Manchester
School of Architecture

Research and Design:
Innovative Digital Tools to Enable Greener Travel

Occupancy / Emissions

Sustainability Metric Matrix

12.6.2 Report

December 2016

Revised 04th January 2017
Revised 05th January 2017
Revised 11th January 2017

Contents

Aim and Objective 3
Executive summary 7
Emission/Occupancy Matrix 8
Introduction 12
Emission / Occupancy 14
Occupancy 15
Emission estimation by electrical energy consumption 16
Emission estimation by fuel consumption 18
Emission estimation by travel speed 20
Emission estimation by travel distance 22
Emissions \& carbon equivalent 23
Conclusion 25
Appendix 26
Emission / Average occupancy, varied travel distance 26
Emission / occupancy, varied occupancy over a fixed distance of 100 km 28

December 2016

Centre for Complexity Planning \& Urbanism

Report prepared by E.Cheung and U.Sengupta

email:

p.cheung@mmu.ac.uk
u.sengupta@mmu.ac.uk

Manchester School of Architecture

MMU

Room 7.02
Chatham Building, Cavendish Street, Manchester
M15 6BR, United Kingdom

Aim and Objective

This report investigates occupancy/emission metrics for public and private domestic urban transport and develops an emissions/sustainability matrix for the future development of a 'Green Travel Planning Tool'.

The objective of this research is to

1. Review the current methods of estimating occupancy/emissions for various modes of transportation and to update these for accuracy.
2. Produce a sustainability/emissions matrix
3. Compare the metrics developed with results from existing journey planners producing their own estimates. Existing journey planners providing emission estimates typically use distance, estimated travel time and different modes of transpiration as factors. The matrix produced here incorporates multiple additional factors (e.g. travel speed, embodied energy use based on fuel type) in an attempt to accurately estimate emissions per journey.

The study includes the following:-

1. Identification of the latest average emissions for each mode of urban transport (normalised by occupancy)
2. A list of emissions occupancy estimation proxies and conversion factors where applicable
3. Identification of measurements and variables required for emissions and occupancy estimates.
4. A dynamic matrix that can be used to compute emissions results for new journey planners.

Abbreviations

GHG Greenhouse Gases - Kyoto Protocol (IPCC 2014) covers emission of the seven main greenhouse gases - Carbon dioxide (CO_{2}), Methane $\left(\mathrm{CH}_{4}\right)$, Nitrous Oxide (NOx), Hydroflurocarbons (HFCs), Perfluorocarbons (PFCs), Sulphur hexafluride (SF_{6}), Nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$
$\mathrm{CO}_{2} \quad$ Carbon dioxide
BEV Battery Electric Vehicles
PHEVs Plug-in Hybrid Electric Vehicles
HEVs Hybrid Electric Vehicles
IoT Internet of Things

"What is the most

sustainable mode of urban

transport?"

On average, tram has the lowest emission ($35.1 \mathrm{~g} / \mathrm{pkm}$) based on average occupancy followed by train (98.76/pkm) followed by bus (101.1g/pkm) followed by car ($116.1 \mathrm{~g} / \mathrm{pkm}$) followed by motorcycle ($117 \mathrm{~g} / \mathrm{pkm}$).

When considering emission per person, the higher the number of passengers in a vehicle, the lower the emission per person.

At maximum capacity, tram has the lowest emission per person (513.8g/pkm), train with the second lowest ($1196.2 \mathrm{~g} / \mathrm{pkm}$), bus as thrid lowest ($2425.5 \mathrm{~g} / \mathrm{pkm}$), car not far off from bus ($2587.8 \mathrm{~g} / \mathrm{pkm}$) and in last place motorcycle with at least $6084.0 \mathrm{~g} / \mathrm{pkm}{ }^{1}$

At minimum capacity - with single occupancy, motorcycle has the lowest emission per person (121.7/pkm), car with the second lowest (181.1g/pkm), tram as thrid lowest (1089.3g/pkm), bus as foruth ($1212.8 \mathrm{~g} / \mathrm{pkm}$) and in last place train (4784.9g/pkm) ${ }^{2}$

[^0]
"Which factors affect

estimated transport emissions?"

Road specific

- Energy consumption per vehicle
- Driving mode - acceleration, idling, cruising, acceleration and deceleration
- Engine load - weight of vehicle plus passenger weight
- Vehicle age and mechanical condition
- Temperature and weather condition
- Road gradients
- Average Travel speed
- Distance

Rail / Tram specific

- Energy consumption per vehicle
- Type of rail (class) / tram (model)
- Engine load - weight of vehicle plus passenger weight
- Gradients/elevation
- Distance

"Is a journey in North

Manchester greener than one in South Manchester?"

Potentially, for a car journey comparing two different areas if the average speed is different. For example an average petrol car travelling at average 30 mph produces $1114.5 \mathrm{~g} \mathrm{CO}_{2}$ per person emission whereas travelling at average 50 mph produces a lower 1064.1 g CO 2 per person.

In that sense, travelling down one road can be greener than travelling down another road next to it.

Executive summary

This report examines normalised emission metrics by occupancy for multiple modes of urban transportation, allowing a clear comparison of the total emissions produced per journey by mode of transport choices.

The research identifies the different methods of urban transport emission estimation (per journey), accounting for three different variables (proxies) - distance, travel speed and fuel consumption in the order of certainty in the estimation.

Emission conversion factors based on national/local average values and occupancy rates are identified and utilised in the emission/occupancy matrix.

There are limitations in using national/local average values, for example when comparing two roads of equal length with different average speed. An estimation with higher certainty can be produced with average speed data per road segment (link). Emission conversion factors based on average speed are identified and utilised in the emission/occupancy matrix.

Empirical measurements of travel speed, fuel consumption and occupancy per vehicle per journey can be captured and input into the methodology to provide emissions/occupancy estimations with higher certainty for a specific vehicle or service. Fuel consumption based on average speed are identified and utilised in the emission/occupancy matrix.

The produced matrix provides a transparent method of estimating emissions based on multiple variables involved in varied forms of urban transport, such as fuel type, speed, energy, distance and occupancy (averages can be used where specific inputs are missing). This is essential information for any city, transport authority or digital tool developer attempting to incorporate metrics in a 'green transport App' or in the longer term to estimate the environmental outcomes of planned urban transport infrastructure.

Emission/Occupancy Matrix

(double spread)
As demonstrated in the table below with the emission/occupancy estimate with a theoretical 100 km journey, using the average CO_{2} emission conversion factor over travel distance and the average occupancy rate per mode of transport, tram has the lowest emissions with $3514 \mathrm{~g} /$ person followed by train with 4845 g /person followed by bus with $10106 \mathrm{~g} /$ person followed by car with 11612 g /person and the highest emission comes from motorcycle with 11700 g emission /person.

The estimate is different when other factors are considered. For example, the emission by bus estimated from average speed and energy consumption ($5829 \mathrm{~g} / \mathrm{person}$ at average speed of 30 mph and $6052 \mathrm{~g} /$ person with average fuel consumption at 30 mph) is significantly lower than the average emission estimation from the average conversion factor by travel distance ($10106 \mathrm{~g} /$ person).

Note 1
Train fuel consumption based on ORR table 2.101 total electricity and diesel usage and train km from DfT rail statistics for $14 / 15$, assuming a split of 40% diesel and 60% electric for vehicle-km

Note 2
According to TfGM "Metrolink switched from hydro power to 100\% renewable energy generated by biomass", the calulation above uses the average GHG conversion factor for bioenergy of $16.1 \mathrm{~g} / \mathrm{kWh}$

Significant differences can be observed with the emission ranking order between the different mode of transport when other factors are considered. Using the CO_{2} emission conversion factor for average speed applicable for road transportation, an average motorcycle has a lower emission ($8518 \mathrm{~g} /$ person, $8863 \mathrm{~g} /$ person, $11711 \mathrm{~g} /$ person) than an average petrol car ($11145 \mathrm{~g} /$ person, $10668 \mathrm{~g} /$ person, $12050 \mathrm{~g} /$ person) at average speeds demonstrated at $30 \mathrm{mph}, 50 \mathrm{mph}$ and 70 mph . Similar results can be observed when using the CO_{2} emission conversion factor for energy consumption as a basis for the matrix.

Emission
Low

Key

Variable
Variable (potential for empirical measurements)

Key
Variable

- Variable (potential for empirical measurements)

Introduction

According to the UK Department of Energy \& Climate Change, domestic transport accounts for 23\% of UK greenhouse gas emissions and affects air quality at the roadside. ${ }^{3}$

It is obvious that domestic transport significantly contributes to the overall GHG emission. With the growing trend for the need to travel ${ }^{4}$ and that travel related emission reductions due to technological advances overtime ${ }^{5}$, what is the most sustainable choice of travel?

The question whether or not "public transport is greener than travel by car" is discussed in a number of publications including:

- Is it greener to travel by rail or car?, Guardian 2013
- How Green is Rail travel?, The New York Times 2009
- Ethical Man blog: Why cars are greener than buses (maybe), BBC 2009
- Is it always greener to take public transportation?, Slate 2008
- Planes, trains, or automobiles: Travel choices for a smaller carbon footprint, International Institute for Applied Systems Analysis 2013
- Which transport is the fairest of them all?, The Conversation 2014

This topic can sometimes raise opposing opinions, depending on the data used, the methods and the scope of the investigation. However, a common factor in attempts to answer the question relies on the ability to compare modes of transportation through an emission per passenger per journey metric. This also needs to account for the indirect factors such as embodied emissions in power generation for electrically powered transportation.

The boarder questions of whether or not all tram or rail or bus journeys are more sustainable than passenger car-based journeys on average; requires the consideration of detailed and specific sets of data, some of which are subject to data availability.

The emission-occupancy matrix developed here to a microscopic comparison of everyday transportation within the context of Greater Manchester, taking key factors into account.

The potential of obtaining key measurements through IoT can provide specific estimations in emissions and occupancy at an unprecedented scale and detail.

In a diverse spatial context, the potential spatial differences remain important - for example, travelling by car might not be 'greener' than tram for certain routes, but the reverse may be true for other routes to and from certain locations. These insights in correlation to other spatial datasets and can lead to new innovative insights and applications.

[^1]

Development: Image above shows an early experimental digital tool made to demonstrate how emission-occupancy factors can be used to compare the $\mathrm{gCO}_{2} \mathrm{e} / \mathrm{pkm}$ between private automobile passenger per vehicle and public transport for any given origin and destination.

The original prototype was produced by master of architecture students at the Manchester School of Architecture within the CPU (Complexity Planning and Urbanism) atelier ${ }^{6}$. It has been modified and simplified here to illustrate the subject of emission/passenger-km comparison and now up to date in order to reflect the latest emission factors.

As expected, the example shown suggests that a car journey with single occupancy will produce considerably more emissions than public transport. However, when there are three car passenger $\left(468 \mathrm{gCO}_{2} \mathrm{e}\right)$, the emission per person works out to be lower than average emission per person on the route with public transport. This was a useful starting point to explore journeys at a greater level of scrutiny and with greater accuracy.

The results from the early prototype is based on averaged values and do not take into account key factors in the geographical/imposed conditions including gradients, speed limits and actual conditions including road traffic, occupancy rate on public transport. For example, the prototype will give the same estimated emission for a 100 km journey in North Manchester on a road with an average speed of 40 mph and the one in South Manchester with average speed of 30 mph .

Thus in order to create a context-specific model as a basis for genuine comparison, a more stringent and detailed method estimating emissions is demonstrated in this report.

[^2]
Average Emission / Occupancy grams per passenger-km (gCO $/ \mathbf{2 k m}$)

The 2016 Government GHG Conversion Factors provide a list of emission conversion factors ${ }^{7}$ for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$ emission per passenger-km for buses including coach, tram (estimate for Manchester Metrolink extracted from methodology paper ${ }^{8}$) and rail.

Following table shows extracts and collated $\mathrm{gCO}_{2} \mathrm{e} / \mathrm{pkm}$ information relevant to Greater Manchester.

Type		$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{C H}_{\mathbf{4}}$	$\mathbf{N}_{\mathbf{2}} \mathbf{0}$	Total
Car (Note 1)	Small car	92.84	0.01	1.22	94.07
	Medium car	112.49	0.01	1.22	113.72
	Large car	142.83	0.01	1.22	144.06
	Average car	116.12	0.01	1.22	117.35

Motorcycle	Small	84.99	2.07	0.30	87.36
	Medium	103.16	2.66	0.60	106.42
	Large	137.24	1.79	0.60	139.63
	Average	117.00	2.20	0.58	119.78

Bus	Local bus (outside London)	119.02	0.08	0.76	119.86
	Local London bus	73.4	0.04	0.36	73.8
	Average local bus	101.06	0.06	0.6	101.72
	Coach	28.29	0.03	0.35	28.67

| National rail | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 48.45 0.05 0.35 48.85
 Tram National average 53.31 0.05 0.27 53.63
 Manchester Metrolink 35.14 0.03 0.18 35.35 | | | | |$.$

Note

1. Assume average car occupancy 1.56 from National Travel Statistics
[^3]
Occupancy

Average Passenger Occupancy per vehicle = Passenger-Distance $/$ Vehicle-Distance

Vehicle-Distance (Vehicle miles travelled (VMT) or Vehicle-kilometres travelled (VKT))

1. Unit of measurement representing the movement of a vehicle over one kilometre ${ }^{9}$
2. Multiply the number of vehicles in a given road by the average length of journey ${ }^{10}$

Passenger-Distance (Passenger-miles or Passenger-kilometre)
Multiply Unlinked passenger trips by the average length of trips

Unlinked passenger trips

The number of trip made by passenger boarding public transport vehicles. A journey that requires a transfer to another transit vehicle is counted as two trips. ${ }^{11}$

UK Average Passenger Occupancy

Mode of transport	Average passenger occupancy per vehicle	Source	
Car / Van	1.56	$[12]$ $1)$	
Taxi	1.4	$[13]$	
Bus	Local Bus (outside London)	9.5	$[14]$
	Average Local Bus	12.0	$[8]$
	Coach	17.56	$[12]$
Rail	National average	122.27	$[15]$
	Manchester (Oxford Road, Piccadilly and Victoria)	98.76	$[16]$
Tram	National average	45.75	$[17]$
	Manchester Metrolink	31	$[15]$

Note:

1. Statistics includes a single occupancy rate of 61% in 2012
[^4]
Emission estimation by electrical energy consumption

Applicable mode of transportation:

- Tram (Metrolink)
- Electric Vehicle (including BEVs and PHEVs which charges from external power source)

While there is no in-use/on-site CO_{2} emission from vehicles, there are indirect emissions through energy consumption. In order to work out the CO_{2} emissions from energy consumed, indirect embodied energy for electric generation is examined.

1. Metrolink Tram 2016 electric consumption per passenger-km: $0.078 \mathrm{kWh} / \mathrm{pkm}{ }^{18}$
2. The UK Government GHG Conversion Factors provides the following values in grams per kWh:

CO_{2}	$\mathrm{CH}_{4}\left(\mathrm{CO}_{2} \mathrm{e}\right)$	$\mathrm{N}_{2} \mathrm{O}\left(\mathrm{CO}_{2} \mathrm{e}\right)$	Total $\mathrm{CO}_{2} \mathrm{e}$
409.57	0.39	2.09	412.05

3. UK electric generation fuel mix and near real-time emission estimation

Electricity in the UK is generated from different fuel sources including fossil fuel, nuclear and renewable resources. ${ }^{19}$ According to the UK government statistics, the type of fuel mix differs in each reporting period. Over the past 5 years, a general trend of an increased percentage of renewable energy sources and a decreased percentage in the use of fossil fuel in electric generation. ${ }^{20}$

$$
\begin{aligned}
& \text { Coal } \\
& \square \text { Oil } \\
& \square \text { Gas } \\
& \text { Nuclear } \\
& \square \text { Hydro (natural flow) } \\
& \text { Wind and Solar } \\
& \text { - of which, Offshore } \\
& \text { Bio-energy } \\
& \text { Pumped Storage } \\
& \text { Other fuels }
\end{aligned}
$$

[^5]The fuel type mix for UK electricity generation in percentage ${ }^{21}$

Fuel type	2011	2012	2013	2014	2015
Coal	29.1%	38.6%	35.2%	28.5%	21.2%
Oil	0.8%	0.7%	0.6%	0.5%	0.6%
Gas	39.3%	27.0%	25.9%	28.7%	28.1%
Nuclear	18.5%	19.0%	19.1%	18.1%	19.7%
Hydro (natural flow)	1.5%	1.4%	1.3%	1.7%	1.8%
Wind and Solar	4.3%	5.7%	8.2%	10.2%	13.4%
- of which, Offshore	1.4%	2.1%	3.1%	3.8%	4.9%
Bio-energy	3.5%	3.9%	4.9%	6.5%	8.2%
Pumped Storage	0.8%	0.8%	0.8%	0.8%	0.8%
Other fuels	0.8%	0.9%	0.9%	1.1%	1.3%

Note: excludes Import from other countries
Near real time data feed (update at 5-minute intervals) electricity generation by fuel type is available for the UK ${ }^{22}$. CO_{2} conversion factor can be associated with each fuel type, providing an estimated CO_{2} emission based on the fuel mix for a specific time. ${ }^{23}$

Conversion factor for each type fuel for electricity generation ${ }^{24}$

Code	Fuel type	Conversion factor $\mathrm{gCO}_{2} / \mathrm{kWh}$
CCGT	Closed cycle gas turbine	360
OCGT	Open cycle gas turbine	480
COAL	Coal	910
NUCLEAR	Nuclear	0
WIND	Wind	0
PS	Pumped storage	0
NPSHYD	Non-pumped storage hydro	0
OTHER	Other	300
OIL	Oil	610
INTER	French Interconnector	83
INTIRL	Irish Interconnector	699
INTNED	Dutch Interconnector	550
INTEW	East-West Interconnector	450

There is potential to obtain and record CO_{2} emission estimates based on fuel used at a given time in relation to electricity metered readings for the specific use.

[^6]
Emission estimation by fuel consumption (FC)

FC $=1 / \mathrm{FE}$
Applicable mode of transportation:

- Car
- Motorcycle
- Bus
- Train (diesel) - note: 40% in the UK has yet to be electrified as of 2016. In the context of Greater Manchester, while there are ongoing plans for rail electrification, currently a limited number of routes are electrified. Majority of rail lines in Greater Manchester has yet to be electrified.

CO_{2} conversion factors by fuel type per litre consumed

Petrol $2.33 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{l}$
Diesel $2.68 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{l}$
CO_{2} emission is directly related to actual fuel consumption based on the density of fuel and the carbon content of the fuel, there is a higher level of certainty ${ }^{25}$ with the estimates of carbon emission from fuel consumption using the corresponding conversion factors per fuel type. This assumes the effect of fuel additives are negligible.

This however does not account for other GHG emissions, and can be different due to different engine type and age of engine. ${ }^{26}$

Fuel efficiency (FE)

$F E=1 / F C$
Normally reported as miles per gallon (mpg) in a passenger car dashboard in the UK.
Fuel efficiency information for each road vehicle model is reported by the manufacturer and available through DVLA.

Following table shows example fuel efficiency data extracted from "DVLA: fuel consumption and emissions information on a new or used car".

[^7]Fuel efficiency under different conditions:

Imperial Urban (cold) mpg	64.2
Imperial Extra Urban mpg	78.5
Imperial Combined (weighted) mpg	72.4
Metric Urban (cold) I/100km	4.4
Metric Extra Urban I/100km	3.6
Metric Combined (weighted) I/100km	3.9

1. NAEI Speed Emission Factor Coefficients and DfT/TRL road vehicle emission factors 2009

Fuel consumption can be estimated by travel speed between 5-140 km/h through the fuel consumption factor curve by vehicle fuel type, engine capacity and emission standard.

2. Data through on-board diagnostic (OBD II) interface per vehicle

Applicable mode of transportation:

- Car
- Bus
i. Fuel level data may be available through the OBD II interface and distance can be calculated from GPS location when monitored and record for a journey at time intervals.
ii. Alternatively, real-time fuel consumption and efficiency may be calculated through a combination of readings from the Vehicle Speed Sensor (VSS) and the Mass Air Flow (MAF) sensor. ${ }^{27}$

It is worth noting that there are many factors that affect fuel consumption in a car vehicle including:

- Travel speed - preference, congestions
- Driving mode - acceleration, idling, cruising, acceleration and deceleration
- Engine load - weight of vehicle plus passenger weight
- Vehicle age and mechanical condition
- Temperature and weather condition
- Road gradients

The acquisition of actual real world values will be beneficial in the certainty in the estimation of emissions, and the data can be cross- referenced with other temporal data such as traffic, weather and physical environment dataset such as topography.

[^8]
Emission estimation by travel speed

Applicable mode of transportation:

- Car
- Motorcycle
- Bus

1. Greater Manchester Emissions Inventory 2010 Update

A table of emission factors for different types of road vehicle at an incremental speed of $5 \mathrm{~km} / \mathrm{h}$ from 5-115 km/his available through Greater Manchester Emissions Inventory 2010 Update ${ }^{28}$
2. NAEI Speed Emission Factor Coefficients and DfT/TRL road vehicle emission factors 2009

An estimate of emissions by travel speed between 5-140 km/h can be obtained through the emission factor curve by vehicle fuel type, engine capacity and emission standard. The dataset vehicle types include car, taxi, LGV, HGV, Bus Coach, Moped, Motorcycle. ${ }^{29}$
"Emissions curves are developed to a common polynomial expression" ${ }^{30}$, this meant emission can be estimated from any speed for the corresponding vehicle type within the limit of 5-140 km/h.

A spreadsheet is available online that accounts for 265 types of road vehicles.

Values at $5 \mathrm{~km} / \mathrm{h}$ intervals plotted for different mode of transportation based on average-speed emission factors from DfT/TRL road vehicle emission factors 2009

Emission estimation by travel distance

Applicable mode of transportation:

- Car
- Motorcycle
- Bus

1. 2016 Government GHG Conversion Factors

2016 Government GHG Conversion Factors provides a list of emission conversion factors for road vehicles for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$ emission $\mathrm{gCO}_{2} \mathrm{e}$ per km .

Type		$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{C H}_{\mathbf{4}}$	$\mathbf{N}_{\mathbf{2}} \mathbf{0}$	Total
Car	Small car	144.83	0.01	1.91	146.75
	Medium car	175.49	0.01	1.91	177.41
	Large car	222.81	0.01	1.91	224.73
	Average car	181.15	0.01	1.91	183.07

Motorbike	Small	84.99	2.07	0.30	87.36
	Medium	103.16	2.66	0.60	106.42
	Large	137.24	1.79	0.60	139.63
	Average	117.00	2.20	0.58	119.78

2. DVLA emissions information on a specific car / vehicle
$\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}$ and Particulate Matter(PM) (Euro 5/6) data from lab test for specific car model are available through DVLA.

Following table shows an example of emission data for a specific car model extracted from "DVLA: fuel consumption and emissions information on a new or used car".

Vehicle details for VOLKSWAGEN Golf 1.6 TDI 110PS 7speed DSG S, D7

CO_{2} emissions (g/km)	102
CO Emissions [g/km or mg/km under Euro 5/6]	94
HC Emissions [g/km or mg/km under Euro 5/6]	N / A
NOx Emissions [g/km or mg/km under Euro 5/6]	37
HC+NOx Emissions [g/km or mg/km under Euro 5/6]	71
Emissions Particles [g/km or mg/km under Euro 5/6]	0.00

Emissions \& carbon equivalent

Carbon dioxide is the most common GHG emitted by human activities. The term "Carbon emission" is sometimes used as a shorthand expression for all greenhouse gases.

The unit CO_{2} equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ is often used to represent the Global Warming Potential (GWP) for the basket of GHG emissions express as a single number for ease of comparison.

GHG to $\mathrm{CO}_{2} \mathrm{e}$ Conversion factors by Global Warming Potential ${ }^{31}$

Greenhouse Gas		Global Warming Potential (GWP)
Carbon Dioxide	CO_{2}	1
Methane	CH_{4}	25
Nitrous Oxide	NOx	298
Hydroflurocarbons	HFCs	$124-14800$
Perfluorocarbons	PFCs	$7390-12200$
Sulphur hexafluride	SF_{6}	22800
Nitrogen trifluoride	NF_{3}	17200

[^9]
Analysis of existing journey planner app with CO_{2} emission outputs

TripGo
The following table shows the different CO_{2} emission results based on three trips grouped by mode of transport:

Mode	CO_{2} emission (kg) as output results from TripGo	UK average CO_{2} emission from emission x travel distance (kg)
Car	2	0.62
Motorcycle	2	1.97
Bus	0.1	1.01
Train	0.1	1.20

Note: the values from TripGo are actual results from TripGo as displayed on screen rounded up to nearest integer for values above one.

The results between TripGo and own calculations are different. On multiple test, for each mode of transport, dividing CO_{2} emission by the travel distance, the number results differs. This suggests there are other factors included in the calculation.

Tripotnik - sustainable travel

The following table shows the different CO_{2} emission results based on three trips grouped by mode of transport:

Mode	CO_{2} emission (kg) as output results from Tripotnik (Solvenia)	UK average CO_{2} emission from emission x travel distance (kg)
Car	1.651	1.161
Motorcycle	1.498	1.170
Bus	N / A	N / A
Train	0.306	0.485

The results between Tripotnik and own calculations are different. On multiple test, for each mode of transport, dividing CO_{2} emission by the travel distance, the results is within 0.5 . This suggest that Tripotniks uses a fixed average emission conversion factor by distance travel for each mode of transport and it is multiplied to the distance travelled from route to provide the estimated emission.

Conclusion

On average, tram has the lowest emission ($35.1 \mathrm{~g} / \mathrm{pkm}$) based on average occupancy followed by train (98.76/pkm) followed by bus (101.1g/pkm) followed by car (116.1 g/pkm) followed by motorcycle ($117 \mathrm{~g} / \mathrm{pkm}$). ${ }^{32}$

When considering emission per person, the higher the number of passengers in a vehicle, the lower the emission per person.

On average, any car is greener than a bus with less than 6 people, a tram with 6 people and a train with 26 people. ${ }^{33}$

On average, a bus with over 46 people, a tram with 42 people and a train with 184 people is greener than any car. ${ }^{34}$

There can be situations where this differs in reality that affects the variables of travel distance. For example, getting from A to B for a bus with a pre-defined route may have a greater distance to travel than private car. Spatial distance matters.

Based on average occupancy, a 87km car journey has lower emission than a 100km bus journey.

Hence for further work, a more detailed and spatial view of journeys are necessary for comparison between different mode of transport. The estimation by speed and fuel consumption can be used in a spatial -temporal model in response to the changing nature of average speed and fuel consumption over space and time.

[^10]
Appendix

Emission / Average occupancy, varied travel distance

	$\frac{\text { N }}{2}$										
Average conversion factor			5	10	15	20	25	30	35	40	
Passenger d	Diesel	1.56	580.6	1161.2	1741.8	2322.4	2903.0	3483.6	4064.2	4644.8	5
	Petrol	1.56	580.6	1161.2	1741.8	2322.4	2903.0	3483.6	4064.2	4644.8	5
Motorcycle	Petrol	1.04	585.0	1170.0	1755.0	2340.0	2925.0	3510.0	4095.0	4680.0	5
Bus	Diesel	12	505.3	1010.6	1516.0	2021.3	2526.6	3031.9	3537.2	4042.5	4
Train	Diesel	98.76	242.3	484.5	726.8	969.0	1211.3	1453.5	1695.8	1938.0	2
	Electric	98.76	242.3	484.5	726.8	969.0	1211.3	1453.5	1695.8	1938.0	2
Tram	Electric	31	175.7	351.4	527.1	702.8	878.5	1054.2	1229.9	1405.6	1
Speed	at average 30mph										
Passenger	Diesel	1.56	455.9	911.8	1367.6	1823.5	2279.4	2735.3	3191.2	3647.1	4
	Petrol	1.56	557.3	1114.5	1671.8	2229.1	2786.3	3343.6	3900.9	4458.1	5
Motorcycle	Petrol	1.04	425.9	851.8	1277.7	1703.7	2129.6	2555.5	2981.4	3407.3	3
Bus	Diesel	12	291.4	582.9	874.3	1165.7	1457.1	1748.6	2040.0	2331.4	2
Speed	at average 50mph										
Passenger	Diesel	1.56	421.6	843.3	1264.9	1686.5	2108.2	2529.8	2951.4	3373.1	3
	Petrol	1.56	532.1	1064.1	1596.2	2128.2	2660.3	3192.3	3724.4	4256.4	4
Motorcycle	Petrol	1.04	442.3	884.6	1326.9	1769.2	2211.5	2653.8	3096.2	3538.5	3
Bus	Diesel	12	272.9	545.8	818.8	1091.7	1364.6	1637.5	1910.4	2183.3	2
Speed	at average 70mph										
Passenger	Diesel	1.56	491.9	983.8	1475.8	1967.7	2459.6	2951.5	3443.5	3935.4	4
	Petrol	1.56	602.6	1205.1	1807.7	2410.3	3012.8	3615.4	4217.9	4820.5	5
Motorcycle	Petrol	1.04	586.5	1173.1	1759.6	2346.2	2932.7	3519.2	4105.8	4692.3	5
Bus	Diesel	12	352.9	705.8	1058.8	1411.7	1764.6	2117.5	2470.4	2823.3	3
Average energy consumption											
Passenger C	Diesel	1.56	455.3	910.5	1365.8	1821.0	2276.3	2731.5	3186.8	3642.1	4
	Petrol	1.56	545.2	1090.3	1635.5	2180.6	2725.8	3271.0	3816.1	4361.3	4
Motorcycle	Petrol	1.04	470.5	941.0	1411.4	1881.9	2352.4	2822.9	3293.4	3763.8	4
Bus	Diesel	12	291.5	582.9	874.4	1165.8	1457.3	1748.7	2040.2	2331.6	2
Train	Diesel	98.76	318.4	636.9	955.3	1273.8	1592.2	1910.7	2229.1	2547.6	2
	Electric	98.76	216.5	433.1	649.6	866.2	1082.7	1299.2	1515.8	1732.3	1
Tram	Electric	31	224.5	449.0	673.5	898.1	1122.6	1347.1	1571.6	1796.1	2

Travel Distance

45	50	55	60	65	70	75	80	85	90	95	100
225.4	5806.0	6386.6	6967.2	7547.8	8128.4	8709.0	9289.6	9870.2	10450.8	11031.4	11612.0
225.4	5806.0	6386.6	6967.2	7547.8	8128.4	8709.0	9289.6	9870.2	10450.8	11031.4	11612.0
265.0	5850.0	6435.0	7020.0	7605.0	8190.0	8775.0	9360.0	9945.0	10530.0	11115.0	11700.0
547.9	5053.2	5558.5	6063.8	6569.1	7074.4	7579.8	8085.1	8590.4	9095.7	9601.0	10106.3
180.3	2422.5	2664.8	2907.0	3149.3	3391.5	3633.8	3876.0	4118.3	4360.5	4602.8	4845.0
180.3	2422.5	2664.8	2907.0	3149.3	3391.5	3633.8	3876.0	4118.3	4360.5	4602.8	4845.0
581.3	1757.0	1932.7	2108.4	2284.1	2459.8	2635.5	2811.2	2986.9	3162.6	3338.3	3514.0
102.9	4558.8	5014.7	5470.6	5926.5	6382.3	6838.2	7294.1	7750.0	8205.9	8661.7	9117.6
015.4	5572.7	6129.9	6687.2	7244.5	7801.7	8359.0	8916.3	9473.5	10030.8	10588.1	11145.3
833.2	4259.1	4685.0	5111.0	5536.9	5962.8	6388.7	6814.6	7240.5	7666.4	8092.4	8518.3
622.8	2914.3	3205.7	3497.1	3788.5	4080.0	4371.4	4662.8	4954.2	5245.7	5537.1	5828.5
794.7	4216.3	4638.0	5059.6	5481.3	5902.9	6324.5	6746.2	7167.8	7589.4	8011.1	8432.7
788.5	5320.5	5852.6	6384.6	6916.7	7448.7	7980.8	8512.8	9044.9	9576.9	10109.0	10641.0
980.8	4423.1	4865.4	5307.7	5750.0	6192.3	6634.6	7076.9	7519.2	7961.5	8403.8	8846.2
456.3	2729.2	3002.1	3275.0	3547.9	3820.8	4093.8	4366.7	4639.6	4912.5	5185.4	5458.3
427.3	4919.2	5411.2	5903.1	6395.0	6886.9	7378.8	7870.8	8362.7	8854.6	9346.5	9838.5
423.1	6025.6	6628.2	7230.8	7833.3	8435.9	9038.5	9641.0	10243.6	10846.2	11448.7	12051.3
278.8	5865.4	6451.9	7038.5	7625.0	8211.5	8798.1	9384.6	9971.2	10557.7	11144.2	11730.8
176.3	3529.2	3882.1	4235.0	4587.9	4940.8	5293.8	5646.7	5999.6	6352.5	6705.4	7058.3
097.3	4552.6	5007.8	5463.1	5918.3	6373.6	6828.8	7284.1	7739.4	8194.6	8649.9	9105.1
906.4	5451.6	5996.8	6541.9	7087.1	7632.2	8177.4	8722.6	9267.7	9812.9	10358.0	10903.2
234.3	4704.8	5175.3	5645.8	6116.3	6586.7	7057.2	7527.7	7998.2	8468.7	8939.1	9409.6
623.1	2914.5	3206.0	3497.4	3788.9	4080.3	4371.8	4663.2	4954.7	5246.1	5537.6	5829.0
866.0	3184.5	3502.9	3821.4	4139.8	4458.3	4776.7	5095.1	5413.6	5732.0	6050.5	6368.9
948.9	2165.4	2381.9	2598.5	2815.0	3031.5	3248.1	3464.6	3681.2	3897.7	4114.2	4330.8
020.6	2245.2	2469.7	2694.2	2918.7	3143.2	3367.7	3592.3	3816.8	4041.3	4265.8	4490.3

Emission
Low
High

Emission / occupancy, varied occupancy over a fixed distance of 100 km

	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{y}{2} \\ & \frac{1}{4} \\ & \hline \end{aligned}$										
Average conversion factor			5	10	15	20	25	30	35	40	
Passenger	Diesel	100			17252.1	12939.1	10351.3	8626.1	7393.8	6469.5	5
	Petrol	100			17252.1	12939.1	10351.3	8626.1	7393.8	6469.5	5
Motorcycle	Petrol	100									
Bus	Diesel	100	48510.4	24255.2	16170.1	12127.6	9702.1	8085.1	6930.1	6063.8	5
Train	Diesel	100	23924.6	11962.3	7974.9	5981.2	4784.9	3987.4	3417.8	2990.6	2
	Electric	100	23924.6	11962.3	7974.9	5981.2	4784.9	3987.4	3417.8	2990.6	2
Tram	Electric	100	10276.8	5138.4	3425.6	2569.2	2055.4	1712.8	1468.1	1284.6	1
Speed	at average 30mph										
Passenger	Diesel	100			13546.2	10159.6	8127.7	6773.1	5805.5	5079.8	4
	Petrol	100			16558.8	12419.1	9935.3	8279.4	7096.6	6209.5	5
Motorcycle	Petrol	100									
Bus	Diesel	100	27976.8	13988.4	9325.6	6994.2	5595.4	4662.8	3996.7	3497.1	3
Speed	at average 50mph										
Passenger	Diesel	100			12528.6	9396.4	7517.1	6264.3	5369.4	4698.2	4
	Petrol	100			15809.5	11857.1	9485.7	7904.8	6775.5	5928.6	5
Motorcycle	Petrol	100									
Bus	Diesel	100	26200.0	13100.0	8733.3	6550.0	5240.0	4366.7	3742.9	3275.0	2
Speed	at average 70mph										
Passenger	Diesel	100			14617.1	10962.9	8770.3	7308.6	6264.5	5481.4	4
	Petrol	100			17904.8	13428.6	10742.9	8952.4	7673.5	6714.3	5
Motorcycle	Petrol	100									
Bus	Diesel	100	33880.0	16940.0	11293.3	8470.0	6776.0	5646.7	4840.0	4235.0	3
Average energy consumption											
Passenger d	Diesel	100			13527.6	10145.7	8116.6	6763.8	5797.6	5072.9	4
	Petrol	100			16199.0	12149.3	9719.4	8099.5	6942.4	6074.6	5
Motorcycle	Petrol	100									
Bus	Diesel	100	27979.2	13989.6	9326.4	6994.8	5595.8	4663.2	3997.0	3497.4	3
Train	Diesel	100	31449.8	15724.9	10483.3	7862.5	6290.0	5241.6	4492.8	3931.2	3
	Electric	100	21385.4	10692.7	7128.5	5346.3	4277.1	3564.2	3055.1	2673.2	2
Tram	Electric	100	13132.1	6566.0	4377.4	3283.0	2626.4	2188.7	1876.0	1641.5	1

Occupancy \%

Emission
Low
CO_{2} Emission by travel speed
Car - Petrol

$\begin{aligned} & \text { す } \\ & 00 \\ & \text { © } \end{aligned}$	mph	10	15	20	25	30	35	40	45	50	55	60	65	70
	km/h	16	24	32	40	48	56	64	72	80	88	97	105	113
	<1993	249.1	205.6	185.9	176.0	171.1	169.3	169.6	171.4	174.3	178.2	182.9	188.4	194.5
	1993	233.6	190.1	170.4	160.4	155.6	153.8	154.0	155.8	158.8	162.7	167.4	172.8	178.9
	1996	226.1	182.6	162.9	153.0	148.1	146.3	146.6	148.4	151.3	155.2	160.0	165.4	171.5
	2000	216.2	172.7	153.0	143.0	138.2	136.4	136.7	138.4	141.4	145.3	150.0	155.4	161.5
	2005	205.4	161.9	142.2	132.3	127.4	125.6	125.9	127.7	130.6	134.5	139.3	144.7	150.8
	2009	190.4	146.9	127.2	117.2	112.4	110.6	110.8	112.6	115.6	119.5	124.2	129.6	135.7
	2014	177.6	134.1	114.4	104.4	99.6	97.8	98.1	99.8	102.8	106.7	111.4	116.8	122.9
	<1993	305.5	251.7	225.0	209.7	200.5	195.1	192.5	192.0	193.3	196.0	200.1	205.4	211.9
	1993	290.0	236.2	209.5	194.2	185.0	179.6	177.0	176.5	177.8	180.5	184.6	189.9	196.4
	1996	282.0	228.3	201.6	186.3	177.1	171.7	169.1	168.6	169.8	172.6	176.7	182.0	188.4
	2000	270.5	216.7	190.1	174.7	165.5	160.2	157.6	157.1	158.3	161.0	165.1	170.4	176.9
	2005	255.6	201.8	175.1	159.8	150.6	145.2	142.6	142.1	143.4	146.1	150.2	155.5	162.0
	2009	236.8	183.0	156.3	141.0	131.8	126.4	123.8	123.3	124.6	127.3	131.4	136.7	143.2
	2014	221.0	167.2	140.6	125.2	116.0	110.7	108.1	107.6	108.8	111.6	115.6	120.9	127.4
$\begin{aligned} & \text { U } \\ & \text { O} \\ & \text { N} \\ & \hat{\jmath} \\ & \stackrel{0}{0} \\ & \underset{\sim}{n} \end{aligned}$	<1993	430.7	349.5	308.5	284.4	269.3	260.1	254.9	252.9	253.6	256.5	261.5	268.3	276.9
	1993	417.6	336.5	295.5	271.3	256.3	247.0	241.8	239.9	240.5	243.4	248.4	255.3	263.9
	1996	407.9	326.7	285.7	261.6	246.5	237.2	232.1	230.1	230.8	233.7	238.7	245.5	254.1
	2000	389.6	308.4	267.4	243.3	228.3	219.0	213.8	211.8	212.5	215.4	220.4	227.2	235.9
	2005	377.8	296.7	255.7	231.5	216.5	207.2	202.1	200.1	200.7	203.7	208.6	215.5	224.1
	2009	350.6	269.5	228.5	204.3	189.3	180.0	174.9	172.9	173.5	176.5	181.4	188.3	196.9
	2014	327.6	246.4	205.4	181.3	166.2	157.0	151.8	149.8	150.5	153.4	158.4	165.2	173.8
Average		288.6	229.2	200.0	183.6	173.9	168.4	165.9	165.7	167.3	170.5	175.1	180.9	188.0

CO_{2} Emission by travel speed
Car - Diesel

Emission
Low
High
CO_{2} Emission by travel speed
Bus - Diesel

CO_{2} Emission by travel speed
Motorcycle - Petrol

[^0]: ${ }^{1}$ based on average GHG conversion factors
 ${ }^{2}$ based on average GHG conversion factors

[^1]: ${ }^{3} 2014$ UK Greenhouse Gas Emission, Department of Energy \& Climate Change
 ${ }^{4}$ Transport Statistics Great Britain 2016 Modal Comparisons, Department of Transport
 ${ }^{5}$ For example, with electric vehicles and renewable energy sources

[^2]: ${ }^{66}$ I. Tosheva, S. Adekunle, L. Weinmann, Transport App, CPU (Manchester School of Architecture) 2015

[^3]: ${ }^{7}$ Conversion factors 2016 - Full set (spreadsheet)
 ${ }^{8} 2016$ Government GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors

[^4]: ${ }^{9}$ http://glossary.eea.europa.eu/terminology/concept_html?term=vehicle-km, EEA
 ${ }^{10}$ Road traffic (vehicle kilometres) by vehicle type in Great Britain, Department for Transport
 ${ }^{11}$ http://www.apta.com/resources/statistics/Pages/glossary.aspx
 ${ }^{12}$ Vehicle mileage and occupancy Table NTS0905 Department of Transport National Travel Survey statistics 2013
 ${ }^{13} 2016$ Government GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors
 ${ }^{14}$ Bus Statistics Table BUS0304, Department for Transport statistics, 2016
 ${ }^{15}$ Rail Statistics Table RAIO201, Department for Transport statistics, 2015
 ${ }^{16}$ Rail Statistics Table TSGB0603 (RAI0103), Department for Transport statistics, 2016
 ${ }^{17}$ Light rail and Tram Statistics Table LRT0108, Department for Transport statistics, 2016

[^5]: ${ }^{18} 2016$ Government GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors
 ${ }^{19}$ Energy UK http://www.energy-uk.org.uk/energy-industry/electricity-generation.html, (accessed 15.11.2016)
 ${ }^{20}$ UK Government energy statistics, https://www.gov.uk/government/collections/electricity-statistics

[^6]: ${ }^{21}$ National Statistics Energy Trends: electricity Table 5.1. Fuel Used in electricity generation and electricity supplied
 ${ }^{22}$ Balancing Mechanism Reporting Service, provided by Elexon
 ${ }^{23}$ RealtimeCarbon.org. (2012, Jan.) CO_{2} conversion factors. [Online]. Available: http://www.realtimecarbon.org/resources/RealtimeCarbonMethodology.pdf
 ${ }^{24}$ Conversion factors for each fuel type for electricity generation in the UK available: http://gridcarbon.uk/

[^7]: ${ }^{25}$ Paulina Golinska, Marcin Hajdul, Sustainable Transport: New Trends and Business Practices, 2012 pg 336
 26 "Carbon emissions are calculated from the fuel consumed and the carbon content of the fuel. Methane (CH4), nitrous oxide (N20) and air quality pollutant emissions are however more difficult to estimate since there is not a direct link between fuel and emissions. Emissions of these gases and pollutants are dependent on a number of factors including vehicle type, age, whether the vehicle has a catalyst and operating characteristics." - A review of data and methods to calculate greenhouse gas emissions from alternative fuel transport, Department for Business, Energy \& Industrial Strategy (Department of Energy \& Climate Change), January 2014

[^8]: ${ }^{27}$ Real-Time Fuel consumption monitoring: http://www.windmill.co.uk/obdii.pdf

[^9]: ${ }^{31}$ Brander M., Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean?, Ecometrica

[^10]: ${ }^{32}$ based on average GHG conversion factors
 ${ }^{33}$ An average car with 1 person produces the same amount of carbon emission per person per km as a bus with 6 people, a tram with 6 people and a train with 26 people.
 ${ }^{34}$ An average car with 7 people produces the same amount of carbon emission per person per km as a bus with 46 people, a tram with 42 people and a train with 184 people

