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ABSTRACT 
Load-balancing algorithms play a key role in improving the 
performance of practical distributed systems that consist of 
heterogeneous nodes. The performance of any load-balancing 
algorithms and its convergence-rate is affected by the structural 
factors of the network that executes the algorithm. The 
performance deteriorated as the number of system nodes, the 
network-diameter, the communication-overhead increased. 
Moreover, additional technical-factors of the algorithm itself 
significantly affect the performance of rebalancing the load 
among nodes. Therefore, this paper proposes an approach that 
improves the performance of load-balancing algorithms by 
considering the load-balancing technical-factors and the structure 
of the network executes the algorithm. We applied the proposed 
method to a cafeteria system in a university campus and 
compared our approach with two significant methods presented 
in the literature. Results indicate that our approach considerably 
outperformed the original neighborhood approach and the 
nearest neighbor approach in terms of response time, throughput, 
communication overhead, and movements cost. 
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• Computer systems organization → Embedded systems; 
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1 INTRODUCTION 
Recently, dynamic load-balancing algorithms have become 
increasingly popular and powerful techniques in modern 
distributed computing systems [7]. They increase the 
performance of large-scale computing systems and applications 
since they are designed to redistribute the workloads over the 
components of the distributed system in a way that ensures 
expanding resource utilization, maximizing throughput, 
minimizing response time, and avoiding the overload situation 
[2]. To achieve the goal of maximum performance, it is 
prerequisite to smoothly spread the load among the nodes to 

avoid, if possible, the situation where one node is heavily loaded 
with excess of workloads while another nodes are lightly loaded 
or idle [8,19].  
     Dynamic load-balancing algorithms are suitable to be applied 
in practical applications, such as the queue managements systems 
since the workloads are generally not completely known, and 
each node has different capacity and runs at different speed. The 
diffusion approach [13,20] is one of the dynamic load balancing 
techniques that have received much attention by researchers in 
the past decades to solve the load-balancing problem. In standard 
diffusion approach, a system which has different nodes exchanges 
workloads via the communication links between these nodes. The 
workloads are distributed among the nodes, and the load 
balancing process works in sequential rounds. In every round, 
each node is allowed to balance its load with all its neighbors by 
exchanging the workloads to balance the total system load 
globally, meaning to minimize the load difference between the 
nodes with minimum and maximum load. The nearest-neighbor 
approach [24] is another dynamic technique that allows the nodes 
to communicate and migrate the excess workloads with their 
immediate neighbors only. Each node balances the workload 
among its neighbors in the hope that after a number of iterations 
the entire system will approach the balanced state. However, 
dynamic load-balancing algorithms still present fundamental 
challenges when being executed at large-scale heterogeneous 
distributed systems.  
     Previous research [14–16] concluded that three structural 
factors may affect the performance of any load-balance algorithm: 
increasing the number of nodes within the system, increasing the 
network diameter, and increasing the communication overheads. 
In addition, previous studies concluded that [27] technical load-
balancing factors, such as the algorithm policies should be 
considered when designing a load-balancing algorithm. Thus, this 
research proposes an improved dynamic load-balancing algorithm 
that decreases the effect of the structural factors by constructing 
a small world overlay network. Moreover, our proposed algorithm 
considers the technical load-balancing factors, such as the 
initialization rule, the information exchange rule, the load-
measurement rule and the load-migration rule. To prove the 
efficiency of the proposed approach, we applied the algorithm to 
a cafeteria system in a university campus as a case study.  
     In summary, to apply our proposed approach to any queue 
management system, first, an overlay network based on the small 
world theory should be construct to decrease the effect of the 
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structural factors, and then the load balancing algorithm will be 
applied within the constructed network. We have evaluated the 
performance of our proposed approach and compared it against 
competing algorithms. Results are encouraging, indicating that 
our proposed algorithm dramatically outperforms them in terms 
of response time, throughput, communication overhead, and 
movements cost.  
 

2 RELATED WORK 
Previous studies have proposed numerous load-balancing 
algorithms targeting at static, small-scale, homogeneous and/or 
heterogeneous environments [1,13,18,21,22,26]. The diffusion 
approach [13,22] is a dynamic load-balancing technique where 
each node simultaneously sends the excessive workloads to its 
under loaded neighbors and receives workloads from its 
neighbors with higher workload [6], [9]. In 1990, Boillat et al. [6] 
presented a new approach to solve the load balancing problem for 
parallel programs. In 1989, Cybenko [9] studied the diffusion 
schemes for dynamic load balancing on a message passing 
multiprocessor networks. Robert Elsasser et al [10] generalized 
the standard diffusion schemes for homogenous networks to deal 
with the heterogeneous network. In [5], the first order diffusion 
load balancing, relaxed diffusion (RFOS) and generalized adaptive 
exchange (GAE) algorithms for totally dynamic networks were 
investigated. In [1], the authors proposed a modified version of 
diffusion algorithm for load balancing on dynamic networks. The 
authors in [3] considered a neighborhood load balancing 
algorithm in the context of selfish clients. They assumed that a 
network of n processors is given, with m tasks assigned to the 
processors. The processors may have different speeds and the 
tasks may have different weights. Every task is controlled by a 
selfish user. The objective of the user is to allocate his/her task to 
a processor with minimum load, where the load of a processor is 
defined as the weight of its tasks divided by its speed. 
Neighborhood load balancing algorithms [4] are diffusion 
algorithm that have the advantage that they are very simple and 
that the vertices do not need any global information to base their 
balancing decisions on.  

3 SYSTEM OVERVIEW 
As mentioned before, to apply our proposed approach to any 
queue management system, first, an overlay network based on the 
small world theory should be construct to decrease the effect of 
the structural factors, and then the load balancing algorithm will 
be applied within the constructed network. This section details 
how to construct the Functional Small World (FSW) overlay 
network within the cafeteria system. The notations used in this 
paper is summarized in Table 1. 
 

Table 1: The symbols used in the paper 

Symbo
l 

Description 

FSW Functional Small World 

FS The Functionality Set 
G The system that executes the load-balancing 

algorithm 
N The nodes in the system 
E The connection-links among nodes 

AF All Functions set 
(n )iWL   The set of assigned workloads for node in   

ic   The capacity of node in  

ild   The load of node in  
( )iAdj n   The set of neighbor nodes for node in  

Info   The set stored the information of neighbor nodes 
for node in  

mig   The array that store the amount of migrated 
workloads 

il   The effective-load of node in  

avgl   The average effective-load 

lowerN   The set of assistant neighbors  
LD   The load difference 

i   The excess workloads that node in must migrate 

i   The amount of workloads that node in can accept 

3.1 Overview 
 
In our research, FSW has two important goals: 1) an overlay 
network that provides connectivity among the cafeteria nodes, 
and 2) a distributed solution that supports efficient dynamic load-
balancing among cafeterias. In FSW, the nodes are organized in 
accordance with the Functionality Set (FS) defined by each node 
in the system. In a cafeteria system, the functionality set refers to 
the set of meals offered by each cafeteria node. Cafeteria nodes 
with similar functionality sets form one cluster. We based on the 
concept proposed by Tversky [25] to define the relation of “similar 
functionality” employed in our research.  
 
     Definition 1 (similar functionality). Generally, similar 
functionality is defined as the difference between the amount of 
functions in-common among nodes and the amount of functions 

unique to nodes. Formally, given any nodes ,
i j
n n N with a 

functionality set of each node iFS , jFS , the relation of similar 

functionality is defined by: 
( ,n ) |FS FS | (|FS FS |) (|FS FS |)

i j i j j ii j n n n n n ns n      . 

Therefore, nodes with ( , ) 0i js n n   are not similar, while nodes 

with ( , ) 0i js n n  are similar.   

     It is clear that functions in common increase similarity, 
whereas functions that are unique to one node decrease similarity. 
     In practice, the university cafeteria system is considered as a 
distributed system that can be modeled as an undirected graph

(N,E)G  whereN represents the set of heterogeneous cafeteria 

nodes in the system and E  describes the connection-links among 
them. Each cafeteria node i N serve a set of meals; thus, each 
node has a set of functions that define the Functionality Set (FS). 
Two main properties distinguish the small world network: (1) low 
average hop count between any two random chosen nodes, and 
(2) high clustering coefficient; therefore, our approach, in order to 
construct the FSW, categorizes the cafeteria nodes in the system 
into two types: 1) an in-domain node, and 2) a master node. The 
in-domain node represents a cafeteria node in which located in 
one cafeteria cluster and only has connections via short-links with 
all in-domain nodes placed in the same cluster and the master 
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node of that cluster. The master node represents a node located in 
one cafeteria cluster and has a connection via short-links with all 
in-domain nodes placed in the same cluster and at the same time 
has connection via long-links with some master nodes located in 
other clusters. Fig. 1 shows an example of the FSW, where nodes

1
n ,

4
n and 

6
n are in-domain nodes, while nodes

2
n , 

3
n and 

5
n are 

master nodes. The long-links (i.e. blue lines in Fig. 1) creates 
connections among master nodes and is responsible for achieving 
the high clustering coefficient in the network (property 2 in small 
world networks). Short-links (i.e. black lines) creates connection 
among in-domain nodes, and among master nodes and in-domain 
nodes. Short-links and the long-links aim at achieving the 
properties (1) and (2).  
 

 
Figure 1: An Example of FSW overlay network, where white 
nodes present the in-domain cafeteria node, and the blue 
nodes represent the master nodes 
 
     In our design, we also define the cluster-size M to be the 
maximum number of nodes that are allowed to form one cafeteria 
cluster. Pre-defining the cluster size is important to keep small 
number of nodes in one cluster and to maintain good clustering 
effect. In this research, we adopt the guideline proposed by [17] 
to define M. Hui et al. suggested that the cluster size ranges from 
1 to 64 maintains good clustering effect. Practically, designing a 
FSW overlay network plays an important role in decreasing the 
number of nodes that will exchange the workloads information, 
minimizing the network diameter, deteriorating the 
communication overhead, and decreasing the time delay results 
from the task re-migration process; therefore, this approach is 
efficient to be applied not only for the entire system but also 
clustering inside the cluster to increase the performance of the 
load-balancing algorithms.  
     In summary, the FSW of the cafeteria system can be formed as 
follows: Each cafeteria node maintains long-links to ensure the 
connectivity among master nodes (i.e. the connectivity among the 
clusters to provide shortcuts to allow a node reach other nodes 
that execute similar functionality and located in other clusters 
quickly) and/or short-links to ensure the connectivity among the 
in-domain nodes and the connectivity among the in-domain 
nodes and the master nodes so that a balancing message issued 

from any node can reach any other node in the network. Via 
short-links and long-links, navigation and broadcasting in the 
network can be performed efficiently. In the following sections, 
we details the design of FSW. 

3.2 Constructing Functional Small World (FSW) 
Overlay Network 
Constructing a FSW overlay network for the cafeteria system 
depicted above involves three major tasks: 1) Functional-
Clustering, 2) Cluster-Formation, and 3) Overlay Network 
Construction. 

     3.2.1 Functional-Clustering (FC). In general, the Functional-
Clustering (FC) task aims at 1) defining the clusters (i.e. the 
number and the name of clusters) that should be created within 
the cafeteria overlay network, and 2) adding the nodes initially to 
the cluster(s) based on the in-common functions between the node 
and the defining cluster. In other words, if there is at least one 
function in-common between the node and the cluster, then the 
node will be added initially to that cluster. Note that: initially, in 
this step a node can be added to more than one cluster, but finally 
in the next tasks a node will only be added to one cluster.  
     This task is executed before or when a node joins the network. 
Each node

i
n in the system defines its Functionality Set (FS), which 

indicates the functions that a node can perform and execute 
within the system, such as

1 2
{ , ,..., }

i k
FS f f f , where

i
FS is the 

functionality set of node
i
n , 

1
f is a function that can be executed 

by node
i
n , and k  is the number of functions that node

i
n can 

execute. In our manuscript, a cluster, namely, , ,..,i j kCluster  has a 

functionality set
, ,..,

{i, j,...,k}
i j kClusterFS  . Likewise, ACluster has 

FS= {A}. Following are the steps performed by the functional-
clustering task: 
 
1. Let AF (All Functions) be the set of all functions executed in 

the system
1 1 2

.... { , ,..., }
n s

AF FS FS f f f  , where s is 

the total number of functions executed within the system, 
and 

i
FS  is the functionality set of node

i
n . In other words, 

AF is the union of all FSs defined in the system. 
2. For each function f AF , create a cluster, namely,

 f
cluster  

3. Since each node
i
n has its functionality set

1
{ ,..., }

i k
FS f f , 

in this step initially node
i
n will be simultaneously added to

1 2
cluster ,cluster ,...,cluster

kf f f . In other nodes, if a node
i
n

executes a function f
a

, then there is an in-common function 

between a node 
i
n  and

 a
cluster . Thus, the node

i
n will be 

added to cluster
 a

cluster .   

 
     Note that, the number of clusters that a node can be added to 
depends on the number of functions that a node executes within 
the system; a node that executes more than one function will be 
added initially to more than one cluster at the end of this task.  
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     3.2.2 Cluster-Formation. The Cluster-Formation (CF) task is a 
key task to ensure that a node will be added to only one cluster 
regarding the functional similarity. According to definition 1, 
nodes are considered as similar nodes if the amount of in-common 
functions among nodes is more than the amount of functions 
unique to nodes. The pseudo code of the cluster formation task is 
shown in Table 2. 
 

Table 2. Pseudo code of the cluster formation task 

1 1 2 2

2 1 21

[] { ,| |

Cluster- Formati

, c ,| |,..., ,| |}

where | |,| |,...

on task

 A    

 is the size of cluster ,  cluster ,...,c, lus| |

f f

f

cluster cluster luster cluster cluster cluster

cluster cluster clus

Initializatio

r

n

Let

te

   

ter

1.  [] . ;

/ /         

2.For  each cluster "cluster " in A[] 

3. For ea

(

ch node n  added initially to cluster  {

   3.1. if |FS | 1,    a

)

f

a

i a

i

begin

int m A minArray

Finding the clusters that have the least cluster size

then



 dd n  to cluster .

/ /  this means the functional similrity between a node

// and the cluster is  0 since a node can execute one function and added to one cluster 

   3.2. if |FS | 1,     

// the node i

i a

i then





s initially added to more than one cluster

//thus, these steps ensure positive similarity between a node and a cluster 

      3.2.1. if cluster  [] and | []|==1 then add n  to cluster .

/ /  | []|==1 
a i am m

m mea



 the number of clusters that has the smallest cluster size is 1

      3.2.2. elseif cluster  [] and | []| 1 then 

// here more than one cluster has the smallest cluster size

         3.2.2.1. if n  a

a

i

ns

m m 

dded to ( one cluster cluster   [] and the other clusters not in [] )

              add n  to cluster

// this step ensures similarity and add node to cluster with smallest size

          3.2.2.2.

a

i a

m m then

 if n  added to (more than one cluster   []) then

               add a "wait " tag of n

// this mean a node has in-common functions with two clusters in  the same size, since

// each cluster has diffe

i a

i

m

rent functionality, the similarity between a node and the cluster

//may be negative;  thus, additional steps must be done to ensure positive similarity 

      3.2.3. elseif cluster  []  then  

        
a m

1 3.2.3. chech the FS ={f ,..,f } of n  if the is a cluster  m has the name cluster

             then n   cluster  otherwise add a tag "wait" to n  }

4.For each node n  tagged as wait

     4.1. 

id i fid

i a i

i

leave



1 2

FS   FS  .... FS1 2

FS   FS  .... FS1 2

find TFS= FS   FS  .... FS ,  z is the nodes z has a tag "wait"

     4.2. create new cluster,namely, 

     4.3. add n  to 

 

End

z

z

i z

where

cluster

cluster

 
     This task aims at: 1) deciding the nodes that must finally be 
added to the cluster, and 2) checking the cluster size; thus, if the 
cluster size exceeds M, which is a preset defined maximum cluster 
size, the cluster will be split into two clusters in order to maintain 
good clustering effect. To determine the cluster size, we adopt the 
guideline proposed by [17]. Hui et al. suggested that the maximum 
cluster size is 64 in order to maintain good clustering effect. If the 
cluster size exceeds M, the steps of the functional-clustering task, 
and the cluster-formation task will be applied to split that cluster 
(i.e. Note, new clusters with new names, such as 1Acluster instead 
if Acluster , will be created upon re-performing the tasks to split 
cluster(s)).  

     3.2.3 Overlay Network Construction. This task constructs the 
FSW overlay network for the cafeteria system (Fig.2 shows a view 
of dining area in the university campus) across the created 
clusters (i.e. after performing the previous two tasks) to form a 
functional small world network by:  
 
     1. Defining the in-domain nodes and the master nodes.    
The size of the FS of each node located in one cluster will be 
checked (i.e. the number of functions that a node can execute); 
therefore, a node that has the largest FS size in

i
cluster  will be 

defined as a master node for
i

cluster , and the other nodes located 

in
i

cluster will be defined as the in-domain nodes for that cluster. 

Note, when two or more nodes have the largest FS size, then only 
one node from these nodes will be selected randomly as a master 
node for a cluster since that each cluster has only one master node.  
 
     2. Adding long-links and short-links among the nodes.  
Long-links connect a master node located in one cluster with 
other master nodes located in other clusters based on the 
functional similarity between theses master nodes (i.e. see 
definition 1). Short-links connect the in-domain nodes located in 
one cluster with the other in-domain nodes located in the same 
cluster, and it also connects the in-domain nodes located in a 
cluster with the master node of the same cluster. In-domain nodes, 
master nodes, long-links and short-links play a key role in 
reducing the effect of the structural factors and transforming the 
network into a small world.  
 

 
Figure 2: A view of dining areas in the university campus 

4 Dynamic Load Balancing In Action 
This section explains the proposed load-balancing algorithm that 
will be executed in the constructed FSW overlay network.  

4.1 Problem Formulation 
 
Generally, the entire cafeteria network is modeled as an 
undirected graph ( , )G N E where N represents the set of 

heterogeneous cafeteria nodes and E describes the connections 
among them. Each cafeteria in the network (i.e. whether an in-
domain node or a master node) will be assigned some orders or 
workloads wl during the execution of the system, where each 
order assigned to a node consumes effort and time; thus, each 
workload has different weight w . The weight of the total 
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workloads assigned to a node is referred to as the load of a node
0

i
ld  . Each assigned workload also is associated with a function 

that can process the assigned workload. Each node also has a 
capacity 0

i
c   which specifies its processing capacities (i.e. the 

largest amount of workload that can be assigned to a node
i
n ), 

where ,
i i
c ld Z . Since the capacity of each node in 

heterogeneous systems is not equal, our proposed algorithm 
considers the processing capacity of each node when deciding 
whether a node is overloaded or not.  
 
     Definition 2 (the effective-load).  Given a cafeteria node

i
n N that has a capacity and assigned some orders, the 

effective-load
i
l of that node 

i
n  is defined as the total weight of 

the assigned orders divided by the cafeteria capacity. Formally, 
the effective-load of node

i
n is the load of 

i
n divided by the 

capacity of 
i
n . 

(n )

( )
j i

j
wl WL

i
i

i i

w wl
ld

l
c c



 


                              (1) 

 where
1 1

( ) { , , , ,..., , , , }
i id id z z id id

WL n wl w ctr F wl w ctr F     is 

the set of orders assigned to node
i
n  .  

4.2 Our Proposed Algorithm 
 
Our proposed algorithm is shown in Table 3: NeighborhoodLB. 
Each cafeteria node

i
n in the system G executes the same 

algorithm in parallel. As mentioned before, based on the role of 
each node

i
n within the system,

i
n defines its functionality set 

(FS). Thus, the structure of the system is simplified by 
constructing the FSW to decrease the graph diameter, the number 
of nodes that exchange the load information and communication 
overhead. The steps of constructing FSW overlay network is 
illustrated in Section 3. The nodes will be spread into clusters, and 
each node will have in addition to the node id

id
n , a cluster id

id
ctr

to show the cluster in which a node is located and idFS  to check 

if the received mi task can be processed by a node
id
n . Following 

paragraphs demonstrate the proposed load-balancing algorithm 
that will be executed within the constructed overlay network in 
details. 
 
     4.2.1 The Initialization Stage. Let (n )

i
WL be the set of assigned 

orders, 
1 1 1

( ) { , , , ,..., , , , }
i id z z id z

WL n wl w ctr F wl w ctr F     . 

Each assigned workload or order wl consumes time and efforts 
until being completed; thus, each assigned workload has weight
w . Each workload wl assigned initially to idctr and associated 

with a function F (i.e. F is the function that can process the 
workload). Each node

i
n also has, after constructing FSW, a pre-

defined set of neighbor-nodes (n )iAdj to store the nodes that have 

connection-links either long-links or short-links with node
i
n . 

Each node
i
n initializes its state (initialization stage) in steps 1 

through step 3.   
 
     Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node

i
n defines a set { , , , , }

id id id id id
Info ctr n ld c FS    to store the 

information of the nodes in the neighbor-nodes set, where
id

ctr : 

is the id of the cluster in which a node the has 
id
n  is located, 

id
n : 

the id of a node, 
( )

( )
j id

id j
wl WL n

ld w wl


   the load of node
id
n (i.e. the 

total weight of all workloads assigned to the node
id
n ,), 

id
c : is the 

processing capacity of 
id
n , and 

id
FS is the functional set of 

id
n .  

 
     Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node

i
n also defines an array (n )

i
mig to store the amount of the 

migrated workload that node
i
n will transfer to the under loaded 

nodes of the set neighbor-nodes. Initially, the workloads that will 
be transferred to other nodes is 0 for all nodes in the set of 
neighbor-nodes.  
 
     Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node

i
n computes its initial effective-load

i
l via the equation defined in 

definition 2 (i.e. the total weight of the workloads assigned to node

i
n divided by the capacity of node

i
n  ). Each node in the system 

executes the same proposed algorithm in parallel. In the 
initialization stage, each node: (1) defines Info set to store the 

information about its neighbor-nodes, (2) defines mig array to 

store the amount of excess workload to be transferred, and (3) 
computes its effective-load.   
 
     4.2.2 The information Broadcasting Stage. Step 4 (Line 4 in 
NeighborhoodLB Algorithm): Each node

i
n broadcasts its 

initial state (i.e. initial information after executing the 
initialization stage) to only its neighbor-nodes (the nodes stored in 
the set adj ). Since a master node has connections with some master 

nodes located in other clusters that have similar functionality via 
long-links, and it has also connections with the in-domain nodes 
located in the same cluster via short-links, the capacity of a master 
node that will be sent to other nodes is divided among the clusters

| | 1
ic
long links 

 in the broadcasting stage. In fact, each node 

maintains a FIFO message queue which holds the incoming 
messages. Each message has the format

, , , ,FS ,"T",[g,"F"]
id f f f f

ctr n ld c  , where
id

ctr is the cluster id 

where the node that sends the message is located in, f
n is the id of 

the sender node,
f

ld the loads of the sender node, f
c is the 

capacity of the sender node, f
FS is the functionality set of the 

sender node, T is the type of the message, g is the migration 

information (i.e. information about the migrated task and the 
function F that can process the migrated task) . There are two 
types of messages: 
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Table 3: NeighborhoodLB 

                    lg 1.NeighborhoodLB

: The node where the algorithm is executed.

: The id of a cluster in which  is located

: The processing capacity of node  

( ) { , }The

id

id i

i i

i id id

A orithm

n

ctr n

c n

Adj n ctr n    set of neighbor-nodes

WL( )={< , , ,F >} : The set of assigned workloads for  

FS : the functionality set of n           

Begin

1.Let { , , , ,FS }

2.Let mig( )=0 for all 

i id id id i

n i

i i

j

n wl w ctr n

i

Info ctr n ld cid id id id
n n

  

(n )

( )

( )

3.Compute  the  effective-load: 

4.For each node ( ) do

   a.if  is master node then send message

    < , , , ,FS ,"B",[0,""]>
|long_links|+1

   b.else s

j i

j
wl WL

i
i

i i

j i

i

i
id i i i

Adj n

w wl

ld j i
l

c c

n Adj n

n

c
ctr n ld







 



end message< , , , ,FS ,"B",[0,""]>

5.Read messages from the messages queue

   a. if T="B" then  { , , , ,FS }

   b. if T="G" then

      1)  { , , , ,FS ,

id i i i i

id f f f f

id i i i i

ctr n ld c

Info Info ctr n ld c

Info Info ctr n ld g c

  

     , , , ,FS }

      2)

      3)For each node ( ) do

        a. if  is master node then send message 

        < , , , ,FS ,"B",[0,""]
|long_links|+1

        b.else sen

id f f f j

i
i

i

j i

j

i
id i i i

ctr n ld g c

ld g
l

c

n Adj n

n

c
ctr n ld g

 






 

d message< , , g, ,FS ,"B",[0,""]>

6.Compute the average effective-load l

   

7. For each node ( ) do  //Define the Assistant Neighbors 

   a. if   

id i i i i

i j
j Info

avg
i j
j Info

j i

j
avg

j

ctr n ld c

ld ld

c c

n Adj n

ld
l

c







 


 



 and  then 

8.Let load-difference ( - )

9.If  0 then exit; else (WL( ),N , )

EndBegin          

j
i lower lower j

j

i i avg

i lower i

ld
l N N n

c

LD l l

LD LB n LD

 





 
 
      
1. Workload Migration message (“G”): 

i
n sends a “G”-message to 

j
n to tell it that 

i
n wants to migrate g units of workload to j

n .  

2. Broadcast message (“B”): broadcast the status (i.e. cluster id, 
node id, load and capacity to all neighbor-nodes). 
 

     Step 5 (Line 5 in NeighborhoodLB Algorithm): The main 
part of the algorithm starts when a node takes the first message 
from the queue and processes the message according to its type.  
If the message type is “B”, then the node only updates its 
information stored in the Info set. If the message type is “G”, then 

it updates the information stored in the Info set, computes its 

effective load, and broadcasts its new status to its neighbor-nodes. 
Initially, the first message received by each node is “B” type 
messages. 
 
     4.2.3 Computing the average effective-load.  Step 6 (Line 6 in 
NeighborhoodLB Algorithm): After updating the information 
stored in the Info  set (i.e. after the broadcasting stage), each node 

computes the average effective-load 
avg
l  of a node and its 

neighbor-nodes to facilitate 1) making a decision (i.e. whether a 
node overloaded or not) later by a node, and 2) defining the set 
of assistant neighbors in the next stage. The average effective-
load is computed by the following equation:  

inf

inf

i j
j o

avg

i j
j o

ld ld

l
c c













                                   (2) 

     Note that, in the above formula the capacity of all nodes is 
considered since in heterogeneous systems the capacity is varied 
from one node to another.  
 
     4.2.4 Finding the set of assistant-neighbors Stage. Step 7 (Line 7 
in NeighborhoodLB Algorithm): According to the average 
effective-load computed in step 6 by each node, each node defines 
in this stage its assistant-neighbors

lower
N . The set of assistant-

neighbors
lower
N of node

i
n  are the set of nodes that have 

effective-load lower than the average effective-load computed by 
node

i
n . 

 
      4.2.5 Workload transfer strategy. Step 8 (Line 8 in 
NeighborhoodLB Algorithm): The decision of calling a 
procedure LB to migrate the excess workloads or not depends on 

the load difference between the current effective-load of node i
n

and the average effective-load computed by i
n . Therefore, the 

excess workload will be migrated if the load difference is positive. 
 
     4.2.6 Load-balancing mechanism (Procedure LB). The pseudo-
code of the procedure LB is given in Table 4. In the procedure LB, 
the load difference LDi , the set of assistant-neighborsNlower , and 

the set of the assigned workloads (n )WL i are formed the 

procedure input parameters. The procedure will be called if the
LDi  is positive, and it works until the load difference of the 

heavily loaded caller node
i
n becomes less than zero

0LD l li i avg   .  In other words, the procedure works until the 

heavily loaded node becomes under-loaded, which means the 
effective-load of a node is less than the average effective-load 
computed by a node. The procedure first computes the excess 
workload i  of the heavily-loaded node ni  that needs to be 

transferred. 
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Table 4: Procedure LB 

Procedure LB(WL(n ),LD ,N )i i lower
Begin

While(LD 0)

1.Compute  the excess workload of n :

2. sort the submitted workloads in ascending order 

3. sort the assistant neighbours in descending order

4. L

i
LD ci i i i



 

et j=0

5. For a node n  in N  

   a. compute the excess workload n can receive =(l -l ) c

   b. If w(wl )  and F is in FS then

         1) k= k+1

         2) send message to node n , , ,FS ,

j lower

j avg j j

k nj

n l cj i i i i









 "G",[ , ]

       else

          1) go to step 5     

End For

End While

End Begin

F 

 

 
     Then, it sorts: 1) the set of assistant-neighbors

lower
N in 

descending order based on their effective-loads, and 2) the set of 
submitted workloads (n )WL i in ascending order in accordance 

with the weight of each submitted workload. The procedure also 
checks each node in the set Nlower and computes how much a 

node can receive  (i.e. the workload that a node can receive is 
equal to the difference between the effective-load of a node and 
the average effective-load). The procedure migrates only the 
workload that has weight less than or equal to . This step plays 
a key role in redistributing the excess workloads to the assistant-
neighbors in a way that ensures that the node who receives the 
workload maintains the under-loaded status. The LB procedure is 
terminated when the load difference of the caller heavily-loaded 
node becomes negative. In other words, the procedure is 
terminated when the node becomes under-loaded.  
 
5 Simulations 

5.1 Experimental Setting 
 
In order to perform our test, we build a system based on the 
server-client architecture for a cafeteria system in a university 
campus (Fig. 3). The client side is a mobile application that allows 
students to order meals from any cafeteria inside the campus (Fig. 
4), while the server side represents the cafeteria nodes that run 
the load-balance algorithm in parallel. When a student order a 
meal, initially the order will be assigned to a cafeteria node that 
has that meal in its functionality set as well as has the lowest 
assigned workloads. When the order assigned to a cafeteria node, 
the name of the cafeteria will appeared to the student on the 
mobile application to pick his/her order without the need to wait 
in a queue. 
     To simulate the students orders, we have implemented a 
discrete-event simulator using the SimJava [12]. The simaulation 

is used to compare the performance of our proposed approach 
with two of the most popular dynamic diffusion approaches, the 
nearest neighbor algorithm [24] and the original neighborhood 
algorithm [22]. The three approaches were run on a set of default 
values: number of assigned workloads, number of nodes, 
maximum cluster size, and the average number of the functions 
executed per node. The simulation parameters, and their values 
are given in Table 5. 

 
Figure 3: The system architecture  
 
     For fairness of comparison, we have tested the three 
approaches on random graphs (random scenario) generated via 
random generator [23]. In the random scenario, the generator will 
randomly distribute nodes with a functional set associated with 
each node in the graph. As shown in table 5, maximum number of 
functions that each node can execute is 20. Since, in this research, 
we propose a two-stage approach (creating a functional small 
world overall network and then run the NeighborhoodLB on the 
created FSW) to improve the performance of load-balance 
algorithm, the random graph, generated previously, will be 
converted to FSW before executing our proposed 
NeighborhoodLB algorithm. On the other hand, the other two 
algorithms, the nearest neighbor algorithm and the original 
neighborhood algorithm were executed directly on the generated 
random graph since they do not employ the first stage of creating 
FSW.  
 

 
Figure 4: The client side 
 
 

Table 5. Parameters used in the simulations 
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 Description  Values 
1.  The assigned Workloads 1,000-10,000 
2.  The number of nodes in the system 100-1,000 
3.  The cluster size 1-64 
4.  The number of functions in the FS per 

node 
1-20 

 
     The comparison tests were based on two parameters: the 
assigned-workloads and the number of nodes, and the 
measurement of the performance of the algorithm was based on 
four metrics: the throughput, the response time or the completion 
time, the communication overhead, and the movement cost. The 
response time measures the total time that the system takes to 
serve a submitted request (task). In this experiment, to simulate 
real world distributes systems, we randomly submitted tasks to 
nodes. Initially, the request state will be “submitted to node” and 
will be changed to ‘’complete” upon serving that request. To 
measure the response time, we count the time needs to change the 
node response time from “submitted to node” to “complete”. The 
throughput is the rate at which a node in the system sends or 
receives data (i.e. throughput = 1/ response time). In other words, 
the throughput is defined as the number of nodes that change its 
status to “complete” in a time unit. As we can see from the 
proposed algorithm, the load balancing algorithm needs to 
migrate request from one node to another one in order to achieve 
a balanced state. We use a simple linear cost model [11], where 
moving one request from any node to any other node costs one 
unit. Such a model reasonably captures both the network 
communication cost of transferring data, as well as the cost of 
modifying local data structure at the node. 
     Only one parameter was changed each time so that any 
changes in the performance would be based solely on this 
parameter. In fact, results achieved from these tests were used to 
study: (1) the behavior of the different load-balancing algorithms 
under the same condition; (2) the behavior of the algorithms for 
random systems with different number of nodes; (3) the behavior 
of the algorithms for different workloads distribution. 
     To study the effects of changing the assigned workloads on the 
average response time, the throughput, the communication 
overhead, and the movements cost, the assigned workloads were 
varied from 1000-10,000 workloads unit, and the workloads 
distribution among the nodes were carried in the following 
manner.  
 The initial workload distributions varying 25% from the 

average effective-load to represent a situation where all 
nodes have similar workloads at the beginning and those 
workloads are close to the average effective-load; in other 
words, the initial situation is quite balanced.  

 The initial workload distributions varying 50% from the 
average effective-load to constitute the intermediate 
situations. 

 The initial workload distributions varying 75% from the 
average effective-load to constitute the advanced 
intermediate situations.  

 The initial workload distributions varying 100% from the 
average effective-load to form the situation where the 
difference of workloads between nodes at the beginning is 
considerable.  

     To study the effects of changing the number of nodes on the 
average response time, the throughput, the communication 
overhead, and the movements cost, the number of nodes were 
varied from 100 – 1000 nodes and the distribution of the 
overloaded nodes were carried in the following manner.  

 25% of nodes are idle, 75% of nodes are overloaded.  
 50% of nodes are idle, 50% of nodes are overloaded.  
 75% of nodes are idle, 25% of nodes are overloaded. 5.2  

 

5.2 Comparative Study 

5.2.1 Average Response Time. The total time taken for the three 
algorithms, our proposed algorithm, the original neighborhood 
algorithm, and the nearest neighbor algorithm, to complete the 
assigned workloads increased as the assigned workloads was 
increased as shown in Fig. 5.  
     This situation is expected as the more workloads to be 
assigned, the longer it takes to complete all the assigned 
workloads. However, it was observed that our proposed method 
(i.e. the green line) performed better than both the nearest 
neighbor scheme and the original neighborhood algorithm in all 
cases. We can see that when comparing the results of our 
proposed method and the original neighborhood algorithm (i.e. 
the red line) and the nearest neighbor algorithm (i.e. the blue line), 
it is observed that the gap between these three curves was 
widening as the assigned workloads was increased. This shows 
that the method actually reduced the response time or the total 
completion time by a considerable amount (greater speedup) in 
comparison to the original neighborhood algorithm and the 
nearest neighbor algorithm as amount of workloads increased.  
     Fig. 6 shows that the response time of the proposed method 
(i.e. green line) slightly increased when the number of nodes was 
increased. In contrast, the response time of the original 
neighborhood method (i.e. red line) and the nearest neighbor 
method (i.e. blue line) sharply increased when the number of 
nodes was increased.  
     The reasons behind achieving better results (i.e. achieving 
better response time when increasing the assigned workloads or 
when increasing the number of nodes): 1) our proposed approach 
constructs a FSW overlay network and then executes the 
proposed neighborhood load-balancing within the constructed 
network. Specifically, constructing the overlay network reduces 
the number of nodes that exchange the workload information, 
decreases the network diameter, and the communication 
overhead. As a result, all the stages of the proposed algorithm, 
such as updating the information of the neighbor nodes, 
calculating the average effective-load, choosing the assistant 
neighbors, and migrating tasks to the assistant neighbor that can 
process the task, will be performed in less time. Our approach also 
plays a significant role in reducing the time delay results from the 
task re-migration process as nodes with similar functionality can 
communicate with each other. As illustrated before, re-migrating 
tasks occur because of out of the node service scope situation; 2) 
our proposed approach utilizes the on-state information exchange 
strategy to broadcast its information to only its neighbor-nodes, 
which has the advantages of achieving more accurate calculation 
to the effective-load and the average effective-load without 
increasing the communication overhead (i.e. each node collects 
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the information from less nodes, only neighbor nodes, as 
compared with the original neighborhood approach and the 
nearest neighbor approach);  3) our approach utilizes the concepts 
of assistant-neighbors and thus heavily loaded nodes will send 
only (i.e. without accepting any workloads from other nodes since 
the node is currently overloaded) the excess workloads to the 
lightly loaded nodes “assistant-neighbors”, whereas the lightly 
loaded nodes will only receive the migrated workloads without 
sending any workloads. 
 

 
Figure 5: The response time of original neighborhood 
approach, neatest neighbor approach, and our approach for 
various assigned workloads 
 
      

 
Figure 6: The response time of original neighborhood 
approach, neatest neighbor approach, and our approach for 
various number of nodes 
 
In contrast, in the original neighborhood approach and the nearest 
neighbor approach, all nodes will send and receive workloads at 
the same time which in turn increase the communication 
overhead and thus increasing the response time; 4) it is intuitive 
that a system with longer diameter will take longer time to 
converge as the number of iterations to propagate the workloads 
to lightly loaded nodes is proportional to the network diameter; 
thus, reducing the network diameter via constructing FSW plays 

a key role in reducing the response time of our proposed 
approach. In contrast, in the original neighborhood approach and 
the nearest neighbor approach, each node has to collect the 
workloads information from larger number of nodes which in 
turn leads to increase response time. 
 

5.2.2 Throughput. As shown in Fig. 7, our method outperformed 

the original neighborhood algorithm and the nearest neighbor 

method in terms of the system throughput in all assigned 

workloads distribution cases.  
 

 
Figure 7: The throughput of original neighborhood 
approach, neatest neighbor approach, and our approach for 
various assigned workloads 
 
     We can notice that the throughput of the system that executes 
our proposed approach steadily increased even the assigned 
workloads increased, whereas the throughput of the system that 
execute the original neighborhood approach or the nearest 
neighbor approach drops quickly when the assigned workloads 
increased. 
     Fig. 8 shows that the throughput achieved by the original 
neighborhood algorithm as well as the nearest neighbor approach 
decreased sharply as the number of nodes in the system increased, 
while the throughput achieved by our proposed method remains 
stable even when increasing the number of nodes. 
     This is because our proposed approach reduces the task 
completion time which in turn increases the number of tasks 
completed in a time unit. The reasons behind this are:  1) 
constructing the FSW that allows nodes with similar functionality 
to communicate with each other, reduces the possibility of re-
migrating tasks (re-migrating tasks consumes time); 2) checking 
the function that can process the task with the FS before migrating 
the task, eliminate the possibility of re-migrating tasks. Note that, 
the first point reduces the time of performing the second point; 
thus, better results are achieved; 3) reducing the number of nodes 
that exchange the workload information, decreasing the network 
diameter, and decreasing the communication overhead reduces 
the time of performing the proposed algorithm, such as updating 
the information of the neighbor nodes, calculating the average 
effective-load, choosing the assistant neighbors, and migrating 
tasks to the assistant neighbor. As a results, the number of tasks 
completed in a time unit will be increased; 3) utilizing the concepts 
of assistant-neighbors allowing only heavily loaded nodes to send 
only (i.e. without accepting any workloads from other nodes since 
the node is currently overloaded) the excess workloads to the 
lightly loaded nodes “assistant-neighbors”. Also, the lightly loaded 
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nodes will only receive the migrated workloads without sending 
any workloads. In contrast, in the original neighborhood 
approach and the nearest neighbor approach, all nodes will send 
and receive workloads at the same time which in turn increase the 
communication overhead and thus decreasing the task completion 
time. Moreover, the importance of the average effective-load also 
appears when deciding the amount of workloads to be migrated; 
if the migrated workloads to one node is too small, then the 
workload distribution will take longer (i.e. which in turn 
decreasing the system throughput). In contrast, if the migrated 
workloads to one node is too large, then the overloaded node may 
transfer too much workloads to its neighbor-nodes and thus this 
overloaded node will not have sufficient workload to transfer to 
the remaining lightly loaded nodes. Therefore, by using the 
average effective-load, each node obtains an amount of workload 
proportional to its capacity and thus no node is privileged which 
results in increasing the system throughput (i.e. the number of 
workloads completed in unit time). 
 

 
Figure 8: The throughput of original neighborhood 
approach, neatest neighbor approach, and our approach for 
various number of nodes      

5.2.3 Communication overhead. Fig. 9 shows that the average 

number of messages sent per node increased when the 

assigned workloads increased. This is because when the 

assigned workloads increased, the number of messages sent 

per a node to broadcast its new status increased. We can see 

that our proposed approach produces less communication 

overhead than both the original neighborhood approach and 

the nearest neighbor approach even when increasing the 

assigned workloads.  
 

 

Figure 9: The average number of messages sent per node of 
original neighborhood approach, nearest neighbor 
approach, and our approach for various assigned 
workloads 
 
     Fig. 10 shows that the average number of messages sent per 
node increased when the number of nodes increased. This is 
because when the number of nodes increased, each node will send 
more messages to broadcast its information to the other nodes. 
We can see that our proposed approach produces less 
communication overhead than the both the original neighborhood 
approach and the nearest neighbor approach because: 1) 
constructing a FSW decreases the number of nodes that exchange 
the workloads information which in turn decreases the 
communication overhead; 2) constructing a FSW also decreases 
the network diameter which directly has the impact of decreasing 
the communication overhead; 3) each node that executes the 
proposed NeighborhoodLB algorithm sends/receives messages 
to/from only its neighbor nodes which plays a key role in reducing 
the communication overhead; 4) our approach utilizes the on-state 
information exchange strategy which reduces the communication 
overhead; 5) our approach (constructing the FSW, and the 
proposed load-balancing algorithm) eliminates the possibility of 
re-migrating tasks which in turn decreases the communication 
overhead. 
 
5.2.4 Movement cost. Fig. 11 shows the movement cost of original 
neighborhood approach, the nearest neighbor approach, and our 
proposed approach vs. the assigned workloads, where the 
movements cost is defined as the total migrated workloads divided 
by the total assigned workloads in the system. Clearly, the 
movements cost of our proposed approach is only 0.32 times the 
cost of the original neighborhood approach, while the movements 
cost of our proposed approach is only 0.34 times the cost of the 
nearest neighbor approach.  
 

Figure 10: The average number of messages sent per node 
of original neighborhood approach, nearest neighbor 
approach, and our approach for various number of nodes  
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Figure 11: The movements cost of original neighborhood 
approach, nearest neighbor approach, and our approach 
for various assigned workloads 
 
     Fig. 12 shows the movement cost of original neighborhood 
approach, the nearest neighbor approach, and our proposed 
approach. We can see that the movements cost of our proposed 
approach is only 0.33 times the cost of the original neighborhood 
approach, while the movements cost of our proposed approach is 
only 0.30 times the cost of the nearest neighbor approach. This is 
because each node in our proposed algorithm calculates the 
average effective-load to decide whether a node itself is 
overloaded or not. Specifically, the importance of the average 
effective-load appears when deciding the amount of workloads to 
be migrated; if the migrated workloads to one node is too small, 
then the number of workloads that will be migrated will be high 
(i.e. which in turn increasing the movement costs). In contrast, if 
the migrated workloads to one node is too large, then the 
overloaded node may transfer too much workloads to one 
neighbor node and thus increasing the movements cost. 
Therefore, by using the average effective-load, each node obtains 
an amount of workload proportional to its capacity and no node 
is privileged which leads in decreasing the movements cost. 
Moreover, our approach utilizes the concepts of assistant-
neighbors and thus heavily loaded nodes will send only (i.e. 
without accepting any workloads from other nodes since the node 
is currently overloaded) the excess workloads to the lightly loaded 
nodes “assistant-neighbors”, whereas the lightly loaded nodes will 
only receive the migrated workloads without sending any 
workloads. In contrast, in the original neighborhood approach and 
the nearest neighbor approach, all nodes will send and receive 
workloads at the same time which in turn increase the number of 
workloads that will be migrated and thus increasing the 
movements cost. Finally, our approach (constructing the FSW, 
and the proposed load-balancing algorithm) eliminates the 
possibility of re-migrating tasks which in turn decreases the 
movements cost. 
 

 

Figure 12: The movements cost of original neighborhood 
approach, nearest neighbor approach, and our approach for 
various number of nodes 
 
     A novel load-balancing approach to deal with load rebalancing 
problem in large scale, dynamic and heterogeneous systems has 
been presented in this paper. Previous research concluded that the 
technical, and the structural load-balancing factors: (1) increasing 
the number of nodes in the system (i.e. the number of the nodes 
exchange the workload information); (2) increasing the network 
diameter which is defined as the longest shortest path between 
any two nodes of the network; (3) increasing the communication 
overheads or the communication delays among the nodes 
decrease the performance of any load-balancing algorithm as well 
as affect the algorithm convergence rate. Moreover, additional 
delay may occur because of the task re-migration process. 
Therefore, we propose a two-stage approach that first constructs 
the FSW based on the properties of the small world network and 
the functionality of each node. Constructing the FSW reduces the 
number of nodes that exchange the workloads information in the 
system, decreases the diameter of the network and reduces the 
communication overhead, and decreases the delay resulted from 
re-migrating tasks. We also proposes a load-balancing algorithm 
that considers the capacity of each node in order to execute the 
algorithm within the constructed FSW overlay network.  Our 
proposed approach strives to balance the loads of nodes, increase 
the system throughput, decrease the response time, reduce the 
communication overhead, deteriorate the demanded movements 
cost as much as possible, while taking the advantages of the nodes 
functionality and the nodes heterogeneity. In the absence of 
representative real workloads, we have investigated the 
performance of our proposed approach and compared it against 
competing algorithms, i.e. the original neighborhood approach, 
and the nearest neighbor approach. The simulation results are 
encouraging, indicating that our proposed algorithm performs 
very well. Our proposed approach dramatically outperforms the 
original neighborhood approach, and the nearest neighbor 
approach in terms of response time, throughput, communication 
overhead, and movements cost. Finally, we have proved that the 
proposed approach converges to the state of fairness where the 
effective-load in all nodes is the same since each node receives an 
amount of workload proportional to its processing capacity. 
Therefore, we conclude that this approach has the advantage of 
being fair, simple and no node is privileged.  
 
6 Conclusion 
 
An improved load-balancing approach applied to a cafeteria 
system in a university campus has been presented in this paper. 
Our proposed approach considers, first, the structure of the 
network that will execute the algorithm by constructing a 
Functionality Small World (FSW) overlay network to reduce the 
number of nodes that exchange its workloads information in the 
system, the diameter of the network and the communication 
overhead. It also considers the dynamic load-balancing algorithm 
parameters that will be executed within the constructed overlay 
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cafeteria network to achieve better performance. We have 
evaluated the performance of our proposed approach and 
compared it against competing algorithms, i.e. the original 
neighborhood approach, and the nearest neighbor approach. 
Results are encouraging, indicating that our proposed algorithm 
dramatically outperforms the original neighborhood approach, 
and the nearest neighbor approach in terms of response time, 
throughput, communication overhead, and movements cost.  
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