
An Improved dynamic Load Balancing Algorithm applied to a
Cafeteria System in a University Campus

Eman Daraghmi
Department of applied Computing

Palestine Technical University
Palestine

e.daraghmi@ptuk.edu.ps

 Amna Eleyan
Department of Computer Science and

Information Systems
Manchester Metropolitan University

Manchester-UK
a.eleyan@mmu.ac.uk

ABSTRACT
Load-balancing algorithms play a key role in improving the
performance of practical distributed systems that consist of
heterogeneous nodes. The performance of any load-balancing
algorithms and its convergence-rate is affected by the structural
factors of the network that executes the algorithm. The
performance deteriorated as the number of system nodes, the
network-diameter, the communication-overhead increased.
Moreover, additional technical-factors of the algorithm itself
significantly affect the performance of rebalancing the load
among nodes. Therefore, this paper proposes an approach that
improves the performance of load-balancing algorithms by
considering the load-balancing technical-factors and the structure
of the network executes the algorithm. We applied the proposed
method to a cafeteria system in a university campus and
compared our approach with two significant methods presented
in the literature. Results indicate that our approach considerably
outperformed the original neighborhood approach and the
nearest neighbor approach in terms of response time, throughput,
communication overhead, and movements cost.

CCS CONCEPTS
• Computer systems organization → Embedded systems;
Redundancy; Robotics • Networks → Network reliability

KEYWORDS
Small world, load balance, distributed systems, queue
management systems

1 INTRODUCTION
Recently, dynamic load-balancing algorithms have become
increasingly popular and powerful techniques in modern
distributed computing systems [7]. They increase the
performance of large-scale computing systems and applications
since they are designed to redistribute the workloads over the
components of the distributed system in a way that ensures
expanding resource utilization, maximizing throughput,
minimizing response time, and avoiding the overload situation
[2]. To achieve the goal of maximum performance, it is
prerequisite to smoothly spread the load among the nodes to

avoid, if possible, the situation where one node is heavily loaded
with excess of workloads while another nodes are lightly loaded
or idle [8,19].
 Dynamic load-balancing algorithms are suitable to be applied
in practical applications, such as the queue managements systems
since the workloads are generally not completely known, and
each node has different capacity and runs at different speed. The
diffusion approach [13,20] is one of the dynamic load balancing
techniques that have received much attention by researchers in
the past decades to solve the load-balancing problem. In standard
diffusion approach, a system which has different nodes exchanges
workloads via the communication links between these nodes. The
workloads are distributed among the nodes, and the load
balancing process works in sequential rounds. In every round,
each node is allowed to balance its load with all its neighbors by
exchanging the workloads to balance the total system load
globally, meaning to minimize the load difference between the
nodes with minimum and maximum load. The nearest-neighbor
approach [24] is another dynamic technique that allows the nodes
to communicate and migrate the excess workloads with their
immediate neighbors only. Each node balances the workload
among its neighbors in the hope that after a number of iterations
the entire system will approach the balanced state. However,
dynamic load-balancing algorithms still present fundamental
challenges when being executed at large-scale heterogeneous
distributed systems.
 Previous research [14–16] concluded that three structural
factors may affect the performance of any load-balance algorithm:
increasing the number of nodes within the system, increasing the
network diameter, and increasing the communication overheads.
In addition, previous studies concluded that [27] technical load-
balancing factors, such as the algorithm policies should be
considered when designing a load-balancing algorithm. Thus, this
research proposes an improved dynamic load-balancing algorithm
that decreases the effect of the structural factors by constructing
a small world overlay network. Moreover, our proposed algorithm
considers the technical load-balancing factors, such as the
initialization rule, the information exchange rule, the load-
measurement rule and the load-migration rule. To prove the
efficiency of the proposed approach, we applied the algorithm to
a cafeteria system in a university campus as a case study.
 In summary, to apply our proposed approach to any queue
management system, first, an overlay network based on the small
world theory should be construct to decrease the effect of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://thesaurus.com/browse/prerequisite

2

structural factors, and then the load balancing algorithm will be
applied within the constructed network. We have evaluated the
performance of our proposed approach and compared it against
competing algorithms. Results are encouraging, indicating that
our proposed algorithm dramatically outperforms them in terms
of response time, throughput, communication overhead, and
movements cost.

2 RELATED WORK
Previous studies have proposed numerous load-balancing
algorithms targeting at static, small-scale, homogeneous and/or
heterogeneous environments [1,13,18,21,22,26]. The diffusion
approach [13,22] is a dynamic load-balancing technique where
each node simultaneously sends the excessive workloads to its
under loaded neighbors and receives workloads from its
neighbors with higher workload [6], [9]. In 1990, Boillat et al. [6]
presented a new approach to solve the load balancing problem for
parallel programs. In 1989, Cybenko [9] studied the diffusion
schemes for dynamic load balancing on a message passing
multiprocessor networks. Robert Elsasser et al [10] generalized
the standard diffusion schemes for homogenous networks to deal
with the heterogeneous network. In [5], the first order diffusion
load balancing, relaxed diffusion (RFOS) and generalized adaptive
exchange (GAE) algorithms for totally dynamic networks were
investigated. In [1], the authors proposed a modified version of
diffusion algorithm for load balancing on dynamic networks. The
authors in [3] considered a neighborhood load balancing
algorithm in the context of selfish clients. They assumed that a
network of n processors is given, with m tasks assigned to the
processors. The processors may have different speeds and the
tasks may have different weights. Every task is controlled by a
selfish user. The objective of the user is to allocate his/her task to
a processor with minimum load, where the load of a processor is
defined as the weight of its tasks divided by its speed.
Neighborhood load balancing algorithms [4] are diffusion
algorithm that have the advantage that they are very simple and
that the vertices do not need any global information to base their
balancing decisions on.

3 SYSTEM OVERVIEW
As mentioned before, to apply our proposed approach to any
queue management system, first, an overlay network based on the
small world theory should be construct to decrease the effect of
the structural factors, and then the load balancing algorithm will
be applied within the constructed network. This section details
how to construct the Functional Small World (FSW) overlay
network within the cafeteria system. The notations used in this
paper is summarized in Table 1.

Table 1: The symbols used in the paper

Symbo
l

Description

FSW Functional Small World

FS The Functionality Set
G The system that executes the load-balancing

algorithm
N The nodes in the system
E The connection-links among nodes

AF All Functions set
(n)iWL The set of assigned workloads for node in

ic The capacity of node in

ild The load of node in
()iAdj n The set of neighbor nodes for node in

Info The set stored the information of neighbor nodes
for node in

mig The array that store the amount of migrated
workloads

il The effective-load of node in

avgl The average effective-load

lowerN The set of assistant neighbors
LD The load difference

i The excess workloads that node in must migrate

i The amount of workloads that node in can accept

3.1 Overview

In our research, FSW has two important goals: 1) an overlay
network that provides connectivity among the cafeteria nodes,
and 2) a distributed solution that supports efficient dynamic load-
balancing among cafeterias. In FSW, the nodes are organized in
accordance with the Functionality Set (FS) defined by each node
in the system. In a cafeteria system, the functionality set refers to
the set of meals offered by each cafeteria node. Cafeteria nodes
with similar functionality sets form one cluster. We based on the
concept proposed by Tversky [25] to define the relation of “similar
functionality” employed in our research.

 Definition 1 (similar functionality). Generally, similar
functionality is defined as the difference between the amount of
functions in-common among nodes and the amount of functions

unique to nodes. Formally, given any nodes ,
i j
n n N with a

functionality set of each node iFS , jFS , the relation of similar

functionality is defined by:
(,n) |FS FS | (|FS FS |) (|FS FS |)

i j i j j ii j n n n n n ns n      .

Therefore, nodes with (,) 0i js n n  are not similar, while nodes

with (,) 0i js n n  are similar.

 It is clear that functions in common increase similarity,
whereas functions that are unique to one node decrease similarity.
 In practice, the university cafeteria system is considered as a
distributed system that can be modeled as an undirected graph

(N,E)G  whereN represents the set of heterogeneous cafeteria

nodes in the system and E describes the connection-links among
them. Each cafeteria node i N serve a set of meals; thus, each
node has a set of functions that define the Functionality Set (FS).
Two main properties distinguish the small world network: (1) low
average hop count between any two random chosen nodes, and
(2) high clustering coefficient; therefore, our approach, in order to
construct the FSW, categorizes the cafeteria nodes in the system
into two types: 1) an in-domain node, and 2) a master node. The
in-domain node represents a cafeteria node in which located in
one cafeteria cluster and only has connections via short-links with
all in-domain nodes placed in the same cluster and the master

 3

node of that cluster. The master node represents a node located in
one cafeteria cluster and has a connection via short-links with all
in-domain nodes placed in the same cluster and at the same time
has connection via long-links with some master nodes located in
other clusters. Fig. 1 shows an example of the FSW, where nodes

1
n ,

4
n and

6
n are in-domain nodes, while nodes

2
n ,

3
n and

5
n are

master nodes. The long-links (i.e. blue lines in Fig. 1) creates
connections among master nodes and is responsible for achieving
the high clustering coefficient in the network (property 2 in small
world networks). Short-links (i.e. black lines) creates connection
among in-domain nodes, and among master nodes and in-domain
nodes. Short-links and the long-links aim at achieving the
properties (1) and (2).

Figure 1: An Example of FSW overlay network, where white
nodes present the in-domain cafeteria node, and the blue
nodes represent the master nodes

 In our design, we also define the cluster-size M to be the
maximum number of nodes that are allowed to form one cafeteria
cluster. Pre-defining the cluster size is important to keep small
number of nodes in one cluster and to maintain good clustering
effect. In this research, we adopt the guideline proposed by [17]
to define M. Hui et al. suggested that the cluster size ranges from
1 to 64 maintains good clustering effect. Practically, designing a
FSW overlay network plays an important role in decreasing the
number of nodes that will exchange the workloads information,
minimizing the network diameter, deteriorating the
communication overhead, and decreasing the time delay results
from the task re-migration process; therefore, this approach is
efficient to be applied not only for the entire system but also
clustering inside the cluster to increase the performance of the
load-balancing algorithms.
 In summary, the FSW of the cafeteria system can be formed as
follows: Each cafeteria node maintains long-links to ensure the
connectivity among master nodes (i.e. the connectivity among the
clusters to provide shortcuts to allow a node reach other nodes
that execute similar functionality and located in other clusters
quickly) and/or short-links to ensure the connectivity among the
in-domain nodes and the connectivity among the in-domain
nodes and the master nodes so that a balancing message issued

from any node can reach any other node in the network. Via
short-links and long-links, navigation and broadcasting in the
network can be performed efficiently. In the following sections,
we details the design of FSW.

3.2 Constructing Functional Small World (FSW)
Overlay Network
Constructing a FSW overlay network for the cafeteria system
depicted above involves three major tasks: 1) Functional-
Clustering, 2) Cluster-Formation, and 3) Overlay Network
Construction.

 3.2.1 Functional-Clustering (FC). In general, the Functional-
Clustering (FC) task aims at 1) defining the clusters (i.e. the
number and the name of clusters) that should be created within
the cafeteria overlay network, and 2) adding the nodes initially to
the cluster(s) based on the in-common functions between the node
and the defining cluster. In other words, if there is at least one
function in-common between the node and the cluster, then the
node will be added initially to that cluster. Note that: initially, in
this step a node can be added to more than one cluster, but finally
in the next tasks a node will only be added to one cluster.
 This task is executed before or when a node joins the network.
Each node

i
n in the system defines its Functionality Set (FS), which

indicates the functions that a node can perform and execute
within the system, such as

1 2
{ , ,..., }

i k
FS f f f , where

i
FS is the

functionality set of node
i
n ,

1
f is a function that can be executed

by node
i
n , and k is the number of functions that node

i
n can

execute. In our manuscript, a cluster, namely, , ,..,i j kCluster has a

functionality set
, ,..,

{i, j,...,k}
i j kClusterFS  . Likewise, ACluster has

FS= {A}. Following are the steps performed by the functional-
clustering task:

1. Let AF (All Functions) be the set of all functions executed in

the system
1 1 2

.... { , ,..., }
n s

AF FS FS f f f  , where s is

the total number of functions executed within the system,
and

i
FS is the functionality set of node

i
n . In other words,

AF is the union of all FSs defined in the system.
2. For each function f AF , create a cluster, namely,

 f
cluster

3. Since each node
i
n has its functionality set

1
{ ,..., }

i k
FS f f ,

in this step initially node
i
n will be simultaneously added to

1 2
cluster ,cluster ,...,cluster

kf f f . In other nodes, if a node
i
n

executes a function f
a

, then there is an in-common function

between a node
i
n and

 a
cluster . Thus, the node

i
n will be

added to cluster
 a

cluster .

 Note that, the number of clusters that a node can be added to
depends on the number of functions that a node executes within
the system; a node that executes more than one function will be
added initially to more than one cluster at the end of this task.

4

 3.2.2 Cluster-Formation. The Cluster-Formation (CF) task is a
key task to ensure that a node will be added to only one cluster
regarding the functional similarity. According to definition 1,
nodes are considered as similar nodes if the amount of in-common
functions among nodes is more than the amount of functions
unique to nodes. The pseudo code of the cluster formation task is
shown in Table 2.

Table 2. Pseudo code of the cluster formation task

1 1 2 2

2 1 21

[] { ,| |

Cluster- Formati

, c ,| |,..., ,| |}

where | |,| |,...

on task

 A

 is the size of cluster , cluster ,...,c, lus| |

f f

f

cluster cluster luster cluster cluster cluster

cluster cluster clus

Initializatio

r

n

Let

te

   

ter

1. [] . ;

/ /

2.For each cluster "cluster " in A[]

3. For ea

(

ch node n added initially to cluster {

 3.1. if |FS | 1, a

)

f

a

i a

i

begin

int m A minArray

Finding the clusters that have the least cluster size

then



 dd n to cluster .

/ / this means the functional similrity between a node

// and the cluster is 0 since a node can execute one function and added to one cluster

 3.2. if |FS | 1,

// the node i

i a

i then





s initially added to more than one cluster

//thus, these steps ensure positive similarity between a node and a cluster

 3.2.1. if cluster [] and | []|==1 then add n to cluster .

/ / | []|==1
a i am m

m mea



 the number of clusters that has the smallest cluster size is 1

 3.2.2. elseif cluster [] and | []| 1 then

// here more than one cluster has the smallest cluster size

 3.2.2.1. if n a

a

i

ns

m m 

dded to (one cluster cluster [] and the other clusters not in [])

 add n to cluster

// this step ensures similarity and add node to cluster with smallest size

 3.2.2.2.

a

i a

m m then

 if n added to (more than one cluster []) then

 add a "wait " tag of n

// this mean a node has in-common functions with two clusters in the same size, since

// each cluster has diffe

i a

i

m

rent functionality, the similarity between a node and the cluster

//may be negative; thus, additional steps must be done to ensure positive similarity

 3.2.3. elseif cluster [] then

a m

1 3.2.3. chech the FS ={f ,..,f } of n if the is a cluster m has the name cluster

 then n cluster otherwise add a tag "wait" to n }

4.For each node n tagged as wait

 4.1.

id i fid

i a i

i

leave



1 2

FS FS FS1 2

FS FS FS1 2

find TFS= FS FS FS , z is the nodes z has a tag "wait"

 4.2. create new cluster,namely,

 4.3. add n to

End

z

z

i z

where

cluster

cluster

 This task aims at: 1) deciding the nodes that must finally be
added to the cluster, and 2) checking the cluster size; thus, if the
cluster size exceeds M, which is a preset defined maximum cluster
size, the cluster will be split into two clusters in order to maintain
good clustering effect. To determine the cluster size, we adopt the
guideline proposed by [17]. Hui et al. suggested that the maximum
cluster size is 64 in order to maintain good clustering effect. If the
cluster size exceeds M, the steps of the functional-clustering task,
and the cluster-formation task will be applied to split that cluster
(i.e. Note, new clusters with new names, such as 1Acluster instead
if Acluster , will be created upon re-performing the tasks to split
cluster(s)).

 3.2.3 Overlay Network Construction. This task constructs the
FSW overlay network for the cafeteria system (Fig.2 shows a view
of dining area in the university campus) across the created
clusters (i.e. after performing the previous two tasks) to form a
functional small world network by:

 1. Defining the in-domain nodes and the master nodes.
The size of the FS of each node located in one cluster will be
checked (i.e. the number of functions that a node can execute);
therefore, a node that has the largest FS size in

i
cluster will be

defined as a master node for
i

cluster , and the other nodes located

in
i

cluster will be defined as the in-domain nodes for that cluster.

Note, when two or more nodes have the largest FS size, then only
one node from these nodes will be selected randomly as a master
node for a cluster since that each cluster has only one master node.

 2. Adding long-links and short-links among the nodes.
Long-links connect a master node located in one cluster with
other master nodes located in other clusters based on the
functional similarity between theses master nodes (i.e. see
definition 1). Short-links connect the in-domain nodes located in
one cluster with the other in-domain nodes located in the same
cluster, and it also connects the in-domain nodes located in a
cluster with the master node of the same cluster. In-domain nodes,
master nodes, long-links and short-links play a key role in
reducing the effect of the structural factors and transforming the
network into a small world.

Figure 2: A view of dining areas in the university campus

4 Dynamic Load Balancing In Action
This section explains the proposed load-balancing algorithm that
will be executed in the constructed FSW overlay network.

4.1 Problem Formulation

Generally, the entire cafeteria network is modeled as an
undirected graph (,)G N E where N represents the set of

heterogeneous cafeteria nodes and E describes the connections
among them. Each cafeteria in the network (i.e. whether an in-
domain node or a master node) will be assigned some orders or
workloads wl during the execution of the system, where each
order assigned to a node consumes effort and time; thus, each
workload has different weight w . The weight of the total

 5

workloads assigned to a node is referred to as the load of a node
0

i
ld  . Each assigned workload also is associated with a function

that can process the assigned workload. Each node also has a
capacity 0

i
c  which specifies its processing capacities (i.e. the

largest amount of workload that can be assigned to a node
i
n),

where ,
i i
c ld Z . Since the capacity of each node in

heterogeneous systems is not equal, our proposed algorithm
considers the processing capacity of each node when deciding
whether a node is overloaded or not.

 Definition 2 (the effective-load). Given a cafeteria node

i
n N that has a capacity and assigned some orders, the

effective-load
i
l of that node

i
n is defined as the total weight of

the assigned orders divided by the cafeteria capacity. Formally,
the effective-load of node

i
n is the load of

i
n divided by the

capacity of
i
n .

(n)

()
j i

j
wl WL

i
i

i i

w wl
ld

l
c c



 


 (1)

 where
1 1

() { , , , ,..., , , , }
i id id z z id id

WL n wl w ctr F wl w ctr F     is

the set of orders assigned to node
i
n .

4.2 Our Proposed Algorithm

Our proposed algorithm is shown in Table 3: NeighborhoodLB.
Each cafeteria node

i
n in the system G executes the same

algorithm in parallel. As mentioned before, based on the role of
each node

i
n within the system,

i
n defines its functionality set

(FS). Thus, the structure of the system is simplified by
constructing the FSW to decrease the graph diameter, the number
of nodes that exchange the load information and communication
overhead. The steps of constructing FSW overlay network is
illustrated in Section 3. The nodes will be spread into clusters, and
each node will have in addition to the node id

id
n , a cluster id

id
ctr

to show the cluster in which a node is located and idFS to check

if the received mi task can be processed by a node
id
n . Following

paragraphs demonstrate the proposed load-balancing algorithm
that will be executed within the constructed overlay network in
details.

 4.2.1 The Initialization Stage. Let (n)

i
WL be the set of assigned

orders,
1 1 1

() { , , , ,..., , , , }
i id z z id z

WL n wl w ctr F wl w ctr F     .

Each assigned workload or order wl consumes time and efforts
until being completed; thus, each assigned workload has weight
w . Each workload wl assigned initially to idctr and associated

with a function F (i.e. F is the function that can process the
workload). Each node

i
n also has, after constructing FSW, a pre-

defined set of neighbor-nodes (n)iAdj to store the nodes that have

connection-links either long-links or short-links with node
i
n .

Each node
i
n initializes its state (initialization stage) in steps 1

through step 3.

 Step 1 (Line 1 in NeighborhoodLB Algorithm): Each node

i
n defines a set { , , , , }

id id id id id
Info ctr n ld c FS   to store the

information of the nodes in the neighbor-nodes set, where
id

ctr :

is the id of the cluster in which a node the has
id
n is located,

id
n :

the id of a node,
()

()
j id

id j
wl WL n

ld w wl


  the load of node
id
n (i.e. the

total weight of all workloads assigned to the node
id
n ,),

id
c : is the

processing capacity of
id
n , and

id
FS is the functional set of

id
n .

 Step 2 (Line 2 in NeighborhoodLB Algorithm): Each node

i
n also defines an array (n)

i
mig to store the amount of the

migrated workload that node
i
n will transfer to the under loaded

nodes of the set neighbor-nodes. Initially, the workloads that will
be transferred to other nodes is 0 for all nodes in the set of
neighbor-nodes.

 Step 3 (Line 3 in NeighborhoodLB Algorithm): Each node

i
n computes its initial effective-load

i
l via the equation defined in

definition 2 (i.e. the total weight of the workloads assigned to node

i
n divided by the capacity of node

i
n). Each node in the system

executes the same proposed algorithm in parallel. In the
initialization stage, each node: (1) defines Info set to store the

information about its neighbor-nodes, (2) defines mig array to

store the amount of excess workload to be transferred, and (3)
computes its effective-load.

 4.2.2 The information Broadcasting Stage. Step 4 (Line 4 in
NeighborhoodLB Algorithm): Each node

i
n broadcasts its

initial state (i.e. initial information after executing the
initialization stage) to only its neighbor-nodes (the nodes stored in
the set adj). Since a master node has connections with some master

nodes located in other clusters that have similar functionality via
long-links, and it has also connections with the in-domain nodes
located in the same cluster via short-links, the capacity of a master
node that will be sent to other nodes is divided among the clusters

| | 1
ic
long links 

 in the broadcasting stage. In fact, each node

maintains a FIFO message queue which holds the incoming
messages. Each message has the format

, , , ,FS ,"T",[g,"F"]
id f f f f

ctr n ld c  , where
id

ctr is the cluster id

where the node that sends the message is located in, f
n is the id of

the sender node,
f

ld the loads of the sender node, f
c is the

capacity of the sender node, f
FS is the functionality set of the

sender node, T is the type of the message, g is the migration

information (i.e. information about the migrated task and the
function F that can process the migrated task) . There are two
types of messages:

6

Table 3: NeighborhoodLB

 lg 1.NeighborhoodLB

: The node where the algorithm is executed.

: The id of a cluster in which is located

: The processing capacity of node

() { , }The

id

id i

i i

i id id

A orithm

n

ctr n

c n

Adj n ctr n   set of neighbor-nodes

WL()={< , , ,F >} : The set of assigned workloads for

FS : the functionality set of n

Begin

1.Let { , , , ,FS }

2.Let mig()=0 for all

i id id id i

n i

i i

j

n wl w ctr n

i

Info ctr n ld cid id id id
n n

  

(n)

()

()

3.Compute the effective-load:

4.For each node () do

 a.if is master node then send message

 < , , , ,FS ,"B",[0,""]>
|long_links|+1

 b.else s

j i

j
wl WL

i
i

i i

j i

i

i
id i i i

Adj n

w wl

ld j i
l

c c

n Adj n

n

c
ctr n ld







 



end message< , , , ,FS ,"B",[0,""]>

5.Read messages from the messages queue

 a. if T="B" then { , , , ,FS }

 b. if T="G" then

 1) { , , , ,FS ,

id i i i i

id f f f f

id i i i i

ctr n ld c

Info Info ctr n ld c

Info Info ctr n ld g c

  

     , , , ,FS }

 2)

 3)For each node () do

 a. if is master node then send message

 < , , , ,FS ,"B",[0,""]
|long_links|+1

 b.else sen

id f f f j

i
i

i

j i

j

i
id i i i

ctr n ld g c

ld g
l

c

n Adj n

n

c
ctr n ld g

 






 

d message< , , g, ,FS ,"B",[0,""]>

6.Compute the average effective-load l

7. For each node () do //Define the Assistant Neighbors

 a. if

id i i i i

i j
j Info

avg
i j
j Info

j i

j
avg

j

ctr n ld c

ld ld

c c

n Adj n

ld
l

c







 


 



 and then

8.Let load-difference (-)

9.If 0 then exit; else (WL(),N ,)

EndBegin

j
i lower lower j

j

i i avg

i lower i

ld
l N N n

c

LD l l

LD LB n LD

 





1. Workload Migration message (“G”):

i
n sends a “G”-message to

j
n to tell it that

i
n wants to migrate g units of workload to j

n .

2. Broadcast message (“B”): broadcast the status (i.e. cluster id,
node id, load and capacity to all neighbor-nodes).

 Step 5 (Line 5 in NeighborhoodLB Algorithm): The main
part of the algorithm starts when a node takes the first message
from the queue and processes the message according to its type.
If the message type is “B”, then the node only updates its
information stored in the Info set. If the message type is “G”, then

it updates the information stored in the Info set, computes its

effective load, and broadcasts its new status to its neighbor-nodes.
Initially, the first message received by each node is “B” type
messages.

 4.2.3 Computing the average effective-load. Step 6 (Line 6 in
NeighborhoodLB Algorithm): After updating the information
stored in the Info set (i.e. after the broadcasting stage), each node

computes the average effective-load
avg
l of a node and its

neighbor-nodes to facilitate 1) making a decision (i.e. whether a
node overloaded or not) later by a node, and 2) defining the set
of assistant neighbors in the next stage. The average effective-
load is computed by the following equation:

inf

inf

i j
j o

avg

i j
j o

ld ld

l
c c













 (2)

 Note that, in the above formula the capacity of all nodes is
considered since in heterogeneous systems the capacity is varied
from one node to another.

 4.2.4 Finding the set of assistant-neighbors Stage. Step 7 (Line 7
in NeighborhoodLB Algorithm): According to the average
effective-load computed in step 6 by each node, each node defines
in this stage its assistant-neighbors

lower
N . The set of assistant-

neighbors
lower
N of node

i
n are the set of nodes that have

effective-load lower than the average effective-load computed by
node

i
n .

 4.2.5 Workload transfer strategy. Step 8 (Line 8 in
NeighborhoodLB Algorithm): The decision of calling a
procedure LB to migrate the excess workloads or not depends on

the load difference between the current effective-load of node i
n

and the average effective-load computed by i
n . Therefore, the

excess workload will be migrated if the load difference is positive.

 4.2.6 Load-balancing mechanism (Procedure LB). The pseudo-
code of the procedure LB is given in Table 4. In the procedure LB,
the load difference LDi , the set of assistant-neighborsNlower , and

the set of the assigned workloads (n)WL i are formed the

procedure input parameters. The procedure will be called if the
LDi is positive, and it works until the load difference of the

heavily loaded caller node
i
n becomes less than zero

0LD l li i avg   . In other words, the procedure works until the

heavily loaded node becomes under-loaded, which means the
effective-load of a node is less than the average effective-load
computed by a node. The procedure first computes the excess
workload i of the heavily-loaded node ni that needs to be

transferred.

 7

Table 4: Procedure LB

Procedure LB(WL(n),LD ,N)i i lower
Begin

While(LD 0)

1.Compute the excess workload of n :

2. sort the submitted workloads in ascending order

3. sort the assistant neighbours in descending order

4. L

i
LD ci i i i



 

et j=0

5. For a node n in N

 a. compute the excess workload n can receive =(l -l) c

 b. If w(wl) and F is in FS then

 1) k= k+1

 2) send message to node n , , ,FS ,

j lower

j avg j j

k nj

n l cj i i i i









 "G",[,]

 else

 1) go to step 5

End For

End While

End Begin

F 

 Then, it sorts: 1) the set of assistant-neighbors

lower
N in

descending order based on their effective-loads, and 2) the set of
submitted workloads (n)WL i in ascending order in accordance

with the weight of each submitted workload. The procedure also
checks each node in the set Nlower and computes how much a

node can receive (i.e. the workload that a node can receive is
equal to the difference between the effective-load of a node and
the average effective-load). The procedure migrates only the
workload that has weight less than or equal to . This step plays
a key role in redistributing the excess workloads to the assistant-
neighbors in a way that ensures that the node who receives the
workload maintains the under-loaded status. The LB procedure is
terminated when the load difference of the caller heavily-loaded
node becomes negative. In other words, the procedure is
terminated when the node becomes under-loaded.

5 Simulations

5.1 Experimental Setting

In order to perform our test, we build a system based on the
server-client architecture for a cafeteria system in a university
campus (Fig. 3). The client side is a mobile application that allows
students to order meals from any cafeteria inside the campus (Fig.
4), while the server side represents the cafeteria nodes that run
the load-balance algorithm in parallel. When a student order a
meal, initially the order will be assigned to a cafeteria node that
has that meal in its functionality set as well as has the lowest
assigned workloads. When the order assigned to a cafeteria node,
the name of the cafeteria will appeared to the student on the
mobile application to pick his/her order without the need to wait
in a queue.
 To simulate the students orders, we have implemented a
discrete-event simulator using the SimJava [12]. The simaulation

is used to compare the performance of our proposed approach
with two of the most popular dynamic diffusion approaches, the
nearest neighbor algorithm [24] and the original neighborhood
algorithm [22]. The three approaches were run on a set of default
values: number of assigned workloads, number of nodes,
maximum cluster size, and the average number of the functions
executed per node. The simulation parameters, and their values
are given in Table 5.

Figure 3: The system architecture

 For fairness of comparison, we have tested the three
approaches on random graphs (random scenario) generated via
random generator [23]. In the random scenario, the generator will
randomly distribute nodes with a functional set associated with
each node in the graph. As shown in table 5, maximum number of
functions that each node can execute is 20. Since, in this research,
we propose a two-stage approach (creating a functional small
world overall network and then run the NeighborhoodLB on the
created FSW) to improve the performance of load-balance
algorithm, the random graph, generated previously, will be
converted to FSW before executing our proposed
NeighborhoodLB algorithm. On the other hand, the other two
algorithms, the nearest neighbor algorithm and the original
neighborhood algorithm were executed directly on the generated
random graph since they do not employ the first stage of creating
FSW.

Figure 4: The client side

Table 5. Parameters used in the simulations

8

 Description Values
1. The assigned Workloads 1,000-10,000
2. The number of nodes in the system 100-1,000
3. The cluster size 1-64
4. The number of functions in the FS per

node
1-20

 The comparison tests were based on two parameters: the
assigned-workloads and the number of nodes, and the
measurement of the performance of the algorithm was based on
four metrics: the throughput, the response time or the completion
time, the communication overhead, and the movement cost. The
response time measures the total time that the system takes to
serve a submitted request (task). In this experiment, to simulate
real world distributes systems, we randomly submitted tasks to
nodes. Initially, the request state will be “submitted to node” and
will be changed to ‘’complete” upon serving that request. To
measure the response time, we count the time needs to change the
node response time from “submitted to node” to “complete”. The
throughput is the rate at which a node in the system sends or
receives data (i.e. throughput = 1/ response time). In other words,
the throughput is defined as the number of nodes that change its
status to “complete” in a time unit. As we can see from the
proposed algorithm, the load balancing algorithm needs to
migrate request from one node to another one in order to achieve
a balanced state. We use a simple linear cost model [11], where
moving one request from any node to any other node costs one
unit. Such a model reasonably captures both the network
communication cost of transferring data, as well as the cost of
modifying local data structure at the node.
 Only one parameter was changed each time so that any
changes in the performance would be based solely on this
parameter. In fact, results achieved from these tests were used to
study: (1) the behavior of the different load-balancing algorithms
under the same condition; (2) the behavior of the algorithms for
random systems with different number of nodes; (3) the behavior
of the algorithms for different workloads distribution.
 To study the effects of changing the assigned workloads on the
average response time, the throughput, the communication
overhead, and the movements cost, the assigned workloads were
varied from 1000-10,000 workloads unit, and the workloads
distribution among the nodes were carried in the following
manner.
 The initial workload distributions varying 25% from the

average effective-load to represent a situation where all
nodes have similar workloads at the beginning and those
workloads are close to the average effective-load; in other
words, the initial situation is quite balanced.

 The initial workload distributions varying 50% from the
average effective-load to constitute the intermediate
situations.

 The initial workload distributions varying 75% from the
average effective-load to constitute the advanced
intermediate situations.

 The initial workload distributions varying 100% from the
average effective-load to form the situation where the
difference of workloads between nodes at the beginning is
considerable.

 To study the effects of changing the number of nodes on the
average response time, the throughput, the communication
overhead, and the movements cost, the number of nodes were
varied from 100 – 1000 nodes and the distribution of the
overloaded nodes were carried in the following manner.

 25% of nodes are idle, 75% of nodes are overloaded.
 50% of nodes are idle, 50% of nodes are overloaded.
 75% of nodes are idle, 25% of nodes are overloaded. 5.2

5.2 Comparative Study

5.2.1 Average Response Time. The total time taken for the three
algorithms, our proposed algorithm, the original neighborhood
algorithm, and the nearest neighbor algorithm, to complete the
assigned workloads increased as the assigned workloads was
increased as shown in Fig. 5.
 This situation is expected as the more workloads to be
assigned, the longer it takes to complete all the assigned
workloads. However, it was observed that our proposed method
(i.e. the green line) performed better than both the nearest
neighbor scheme and the original neighborhood algorithm in all
cases. We can see that when comparing the results of our
proposed method and the original neighborhood algorithm (i.e.
the red line) and the nearest neighbor algorithm (i.e. the blue line),
it is observed that the gap between these three curves was
widening as the assigned workloads was increased. This shows
that the method actually reduced the response time or the total
completion time by a considerable amount (greater speedup) in
comparison to the original neighborhood algorithm and the
nearest neighbor algorithm as amount of workloads increased.
 Fig. 6 shows that the response time of the proposed method
(i.e. green line) slightly increased when the number of nodes was
increased. In contrast, the response time of the original
neighborhood method (i.e. red line) and the nearest neighbor
method (i.e. blue line) sharply increased when the number of
nodes was increased.
 The reasons behind achieving better results (i.e. achieving
better response time when increasing the assigned workloads or
when increasing the number of nodes): 1) our proposed approach
constructs a FSW overlay network and then executes the
proposed neighborhood load-balancing within the constructed
network. Specifically, constructing the overlay network reduces
the number of nodes that exchange the workload information,
decreases the network diameter, and the communication
overhead. As a result, all the stages of the proposed algorithm,
such as updating the information of the neighbor nodes,
calculating the average effective-load, choosing the assistant
neighbors, and migrating tasks to the assistant neighbor that can
process the task, will be performed in less time. Our approach also
plays a significant role in reducing the time delay results from the
task re-migration process as nodes with similar functionality can
communicate with each other. As illustrated before, re-migrating
tasks occur because of out of the node service scope situation; 2)
our proposed approach utilizes the on-state information exchange
strategy to broadcast its information to only its neighbor-nodes,
which has the advantages of achieving more accurate calculation
to the effective-load and the average effective-load without
increasing the communication overhead (i.e. each node collects

 9

the information from less nodes, only neighbor nodes, as
compared with the original neighborhood approach and the
nearest neighbor approach); 3) our approach utilizes the concepts
of assistant-neighbors and thus heavily loaded nodes will send
only (i.e. without accepting any workloads from other nodes since
the node is currently overloaded) the excess workloads to the
lightly loaded nodes “assistant-neighbors”, whereas the lightly
loaded nodes will only receive the migrated workloads without
sending any workloads.

Figure 5: The response time of original neighborhood
approach, neatest neighbor approach, and our approach for
various assigned workloads

Figure 6: The response time of original neighborhood
approach, neatest neighbor approach, and our approach for
various number of nodes

In contrast, in the original neighborhood approach and the nearest
neighbor approach, all nodes will send and receive workloads at
the same time which in turn increase the communication
overhead and thus increasing the response time; 4) it is intuitive
that a system with longer diameter will take longer time to
converge as the number of iterations to propagate the workloads
to lightly loaded nodes is proportional to the network diameter;
thus, reducing the network diameter via constructing FSW plays

a key role in reducing the response time of our proposed
approach. In contrast, in the original neighborhood approach and
the nearest neighbor approach, each node has to collect the
workloads information from larger number of nodes which in
turn leads to increase response time.

5.2.2 Throughput. As shown in Fig. 7, our method outperformed

the original neighborhood algorithm and the nearest neighbor

method in terms of the system throughput in all assigned

workloads distribution cases.

Figure 7: The throughput of original neighborhood
approach, neatest neighbor approach, and our approach for
various assigned workloads

 We can notice that the throughput of the system that executes
our proposed approach steadily increased even the assigned
workloads increased, whereas the throughput of the system that
execute the original neighborhood approach or the nearest
neighbor approach drops quickly when the assigned workloads
increased.
 Fig. 8 shows that the throughput achieved by the original
neighborhood algorithm as well as the nearest neighbor approach
decreased sharply as the number of nodes in the system increased,
while the throughput achieved by our proposed method remains
stable even when increasing the number of nodes.
 This is because our proposed approach reduces the task
completion time which in turn increases the number of tasks
completed in a time unit. The reasons behind this are: 1)
constructing the FSW that allows nodes with similar functionality
to communicate with each other, reduces the possibility of re-
migrating tasks (re-migrating tasks consumes time); 2) checking
the function that can process the task with the FS before migrating
the task, eliminate the possibility of re-migrating tasks. Note that,
the first point reduces the time of performing the second point;
thus, better results are achieved; 3) reducing the number of nodes
that exchange the workload information, decreasing the network
diameter, and decreasing the communication overhead reduces
the time of performing the proposed algorithm, such as updating
the information of the neighbor nodes, calculating the average
effective-load, choosing the assistant neighbors, and migrating
tasks to the assistant neighbor. As a results, the number of tasks
completed in a time unit will be increased; 3) utilizing the concepts
of assistant-neighbors allowing only heavily loaded nodes to send
only (i.e. without accepting any workloads from other nodes since
the node is currently overloaded) the excess workloads to the
lightly loaded nodes “assistant-neighbors”. Also, the lightly loaded

10

nodes will only receive the migrated workloads without sending
any workloads. In contrast, in the original neighborhood
approach and the nearest neighbor approach, all nodes will send
and receive workloads at the same time which in turn increase the
communication overhead and thus decreasing the task completion
time. Moreover, the importance of the average effective-load also
appears when deciding the amount of workloads to be migrated;
if the migrated workloads to one node is too small, then the
workload distribution will take longer (i.e. which in turn
decreasing the system throughput). In contrast, if the migrated
workloads to one node is too large, then the overloaded node may
transfer too much workloads to its neighbor-nodes and thus this
overloaded node will not have sufficient workload to transfer to
the remaining lightly loaded nodes. Therefore, by using the
average effective-load, each node obtains an amount of workload
proportional to its capacity and thus no node is privileged which
results in increasing the system throughput (i.e. the number of
workloads completed in unit time).

Figure 8: The throughput of original neighborhood
approach, neatest neighbor approach, and our approach for
various number of nodes

5.2.3 Communication overhead. Fig. 9 shows that the average

number of messages sent per node increased when the

assigned workloads increased. This is because when the

assigned workloads increased, the number of messages sent

per a node to broadcast its new status increased. We can see

that our proposed approach produces less communication

overhead than both the original neighborhood approach and

the nearest neighbor approach even when increasing the

assigned workloads.

Figure 9: The average number of messages sent per node of
original neighborhood approach, nearest neighbor
approach, and our approach for various assigned
workloads

 Fig. 10 shows that the average number of messages sent per
node increased when the number of nodes increased. This is
because when the number of nodes increased, each node will send
more messages to broadcast its information to the other nodes.
We can see that our proposed approach produces less
communication overhead than the both the original neighborhood
approach and the nearest neighbor approach because: 1)
constructing a FSW decreases the number of nodes that exchange
the workloads information which in turn decreases the
communication overhead; 2) constructing a FSW also decreases
the network diameter which directly has the impact of decreasing
the communication overhead; 3) each node that executes the
proposed NeighborhoodLB algorithm sends/receives messages
to/from only its neighbor nodes which plays a key role in reducing
the communication overhead; 4) our approach utilizes the on-state
information exchange strategy which reduces the communication
overhead; 5) our approach (constructing the FSW, and the
proposed load-balancing algorithm) eliminates the possibility of
re-migrating tasks which in turn decreases the communication
overhead.

5.2.4 Movement cost. Fig. 11 shows the movement cost of original
neighborhood approach, the nearest neighbor approach, and our
proposed approach vs. the assigned workloads, where the
movements cost is defined as the total migrated workloads divided
by the total assigned workloads in the system. Clearly, the
movements cost of our proposed approach is only 0.32 times the
cost of the original neighborhood approach, while the movements
cost of our proposed approach is only 0.34 times the cost of the
nearest neighbor approach.

Figure 10: The average number of messages sent per node
of original neighborhood approach, nearest neighbor
approach, and our approach for various number of nodes

 11

Figure 11: The movements cost of original neighborhood
approach, nearest neighbor approach, and our approach
for various assigned workloads

 Fig. 12 shows the movement cost of original neighborhood
approach, the nearest neighbor approach, and our proposed
approach. We can see that the movements cost of our proposed
approach is only 0.33 times the cost of the original neighborhood
approach, while the movements cost of our proposed approach is
only 0.30 times the cost of the nearest neighbor approach. This is
because each node in our proposed algorithm calculates the
average effective-load to decide whether a node itself is
overloaded or not. Specifically, the importance of the average
effective-load appears when deciding the amount of workloads to
be migrated; if the migrated workloads to one node is too small,
then the number of workloads that will be migrated will be high
(i.e. which in turn increasing the movement costs). In contrast, if
the migrated workloads to one node is too large, then the
overloaded node may transfer too much workloads to one
neighbor node and thus increasing the movements cost.
Therefore, by using the average effective-load, each node obtains
an amount of workload proportional to its capacity and no node
is privileged which leads in decreasing the movements cost.
Moreover, our approach utilizes the concepts of assistant-
neighbors and thus heavily loaded nodes will send only (i.e.
without accepting any workloads from other nodes since the node
is currently overloaded) the excess workloads to the lightly loaded
nodes “assistant-neighbors”, whereas the lightly loaded nodes will
only receive the migrated workloads without sending any
workloads. In contrast, in the original neighborhood approach and
the nearest neighbor approach, all nodes will send and receive
workloads at the same time which in turn increase the number of
workloads that will be migrated and thus increasing the
movements cost. Finally, our approach (constructing the FSW,
and the proposed load-balancing algorithm) eliminates the
possibility of re-migrating tasks which in turn decreases the
movements cost.

Figure 12: The movements cost of original neighborhood
approach, nearest neighbor approach, and our approach for
various number of nodes

 A novel load-balancing approach to deal with load rebalancing
problem in large scale, dynamic and heterogeneous systems has
been presented in this paper. Previous research concluded that the
technical, and the structural load-balancing factors: (1) increasing
the number of nodes in the system (i.e. the number of the nodes
exchange the workload information); (2) increasing the network
diameter which is defined as the longest shortest path between
any two nodes of the network; (3) increasing the communication
overheads or the communication delays among the nodes
decrease the performance of any load-balancing algorithm as well
as affect the algorithm convergence rate. Moreover, additional
delay may occur because of the task re-migration process.
Therefore, we propose a two-stage approach that first constructs
the FSW based on the properties of the small world network and
the functionality of each node. Constructing the FSW reduces the
number of nodes that exchange the workloads information in the
system, decreases the diameter of the network and reduces the
communication overhead, and decreases the delay resulted from
re-migrating tasks. We also proposes a load-balancing algorithm
that considers the capacity of each node in order to execute the
algorithm within the constructed FSW overlay network. Our
proposed approach strives to balance the loads of nodes, increase
the system throughput, decrease the response time, reduce the
communication overhead, deteriorate the demanded movements
cost as much as possible, while taking the advantages of the nodes
functionality and the nodes heterogeneity. In the absence of
representative real workloads, we have investigated the
performance of our proposed approach and compared it against
competing algorithms, i.e. the original neighborhood approach,
and the nearest neighbor approach. The simulation results are
encouraging, indicating that our proposed algorithm performs
very well. Our proposed approach dramatically outperforms the
original neighborhood approach, and the nearest neighbor
approach in terms of response time, throughput, communication
overhead, and movements cost. Finally, we have proved that the
proposed approach converges to the state of fairness where the
effective-load in all nodes is the same since each node receives an
amount of workload proportional to its processing capacity.
Therefore, we conclude that this approach has the advantage of
being fair, simple and no node is privileged.

6 Conclusion

An improved load-balancing approach applied to a cafeteria
system in a university campus has been presented in this paper.
Our proposed approach considers, first, the structure of the
network that will execute the algorithm by constructing a
Functionality Small World (FSW) overlay network to reduce the
number of nodes that exchange its workloads information in the
system, the diameter of the network and the communication
overhead. It also considers the dynamic load-balancing algorithm
parameters that will be executed within the constructed overlay

12

cafeteria network to achieve better performance. We have
evaluated the performance of our proposed approach and
compared it against competing algorithms, i.e. the original
neighborhood approach, and the nearest neighbor approach.
Results are encouraging, indicating that our proposed algorithm
dramatically outperforms the original neighborhood approach,
and the nearest neighbor approach in terms of response time,
throughput, communication overhead, and movements cost.

REFERENCES
1. Aakanksha and Punam Bedi. 2007. Load Balancing on Dynamic

Network Using Mobile Process Groups. In 15th International
Conference on Advanced Computing and Communications, 553–558.

2. Abdelzahir Abdelmaboud, Dayang N.A. Jawawi, Imran Ghani,
Abubakar Elsafi, and Barbara Kitchenham. 2014. Quality of Service
Approaches in Cloud Computing: A Systematic Mapping Study.
Journal of Systems and Software 101: 159–179.

3. Clemens P J Adolphs, Petra Berenbrink, and V A Canada. 2012.
Distributed Selfish Load Balancing with Weights and Speeds
Categories and Subject Descriptors. In ACM symposium on principles
of distributed computing, 135–144.

4. Hoda Akbari, Petra Berenbrink, and Thomas Sauerwald. 2012. A
Simple Approach for Adapting Continuous Load Balancing
Processes to Discrete Settings. In PODC, 271–279.

5. Jacques M Bahi, Flavien Vernier, and Belfort Cedex. 2007.
Synchronous Distributed Load Balancing on Totally Dynamic
Networks. In IEEE International Parallel and Distributed Processing
Symposium, 1–8.

6. J E Boillat. 1990. Load balancing and Poisson equation in a graph.
Concurrency Practice and Experience 2, 4: 289–313.

7. Hsien-Tsung Chang, Yi-Min Chang, and Sheng-Yuan Hsiao. 2014.
Scalable network file systems with load balancing and fault
tolerance for web services. Journal of Systems and Software 93: 102–
109. Retrieved January 5, 2015 from
http://www.sciencedirect.com/science/article/pii/S01641212140006
85

8. Hoon Sung Chwa, Hyoungbu Back, Jinkyu Lee, Kieu-My Phan, and
Insik Shin. 2015. Capturing urgency and parallelism using quasi-
deadlines for real-time multiprocessor scheduling. Journal of
Systems and Software 101: 15–29.

9. George Cybenko. 1989. Dynamic Load Balancing for Distributed
Memory Multiprocessors. Journal of parallel and Distributed
Computing 7, 2: 279–301.

10. Robert Elsässer, Burkhard Monien, Stefan Schamberger, and
Gunther Rote. 2002. Toward optimal diffusion matrices £. In
International Parallel and Distributed Processing Symposium, 1530–
2075.

11. Prasanna Ganeasan, Mayank Bawa, and Hector Garcia-Molina. 2004.
Online Balancing of Range-Partitioned Data with Applications to
Peer-to-Peer Systems. In 30th Annual International Conference on
Very Large Data Bases, 444–455.

12. Fred Howell and Ross Mcnab. 1998. SimJava: A Discrete Event
Simulation Library For Java. In International conference on Web-
Based Modeling and Simulation, 51–56.

13. Y.F. Hu and R.J. Blake. 1999. An improved diffusion algorithm for
dynamic load balancing. Parallel Computing 25, 4: 417–444.

14. Chi-chung Hui and Samuel T Chanson. 1996. A Hydro-Dynamic
Approach To Heterogeneous Dynamic Load Balancing. In
International Conference on Parallel Processing, 140–147.

15. Chi-chung Hui and Samuel T Chanson. 1999. Hydrodynamic Load
Balancing. IEEE Transactions on Parallel and Distributed Systems 10,
11: 1118–1137.

16. Chi-Chung Hui and Samuel T. Chanson. 1997. Theoretical Analysis
of the Heterogeneous Dynamic Load-Balancing Problem Using a
Hydrodynamic Approach. Journal of Parallel and Distributed
Computing 43, 2: 139–146.

17. Ken Y.K. Hui, John C.S. Lui, and David K.Y. Yau. 2006. Small-world
overlay P2P networks: Construction, management and handling of
dynamic flash crowds. Computer Networks 50, 15: 2727–2746.

18. David R Karger and Matthias Ruhl. 2004. Simple Efficient Load
Balancing Algorithms for Peer-to-Peer Systems. In 16th annual ACM
symposium on Parallelism in algorithms and architectures, 36–43.

19. Yifeng Luo, Shuigeng Zhou, and Jihong Guan. 2014. LAYER: A Cost-

Efficient Mechanism to Support Multi-Tenant Database as a Service
in Cloud. Journal of Systems and Software 101: 86–96.

20. E Luque, A Ripol, A Cortes, and T Margalef. 1995. A Distributed
Diffusion Method for Dynamic Load Balancing on Parallel
Computers. In the Euromicro Workshop on Parallel and Distributed
Processing, 43–50.

21. Henning Meyerhenke. 2009. Dynamic Load Balancing for Parallel
Numerical Simulations Based on Repartitioning with Disturbed
Diffusion. In 15th International Conference on Parallel and Distributed
Systems, 150–157.

22. P Neelakantan. 2012. Decentraized Load Balancing In
Heterogeneous Systems Using Diffusion Approach. International
journal of Distributed and Parallel systems 3, 1: 229–239.

23. Tiago P. Peixoto. 2014. The graph-tool python library. figshare.
Retrieved from https://graph-tool.skewed.de/

24. Harumasa Tada. 2011. Nearest Neighbor Task Allocation for Large-
Scale Distributed Systems. In 10th International Symposium on
Autonomous Decentralized Systems, 227–232.

25. Amos Tversky. 1977. Features of similarity. Psychological Review 84,
4: 327–352.

26. Belabbas Yagoubi and Meriem Meddeber. 2010. Distributed Load
Balancing Model for Grid Computing. ARIMA Journal 12: 43–60.

27. Albert Y Zomaya, Senior Member, and Yee-hwei Teh. 2001.
Observations on Using Genetic Algorithms for Dynamic Load-
Balancing. IEEE Transactions on Parallel and Distributed Systems 12,
9: 899–911.

