiomyopathy

Hyperglycemia

ROS Nrf2

Figure 3: Hyperglycemia-induced ROS generation in the heart. A schematic model showing the potential pathways involved in
cardiomyopathy and how Nrf2 could be targeted to reduce ROS and prevent the development of this pathology. AGEs: advanced
glycation end products; NADPH: nicotinamide adenine dinucleotide phosphate; PKC: protein kinase C; eNOS: endothelial nitric oxide
synthase; ETC: electron transport chain; MPTP: mitochondrial permeability transition pore.
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Table 2: The effect of Nrf2 activation on CVD.

Activator Animal model/cell line Effects Reference

Bardoxolone methyl
derivative dh404

Male Akita mice at 26 weeks of
age & human aortic endothelial

cells (HAECs)

Attenuation of endothelial dysfunction
Downregulation of inflammatory and

prooxidant genes
Reduction in systemic and vascular

oxidative stress

[188]

Streptozotocin- (STZ-) induced
diabetic ApoE−/− mice

Prevention of atherosclerosis [189]

Sulforaphane

Vascular smooth muscle cells
(VSMCs)

Suppression of VSMC proliferation [190]

HUVECs
Protection against oxidized low-density

lipoprotein- (oxLDL-) induced
endothelial damage

[191]

High-fat diet- (HFD-) induced
type 2 diabetic mice

Prevention of aortic damage [192]

Low-dose STZ diabetic mice
Prevention of diabetic

cardiomyopathy
[154]

Multiple low dose STZ-induced
type 1 diabetic mice

Prevents aortic oxidative damage,
fibrosis, and inflammation

[193]

Miltirone EA.hy926 endothelial cells
Protects against oxLDL-derived

oxidative stress
[194]

Epigallocatechin-3-gallate HUVECs
Protects against PM2.5-induced

oxidative stress
[195]

Barleria lupulina alkyl
catechols (4-ethylcatechol,
4-vinylcatechol, and
4-methylcatechol)

Human dermal microvascular
endothelial cells

Improves organization of the
cytoskeleton

Organizes tight cell junctions
Reduces inflammation and vascular leakage

[196]

Small molecule glycomimetics HUVECs
Attenuates palmitate-induced oxidative stress

and endothelial dysfunction.
Increases NO production.

[104]

Rutin HUVECs
Prevents hydrogen peroxide- (H2O2-)

induced oxidative stress
[197]

1,25-Dihydroxycholecalciferol HUVECs
Prevents leptin-induced oxidative

stress and inflammation
[198]

Willow bark extract
HUVECs and Caenorhabditis

elegans
Prevents ROS-induced cytotoxicity of
HUVECs and death of C. elegans

[199]

Aged garlic extract HUVECs
Enhances HO-1 and glutamate-cysteine ligase

modifier subunit expression (GCLM)
[200]

Celastrol HUVECs
Attenuates angiotensin II mediated

endothelial damage
[201]

Paeotang HUVECs Prevents TNF-α-induced vascular inflammation [202]

Cyanidin-3-O-glucoside
HUVECs

Ameliorates palmitate-induced insulin resistance
and endothelial derived vasoactive factors

[203]

Attenuates palmitate-induced inflammation [204]

EA.hy926 endothelial cells
Attenuates angiotensin II-induced oxidative stress and

inflammation
[205]

Piceatannol HUVECs
Attenuates homocysteine-induced endoplasmic

reticulum stress and cell damage
[206]

Equol
ApoE−/− mice

Attenuates atherosclerosis and inhibits
endoplasmic reticulum stress [207]

HUVECs Abrogates apoptosis induced by t-BHP

Sheep/goat whey protein EA.hy926 endothelial cells Increases antioxidant defences [208]

Quercetin HAECs
Inhibits LPS-induced adhesion molecule

expression and ROS production
[209]
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Table 2: Continued.

Activator Animal model/cell line Effects Reference

Panax notoginseng
saponins and Ginsenoside
Rb1

HUVECs Suppresses monocyte adhesion and inhibits ROS [210]

Bortezomib
Human microvascular

endothelial cells (HMECs)
Induces expression of HO-1 [211]

Sofalcone HUVECs Suppresses endothelial dysfunction [212]

Salidroside HUVECs Suppresses ROS-induced damage [213]

Caffeic acid HUVECs
Attenuates high glucose-induced

endothelial dysfunction
[214]

Myricitrin

H9c2 cardiomyocytes Attenuates high glucose-induced apoptosis [215]

STZ-induced diabetic mice &
AGE-induced H9c2
cardiomyocytes

Alleviates oxidative stress-induced
inflammation, apoptosis, and cardiomyopathy

[216]

Andrographolide EA.hy926 endothelial cells
Inhibits hypoxia-induced HIF-1α-driven

endothelin 1 secretion
[217]

Tanshinone IIA HUVECs
Inhibits cyclic strain-induced expression

of interleukin 8
[218]

Lycopene HUVECs
Inhibits cyclic strain-induced endothelin-1

expression
and oxidative stress

[219]

Withaferin A
EA.hy926 endothelial cells &

HUVECs
Induces HO-1 expression [220]

Copper
diethyldithiocarbamate

Bovine aortic endothelial cells
Inhibits proteasome and Nrf2 binding to
Kelch-like ECH-associated protein 1

[221]

Clopidogrel HAECs Hinders TNF-α-induced VCAM-1 expression [222]

Hericium erinaceus EA.hy926 endothelial cells
Inhibits TNF-α-induced angiogenesis

and ROS generation
[223]

Andrographolide Primary cerebral endothelial cells
Prevents middle cerebral artery

occlusion- (MCAO-) induced ischemic stroke
[224]

Butin C57/BL6J diabetic mice
Prevents ischemia/reperfusion-induced

myocardial injury
[225]

Aspalathin
H9c2 cardiomyocytes and

diabetic db/db mice
Protects against hyperglycemia-induced

oxidative damage and apoptosis
[146]

Broccoli sprout Diabetic db/db mice Prevents diabetic cardiomyopathy [226]

Oleuropein Spontaneously hypertensive rats
Attenuates oxidative stress and improves

mitochondrial function in the hypothalamic
paraventricular nucleus

[227]

Aralia taibaiensis H9c2 cardiomyocytes
Protects against high glucose-induced

oxidative stress and apoptosis
[228]

Compound C66 STZ-induced diabetic mice aorta
Prevents oxidative and nitrative stress,

inflammation, apoptosis, cell
proliferation, and fibrosis

[229]

Dimethyl fumarate VSMCs Attenuates vascular calcification [127]

Gemigliptin VSMCs Prevents proliferation and migration of VSMCs [230]

L6H9 (chalcone) H9c2 cardiomyocytes
Prevents hyperglycemia-induced oxidative

stress and inflammation
[231]

Magnesium
lithospermate B

VSMCs Prevents proliferation and migration of VSMCs [232]

4-O-methylhonokiol HFD-induced obese mice Prevents cardiac pathogenesis [233]
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[169], cardiac hypertrophy [170], and increased systolic
pressure [171, 172]. NADPH oxidase-2, its activator RAC1,
and several profibrotic factors are elevated in hypertrophic
hearts in aged rats [158], pointing to the important role of
NADPH oxidase in aging-associated cardiomyocyte remod-
elling. Ischemia and reperfusion are characterized by
increased accumulation of intracellular Ca2+, altered sub-
strate utilization, and elevated ROS production in the heart
[173], which can damage ionic pumps and induce mito-
chondrial dysfunction via lipid peroxidation [174]. This
damage can lead to necrotic cell death [175] and is exacer-
bated with aging [160, 176], as shown in mitochondria from
aged rats [177].

Diminished activity of Nrf2 resulting in oxidative stress,
apoptosis, and/or necrosis in the myocardium has been
reported [178–180], thus predisposing the heart to disease
[180]. Studies in mouse models have supported the notion
that Nrf2 is involved in counteracting aging-associated
cardiac effects via ARE signaling and expression of
antioxidant enzymes. Bailey-Downs et al. [181] reported
increased sensitivity of blood vessels to stress-induced
damage along with impaired activity of Nrf2 in insulin-
like growth factor 1 (Igf1) knockout mice, promoting an
aging phenotype. Nrf2-knockout mice showed exaggerated
cardiac hypertrophy, heart failure, increased mortality
[152], and oxidative stress [182]. Aged rhesus macaques
have shown increased ROS and decreased nuclear translo-
cation of Nrf2 and protein expression of NQO1 and HO-1
in their carotid arteries [183]. Vascular smooth muscle
cells (VSMCs) derived from old monkeys have exhibited
diminished Nrf2 activation following incubation with high
glucose as compared with those derived from younger
monkeys [183]. Additionally, El Assar et al. [165] have
reported a decreased expression of Nrf2-regulated antioxi-
dants in aged vessels.

These data demonstrate clearly that decreasing levels of
Nrf2 are age-dependent but may be reversed by exercising.
Muthusamy et al. [184] demonstrated an increased nuclear
translocation of Nrf2 in the hearts of mice following acute
exercise training. They attributed their findings to the
induction of an exercise-induced mild oxidative state.
Endurance exercise training was reported to promote
Nrf2 signaling and enhance antioxidant capacity in the
hearts of 6-month-old mice [185], which might offset
the reduced signaling observed in aged mice and men
[171, 185–187].

11. Role of Nrf2 Activation in the
Treatment of CVD

The role of activators of Nrf2 in attenuating oxidative stress-
mediated cardiovascular disorders has been identified. In
Table 2, we present a summary of the recently studied activa-
tors of Nrf2 and their beneficial effects in CVD.

12. Conclusions

The Nrf2 antioxidant system plays a significant role in
cellular defence against free radical damage, while insuffi-
ciency of Nrf2-dependent gene expression is clearly impli-
cated in multiple aspects and stages of CVD. Enhancing
Nrf2 activity may be beneficial in diabetic cardiomyopa-
thy, mitochondrial dysfunction, and reducing the effects
of aging in the heart; however, the potential exacerbation
of atherosclerosis by Nrf2-mediated inflammasome activa-
tion in plaque macrophages, along with the lethality of
KEAP1 knockout mice, raises a cautionary note to phar-
macological activation of Nrf2 as a therapeutic strategy.
Selective upregulation of Nrf2 target genes such as
HMOX1 may provide a more amenable therapeutic strat-
egy. Modest activation of Nrf2 by dietary factors, such as
sulforaphane, found in brassicas like broccoli, may high-
light mild activation of Nrf2 as part of the protective role
played in eating a healthy balanced diet, which may be
sufficient to maximise the therapeutic benefit offered
through the control of this gene expression network.
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