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Abstract—Polar codes are regarded as a major breakthrough
in modern channel coding since they are capacity-achieving using
simple successive cancellation (SC) decoding. However, this is
only possible with significantly large code lengths which may not
be applicable for many systems. In this paper, we focus on short
length polar codes and present a method which can enhance
the performance of the successive cancellation decoder. For the
purpose of analysis, we discuss the SC code tree and show how
the proposed method can improve the performance by increasing
the computational nodes in the code tree. The results quantify
the achieved performance improvement over the conventional SC
decoder.

Index Terms—Polar code, channel coding, code tree, successive
cancellation, channel polarization.

I. INTRODUCTION

Polar codes were invented by Arikan [1] who proved

in his seminal work that this family of codes can achieve

the symmetric capacities of the binary discrete memory-less

channels (B-DMCs). Polar codes utilize the channel polariza-

tion phenomena for the construction. In channel polarization,

identical independent copies of the B-DMC bit channels are

combined and split into two groups in which the first has

pure noisy bits and the second contains the noiseless bits. The

heuristic method of polar codes construction was applied on

binary erasure channels (BEC). Further studies have develop

other construction methods such as [2] where the authors tried

to manipulate the construction by giving two approximations

of the quantization, and [3] where the authors presented a

new method for the construction that uses convolution and has

linear complexity. Recently, a practical construction method

was presented for polar codes under additive white Gaussian

noise (AWGN) channels [4].

Polar codes were initially introduced with the successive

cancellation (SC) decoder which has relatively low complex-

ity. Further enhancements to the SC performance have been

carried out by the successive cancellation list and successive

cancellation stack [5], [6]. Moreover, the belief propagation

(BP) decoder was applied for decoding polar codes; however,

this decoder entails more complexity and memory due to

its recursive nature [7]. Analysis of polar codes in wireless

communication systems was reported in [8] where the authors

suggested that polar codes might be a good candidate for

future wireless communication technologies due to its simple

implementation in image and speech transmission. Further

studies considered polar codes in MIMO techniques and

wireless fading [9], [10]. The code tree of polar decoding was

discussed in [11] where the authors provided the number of

nodes and edges required in the decoding procedures.

The aim of this paper is to propose a method to enhance

the performance of the SC decoder. The proposed method

which is referred to in this paper as one-step decision delay

(ODSS), is based on adding extra computations nodes to the

SC code tree and apply a decision in the code tree. We

present a comparison between the conventional SC decoder

and the proposed method in terms of complexity and latency.

The simulation results for OSDD method reveal a reasonable

enhancement to the decoder performance.

The remainder of this paper is organized as follows. In

Section II, the preliminaries of the system model are described.

In Section III, the decoding code tree is demonstrated and

the proposed OSDD decoder is presented in Section IV.

Simulation results are presented and discussed in Section V.

Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES

A. Polar Code Construction

The construction of polar codes exploits the channel polar-

ization in which a number of identical copies of a channel

W are combined to one channel WN : XN → YN where

XN = (x0, x1, ..., xN−1) and YN = (y0, y1, ..., yN−1) are the

corresponding inputs and outputs vectors, respectively. The

transition probability for the yielded channel can be obtained

by WN (YN |XN ) =
∏N

i=1 W (yi|xi). Then, the polarization

phenomena suggests that this comprehensive channel can be

split back into a set of N channels. For the sake of polarization,

the algorithm selects the noiseless channels group for sending

the information set A while the noisy channels are fixed to be

a frozen set Ac whose values are known to both the sender

and the receiver. Hence, the decoding algorithm of polar codes

can make a swift decision when û ∈ Ac. On the other hand,

the decoder makes a decision based on the results of its

computation functions when û ∈ Ac. Thus, the frozen set

does not carry any information but at the same time they are

useful for the decoding algorithm. Let polar code (N,K), the

codeword vector X can be generated by the polar encoder as

X = UGN (1)
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where GN denotes the generator matrix and the U vector

includes the entirely information and frozen bits.

B. The SC Decoding

For a given number of bits N , the SC algorithm consists of a

number of recursive functions to compute the likelihood ratios.

Thus, the algorithm is divided into a number of stages denoted

by s ∈ (0, 1, .., n) in which each stage has a number of groups

indexed by g ∈ (0, 1, .., 2s − 1) and for each group, there is a

number of functions f ∈ (0, 1, .., 2n−s−1). Therefore, a single

likelihood ratio (LR) in the SC algorithm can be denoted by

LR(s, g, f). The SC algorithm starts by finding the LRs after

the channel by

LR(0, 0, i) =
w(yi|xi = 0)

w(yi|xi = 1)
(2)

After the first stage calculations, the decoder calculates the

functions inside each single set by (3) and (4). The previous

decision Pd for the last stage can be given by

Pd(n, g, 0) = ûg−1 (5)

On the other hand, the algorithm updates Pd in the stages

as

Pd(s− 1, g/2, 2f) = Pd(s, g − 1, f)⊕ Pd(s, g, f) (6)

Pd(s− 1, g/2, 2f + 1) = Pd(s, g, f) (7)

The final decision is taken by the algorithm in the last stage

where each set has a single computational function which

includes LR(n, i, 0); therefore, the general formula for the

SC decision can be given as

ûi =

⎧⎪⎨
⎪⎩
0 i ∈ UF

0 i ∈ UI , LR(n, i, 0) ≥ 1

1 i ∈ UI , LR(n, i, 0) < 1

(8)

where 0 ≤ i ≤ N − 1. For better clarity, we present in Fig. 1

the SC algorithm for eight bits. It is worth mentioning that the

complexity of the SC decoder is given by O(N log2 N), which

is equivalent to the required processing elements to accomplish

the SC decoding to one codeword whereas the number of the

time elements to the SC decoder can be given as 2N −1 [12].

III. DECODING CODE TREE

A. The Polar Code Tree

One of the most complex problems in any channel code is

the design of the decoder. In general, The decoding of polar

codes could be defined as the algorithm of a valid path finder

inside the code tree which consists of nodes set and edges set.

In the trivial case where there are no frozen bits, the number

of nodes is given by [11]

| V |= 2N+1 − 1 (9)

S=0S=1S=2S=3

Figure 1. The SC algorithm when N = 8.
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Figure 2. The polar code tree when N = 5 and K = 5.

Fig. 2 displays the decoder where N = K = 5. It can be

noticed that each node is divided into two binary options. In

total, there are 63 nodes in the code tree in this particular

example.

The depth of any specific node (d ) in the code tree could

be defined as the length of the path from this node to the root

node, i.e. the first node in the tree. It is known in a normal

polar code that there is a specific number of nodes behaves as

frozen bits, hence, each frozen bit is expressed by only one

node in the code tree. As mentioned above, the total number

of nodes without any frozen bits could be obtained from (9).

Now, suppose a single information bit with depth d1 is fixed

as a frozen bit in the the code tree, this bit would decrease

the number of nodes after its position in the code tree by half.



LR(s, g, f) =
L(s− 1, g/2, 2f)L(s− 1, g/2, 2f + 1) + 1

L(s− 1, g/2, 2f) + L(s− 1, g/2, 2f + 1)
(3)

g is even

LR(s, g, f) = [L(s− 1, g/2, 2f + 1)]
1−2Pd(s,g−1,r)

L(s− 1, g/2, 2f) (4)

g is odd

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

Figure 3. The polar code tree when N = 5,K = 4, d1 = 1, and d2 = 3.

In contrast, the number of nodes before this bit will not be

affected by this change. It should be pointed out that the nodes

before the frozen bit indicates to all nodes between the frozen

bit and the root of the code tree. Hence, the single bit reduces

the number of nodes by (−2N +2d1−1). In case that a second

bit changes its status to frozen, the number of the remaining

nodes decreases by half, consequently the second frozen bit

causes a reduction by (−2N−1 + 2d2−2). Now, the general

formula for computing the total number of nodes in the tree

of polar codes can be given by

| V |= 2N+1 − 1 +
∑
i∈AC

2di−i − 2N−i+1 (10)

where di < di+1.

For example, Fig. 3 illustrates the code tree for N = 5,

K = 3, d1 = 1 , and d2 = 3. It can be noticed that the

number of nodes in the polar code tree depends on the number

of frozen bits and their depths which are selected according

to the polarization phenomena. The full maximum likelihood

(ML) decoder is supposed to compute all the nodes in the code

tree to make its decisions and choose the most proper path. In

general, the ML decoder can be applied only for short codes;

otherwise, this decoder is impractical since it needs a huge

number of computation nodes as we will show later.

B. The SC Tree

Since the decoder calculates only the LRs of the infor-

mation bits, it needs two nodes for each information bit and

one node for a frozen bit. In contrast to the ML decoder, the

SC algorithm finds only one valid path inside the code tree;

therefore, the number of the nodes visited by the SC algorithm

could be defined as
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Figure 4. The SC code tree when N = 5 and K = 3.

| V SC |= 2K+ | Ac | +1 (11)

where V SC is the set of nodes in the SC code tree.

Fig. 4 depicts the SC algorithm inside the code tree for a

polar code (5, 3) and the example presents the decoding of

the codeword (01001). The green color is used for the most

successful path while the red one is used for the non-valid

paths according to the decision function (8).

IV. ONE-STEP DECISION DELAY METHOD

It has been observed from the previous section that the

potential problem of the SC decoder is that if any bit is

decoded not correctly, there is no chance for the decoder to

correct this bit again. In addition, the wrong bit may affect the

following bits estimation and yields more errors. Therefore,

the OSDD method tries to improve the performance of the SC

by applying one additional calculation to each bit. This could

be done by making a delay on the decision and instead of

the decision, the OSDD algorithm assumes two options of the

binary bit 0 and 1 as follows

LR0(n, i, 0) =
w(yi|ui = 0)

w(yi|ui = 1)
|ûi−1 = 0 (12)

LR1(n, i, 0) =
w(yi|ui = 0)

w(yi|ui = 1)
|ûi−1 = 1 (13)

Then, the decoder compares these two LRs in the following

level and makes the final decision as

ûi−1 =

{
0 i− 1 ∈ UF

Di−1 i− 1 ∈ UI

(14)

where the final decision Di−1 is given by
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Figure 5. The OSDD code tree N = 5 and K = 3.

Di−1 =

{
0 Lo(n, i, 0) ≥ L1(n, i, 0)

1 Lo(n, i, 0) < L1(n, i, 0)
(15)

It is clearly seen that the new decision is based on two

LRs instead of one as in the conventional SC decoder. It is

worthwhile mentioning that the OSDD algorithm applies on

all bits except the last bit ûN−1 because there is no following

bit; therefore, the last bit can be obtained by applying the

normal SC decision given in (8).

A. The OSDD Code Tree

In the code tree of OSDD, the frozen bits are divided into

two sets. The first set Ac
B includes all the frozen bits whose

positions are before the first information bit while the frozen

bits in set Ac
A occur after the first information bit. Hence, the

number of nodes inside the OSDD code tree can be calculated

by

| V OSDD |= 4K+ | Ac
B | +2 | Ac

A | −1 (16)

where V OSDD is the set of nodes in the OSDD code tree.

Fig. 5 shows the code tree for the OSDD algorithm when

the codeword (01001) is decoded by OSDD method. It can

be noticed that the first frozen bit û0 happens before the first

information bit, thus it needs only one node while the second

frozen bit û2 needs two nodes since it occurs after the first

information bit.

For the purpose of comparison, Table I lists the number of

nodes in the code tree for different codewords of polar codes.

It can be seen that there is a significant difference between

the ML decoder and the two others as the number of nodes

to ML grows rapidly with increasing of the codewords which

makes it unpractical. Although, the trees of the OSDD method

has more nodes compared to the SC decoder, the increasing

number of nodes is not significant.

B. Complexity and Latency

In this section, we investigate the latency and complexity of

the OSDD algorithm. In addition, we give a comparison to the

conventional SC decoder. We have found that the complexity

for the OSDD algorithm can be given by 2N log2 N−(N−1).

Table I
THE NUMBER OF NODES IN THE CODE TREES OF ML, SC, AND OSDD

DECODERS.

Codeword N Code rate
Number of nodes | V |
ML SC OSDD

8
0.25 16 11 18
0.5 36 13 22
0.75 136 15 28

16
0.25 56 21 34
0.5 576 25 46
0.75 8230 29 56

32
0.25 672 41 74
0.5 140636 49 94
0.75 33.7× 106 57 110

64
0.25 151552 81 146
0.5 8.63× 109 97 186
0.75 5.62× 1014 113 222

128
0.25 9.69× 109 161 306
0.5 3.7× 1019 193 378
0.75 1.58× 1029 225 446

256
0.25 4.11× 1019 321 626
0.5 6.83× 1038 385 762
0.75 1.25× 1058 449 894

512
0.25 9.69× 1038 641 1250
0.5 2.32× 1077 769 1530
0.75 7.88× 10115 897 1790

1024
0.25 2.32× 1077 1281 2530
0.5 2.69× 10154 1537 3066
0.75 3.1× 10231 1793 3578

Table II
COMPLEXITY COMPARISON BETWEEN SC AND OSDD METHODS WHEN

N = 8.

Bit
Processing elements

SC OSDD

û0 7 8
û1 1 6

û2 3 2

û3 1 14

û4 7 2

û5 1 6

û6 3 2

û7 1 1

Total
24

N log2 N
41

2N log2 N − (N − 1)

Table II shows a comparison between the proposed method

with the SC decoder when N = 8. It is apparent from this

table that there is no significant increasing in complexity.

The latency of the OSDD method doesn’t change since the

number of time elements required for the OSDD decoder is

the same as the time elements are needed by the SC decoder

as illustrated in Table III where the latency for both methods

can be given by 2N − 1.

V. SIMULATION RESULTS

To illustrate the performance enhancement with the OSDD

method, we present in Fig. 6a a comparison between the

proposed method with the conventional SC decoder in AWGN

channel. The results show the bit error rate (BER) versus

Eb/N0 where Eb is the energy per information bit and N0

is the spectral density of the noise considering binary phase

shift keying modulation. In addition, the BER performance
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Figure 6. BER performance of OSDD method, conventional polar code, and uncoded channel versus Eb/N0 when N = 64 and code rate= 0.5: (a) AWGN,
(b) Rayleigh channel.

Table III
LATENCY COMPARISON BETWEEN SC AND OSDD METHOD WHEN N = 8.

Bit
Time elements

SC OSDD

û0 3 3
û1 1 1

û2 2 2

û3 1 1

û4 3 3

û5 1 1

û6 2 2

û7 1 1

Total
15

2N − 1
15

2N − 1

of the OSDD method is illustrated in Fig. 6b with Rayleigh

fading channel is adopted. It is clearly seen that the OSDD

method can enhance the behavior of the SC decoding in the

both channels.

VI. CONCLUSION

The performance of the SC decoder can be enhanced by

applying the OSDD method. The results demonstrated that, in

AWGN channels, the Eb/No improvement is close to 0.75
dB, while in fading channel the improvement is more than

2 dB. The analysis shows that the proposed method has the

same latency as that of the SC decoder; however, it entails a

slight complexity increase.
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