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Abstract i

Abstract
Occupant presence and behaviour have a significant impact on building energy perfor-

mance. An occupant present in a building generates pollutants like CO2, odour, heat,

which can directly change the indoor environment. Because of this change, the occupant

may interact with the building environment to maintain the comfort level, for example,

he or she may turn on air conditioning systems. Today’s Building Energy Management

Systems (BEMS) are usually operated based on a fixed seasonal schedule and maximum

design occupancy assumption but fail to capture dynamic information. This is both

costly and inefficient.

Recent efforts on exploitation of environmental sensors and data-driven approaches to

monitor occupant behaviour patterns, have shown the potential for dynamically adapt

BEMS according to real user needs. Furthermore, this occupant information can also

be used for other applications such as home security, healthcare or smart environments.

However, most of existing models suffer from inaccuracy and imprecision for occupant

state classification, could not adaptively learn from real-time sensor input and they

mainly focused on single occupant scenarios only. To address these issues, we present a

novel data-driven approach to model occupant behaviour patterns accurately, for both

single occupant and multiple occupants with real-time sensor information. The contri-

butions can be summarised as follows:

Firstly, we have conducted a thorough benchmark evaluation of classification perfor-

mance of state-of-the-art Machine Learning (ML) methods and occupant related publicly

available datasets. Secondly, based on the findings in literature and our own exper-

imental evaluations, we have developed a novel dynamic hidden semi-Markov model

(DHSMM), which can accurately detect occupant behaviour patterns from sensor data

streams in real-time. Thirdly, built upon the online DHSMM model, we have devel-

oped a novel incremental learning approach to allow dynamically learning over streaming

data. Finally, we have conducted an experimental evaluation of our proposed model

Online DHSMM Multi-Occupant for occupancy detection for both single and multiple

occupants. We have validated our approach using real datasets and the experimental re-

sults show our proposed approach outperforms existing methods in terms of classification

accuracy and processing time/scalability.

To the best of our knowledge, we have first developed a HSMM-based incremental online

learning approach to fast and accurate learn building occupant patterns over streaming

data for both single and multiple occupants in a holistic way. Additionally, our approach

significantly improves the classification accuracies of traditional Markov models (over

10% accuracy increase, while maintaining the model complexity and performing multi-

occupant detection).
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Chapter 1

Introduction

This chapter presents an overview of the background of this research introducing current

limitations and research questions to be solved as well as our novel contributions.

1.1 Background

Buildings are one of the major sources of CO2 emissions, accounting for over 40% of the

total [3]. Occupants have a major impact on the total energy consumption performance

of buildings, both from internal gains and from the interactions with their surroundings.

Many works e.g. [4][5][6][7][8], reported that energy cost savings could be significantly

reduced when considering occupant data in the loop of Building Energy Management

Systems (BEMS).

Today’s building systems such as lighting or heating, ventilation and air-conditioning

(HVAC) systems are still regulated based on fixed schedules or peak assumptions that

overestimate occupancy which cause large amounts of energy wastage [4]. Therefore,

it is crucial to develop strategies to regulate BEMS based upon real occupant needs,

in pursuance of maximising user comfort [9] while maintaining high levels of building

energy efficiency. To address these issues, ‘live’ occupancy detection is important for

improving energy efficiency and consequent reduction of greenhouse gases emissions.

For example, there can be scenarios with several sensors (e.g. indoor and outdoor

temperature, humidity, CO2 levels and information about user thermal comfort) as in

1



Chapter 1. Introduction 2

Figure 1.1: Sensors and ML models will help us to model occupant/ambient interac-
tions.

the diagram shown in Fig. 1.1. The different sensors will capture information related

to indoor conditions and variations generated by occupants and the interactions with

their surroundings. That information will be used to regulate energy systems, monitor

occupant states or detect abnormal or potentially hazardous situations among others.

Much effort has been devoted to occupant behaviour pattern modelling (such as occu-

pancy patterns or activities) over the last years [10][11][12][13][14]. Particularly, models

based on Machine Learning (ML) techniques coupled with ambient sensors have demon-

strated potential to capture occupant behaviour patterns information that can be used

to adaptively regulate BEMS according to realistic users’ needs. The aim of these sys-

tems is to understand what are the real occupant levels of occupancy or the activities

they are performing in a building. This information will provide insights that will enable

more efficient and effective decision making on how to regulate the building systems.

The existing approaches incorporate various sensor data into models to detect user

behaviour in the form of presence/absence, number of occupants or activity recognition;

always within the context of indoor building environments. These models are designed

to analyse sensor readings and classify occupant states from those sensor signals. Fig. 1.2

illustrates how sensor signals could be used to train a mathematical model. Here, we can

see that the data can be used to train/evaluate the model and make predictions of the

potential actions and occupant/building interactions. These models need to be able to

overcome the specific practical problems that arise from the use of datasets containing
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this type of data such as data imbalance, missing values, incompleteness data among

others.

Due to these, there are occasions where a deeper and more complex analysis is needed to

find the underlying relationships between the data features and the expected outcomes.

In order to address this, ML techniques can be used to capture the potential patterns

in the data (provided that we have significant amounts of data and there are actually

patterns in the data that the algorithms can learn from). For example, a rainy day can

alter the patters of occupants in terms of the clothes they wear, subsequently affecting

the way they operate HVAC systems, windows, etc. However, if in the available training

datasets there are no samples containing rainy days data, the ML model will not be able

to capture these patterns.

Among these approaches, Hidden Markov Models (HMM) [15] and Hidden Semi-Markov

Models (HSMM) [16] have gained increasing popularity for their ability to model sensor

data from buildings as observable discrete temporal sequences and being able to infer oc-

cupant (hidden) states like presence or absence, based on the analysis of all sensor events.

For example, early approaches such as the work of Page et al. [10] modelled occupancy

profiles in an office building applying Markov chains or the HMM-based model in [17],

which was designed to regulate different smart-home systems in context-aware scenarios.

Other models based on HMM models and more recent extensions also became increas-

ingly popular for occupant behaviour pattern recognition as described in [18]. Hongeng

et al. [19] proposed a video based event recognition where an adaptation of HMM al-

gorithms was used to detect human activities through video data. Dong’s work [14]

presented a HSMM-based occupancy modelling approach for energy saving and comfort

management by detecting events extracted from multiple sensor data. Later, in [20],

they used a various models including HMM and other machine learning approaches to

detect occupants in an office building based on multiple ambient sensors, noting that

different features (sensors) are potentially more significant for the final state classifica-

tion decision and that HMM can also be used for predictive purposes. The work in [21]

provided an interesting activity recognition benchmark work, where HMM and HSMM

models were evaluated and compared with other state-of-the-art approaches to study

modelling issues and performance based on contextual aspects such as time granularity.
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Figure 1.2: Machine learning techniques modelling schematic data flow.

1.2 Current Limitations

In spite of recent advances, most of the aforementioned existing models suffer from

inaccuracy and imprecision in terms of the classification of occupant states based on

sensor information. This is due to the fact that typical datasets from occupants in

buildings present challenges for modelling states due to issues such as the variety of

data nature (e.g. use of different sensing devices, multiple sensor network topologies,

data acquisition techniques, etc.). In addition, many approaches were built upon static

datasets and could not adaptively learn from real-time sensor input and focus on single

occupant only. In the case of works using HMM models, some specific limitations arise

since HMM-based approaches model state dwelling time by allowing the system to self-

transition each time the system makes an inference (from state Si to Si) based on the

probability of remaining in the same state. This means that remaining in the same

state for a period of time involves multiplying the probability of remaining on that state

each time the self-transition occurs. Hence, state duration is inherently exponentially

distributed. However, in real scenarios, the state duration should be better captured by

using different temporal distributions other than exponential distribution [22][16].

HSMM expands HMM capabilities by introducing state duration. HSMM-based ap-

proaches allow to calculate the most probable dwelling time d based on explicitly mod-

elled duration distributions, during which the state remains unchanged. However,
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HSMM-based approaches present limitations when attempting to make occupancy de-

tection in an online fashion. This is due to the fact that these models traditionally infer

probable states based on whole sequences of observable data. This poses a real challenge

for state classification using streaming data as future observable data is not available

when a new state is reached. Therefore, state prediction has to be decided with the

uncertainty of what observable sequence follows. In addition, Markov models treat all

sensor readings as a unique feature, thus assuming all sensors potentially provide the

same ‘amount’ of relevant information to the system. However, in real world scenarios,

individual sensor contributions to state prediction is often different and can be condi-

tioned by factors such as sensor spatial location, system/sensor resolution, data nature

or sensor reading ranges to name a few.

Moreover, existing models were mainly used for single occupant only, thus never at-

tempting to model scenarios including more than one occupant at the same time. There

is therefore little work done in relation to multi-occupant behaviour pattern detection,

which still remains one of the most important challenges for this type of modelling

approaches [23].

1.3 Research Questions

All the limitations discussed above motivate the following research questions:

• How can we improve the classification accuracy of the existing approaches?

• How can we detect occupant behaviour patterns using real-time streaming data?

• How can we improve the efficiency of the model parameter updating using online

incremental learning to accommodate new data observations? and, finally

• How can we ensure these models will perform well when detecting more than one

occupant?
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1.4 Contributions

This research mainly focuses on the development of novel approaches to fast & accurately

occupant behaviour pattern detection over stream data in real-time. Our contributions

lie in the following aspects:

1) Benchmark experiments

To improve the accuracies of the existing works, we need to understand the cur-

rent state-of-the-art approaches and limitations. To do so, we have conducted a

thorough benchmark evaluation using data from sensors in buildings for occupant

behaviour pattern modelling and detection. Based on data from multiple publicly

available datasets, we have applied well-known machine learning approaches to

evaluate different model performances.

2) Development of a novel online dynamic hidden semi-Markov model (DHSMM)

We have developed a novel dynamic hidden semi-Markov model (DHSMM), which

can detect occupant behaviour patterns from sensor data streams in real-time, in-

creasing the prediction accuracy compared to traditional Markov models. Our

approach extends HMM and HSMM including a new dynamic state duration es-

timation and a new observation model including a weighted function designed to

improve the model performance when using partially available observations instead

of using the whole set of observations. The proposed model has been validated

in an online setting using real datasets which contained multiple sensor data and

occupancy states labels.

3) Development of a new incremental learning approach based on DHSMM

To enable online parameter updating, we have developed a novel incremental learn-

ing approach to dynamically learn over streaming data and fast, accurately predict

occupant behaviour patterns. As this model is based on a HSMM approach, our

online DHSMM needs to incrementally update an additional parameter: duration

model. To do so, we have developed a novel approach to update the DHSMM

parameters based on an approximation of the β variable in the Baum-Welch al-

gorithm. For the duration model, we have applied a function based on Bayesian
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inference techniques to update the different duration model parameters in an in-

cremental way. The incremental updating is applied to the parameters that define

the probabilistic distributions used to model state duration. We have used this

approach with two of the most well-known probabilistic functions: Gaussian and

Gamma. We have validated the results with real datasets and the experimental

result shows the proposed incremental learning approach significantly outperforms

non-increment approach over streaming data while maintaining the same level of

accuracy as the non-incremental learning approach.

4) Development of online multiple occupancy pattern detection

We have developed a model framework for occupant pattern detection for both

single and multiple occupants. To do this we present two different on-line DHSMM

multi-occupant approaches including a multi-layered model and a single-layered

model for multi-occupant activities detection. We used a publicly available dataset

that includes human activities performed by two individuals in the same space

to see how our model handles this challenging setup. Results have shown our

approach is able to accurately detect occupancy patterns in the context of both

single occupant and multiple occupants.

1.5 Restrictions

Occasionally, sensor data have the potential to contain personal information about the

occupants present in the spaces these sensors are monitoring and extracting the informa-

tion from. When this happens, it can be considered as an intrusion in people’s privacy.

This is particularly relevant in public spaces where people never gave their consent to

be privately monitored or when dealing with vulnerable populations such as children or

patients from hospitals or other health related institutions. Moreover, sometimes the

legislation is unclear and is different in each country.

In order to not having to deal with potential intrusiveness issues, and for the sake of

developing systems that will never pose a risk to people’s privacy, this research mainly

focuses on non-intrusive, off-shelf sensors such as motion or temperature. Due to low

cost and effectiveness and the absence of the mentioned privacy issues common when
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using rich sensors such as video-cameras, RFID or wearables, we limit our study and

proposed methodologies to the use of only non-intrusive sensor data [24].

1.6 Thesis Outline

The rest of this thesis is organised as follows:

Chapter 2 contains a comprehensive literature review concerning all types of occupancy

detection and activity recognition models and potential scenarios of application for these

approaches. We define the scope of the research, provide a description of contextual

factors such as scenarios, discuss about the datasets including sensors, data nature and

granularity and indicate publicly available related datasets. We have critically analysed

and evaluated the current advances and their limitations.

Chapter 3 presents a thorough benchmark evaluation on existing well-known machine

learning approaches. We conducted a series of experiments using publicly available

datasets to evaluate the performances of several machine learning techniques and how

these can be affected by other factors aside mode parameters such as data nature and pre-

processing techniques and evaluated their performance and suitability when processing

occupancy data in different building scenarios.

Chapter 4 introduces our novel online dynamical HSMM model (DHSMM). We analyse

the pros and cons of using HMM and HSMM models and how our DHSMM can be

used to address the original methods’ limitations, particularly for a good generalisation

of the model when used in different scenarios and for real time occupancy and activity

detection.

Chapter 5 includes a new approach to perform DHSMM online incremental learning

parameters. We introduce how the Markov models can be used to solve the so-called

three Markov problems and how we extended these traditional approaches and developed

our incremental online DHSMM approach, enabling online incremental learning of model

parameters over streaming data.

Chapter 6 presents a multi-occupancy model framework based upon our online incre-

mental DHSMM. Our approach can detect occupancy patterns from both single and

multi-occupant data addressing the issues with data association and state interaction.
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Chapter 7 summarises the contributions of this work and provides directions for future

work.



Chapter 2

Literature Review

In this chapter, we present a survey on previous research regarding Occupant Behaviour

Pattern Modelling (OBPM), paying special attention to the mathematical modelling

methodologies presented. We have focused on previous works addressing human be-

haviour pattern modelling in buildings using only non-intrusive sensors (e.g. motion,

humidity, sound, CO2,...).

2.1 Occupant Behaviour Pattern Modelling Definition

We define Occupant Behaviour Pattern Modelling (OBPM) as the modelling of user

presence and absence and activity patterns in buildings based on sensor information.

These models are fed with data collected through ambient sensors, and occupant patterns

are modelled using different techniques such as stochastic processes or machine learning

algorithms.

OBPM include all works that, based on supervised learning approaches, use sensor data

information collected by sensors deployed in buildings in order to predict occupant pat-

terns. The models will be trained with the available data, and then other training data

subsets or new collected data will be processed by the model. The model outputs will

consist in the classification of several occupant traits. Once this information is available,

it will be included in the loop of decision of automatic building systems that will adapt

any their operation according to the information and therefore to real occupant needs.

10
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2.1.1 Types Of OBPM

After a comprehensive survey on the OBPM literature, we found a noticeable differenti-

ation between approaches. Following this intuition, we have proposed the categorisation

of these models into two types:

a) Occupancy Models:

• Presence/Absence: Binary classification on whether or not there are any occupants

in a space at a determined time.

• Number of occupants: Multiple classification of as many classes as occupants are

present in a determined location at a time.

b) Activity Models: Activities of Daily Living (ADLs) are defined as the low level activi-

ties occupants can be performing on a daily basis in a domestic building scenario [25][26].

Approaches based on activity modelling need to define beforehand which are the activ-

ities expected (e.g. sleeping or having breakfast) and models are used to predict what

activity is being performed based on sensor readings (classification of as many activities

defined in the dataset).

2.1.1.1 Occupancy Modelling (OM)

Occupancy pattern detection models (occupancy models for short) definition comprises

modelling approaches that focus on detecting presence/absence and/or number of occu-

pants and the identification of occupancy patterns, such as time of arrival or departure

or peak occupational times.

2.1.1.2 Activity Modelling (AM)

Activity models include those which perform recognition of occupant’s activities of daily

living (ADLs) such as sleeping, leaving home, watching television, having shower or

any user activity which might have a link to the final energy consumption.
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2.1.2 Scenarios

Looking into previous works’ typical scenarios, we noted a usual natural gap between

scenarios for OM and AM. Occupancy models tend to be used in non-domestic buildings

(smart buildings) including general purpose spaces such as offices, labs or lecture rooms.

However, activity models are usually intended to be used in domestic buildings (smart

homes). This is basically due to the fact that many ADLs are not expected to occur in

a smart building scenario (people working in an office are not expected to cook, sleep

or have a shower) whereas they are totally normal in a smart home. Conversely, big

building scenarios tend to focus on the presence of occupants as the information will be

used to regulate lighting or HVAC systems, which are typically more concerned about

people being there rather than what they are actually doing.

Nevertheless, there is not a major restriction saying that necessarily all occupancy mod-

els are based on non-domestic scenarios and activity models are based on domestic

scenarios. Yet, in the majority of the works surveyed this is a clear trend. In fact,

another natural consequence of this discernment is that in normal houses it is usual to

consider just one occupant (one user performs various activities) while multi-occupancy

(diverse occupants) is normally addressed in non-domestic scenarios.

2.1.3 Sensors

In the previous section, we have discussed how model type (occupancy/activity) had a

correlation with the typical scenario. Supporting this idea, we found that the nature of

the sensors used in previous works also points towards this hypothesis.

We define ambient sensors as the devices used to collect information about our surround-

ings and transform it into signals, which can be later processed and incorporated into

mathematical models for their training and further operation. In this work, we focus on

the most popular non-intrusive choices; which are usually simple ambient sensors such as

passive infraRed PIR (for motion), radio (for proximity), ambient light, humidity, tem-

perature, or contact sensors. Although there is no formal constraints about the use of

different sensors for any type of models, most previous works suggest that there are some

sensors that are not suitable for occupancy models. For example, a sensor to monitor a

microwave open door or to detect water from the shower is useful to predict activities
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Figure 2.1: The literature shows a natural differentiation between occupancy and
activity models in terms of the classification task, scenario and sensors commonly used.

within a house preformed by an occupant, but it will make a meagre contribution if we

want to monitor occupancy patterns of an entire office building section.

As it will be discussed in following sections on this chapter, generally simple ambient

sensors as the ones mentioned above, although with some limitations, can be used to

detect occupancy and activities successfully. However, sensor combinations have shown

potential to mitigate some of the issues present in systems using just one sensor -this will

be discussed in detail in the following sections. A detailed list of sensors and applications

can be found in [13] and [27]. Fig. 2.1 shows the category of occupancy and activity

model features in terms of typical sensors and systems to regulate, as well as their usual

classification tasks.
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2.1.4 General Approaches For Occupant Behaviour Pattern Modelling

(OBPM)

The existing OBPM approaches are mainly based upon the detection of occupants and

activities using sensor data in buildings. Mathematically, this translates into a clas-

sification problem in which the inputs are sensor readings and the outputs could be

presence/absence, number of occupants or ADLs.

The works covered in this chapter are mainly based on stochastic mathematical models

and machine learning based algorithms; used to process occupant and ambient data

and to classify occupancy and activity states. Models such as naive Bayes [28], hid-

den Markov and semi-Markov models [15] and conditional and semi-conditional random

fields [29] are probabilistic approaches, which have been extensively used for pattern

recognition problems in the past. However, other machine learning methods based on

numeric optimisation and marginality have been proposed with promising results such as

support vector machines [30] or artificial neural networks [31]. Other common techniques

are algorithms based on multi-agent systems, which are used to divide the automation

of BEMS in several agents and where the learner agent is usually based on a machine

learning classifier.

The most frequent machine learning algorithms for pattern modelling found in the lit-

erature reviewed are:

• Naive Bayes (NB)

• Decision Trees (DT)

• Logistic Regression (LT)

• Hidden Markov Models (HMM)

• Hidden Semi-Markov Models (HSMM)

• Artificial Neural Networks (ANN)

• Support Vector Machines (SVM)

• k-Nearest Neighbours (kNN)
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Although these might be considered as the most popular OBPM approaches, other

successful methods also found in previous researches include conditional random fields

(CRF), genetic programming (GP) or models based in stochastic processes or heuristics.

In the following sections, we will present a detailed literature review on existing occupant

behaviour pattern model approaches.

2.2 Occupancy Modelling Approaches

2.2.1 Occupancy Modelling Definition

Many occupancy modelling previous works are focused on the modelling of the so called

spatio-temporal properties which include: location, number of occupants or tracking;

since these can be captured through ambient sensing devices [13] unlike other human

behaviour traits such as psychological or emotional. The main attractiveness of these

models is that the outputs generated can be used to automate BEMS, meaning that the

building systems can be regulated more effectively and efficiently.

2.2.2 Classification Of OM

Based on the literature surveyed and attending to the task the models are intended to

perform, we propose a classification of occupancy models into two types:

• Offline Models: These approaches include models that use data to recreate

time-related occupancy sequences of the most likely states in an offline setting.

Models can be later embedded into energy related or building simulation tools

such as ESP-r or Energy+, or used to regulate BEMS adapting their function-

ing to the occupancy patterns suggested by the model. Offline models provide:

1) Information that can be used to create accurate occupancy profiles in order

to make assumptions and predictions based on previous findings; 2) Information

which will be used to monitor ‘live’ occupancy and regulate systems in real-time.

Although these models are designed to adapt to real user needs, once built their

predictions are used in a static way. Since these approaches are intended to study

the process that generates the data in that particular way, most of them are based
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on generative models where the signal producing the data is studied to better

understand relationships between inputs and outputs and the ‘true’ signal that

originated the data. Offline models are based on batch learning approaches, which

have the advantage that they can analyse information from data such as class bal-

ance, prior probabilities or how the inputs distribute for all the data (supposing

that we have enough samples to assume that the total of the data accurately rep-

resents the properties and underlying patterns of the population from which has

been originated).

• Online Models: This category includes the models designed to perform ‘live’

occupancy detection. This approach consists in feeding data in real-time to es-

timate at any given time the most likely state or activity. After the model have

been trained, the data is processed in a streaming fashion. Although most of these

models could work in an offline setting, these are specifically designed to be able

to cope with scenarios in which the data is fed on an stream fashion into the

model. Therefore, these models don not have access to future data in the moment

of making an state prediction, so they need to make predictions with partial data

available. These models are often equipped with ways where they can gradually

learn from each new sample by updating the model parameters evaluating the

model response step by step (incremental learning). While offline models are use-

ful to study and reproduce previous occupant patters in buildings, online methods

allow to use OBPM in real world applications that can benefit from a real-time

state prediction. Systems such as smart homes can be made responsive of cur-

rent occupant needs to improve the user experience or critical decisions can be

supported by these models in applications such as elderly monitoring or security

systems.

In following sections will see that similarly to occupancy models, activity models can be

divided in offline and online approaches (See Fig. 2.2).

2.2.3 Offline Modelling Approaches Of OM

One the of pioneering approaches to measure the relationship between occupancy and

environmental aspects was proposed in [32]. In this study, PIR sensor data was fed into
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Figure 2.2: OPBM can be divided into occupancy models (OM) and Activity Pattern
Recognition (AM), which can be subdivided into Offline and Online models.

an algorithm based on heuristic rules to control tasks in an offices building environment.

At the time, the major limitations were the ineffectiveness of the sensors in terms of

the high number of false detections (noisy data) and the technical problems for their

implementation [33][10][34][35]. However, despite these problems, these early approaches

showed that addressing occupancy could be helpful to improve building systems usage

efficiency through a more realistic use of the BEMS.

In the work in [33], a model for the regulation of lighting systems was proposed. Using

motion sensors, they claimed this model could reduce lighting operating costs between

35% and 75% when adapting its use to an occupancy schedule based on real user oc-

cupation data. The modelling approach consisted in the use of pareto distributions for

lighting times delay modelling and Grey systems to model lighting sequence data.

These initial developments motivated a growing interest in studying the building systems

actual usage rather than assuming fixed schedules, noting a potential to make BEMS

use more effective and efficient. Based on this, following approaches included stochastic

processes techniques to build their models, as in Dodier et al. [34] and Page et al. [10];

which also used data from PIR sensors. The idea of modelling human occupancy pat-

terns as stochastic processes, was intended to provide the algorithms with the ability to

incorporate the random nature of human behaviour.

Dodier et al. [34] approach consisted of an algorithm based on Bayesian theory and

Markov Models. Motion sensors such as PIR were the first most popular choice due

to their ubiquity and technical simplicity. However, they complemented the motion

data with sensors connected to the phone in the office to overcome periods of low user
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mobility, making the predictions on those intervals highly dependant on specific sensor

events (potentially solved with rules).

Page et al. also used motion sensors (PIR) deployed in the LESO building. In this

case, the dataset contained almost three years of occupancy data from sensors deployed

in over 50 office spaces. Page’s work was specially relevant due to the large amount of

data they managed to collect (occupancy data was really scarce at the time) and the

inclusion of Markov chains. In this work, they studied the behaviour of occupants in

an office under an stochastic scope, thus pioneering the research of time-related aspects

such as arrival and departure time, weekends and periods of long absence. This work was

particularly relevant due to the amount of data used for training the model. However,

these approaches were only concerned in the creation of simulated profiles, and the use

of this data was limited to simulation tools.

These researches however, showed that occupancy patterns were dynamic and dependent

on human behaviour uncertainty, and therefore crucial to understand occupation and its

impact in a more realistic way. This ideas represented an important breakthrough since

they marked the starting point of the more advanced techniques we have nowadays.

Following these previous research lines, other authors also combined sensor data and ran-

dom processes for human behaviour modelling in the future. The work in [36] presented

an algorithm constructed from LESO building data and Markov decision processes; in

this occasion focused in window openings regulation. They identified windows as a

critical element in the final performance of buildings, hence the need to address their

apertures in order to improve energy efficiency. Although they claimed high levels of

performance, these models were only focused of profile creation and only suitable for

scenarios where windows were a determinant factor in terms of triggering the occupants

responses.

More recently, [37] incorporated novel techniques based on a genetic programming al-

gorithm to model occupancy based on the LESO building dataset as in [10][36]. This

model was designed to perform presence/absence classification and improved the accu-

racies from previous models (over 80%) as well as they proved how temporal context is

essential for the modelling of human activities in buildings. TIme started to appear as

a significant feature for the success of modelling such occupancy states.



Chapter 2. Literature Review 19

In [38], an HMM based algorithm was designed to map occupancy patterns for the

control of lighting systems in an office building. This model could also be used to

generate data and patterns instead of making state prediction. This information was

later introduced into building energy simulation software such as ESP-r or Energy+

to predict energy consumption under certain conditions. Models progressively were

increasing their complexity and frequently their performance. However, accuracy levels

were far from perfect and many times the robustness of the models was limited tp the

use of specific sensors and layouts.

The work in [39], presented an agent-based system based on synthetic data to estimate

energy consumption. This study was more focused on appliances and equipment be-

haviour rather than actual occupant behaviour. However, in this occasion they had

to back their predictions in smart meter data ad an input, making this approach not

suitable for buildings lacking this type of devices.

In [40], they proposed another multi-agent model (the learner agent being based upon

Markov Decision Problems), arguing that an energy reduction of the 20% could be

achieved by introducing simulated occupant comfort patterns. In this case, the data

was collected through temperature sensors in a university building recreating offices

conditions. This work was one of the few that actually related their model to an actual

predicted value of energy savings. It also showed how recent modelling approaches used

multi-agents to the creation of complex systems in which the machine learning classifiers

were only a part of the system.

More recently, in [41] another multi-agent based approach was proposed. In this work,

they presented a Particle Swarm Optimisation (PSO) algorithm as the central agent for

the model. This model attempted the regulation and control of temperature, illumi-

nation and CO2 concentrations in an office building scenario. They sought to create a

system which could maintain indoor comfort parameters in adverse situations such as

energy shortage, though evaluated with synthetic data. Even though multi-agent models

were claimed to be ale to improve accuracy and robustness, sensors were still showing

limitations and data nature still represented one of the main pitfalls to overcome for

these models.
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2.2.4 Online Modelling Approaches Of OM

Alongside the accessibility of internet, faster networks and data ubiquity, researchers

have developed models for detecting real-time occupant estimation. These models are

based on making predictions in online scenarios when not all the data is available (only

current time data), meaning that data is feed progressively into the model as the time

advances.

One of these novel approaches is the work in [14], where they presented a HSMM based

algorithm, arguing they could improve HMM based ones, since HSMMs include the

advantages of Markov models, but enhanced with a predetermined duration time for

different states. This allegedly added more flexibility when modelling transitions between

states (HMMs transition time distributions are inherent exponential, while HSMMs

transitions can be modelled as for instance normal distributions). In [20], the authors

extended their experiments including novel techniques such as SVM and ANN. The aim

of this work was to establish baselines to compare algorithm performances and which

were the advantages and drawbacks of each method. From this work, they concluded

suggesting that other considerations related to the nature and pre-processing of the data

could have a significant impact on the final performance of the model. These works also

used a combination of sensors, claiming getting better results than using just one type

of sensor (potential savings of over 30% energy if implementing the right occupancy

profiles).

Later, in the work in [42], the authors presented a model based on a combination of

wireless sensor devices including PIR and contact door sensors. In this work, they iden-

tified some of the technical issues present when working with Wireless Sensor Networks

(WSN), such as battery lifetime or the need for looking into more permanent solutions;

with the objective of preventing these issues to tamper with the models’ potential re-

sults. Here, the potential savings were estimated aroung 15% but compared to other

modelling approaches and using low-cost off the shelf sensors.

Although many researchers were claiming that a combination of various sensors may

allow the development of more accurate models [43][44][45], the authors in [46] proposed

an algorithm for presence detection that, after being tested with multiple sensors com-

bined, it showed better results when only PIR data was used. This suggests that the

use of one single type of sensor might be advisable when facing deployment constraints,
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as well as it points towards the idea that some sensors encode more quality information

than others in this field. This work claimed to get high levels of accuracy over 90%, but

it was limited to the presence detection of a single occupant only when sitting at his/her

desk.

One of the few occupancy models addressing a domestic scenario was the work in [44],

where they used motion and temperature sensors to detect presence and regulate heat-

ing valves for each room. However, their algorithm estimations were based mainly on

RFID data and the ambient sensor data was used to contrast and relate occupation to

temperature values. The research in [47] also used RFID sensors in combination with

a k-nearest neighbour (kNN) algorithm for occupancy estimation and tracking. How-

ever, as discussed above, these sensors are not usually used in OM for intrusiveness and

ubiquity issues.

In the work in [45], the authors proposed a model in which indoor parameters and energy

consumption data was introduced as inputs into a model based on Neural Networks

and Fuzzy Logic for number of occupants estimation. Data from temperature sensors

was used to study appliances usage, and server watchdogs were used to monitor PC

connections. Coupled with outdoors data, this work claimed to improve energy efficiency

and occupant comfort, though little information on the actual performance of the model

was reported.

In [43], a rich-sensor device was also introduced including temperature, humidity, mo-

tion, sound, light, CO2 and door state sensor. The model was able to establish the

number of occupants in communal rooms. This work identified CO2 levels as the main

indicator among the rest of the inputs. They compared different machine learning mod-

els (linear regression, perceptron and SVM) to perform occupant detection; claiming

performances over 90% for some classifiers, with a sampling time resolution of 15 min-

utes.

Lately, other works were proposed to perform similar detections such as in [48] and [49],

both performing occupant number estimation up to 8 occupants. These contributions

represent some of the latest achievements in occupancy models for Online detection and

have similar characteristics: both built their algorithms upon ANN models (in [48] the

model was built upon Time Delayed (TDNN), while in [49] opted for radial basis function

neural networks (RBFNN)), and also identifying specific sensor inputs as having more
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impact than others for the occupancy estimation. Another interesting contribution from

these works was the study of the increasing error rates when attempting to forecast much

time in the future. The main limitation is that models based only on one type of sensor,

in this case CO2 are prone to errors specific to those sensors and their use in OBPM

models [50].

Table 2.1: OM approaches. For multi-agent models, we state the algorithms used
by the learning agents. Sensors legend: Mo: Motion, Co: Contact, C2: CO2, Te:

Temperature, Hu: Humidity, Li: Light, So: Sound, RF: RFID, MeT: Meters

Models Task Sensors
Research
Active
Period

Refs.

ANN
FuzzyLogicNN,
RBFNN,
TDNN

Presence Detection,
Number Estimation

Mo, Te, Li,
C2,Hu, Li,
So

2010-2013
[20][51][48]
[49][52][53]

Markov
Models

HMM,
HSMM

Energy Performance,
Number Estimation,
Presence Detection,
Tracking

Mo, Te, Li,
C2, Hu, Li,
So

2009-2012
[40][14][20]
[10] [36][38]
[54]

Stochastic
Pareto,
Belief
Network

Presence Detection Mo, Co 2005-2006 [33],[34]

Multi Agent
PSO Learner,
Markov-Based
Learners

Energy Performance
MeT, Te, Li,
C2

2012-2013 [40],[41]

SVM
Multi-class,
RFB

Number Estimation
Mo, Te, Li,
C2,Hu, Li,
So

2010-2012
[20],[43][12]
[43][53]

Heuristic and GP
Knowledge-
Driven
Classification

Presence Detection Mo, Co 2010
[42][32][37]
[7][46]

SVM
Multi-Class,
RBF

Number Estimation,
Presence Detection

Mo, C2, Te,
Hu, Li, So,
Co

2012-2013 [43][53]

Regression
ARMA
Linear,
Logistic

Number Estimation,
Presence Detection

Mo, C2, Te,
Hu, Li, So,
Co

2012-2013 [43][53]

Perceptron
Multi-
Layer

Number Estimation
Mo, C2, Te,
Hu, Li, So,
Co

2012 [43][53]

Multi Agent
SVM,
Regression,
Perceptron

Number Estimation,
Presence Detection

Mo, C2, Te,
Hu, Li, So,
Co

2012 [43][39]

Other works attempted to make predictions of occupancy states at some point in the

future. The work in [54], sought prediction in energy consumption with 24 hours in

advance, showing the unacceptable rate of error (model accuracy lower than 50%) when

forecasting with such large period of time in advance. This suggested more reasonable

time spans were advisable. The data collected from the energy meters was used to

extract occupancy patterns in order to create usage profiles.

The previously mentioned work in [43], also was deigned to perform future estimation
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of numbers of occupants. Results for forecasting were obviously significantly less accu-

rate compared to those for normal Online detection, and showed how difficult this task

becomes when expanding the prediction line into the future. In this work, the data

was discretised in timeslices of 15 minutes, but performance error was only manageable

within the following timestep (15 minutes in advance), achieving accuracies between

67% and 75%.

Lately, the research conducted in [53] used a Bayesian combined forecasting approach

evaluating several different models performance such as TDNN, SVM and Regression.

Using a setting of 10 minutes time model resolution, they tried to predict presence be-

tween 10 minutes and 2 hours into the future. However, experimental results suggested

predictions over 6 timesteps in advance (60 minutes) yielded unacceptable error rates.

As occurred with other similar contributions, these proposals showed potential for oc-

cupancy forecasting, but always within certain time limits due to the inherent error

introduced when making future state predictions.

Occupancy models are summarised in Table 2.1.

2.2.5 OM Considerations

There has been a clear timeline of progression in which static models combined with ‘live’

sensor techniques enabled real-time detection and further occupancy forecasting. Many

works suggested that data from simple binary sensors such as motion have the potential

to be used to estimate occupancy by itself under certain circumstances [10][34][46][32].

However, recent work showed that by using combinations of low-cost sensors, occupancy

states prediction can be further boosted and used to help in the control of building

systems [20][43][55][56].

In spite of recent advances in the Internet Of Things (IoT) and data fusion [57], these

approaches are not always capable of modelling the complexities of the relationships

with the occupancy states and the correspondent sensor signals. While sensor signals

can carry important information by themselves, this sensor information suffer from lim-

itations in terms of latencies, false positives/negatives, noise, physical layout limitations

and so on [50][58][59]. To improve the predictions that can be made from sensor data,
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it is necessary to develop models that can incorporate the data and overcome the men-

tioned issues. This together with the potential for different applications in the smart

buildings context, are the main motivations for the creation of OM models and why this

is an important research topic nowadays [13].

Recent occupancy models are pushing to improve accuracy, mostly in online scenarios

where the streams of data are constantly changing and in predictive tasks where the error

rates increase as the window for prediction becomes longer. Due to this, these models

cannot give accurate predictions when attempting to do so using a long time window.

Also, in order to understand the real differences between model results, more bench-

marks and comparable frameworks are needed where the impact of different datasets,

sensors and deployments can be assessed alongside the actual model performance. Addi-

tionally, more datasets need to be made publicly available in order to use them for model

comparison and also to prevent the lack of data being a constraint for the emergence of

new proposals. Despite some data has been made available and the existence of sensor

test-beds, little current public datasets include relevant occupancy data including typi-

cal occupancy sensors such as temperature or CO2 labelled with number of occupants

present together in one space.

2.3 Activity Modelling Approaches

2.3.1 Activity Modelling Definition

Activity recognition models, are primarily focused on domestic scenarios and their main

task is usually ADL classification. This section covers existing approaches related to

modelling high-level activities [60] (i.e. sleeping or eating) based on non-intrusive sensor

data. User activities will be estimated from sequences of sensor data and the models will

attempt to identify patterns in order to infer which activity is being conducted. Normally

for these activity models intrusiveness does not pose such a problem as happened with

public buildings, since homes are inherently private spaces and the information would not

be usually disclosed to third parties except in cases where there is an explicit agreement

by the user in doing so (healthcare monitoring, security, etc.).
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The main applications for activity models are digital houses (automatic media and smart

appliances) designed to improve the user experience, healthcare monitoring systems,

security and finally energy management and reduction. Due to this, we can expect for

these scenarios to incorporate a higher sensor density and diversity (the latter depending

of the complexity of the activities intended to model). Beyond ambient sensors, AM

models require sensors attached to TV and media devices, appliances, communications

or to the users themselves like RFID or smart phones data.

2.3.2 Offline Modelling Approaches Of AM

One of the pioneering works was proposed in [17] where the authors used data from

RFID and wireless sensors (temperature, light and PIR) and contacts to detect phone

calls. By means of fuzzy sets to integrate them, they used HMM to run the model

limited to 3 scenarios in which lights, music and TV were regulated.

In [61], they also used Markov models but with datasets from Georgia Aware Project [62]

and MIT House [26], which consisted of data from pressure mats made of piezo sensors

to detect movement patterns at home (user tracking). These pressure mats provided the

paths users were following, and the Markov models were used to model the likelihoods

of any of those possible paths.

More recently, the authors in [63] tried to overcome one of the major challenges in

AM modelling: multi-occupancy. They intended to tackle this problem by describing

collaborative activities, which were as the typical ADL but assuming two different users.

Activities were defined respectively for each occupant, 4 of them being cooperative

leaving 7 activities as individual ADLs. They used the WSU CASAS Datasets [64],

which included motion, temperature and analogue sensors for water and stove usage.

The works in [65][66][21] made a significant contribution to the field since they made

public their datasets and presented benchmarks for different model performances in-

cluding HMM, HSMM or CRF. These datasets included sensor readings from PIR for

motion, contact for doors and drawers and a float sensor for the flush. A number of

other researchers used these datasets as in [12][2][67][51] or [68]. Based on the combined

experimental findings, it was noted how contextual factors can have a huge impact on
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the model performance, which is crucial to understand which model is better suited for

determined scenarios and datasets.

The work in [2], presented a model based on active learning techniques. Their objective

was to find patterns within the ADL sequence in order to reduce the data necessary

to define an activity; hence a reduction in labelling efforts. This is a crucial aspect to

address since one of the main constraints for occupancy and activities is the scarcity of

labelled data.

Active Learning techniques were also proposed in [67], where they used clustering tech-

niques and unsupervised learning claiming obtaining as much accuracy as those ones

using other traditional approaches; thus avoiding the need for large amounts of labelled

data. Moreover, their model was able to address overlapped activities. Overlapping and

concurrency are among the major challenges for activity models due to the difficulty

to distinguish between two activities happening at the same place and time, or when

activities are momentarily abandoned to perform any other task in the meantime.

In [57], they also tried to address these issues by means of an algorithm based on

web ontology language (WOL). They claimed that, since it is particularly difficult to

mathematically define a differentiation of chain sequences when occurring at the same

time, WOL and knowledge-driven techniques are particularly useful to overcome this

limitation. Another promising work addressing multi-occupants in activity models was

the one in [68] where ontological knowledge-driven methods were used too, although

limited to two occupants.

Lately, authors have been designing models with more recent machine leaning approaches

found in activity modelling literature. While in [69] they proposed a model based on

back propagation ANNs, in [70] they opted for the inclusion of GP algorithms in order to

find the optimum weight value for an ensemble model including various ML techniques;

both using the datasets from WSU CASAS [64].

It is interesting to note that, despite the increase in popularity of novel approaches

such as ANN or SVM models, traditional approaches such as HMM or HSMM have

been among the most popular approaches found in existing contributions: e.g the works

in [17][61][63][65][54][67] used Markov models due to their ability to model state and

sensor sequences.
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2.3.3 Online Modelling Approaches Of AM

As occurred with occupancy models, online activity models can also be found in current

literature. The approach is also similar and involves the detection of activities using

streaming data and in occasions incremental model update.

In the work in [71], the authors introduced an ANN-based for abnormal behaviour de-

tection for healthcare monitoring. However, their online approach was the development

of a more effective way of training a neural network in order to allow re-training be-

tween inferences. This approach did not however attempted to update parameters for

incremental learning and just introduced a more efficient way of model retraining.

A similar approach was followed in [72], where a model to fast and effectively retrain

support vector machines was proposed. It consisted in using the first model training

parametrisation to find the support vector and use only them for model retraining.

Although this paper showed good learning rates and inferences, model parameters were

never incrementally updated.

In [51], a finite state automata was used to remove sensor redundancies and therefore

reduce the amount of data to train and test the model. The authors claimed this was

an efficient way to allow online detection but experiments validating this approach were

not conducted.

Another recent activity model is the one in [73], where they used a learning automata and

fuzzy temporal windows. Although this method was only intended to detect abnormal

behaviour vs. normal behaviour (not ALDs) they were able to perform incremental

online learning for the learning of future patterns in the data.

One interesting approach using window segmentations was presented in [74] where they

shown methods to create variable windows with sensor events that could be used to im-

prove activity model performance. This approach was based on the idea of incorporating

mutual sensor information, time inputs and previous window information to maximise

the amount of information needed to make a reliable activity prediction.

The time window approach was also used in the work [75], where they presented a

knowledge-driven approach based on ontologies claiming that this model can be adaptive
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to future changes in data and data patterns obtaining high levels of accuracy using

synthetic generated data.

Although activity models literature is extensive, it is not easy to find incremental online

learning models within this particular field. Some methods use the idea of improving

the efficiency of the training phase (as described above) in order to make the model

able to be retrained in the time between the incorporation of a new sample. Models

that pursue the incremental updating of parameters to improve efficiency and prevent

gradual model complexity increase and unlimited data storage are still scarce for this

particular modelling approach.

A summary of existing AM models is shown in table 2.2.

Table 2.2: Activity modelling. The ADL number in brackets represents the number
of different model states or activities performed. Sensors legend: Mo: Motion, Co:

Contact, Te: Temperature, Li: Light, RF: RFID

Models Activities Sensors
Research
Active
Period

Refs.

Markov Models

HMM
HSMM,
CRF
SCRF

ADL(16act),
Multimedia &
Luminance
Control

RF, Te, Li,
Mo, Co

2014-2016

[17][61][63]
[65][67][66]
[21][2][12]
[72][74]

ANN ANN ADL(8act)
Simulated
(Co, Mo)

2008 [71][69]

Knowledge Driven
Ontologic
Knowledge-Driven

ADL(8act)
Concurrent

Mo, Co 2014 [75][57][68]

Finite,
(fuzzy)Learning
Automata

Finite
State
Machine

ADL(16act) Mo + Multi 2013 [51][73][70]

2.3.4 AM Considerations

Despite recent advances, activity models need to overcome specific issues. Multi-occupant

scenarios where concurrency and interleaving of activities happen together with the pos-

sibility of having more than one user performing ADLs at a time, seem to be the major

challenges these models faced based on the woks surveyed. Additionally, the datasets

and sensors used, the way the data is pre-processed and the methodologies chosen for

model validations, have a large impact on the final results and performance reported.



Chapter 2. Literature Review 29

2.4 Discussion

After thoroughly reviewing the existing approaches for OBPM, we identified a series of

critical aspects that need to be investigated in more depth.

2.4.1 Main Achievements

Machine learning approaches combined with sensor data have shown potential for mod-

elling occupant behaviour patterns both for occupancy and activity models. Table 2.3

shows popular techniques that appear in literature frequently. For example, Markov-

based models including HMM or HSMM are the most used so far, however other methods

such as ANN and SVM have recently shown increasing popularity. These approaches

provide better ways to potentially manage energy consumption in buildings by incor-

porating occupant comfort and behaviour parameters into the final decision making

process. This means that these models can use the sensor information to adaptively

manage building systems in order to improve efficiency while maintaining user com-

fort. Moreover, the rapid development of computing technology and its ubiquity also

contributed to the quick growth of new techniques in the field.

Table 2.3: Existing machine learning modelling approaches for OBPM.

Modelling Approach Task Works

Markov-based Models
Presence Detection
Number Estimation
Activity Recognition

[10],[36],[38],[40],
[14],[20],[54],[17],
[61],[63],[66],[67],
[21],[2].

ANN
Presence Detection
Number Estimation
Activity Recognition

[20],[51],[48],[49],
[45],[47],[69].

SVM
Presence Detection
Number Estimation
Activity Recognition

[20],[43],[53].

Other Machine Learning

Presence Detection
Tracking
Number Estimation
Activity Recognition

[47],[43],[53],[67],
[46],[66].

Multi-Agents
Energy Performance
Presence Detection
Number Estimation

[39],[40],[48],[43]

Genetic Programming
Presence Detection
Activity Recognition

[37],[70]

Knowledge-driven
Presence Detection
Activity Recognition

[42],[44],[57],[68]

Access to publicly available datasets and ubiquity of sensor have largely contributed to

the success of these models and their increasing popularity among many research groups.

However, there is still the need for more comprehensive and bigger datasets, specially



Chapter 2. Literature Review 30

including occupancy data from diverse scenarios or using multiple different sensors. In

fact, the number of works using public data is over 60% in activity models, while drops

to around 15% of the works surveyed related to occupancy models.

Furthermore, although there is no restrictions on this regard, we have noted that models

tend to fall naturally within either OM or AM types. Every OBPM previous work

follows one of these approaches following the selection criteria for scenario, sensor and

classification tasks.

2.4.2 Main Limitations

In spite of encouraging work, current state-of-the-art approaches suffer from limitations

including:

Data Nature: Data quality is one of the main issues that affects model performance

of occupant behaviour modelling, and it is determined by the quality of the sensing

devices, the topology adopted (e.g. wireless, cable, sensor networks), transmission rate

(resolution), noise, sensors layout or the physical characteristics of the building among

others. More work is needed to study which specific sensors provide better occupant in-

formation in buildings, and which are the best practices for sensor selection and physical

network deployment.

Despite encouraging work [13][76], it is not an easy task to say which sensors are better

suited depending on the modelling approach. For example, PIR sensors are the most

common in occupancy and activity models. However, as some research pointed the con-

venience of using sensor combinations and other sensors started to be more ubiquitous,

different sensing options become available (i.e. temperature, humidity, sound and air

quality). Due to all these considerations, sensors will have to be carefully considered to

ensure they will be able to capture the relevant real-world information to fit the needs of

the model to be designed. Some works have addressed this issue [50][58][59], but these

are scarce and more reliable comparisons need to be made. For example, in the work

in [50] they identified specific limitations in the current literature and the use of diverse

sensors (e.g. PIR have many false positives while CO2 has better accuracy but low

responsive times) or on the work in [58] where they claim sensors need to be calibrated

for each potential use.
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Sensor selection is one of the most important challenge in the field as many models

used different approaches and some of them seem to have its own importance depending

the application the model is built for. This challenge increases with the fact that in

our context we only want to consider non-intrusive sensors, which naturally offer ‘less’

richer information compared with a video-camera or some data collected from smart-

phones or wearables (for example, it is challenging to track a person’s movements using

PIR, temperature or CO2 sensors while it is easier using the GPS coordinates from her

phone).

Data Pre-Processing: Based on the works surveyed, many authors noted that the way

data is pre-processed can also have a large impact on results [65][21][64][77]. Sensors’

signals require a transformation to make them readable for the model through pre-

processing stages. In these steps, data is converted into variables after being re-arranged

and discretised. These are critical steps as pointed by previous works that showed

how different system granularities can have an impact over the model performance [77]:

e.g. models making estimations with a frequency of 60 seconds, will be in much more

disadvantage that models performing a 30 minutes window prediction, since obviously

the information collected from sensors in 30 minutes will have much more data than

information collected each minute and more time to process it. In addition, model

resolution will by constrained by the specific sensor/network transmission rate, data

nature and the model operational time.

OnLine settings: Online models need to be able to handle streaming data. This

represents a two-fold challenge:

• Models need to make predictions without a batch of data, therefore not knowing

how data is going to look like posteriorly, and

• It is not unusual in online settings that models will be required to update their

parameters incrementally as new data is continuously fed.

With the appropriate design, complex algorithms can also be used for online learning

such as SVM [78][43], ANN [79]. However, when the time models have to perform certain

operations is limited, complex models can be too slow to be used ‘on the fly’. Further-

more, since these models parametrisations are commonly based on gradient descent

algorithms and complex optimisation functions it has been noted that their incremental
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update can be even more complex and slow than retraining the model using all the data

again. Contrarily, Markov models have nice properties for parameter update as well

as a more clear representation of the data relationships due to their generative model

properties. However, these updates are limited when models need to process partial

streamed data.

Finally, from our literature review analysis we can extract some interesting ideas:

• Many techniques are available and some existing works claim being highly accurate,

but more effort to assess and compare those results is needed in order to evaluate

what are the best methods.

• OBPM recent datasets are increasingly heterogeneous and variate, based on mul-

tiple sensors, deployments and data acquisition and pre-processing techniques.

Therefore, there is a need to investigate how models can handle different data and

what role data nature holds in the final model performance.

• Models that address online scenarios are not perfect and in some cases they need

to be more accurate and efficient. There is the need therefore of developing ap-

proaches that take into account the diverse challenges and limitations OBPM mod-

els face in order to find solutions more robust and adaptable.



Chapter 3

Benchmark Experiments Based

On Existing Approaches

This chapter presents a benchmark of experiments where we have conducted a thorough

comparison and evaluation using well-known machine learning techniques for OBPM

based on publicly available real datasets using metrics of performance evaluation such as

accuracy or precision. Additionally, in order to better understand which are the factors

that might have an impact over the overall model performance, we have conducted

supplementary experiments where we have investigated and identified other aspects and

limitations that could affect the accuracy of the models as well as tried different methods

in relation to data preprocessing approaches.

The following sections provide more information about the experimental settings in terms

of the used datasets, methodologies and ways of conducting performance evaluation.

Regarding the datasets needed to train and validate the models, we firstly introduce

different publicly available datasets, from which we have selected two of the most relevant

to conduct our experiments. We define the methodologies we have selected for our

experimental evaluations and we discuss the results obtained.

3.1 Motivation

One of the critical conclusions drawn from our literature review, is that models are not

perfect and more work needs to be done to understand how these occupant patterns in

33
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buildings can be more accurately modelled [80]. Analysis of current works suggested

that it is crucial to investigate not only model characteristics, but also data nature as-

pects, and their impact over the model performance [38][9]. To investigate how models

behave under similar conditions, we have conducted a benchmark evaluation using some

of the most prominent machine learning techniques found in literature. Additionally,

in order to find the more robust approaches for OBPM modelling, we have evaluated

model performance with different datasets containing data from a variety of sensors and

collected by different research groups. To further prove model robustness and general-

isation properties, we have also conducted supplementary experiments using different

data pre-processing techniques consisting of the timeslice approach using different time

resolutions and a comparison with a chunk data approach [77]. The decision of choosing

these datasets has been made under the following considerations:

• These two datasets have been previously used successfully in other researches,

therefore are representative and relevant datasets in our context[21][81].

• Previous works [65][66][21][64][74], using these datasets have provided with thor-

ough model evaluations using different ML and preprocessing techniques. This

enables us to have a framework of evaluation where we can compare the results

obtained through our own experiments.

• These datasets include a variety of sensors and pre-processing approaches, therefore

allowing us to additionally study how contextual factors have an impact over the

model performance.

3.2 Publicly Available Datasets

Although this trend is changing, there are not many publicly available datasets for

OPBM. However, having access to this data is critical for two main reasons: a) It

enables other researchers to design and evaluable their proposals using data from real

world scenarios without having to set their own collection system up; b) Having data

from different groups and scenarios is critical to evaluate model generalisation and to

create benchmarks of performance for existing approaches.

Some examples of publicly available datasets include:
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• UCI Machine learning repository (http://archive.ics.uci.edu/ml/) is one of the

most popular sources for data that can be applied to machine learning related

project including sensor data.

• CRAWDAD (http://crawdad.org/purpose-Human-Behavior-Modeling.html) Which

stands for A Community Resource for Archiving Wireless Data, has an specific

Human Behaviour Modelling section, which includes several datasets including

mobility data, data from smart phones or location and proximity data.

• Finally, other important source is the Boxlab (https://boxlab.wikispaces.com)

repository, which contains a large number of home datasets. This depository is

only focused on “instrumented living environments ”. Projects that have uploaded

their data here are: Aware Home at Georgia Tech [62], CARE [82], PlaceLab [83]

among others.

Apart from those larger datasets, there are single datasets collected for groups for exam-

ple: CASAS [64], DomusLab [84], Aras [1] or Tim Van Kasteren’s [21]. These datasets

were collected from different ambient sensors, scenarios and teams, so they are specially

useful to test models’ adaptiveness, and can be used as benchmarks to compare the

different modelling approaches.

In order to perform our benchmark experiments, we selected WSU CASAS [64] and Tim

Van Kasteren’s [21]. These datasets contain sensor inputs and human activities labels,

so they can be used to create OBPM approaches. These two datasets contain different

sensors and also have already been used for model performance comparison, which make

the ideal for the purposes of our experiments. More information about these datasets is

given in the following sections.

3.2.1 Experimental Datasets

For our experiments, two datasets have been selected (D1 and D2) from previous human

behaviour detection studies: D1 was published by [21] and was originally used for ADL

recognition purposes, and D2 was made publicly available by WSU CASAS [64] and also

used for ADL recognition. These two datasets have been selected for our experiments in

this work because, in addition to making public their datasets, both projects provided

their own baseline recognition performance experiments. These are extremely helpful
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since, by using the same data, the performance of the models proposed in our project

can be compared and evaluated under similar conditions. Other important consideration

for the choice of these datasets was their substantial length (D1 contains over 42k sensor

readings and more that 800 activity occurrences and D2 has over 600k readings including

600 activity annotations). Finally, the variety in sensor nature found in the two datasets

(D1 is based on 5 various types of sensors while D2 is mainly based on just motion

sensors) will also be useful to understand variations in performance when models are fed

with data from different sensor nature.

3.2.1.1 Dataset 1 (D1)

D1 data was collected from three scenarios: House A, House B and House C. D1 data

collected uninterruptedly and divided in days. The types of sensors found here are

motion passive infra-red (PIR), reed switches, pressure mats, mercury contact sensors

and float sensors. For example, House A has a total of 14 sensors and the labels were

annotated by the occupants using a Bluetooth voice detector device rather than other

scenarios in which the activities were just written down on paper. Further information

can also be found in: https://sites.google.com/site/tim0306/datasets.

Data annotation was made using two sets of annotations. The first set refers to sensor

events which were recorded using 4 columns stating the start time, the ending time,

the sensor ID and the value of the sensor. Note that, as all the sensors included in

this dataset are binary, the state is always 1 (ON) since it only reflects the time the

sensor has been active. The second set also indicates starting and ending time but for

the activity performed in that interval, therefore indicating the ID for the activity being

performed. The numbers of activities go from 10 in House A, 13 in House B and 16

in House C. Fig. 3.1 contains an example showing how this dataset is annotated. In

Fig 3.2 (Source: https://sites.google.com/site/tim0306/datasets) we can see a detail of

the floor distribution of the scenarios and in Tables 3.1-3.4 there are the general details

of this dataset.
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Figure 3.1: Example of annotation for Dataset 1. The first rows are the sensor
annotations and the latter ones are the activities labelling.

Table 3.1: D1 General Information.

HOUSE A HOUSE B HOUSE C

Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6
Duration 25 days 14 days 19 days
Sensors 14 23 21
Activities (Including Idle) 10 13 16
Annotation Bluetooth Diary Bluetooth

3.2.1.2 Dataset 2 (D2)

This dataset was collected using 27 motion sensors deployed in a domestic scenario

through 56 days, though this dataset was not labelled continuously. Unlike D1, this

dataset contains only motion sensors events. Nonetheless, as we will discuss in future

sections and proven before by many researchers [10][33][34][85] and many other models

reviewed [57], motion sensor data proves to have the potential to provide information

enough to accurately perform activity recognition under certain considerations.

This dataset has only one set on annotations (including sensor readings and labels),

which contains 7 columns stating the time, the sensor ID and the value of the sensor as

in D1, which in this case can be either ‘ON’ or ‘OFF’. In addition to the sensor event, in

the same line we can also find when an activity starts (denoted by the activity label plus

‘begin’) or ends (denoted by ‘end’). This dataset features a total of 10 activities. For
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Figure 3.2: Floorplan D1, House A, House B and House C. The red rectangles rep-
resent the sensor nodes.

further information visit: http://ailab.wsu.edu/casas/datasets/. An example showing

the annotations in this dataset can be seen in Fig. 3.3. In Fig 3.4 there is a floor map

for this dataset and other details can be seen in Table 3.1 and 3.6.

3.3 Machine Learning Models

Here, we briefly discuss the models that we have used in this chapter experiments. We

have chosen some of the most popular approaches found in previous literature combining

generative and discriminative models, and probabilistic and non-probabilistic techniques.

The models proposed are:
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Figure 3.3: Example of annotation for Dataset 2.

Figure 3.4: Floorplan for D2 divided in three areas.



Chapter 3. Benchmark Experiments Based On Existing Approaches 40

Table 3.2: Features and labels for D1, House A.

Sensors:

NUMBER ID NAME
1 1 ‘Microwave’
2 5 ‘Hall-Toilet door’
3 6 ‘Hall-Bathroom door’
4 7 ‘Cups cupboard’
5 8 ‘Fridge’
6 9 ‘Plates cupboard’
7 12 ‘Frontdoor’
8 13 ‘Dishwasher’
9 14 ‘ToiletFlush’
10 17 ‘Freezer’
11 18 ‘Pans Cupboard’
12 20 ‘Washingmachine’
13 23 ‘Groceries Cupboard’
14 24 ‘Hall-Bedroom door’

Activities:

1 - ‘idle’
2 1 ‘leave house’
3 4 ‘use toilet’
4 5 ‘take shower’
5 6 ‘brush teeth’
6 10 ‘go to bed’
7 13 ‘prepare Breakfast’
8 15 ‘prepare Dinner’
9 16 ‘get snack’
10 17 ‘get drink’

• HMM

• HSMM

• SVM (linear and non-linear)

• kNN

These models have been selected because: HMM and HSMM are arguably the most pop-

ular approaches for OBPM models and have been extensively used for pattern recognition

systems specially when using temporal data sequences; SVM are one of the most repre-

sentative approaches of a new generation of models that use the capabilities of modern

machines and recent developments in gradient functions or kernel functions to achieve

highest levels of performance; and finally kNN models are here included to show how
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Table 3.3: Features and labels for D1, House B.

Sensors:

NUMBER ID NAME
1 1 ‘toilet door’
2 3 ‘fridge’
3 5 ‘cupboard groceries’
4 6 ‘toilet flush’
5 7 ‘frontdoor’
6 9 ‘cupboard plates’
7 10 ‘Bedroom door’
8 12 ‘pressure mat bed right’
9 13 ‘pressure mat bed left’
10 14 ‘mercury switch cutlary drawer’
11 15 ‘mercurary switch stove lid’
12 16 ‘PIR bedroom’
13 18 ‘mercury switch dresser door’
14 19 ‘PIR bathroom’
15 20 ‘pressure mat piano stool’
16 21 ‘gootsteen float’
17 22 ‘pressure mat chair study’
18 24 ‘balcony door’
19 25 ‘window’
20 26 ‘toaster’
21 27 ‘microwave’
22 28 ‘PIR kitchen’
23* N/A N/A

Activities:

1 - ‘idle’
2 1 ‘Leaving the house’
3 4 ‘Use toilet’
4 5 ‘Take shower’
5 6 ‘Brush teeth’
6 10 ‘Go to bed’
7 11 ‘Get dressed’
8 13 ‘Prepare brunch’
9 15 ‘Prepare dinner’
10 17 ‘Get a drink’
11 24 ‘Wash dishes’
12 31 ‘Eat dinner’
13 32 ‘Eat brunch’

sometimes simpler approaches can be used for OBPM modelling with a good compromise

between model performance versus complexity.
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Table 3.4: Features and labels for D1, House C.

Sensors:

NUMBER ID NAME
1 5 ‘bed right, pressure mat’
2 6 ‘couch, pressure mat’
3 7 ‘freezer, reed’
4 8 ‘toilet flush upstairs, flush’
5 10 ‘toilet flush downstairs. flush’
6 15 ‘drawer with keys to backdoor’
7 16 ‘bathroom swingdoor left’
8 18 ‘cutlery drawer, mercury switch’
9 20 ‘cupboard pots and pans, reed’
10 21 ‘microwave, reed’
11 22 ‘cupboard storage bins, reed’
12 23 ‘cupboard herbs and plates,reed’
13 25 ‘toilet door downstairs’
14 27 ‘cupboard bowl and cups’
15 28 ‘frontdoor, reed’
16 29 ‘bedroom door’
17 30 ‘fridge, reed’
18 35 ‘bathtub, pir’
19 36 ‘dresser, pir’
20 38 ‘sink upstairs, flush’
21 39 ‘pressure mat bed left’

Activities:

1 - ‘idle’
2 1 ‘leave house’
3 3 ‘Eating’
4 4 ‘use toilet downstairs’
5 5 ‘take shower’
6 6 ‘brush teeth’
7 7 ‘use toilet upstairs’
8 9 ‘shave’
9 10 ‘go to bed’
10 11 ‘get dressed’
11 12 ‘take medication’
12 13 ‘prepare Breakfast’
13 14 ‘prepare Lunch’
14 15 ‘prepare Dinner’
15 16 ‘get snack’
16 17 ‘get drink’

3.3.1 Hidden Markov Models

These models are based on Markov sequences, which assume interdependence between

previous occurrences of classes (one previous step). This algorithm calculates the prob-

ability of a hidden state for consecutive timeslices (first order Markov chain) combined
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Table 3.5: D2 General Information.

HOUSE A

Residents 2+pet
Gender Male and Female
Setting House (3 areas)
Rooms 4
Duration 56 days (intermittent)
Sensors 27
Activities (Not Including Idle) 10
Annotation Questionnaire

with the likelihood of a state for a given sensor observation (see Fig. 3.5). The observ-

able states are the sensor readings. The hidden states that trigger those sensors are the

activities. The probability of each state depends on the observations X and the tran-

sition probability. The observations (sensor readings) depend on the hidden variable,

and the hidden variable or state depends on the previous hidden state (first Markov as-

sumption). These models are hugely popular in literature due to their ability to model

occupancy states as sequences of observations (sensors) and hidden variables (states).

Formally factorises as

P (Y,X) =
N∏
t=1

p(xt|yt)p(yt|yt−1) (3.1)

Where the joint probability P (Y,X) can be obtained by multiplying p(xt|yt) (observation

probability from sensor readings) to the state transition probability p(yt|yt−1) for each

timeslice t. Transition probability means how likely is an activity to occur by knowing

the previous one. Note that to determine the transition probability in time t = 1 instead

of the transition (we assume there is no t = 0) we use the prior probability p(yt) [15].

3.3.2 Hidden Semi-Markov Models

When dealing with activities or states that relate directly with a determined duration

(e.g. we can safely assume that a shower activity takes around 5 minutes while a night

sleep would be between 6-8 hours), it is important that the model can also describe that

kind of duration behaviour. HSMM also utilise the first Markov assumption to calculate

the current state based on the previous state as HMM, but also including a duration

parameter which model state duration using any probability distribution. Modelling

duration represents that when entering into a certain state, the model will compute a
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Table 3.6: Features and labels for D2.

Sensors: Activities:

NUMBER ID NUMBER ID
1 M001 1 Bed to toilet
2 M002 2 Breakfast
3 M003 3 Bed
4 M004 4 C work
5 M005 5 Dinner
6 M006 6 Laundry
7 M007 7 Leave home
8 M008 8 Lunch
9 M009 9 Night wandering
10 M010 10 R medicine
11 M011
12 M012
13 M013
14 M014
15 M015
16 M016
17 M017
18 M018
19 M019
20 M020
21 M021
22 M022
23 M023
24 M024
25 M025
26 M026
27 M027

likely duration in which the state will not change to next one. The equation

P (Y,X) = (3.2)

N∏
t=1

p(xt|yt)p(yt|yt−1, dt−1)p(dt|yt, dt−1) (3.3)

shows that in this occasion, we can use the HMM approach as an starting point but

including state duration p(dt). State duration probability is the time the current activity

will take and it is determined by the actual current state and the prior state duration

[16].
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Figure 3.5: HMM basic structure.

3.3.3 Markov Models Zero Emission And Transition

There are cases, especially when the datasets contain a high number of features and/or

classes, where not all the potential occurrences happen empirically in the training set.

For example, if we have 10 different classes maybe transition from class 1 to class 7

never happened in the training set. It is also possible that a sensors has never been

triggered during a determined class occurrence. In these cases, transition and emission

probabilities will be set to zero when training the model parameters using expectation

maximisation (EM) algorithms. However, there will be cases where, even though these

examples never happened in the training data, they can potentially happen in the future.

Therefore, the algorithms needs to be ready for this to happen.

This problem can be solved by applying a small probability (typically 0.001) to each

occurrence in the model observation or to each transition in the transition model, allow-

ing a small probability to these unlikely events to be at least possible. The procedure is

simply adding the small quantity to each zero value after applying the EM parametri-

sation and normalise the results accordingly (transitions and emissions are probability

matrices therefore need to add to 1 row-wise).
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Figure 3.6: Basic HMM transition example where transition from state 2 to state 1
never happened in the training set (a2,1 = 0).

Figure 3.7: Basic HMM transition example with transition smoothing.

3.3.4 Support Vector Machines

SVM models learns by representing feature points in space by creating a hyperplane,

which separates the points of different classes. The most representative points in the

boundaries are called support vectors and their position determines the final hyperplane

shape, which will maximise the distance between support vectors from different classes.

Points will then be separated into regions by the hyperplane and new classification

points will be labelled based on their region location. In order to go beyond linear

classification, SVM uses the kernel trick method, which consists of modelling feature

relations (from input space to feature space) instead of the features themselves, allowing

the use of multidimensional hyperplanes. With these hyperplanes, SVM learners can

handle multivariate data (such as from occupancy typical datasets with many sensors),

which can be thus processed and used for classification tasks.

We call our data (xi, yi) for i = 1, ...m, where m is the total number of samples, xi ∈

χ ⊆ Rd is the input of sensor readings and yi ∈ {+1,-1} represent each of the labels

(multiclass SVM also keeps as will be explained below). This model learns from data to
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find a hyperplane function such as:

f(x) = wTx + b. (3.4)

where f(x) represents the plane as a function of the training samples x, b is the bias

term and wT is the weightvector. In order to learn the model parameters b and w, we

want to optimise the function:

1

2
||w||2, s.t. yi(w

Txi + b) ≥ 1, (3.5)

which is solved by means of a Lagrangian multiplier, yielding the optimisation expression:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαjx
T
i xj −

m∑
i=1

αi. (3.6)

When (3.3) is solved using quadratic programming, returns a matrix of α coefficients

for each xi. Substituting the values in α into one of the Lagrangian constraints we can

solve the value for w and for the bias term b.

Also, the coefficients in α can be separated into zero and non-zero values. All the non-

zero values in the α matrix will correspond to what we call the support vectors, which

are the values in the dataset that determine the final shape of the hyperplane we are

learning. For more information about SVM models, we refer the reader to the work in

[30].

This kernel method enables the SVM to separate non-linear data as a linear model would

do. Although this technique significantly increases the flexibility and the potential to

successfully generalise with more complex data, it also increases the complexity of the

quadratic programming optimisation, which in turn results in a much more computa-

tional intensive task.

We will be using here both linear and non-linear multiclass SVM models:

3.3.4.1 Linear SVM

The technicalities of this model were covered in previous sections. This linear SVM

(LSVM) is a simpler approach than the non-linear SVM as this does not apply the
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input into feature space mapping. This model has shown great potential for classification

(unless the data is highly non-linear), and yields results that can challenge those obtained

by other more complex models such as MCSVM, but faster and resource efficient. This

algorithm is specially indicated for large quantities of sparse data with high number of

features and samples. To apply this approach we used the liblinear MATLAB libraries

[86].

3.3.4.2 Multi-Class SVM

The SVM is inherently a model to perform binary classification by nature. However,

many of the real-world applications need to perform multi-class classification such as

the present one. The SVM function used for our work performs the one vs. one [87]

multiclass inference approach, which has been noted as the most convenient technique

for multi classification tasks. The one vs. one involves creating a different classifier for

each pair of classes, evaluating and finally selecting the most recurrent. Ties are also

possible, this being solved most of the time by selecting a random class from the tied

labels.

As shown in Fig. 3.8, we see an example of the one vs. one classification method for

three classes (A, B and C), which also needs to learn three SVM classifiers. For a new

point d, the pair A vs. B yields A, the pair B vs C gives C and the pair A vs C will

predict class A. From the results sequence ABA, we predict the new inferred label would

be A.

3.3.5 k-Nearest Neighbours

In the case of kNN, we can observe a very traditional yet simple classification method

extensively used for pattern recognition. This model is one of the most simplistic ML

approaches, as it just computes the distance between a new point and its closer neigh-

bours to infer the label of the most repeated label amongst the neighbouring points. As

seen in Fig. 3.9, in this case a 3-NN neighbour shows that the class ‘triangle’ is the most

popular among the 3 neighbours chosen. The most recurring label will be the chosen

for the new point’s classification. For this experiments we used our own kNN function
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Figure 3.8: One vs one multiclass SVM approach.

Figure 3.9: kNN models: The proximity of other data points will indicate the chosen
label.

based on the euclidean distance, selecting the number of neighbours which reported

better accuracies. A more detailed description of this model can be found in [88].
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3.4 Experimental Evaluation

In this section we provide details on the experiments we have conducted to evaluate the

performance of several state-of-the-art machine learning techniques.

3.4.1 Experimental Setup

Let S = f(O) be our model and T a numerical set T = 1, ..., N equal to the num-

ber of training samples; the training data extracted from our datasets is {ST , OT } =

{(s1, o1), (s2, o2), ..., (sN , oN )}, where each s is the training label and each o is the sensor

reading sample. If we consider that (s1, o1) occurred at time t = 1, and (sN , oN ) at

time t = N , which is when the last annotation in the dataset, we need to specify the

time in between each time step t = 1, 2, 3, . . . , N . This is what we call timeslices. When

preparing the data for analysis, we need to specify what is going to be the resolution of

the system, that is, what is the time between samples. As the dataset has a resolution

of milliseconds, we could assign timeslice parameter as small as that value. However, if

we opt to do that we would be creating 1000ms · 60s · 60m · 24h = 86.4 · 106 samples per

day, which is computationally unmanageable. Timeslices with a duration of a second

long or more might be considered, but previous works as well as our own experiments

suggest that this length is too costly in terms of computation times and do not really

give a real improvement in terms of model accuracy. Based on previous literature and

experiments including these datasets, we set an initial timeslice duration of 60 seconds

[66][21] as these previous work suggested as the optimal value. As in both datasets the

data was separated in days, we used a leave-one-out cross validation approach for sep-

arating training and testing data. This approach consists in leaving one day for testing

evaluations while using the rest of the days for training. This is repeated for each day

all over the dataset, and the resulting accuracies are expressed in terms of the mean of

the results obtained for each day.

3.4.2 Unlabelled Data (‘Idle Class’)

Not all the data available in D1 and D2 is fully labelled. This means that not every ot

has a st label associated. This issue can be addressed in two different ways. The first

solution would be to create an ‘idle’ activity and consider it as another different class,
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Figure 3.10: D1 samples. The unlabelled data is the white region, not as big as in
Dataset 2 (between 7% and 12% of the total).

assigning every empty st to that label. The other option would be simply removing

those samples from the training data.

Previous researches using D1 kept using the unlabelled data and using the ‘idle’ activity

so we decided to keep this samples in order to maximize the use of the readings in D1.

However, for D2 this approach was not advisable based on the periods between the first

date and the last date that was not actually labelled. This is probably due to the fact

that D1 was meant to contain continuous 24 hour data. The amount of unlabelled data

for D1 was just of 12%, 7%, and 19% for House A, B and C respectively. Nevertheless, for

D2, the amount of information from sensors not associated to any activity (the frequency

of empty St) accounted for more than the 80% of the total samples. Due to this, the

classifiers trained with D2 data predicted just class ‘idle’ for all the test points due to the

massive imbalance of this new class ‘idle’ in addition to the fact that any sensor firing

combination could have an ‘idle’ label associated since we do not know what activities

were actually occurring during those blank timesteps.

To prevent this, all unlabelled datapoints had to be removed from the feature array,

thus the label ‘idle’ was not considered. Ultimately, using a discretisation of 60 seconds

between samples, D1 contained 35860 samples over 25 days and 10 activities and D2

contained a total of 9606 samples over the 56 days instead of the initial 80600 (See

Fig. 3.10 and Fig. 3.11) and 9 different activities or classes.
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Figure 3.11: D2 activity occurrence. In the over 80000 samples, more than 70000
(white area) are unlabelled or ‘idle’.

3.4.3 Model Performance Comparison

3.4.3.1 Dataset 1 Results

We have evaluated our models in terms of classification accuracy and we expressed the

results in percentages (True Positives/Total Predictions in %). After the experimen-

tal evaluation, we can conclude that HSMM clearly outperforms the accuracies achieved

by HMM and KNN, and it gives similar results as to those seen for kNN and LSV.

MCSVM performed better than the other methods evaluated in our experiment. For

example, in the House A, MCSVM had 84% of accuracy with much more consistency

with some days achieving more than 90%. Also in House B, this model clearly outper-

forms all the methods proposed in earlier works. In table 3.7 we can see the accuracies

per model and scenario for D1. In the latter scenario House C the values reached only a

44.57% accuracy, however this is still the best overall option amongst our three methods.

Table 3.7: Accuracy (in percentages) results from the Performance Evaluation Ex-
periment Dataset 1.

HMM KNN HSMM LSVM MCSVM
HOUSE A 68.49% 73.06% 70.80% 80.63% 85.60%
HOUSE B 63.51% 65.12% 82.00% 73.53% 84.74%
HOUSE C 36.54% 40.23% 44.30% 43.21% 44.57%

Regarding the kNN, results were a 73% average accuracy for House A and slightly

lower in the other two, which is not a bad performance for such a simple classifier.

We conducted the kNN inference by modifying the neighbour parameter until finding
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the peak performance when 87-91 neighbours were considered. Apart from the typical

euclidean, other preliminary measurements for distance were evaluated (i.e. mahalanobis

and correlation), yet the variations were too small to be significant and never above the

values mentioned. We kept the euclidean approach.

In the case of the HSMM model, we can see a significant improvement over its HMM

counterpart. HSMM rivals the best accuracies with the SVM approaches, getting similar

results to LSVM and only surpassed by the MCSVM.

3.4.3.2 Dataset 2 Results

In spite of the good results showed in Dataset 1, in Dataset 2 results were generally

poor (Table 3.8). All models achieved accuracies around 50%-60%. Because all models

failed to capture the patterns on the data coupled with the fact that the same techniques

performed significantly better using other dataset, we can assume that it was a problem

either with the data itself or with the way the data was fed into the models.

Table 3.8: Classification accuracy percentage results from the Performance Evaluation
Experiment Dataset 2.

HMM KNN HSMM LSVM MCSVM
Dataset2 59.85% 48.32% 50.32% 52.66% 51.60%

In spite being the model with highest accuracy, MCSVM is by far the model that took

more time to perform the calculations. While Markov models took lees than a second,

MCSVM needed several minutes in 2 of the three scenarios. Based on these times, it

can be argued that the MCSVM may be too slow to perform real-time predictions1.

Table 3.9: Time from the performance evaluation experiments. The times are ex-
pressed in seconds.

NB HMM HSMM KNN LSVM MCSVM
HOUSE A 0.84 0.91 1.41 36.76 20.58 420.85
HOUSE B 0.51 0.55 0.89 18.55 10.84 47.31
HOUSE C 0.66 0.744 1.32 27.79 31.34 829.21

1Note that in this work we have discretised our data in timeslices of 60 seconds. Therefore, we need
to develop an on-line approach fast enough to be able to incorporate a new point and give an estimated
class prediction within 1 minute.
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Figure 3.12: TimeSlice Approach House A variation results.

3.4.4 Supplementary Experimental Evaluation

The previous experiments were conducted using time steps of 60 seconds. However,

after reviewing the previous works that used the D2 dataset, we noticed that they were

proposing a different approach to pre-processing the data. In order to evaluate our model

in similar conditions and make real comparisons of our experimental results compared

to them, we proposed an alternative method for our experimental evaluation. We called

this method the chunk data approach (CDA) and it consisted in grouping together all

the samples occurring while the same state is happening. To illustrate this, we define the

differences between the timeslice approach (TSA) variation and the chunk data (CDA)

pre-processing and we evaluated these approaches using Dataset 1 and Dataset 2.

3.4.4.1 Timeslice Variation (TSA)

We evaluated the models to each scenario and observed how the accuracy changed for

different timeslices. Despite the loss of information due to the increase of the TSA

duration, models were able to show steady performances while varying the timslice pa-

rameter. The other models also maintained the values within certain levels, yet showing

some variations. However, none of them indicate any significant change except in the

case of House C, in which SVM boosted its classification accuracy from around 40% for

30sec timeslices up to over 60% for the bigger timeslices of 10 minutes. This is also an

indication of the adaptability of the support vectors to different input spaces.

Fig. 3.12, Fig. 3.13 and Fig. 3.14 show these variations for each of the scenarios in D1;

results are shown the more relevant approaches: HMM, HSMM and MCSVM.
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Figure 3.13: TimeSlice Approach House B variation results.

Figure 3.14: TimeSlice Approach House C variation results.

This might seem contradictory with the fact that the longer the timeslice, the more

information about real sensors readings is lost. However, as we are working with un-

balanced datasets, there is a chance that the samples which are going to be lost earlier

(as we increment timeslice duration), are those labelled as the less frequent activities.

Consequently, fewer classes are to be classified and the models perform better with less

infrequent states. As discussed in previous sections, D1 dataset is divided into three

different scenarios named House A, House B and House C; comprising 25, 14 and 19

days of data respectively. We have evaluated the models using different sample lengths.

We evaluated the three models for timeslices ranging from 30 seconds per sample to

10 minutes. We evaluated each scenario independently performing a cross validation

dividing the data into days, testing one of them while leaving the rest for training (leave

one out), and then calculating the average over the obtained results.
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Table 3.10: Comparison of Timeslice and Chunk approaches

Time (mins) t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 . . .

Labels Act1 Act2 Act3 . . .
Timeslices (60s) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 . . .
Chunks Sample 1 S 2 S 3 . . .

3.4.4.2 Chunk Data Approach (CDA)

All the results obtained when training the models using the D2 and the TA approach,

were really bad in terms of accuracy levels (around 50% of accuracy). Comparing our

results with the ones reported in publications associated with the dataset [64], we noted

they achieved much higher accuracies even when using similar methodologies. That

pointed to the pre-processing technique of the data as the reason of the poor performance

rather than in the model selection. Under this scope, the data was processed in chunks

instead of timeslices. Each chunk of data contained all the sensors events happened while

an activity was active. The CDA approach also implied removing all the unlabelled data

from the D2 and the final number of samples was a total of 600, which is the number

of any activity occurrence through the whole dataset. See table 3.10 for an example

comparing timeslice and chunk methods. In this figure, 3 classes (activities) occur

during 10 minutes. In the 60 sec timeslice approach, a sample is generated each minute.

So, for example, we have 6 samples labelled with Activity 1, 3 with Activity 2 and 1

more with Activity 3. For chunk approach, we simply have one occurrence of Activity

1, Activity 2 and Activity 3.

For D2 we we saw that TA approach were really poor. However, applying the CDA pre-

processing approach to the D2 made the accuracies rose to values around 80%-90% (see

Fig. 3.15). This clearly points towards the hypothesis that pre-processing techniques

also play a critical role in model performance. Also, this means that the CDA can only

be used for offline purposes as we need all the data events occurring to define an state

event, while the TSA is the suitable pre-processing technique for online purposes as we

can define an state as a succession of sequential timestamps labelled with the same class.
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Figure 3.15: Experimental results for D2 compared with previous researches using
this data and our 60 second TSA.

3.5 Discussion

From the initial classification accuracies, the SVM approaches obtain the best results

in the majority of the experiments conducted. However, this does not make them the

best option for all cases. After studying the time the models need to process the data,

the support vector models need much more time (and therefore memory) to perform

the operations. In fact, Markov models performed all the operations in less than a

second, while SVM reached values over 10 minutes in some cases. For this reason, for

applications where the time is critical these approaches cannot be used to create the

models even though showing high levels of accuracy.

On the other hand, we know that the existing HMM approaches model state dwelling

time by allowing the system to self-transition from state Si to the same Si calculat-

ing the probability of remaining stationary each time step, which means multiplying

a probability each time step, and hence state duration is inherently exponentially dis-

tributed. HSMM-based approaches, on the other hand, allow to calculate the most

probable dwelling time d based on explicitly modelled duration distributions, during

which the state will remain unchanged. However, in real scenarios, the state duration

should be better captured by using different temporal distributions other than exponen-

tial distribution.

Moreover, both approaches present limitations when attempting to make activity pre-

dictions in an on-line fashion. Markov models traditionally infer probable states based

on whole sequences of observable data. In fact, some of the inference algorithms usually

associated with these models including the Forward-Backward or the Viterbi algorithms

need a whole batch observable sequences to make their estimations. This poses a real

challenge for state prediction of streaming data as future observable data is not avail-

able when a new state is reached. Therefore, state prediction has to be decided with the

uncertainty of what observable sequence follows. In addition, for the state prediction
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of occupant presence or absence, the existing HMM or HSMM based models simply

treat all sensor events presenting occupancy state, which affects the overall accuracy

performance of prediction. In fact, in real scenarios, individual sensor’s contribution to

the state prediction is different and should consider weighting factor for each individual

sensor event.

Compared to HMM which is one of the most popular choices in current literature,

HSMM has clearly outperformed this model for the datasets and techniques used in

these experiments. Although other approaches such as the MCSVM also showed good

levels of classification accuracy, they suffer other limitations when taking into account

model efficiency and complexity. Time is crucial in OBPM, therefore this prevents these

methods from being used in this context. Conversely, HSMM models present a unique

trade-off between performance and speed/complexity showing good accuracy results

while using a very small percentage of resources to process the data compared to other

methods. Therefore, if we are able to improve the HSMM performance and address the

specific limitations of this model, we could take advantage of its consistency and speed.

Since OBPM models often are used in online settings, based on our analysis, we can

conclude that novel approaches need to be able to perform state prediction using just

initially partial data and achieving performance results even beyond than traditional

HMM and HSMM approaches. In addition, new approaches need to be able to process

stream data and dynamically adapt the model predictions to the new included data.

All these operations will ideally be done while preserving high levels of classification

accuracy.



Chapter 4

A Novel Online Dynamic Hidden

Semi-Markov Model For OBPM

To address the limitations mentioned in previous chapters, our objective is to build

a model that can perform online occupant behaviour pattern modelling via streamed

sensor data. In order to be able to detect occupancy or activities in real-time, we need

that our model can process streamed data and that its parameters can be incrementally

updated with new data while ensuring high levels of classification accuracy. We separate

this into two aspects: 1) Online detection and 2) Incremental online detection. In

this chapter, we will mainly focus on the first aspect/development. Here we present

a novel approach that can perform online occupancy detection, while in Chapter 5 a

novel incremental online learning approach will be presented on order to address the

incremental aspect of the OPBM modelling.

As our online DHSMM is specially designed to overcome some limitations when using

HSMM models for online OBPM modelling, in the following sections we present the

limitations of traditional HSMM/HMM’s and our proposed approach to address them.

4.1 HSMM Background

As discussed in previous chapters, HSMM were introduced to allow modelling state du-

ration explicitly [15][89][90]. Therefore, in addition to HMM parameters (namely prior,

transition and observation models), HSMM also makes use of a duration parameter. This
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Figure 4.1: HMM Structure.

Figure 4.2: HSMM Structure.

means that transitions do not occur at each time step, but states remain unchanged for

a determined duration (See Fig. 4.1 and Fig. 4.2). In the HMM approach, if we have

N samples, we also have N number of states associated to a N number of observations.

Whereas in the HSMM approach, we have multiple observations happening during the

same state. Therefore, the states sequence will always be equal or less than the number

of observations N <= N ′. In typical OPBM datasets, N ′ will be commonly significantly

smaller than N . For example, in a model where the sampling time is one minute and

states or classes have an averaged duration of 10 minutes, then N ′ will be ten times

smaller than N .

4.1.1 HSMM Parameters

Let ST be a sequence of states, divided in N samples where each St, t ∈ T = {1, 2, ..., N}

represent each possible state at time t and M would be the number of different states.

As discussed in previous sections, HMM can only model state duration exponentially.

To overcome this, the hidden semi-Markov model was introduced as an extension of
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the original HMM, where additional parameters were included to model state durations

explicitly. HSMM parameters can be described as follows:

λ = (Q,O,A,B, δ, π). (4.1)

Where, O = {ot|t ∈ T} and Q = {qt|t ∈ T} are observations and states respectively. A

represents MxM dimensional state transition matrix, which includes the probability of

transitioning from state i to j, ai,j = P ([qt = sj |qt−1 = i]) with the form:

A = {ai,j} =

( a1,1 a1,2 ... a1,M
a2,1 a2,2 ... a2,M
... ... ... ...
aM,1 aM,2 ... aM,M

)
The emission probability (observation model) B is a MxN matrix containing the prob-

ability bi(vi) = P ([ot = vi|qt = si]) for each state to trigger each of the observations vi,

i = {1, 2, ..., k} where k is the number of features. The parameter π expresses the prior

probability of each state πi = p([q1 = si], i = {1, 2, ...,M}).

Finally, duration parameter δ is the (MxD) matrix where Di expresses maximum state

(max dur) duration and δi(d) = P (δ = d|si) is the probability of state si lasting for d

time steps.

As parameters Q and O are basically data, we will subsequently drop them from the

parameter set, which will be defined by: λ = A,B, d, π. Given the above parameters,

we can express the HSMM joint probability of observations and hidden states using:

P (O,S) =

N∏
t=1

P (Ot|St)P (St|St−1, dt−1)P (dt|St) (4.2)

For the maximisation of this joint probability, several dynamic programming algorithms

have been proposed which allow to calculate the most likely state sequence for a given

{OT , λ}, the most likely observation sequence for λ, or the most probable parameters

that maximise {ST }. See Rabiner et al. HMM tutorial for more information about these

techniques [15] and Yu’s [91] work for the HSMM case.
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4.2 Main Current Limitations

Attending to the given definitions, we can reason some direct limitations:

1) Observations contain just one value per sample, which means that there is

no way to give more relevance to certain sensors (inputs) in scenarios were the

physical deployment of the sensors favours the interaction of some of them over

the rest. For example, a sensor in a central hallway will be more likely to be

triggered that one located in a small corner of a less used room.

2) If a state is defined throughout all its duration, we need all the observations at

the same time in order to estimate what state and for how long is going to occur

(similar to the chunk approach studied in Chapter 3).

4.3 The Proposed Online Dynamic Hidden Semi-Markov

Model (DHSMM)

Having identified the existing limitations, we need a solution to improve the current

approaches performances.

Firstly, we need to define how HSMM model parameters correspond to our occupancy

detection context. We consider our approach within the definition of a discrete Markov

process [15], where sensor signals have discrete values and conform the input features

which are used to create the observation model. The transition matrix defines the

likelihood of moving from one state to another, and the duration model can be built

upon the temporal behaviour each state showed in the training set.

Our new dynamic hidden semi-Markov model (DHSMM), extends HSMM traditional

models to overcome the previously discussed issues. We based our approach on explicit

HMM (HSMM), which assume that transitions are independent of the previous state

duration, self-transitions are not allowed (aii = 0) and state duration is only dependent

on the current state and independent on the previous one [37].

• Novel Weighted Parameter Model: In order to be able to give more sig-

nificance to determined sensors based on their actual relevance, we included the
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features separately and we have assigned weights associated to each different fea-

ture to make accurate initial state predictions. This will allow us maximise each

one to the observations from data and help us to predict states using just one time

step input (every time a new state is reached). This could be optional for batch

inference, but it becomes crucial for ‘live’ purposes where only current time data

is available.

• Novel Dynamic Duration Model: To make our model more flexible and also

to alleviate potential issues when our predictions make a transition prediction

misclassifying the transitioned state, we have extended our model to calculate the

probability of remaining in one state dynamically throughout all the time a state

is occurring. When performing state inference in an online setting, previous works

based on semi-Markov approaches calculated this by sampling a random duration

τ (τ being the number of steps the state must remain) from the distribution model

each time a new state is entered [16][92]. Therefore, the state remains stationary

(fixed static duration) for τ number of steps. Our DHSMM is able to model

duration as the probability of remaining in a state by using a complementary

cumulative distribution function (1-CDF). After the initial state prediction, our

model combines the probability of remaining with new observations so the next

state transition can be found dynamically.

4.3.1 Weighted Observation Model

The physical sensor deployment can modify the importance each of the signals within

the model. For example, in an activity dataset including motion sensors, a sensor located

in a hallway (more transited area) will be fired probably more times compared to one

located in a corner of the kitchen. Therefore, when the sensor of the hallway is fired,

it does not give much certainty about the occurring class. However, if the one in the

kitchen is triggered, the potential activities are reduced to the ones related to eating or

cooking. In fact, if we know that the corner is often used only when using the microwave,

a trigger in that sensor will give a high likelihood that an activity related to cooking

(using the microwave) is occurring.

In the original HSMMs and HMMs with multiple inputs, the observation model is es-

timated by considering all sensor inputs at a time t as a unique observation ot feature,
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Figure 4.3: Online state inference with initial τ random duration sample.

Figure 4.4: Online state inference with DHSMM duration model, dynamically de-
tecting duration.

consisting of an array of sensor signals at a determined time. An alternative way of do-

ing this, can be treating each sensor signal as a different observation feature happening

at the same time. Therefore, to compute the emission probability in the first case we

have the probability of occurring a combination of sensor signals whereas in the latter

we need to calculate the aggregated probability of each of the sensors for a given state.

To illustrate this, let’s suppose we have 3 binary sensors signals z1 = 1, z2 = 1 and

z3 = 0 at time t. Given a system with two possible states si, i={1,2}, the two possible

observations would be:
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1) Probability of one unique sequence [z1 z2 z3] to be [1 1 0]

bi(z1, z2, z3) = (4.3)

P (z1, z2, z3|Si) =
P (sequence = [1, 1, 0]|si)∑

i P (si)
; or (4.4)

2) A different probability for each sensor

bi(z1, z2, z3) = P (z1, z2, z3|si) = (4.5)

P (z1 = 1|si) + P (z2 = 1|si) + P (z3 = 0|si)
Rt

(4.6)

where Rt is the normalising factor, subject to
∑

i bi = 1.

The first approach is not the best option for occupancy datasets as many sensors can be

involved. Therefore, a lot of potential combination might not occur in the training set

but be present in the new incorporated data. The second approach overcomes this by

aggregating the likelihood of each sensor separately. However, this approach evens the

significance of each sensor, yet in many applications has been noted that this is not the

right modelling approach as some sensors contribute more to the model outputs [14][56].

To improve the observation model further, we propose including a weighted factor cR

that is applied to each sensor signal as follows:

bi(z1, z2, z3) = P (z1, z2, z3|si) = (4.7)

cR1 · P (z1 = 1|si) + cR2 · P (z2 = 1|si) + cR3 · P (z3 = 0|si)
Rt

. (4.8)

4.3.1.1 Correlation Function

In order to calculate the weight parameters, we use a correlation function applied to each

sensor signals during the training phase to find the more significant sensors. We then

use the correlation values to assign the weights. This ensures the emission modelling

will adapt more realistically to different scenarios that include various sensor topologies

and sensors of diverse nature. The equation of the correlation function between two

variables (A,B) for N number of samples is as follows:
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corr(A,B) =
1

N − 1

N∑
i=1

Ai − µA
σA

Bi − µB
σB

(4.9)

This can also be computed as a function of the covariances of the variables:

corr(A,B) =
cov(A,B)

σAσB
(4.10)

In this approach, we calculate cR by comparing each sensor signal with the rest of the

sensors, and obtaining the correlation between them for each of the states that appear

in the dataset. Then the absolutes of this values are aggregated and normalised for each

cRi.

4.3.2 Dynamic Duration Prediction Approach

Following the idea of creating a non stationary time dependant duration model [22],

when state duration inference is done using DHSMM, a transition boundary is not agreed

initially by sampling a likely duration τ when a new state is reached. Instead, we use a

Complementary CDF function (1-CDF) fitted from the training data set to calculate the

probability of remaining P (Rem) in the same state each time step. Initially, P (Rem) will

be forced to 1 for the number of timesteps specified in the minimum duration parameter

min dur. During that initial period of time, the state will remain unchanged regardless

what observations occur. Once min dur has ended, the system will decide whether to

remain or leave the current state based on:

Algorithm 1 Dynamic transition detection.

1: if bi · P (Rem) > bj · (1− P (Rem))

then St ← si . No transition. State remains

2: else St ← sj . Transition occurs. State changes

If no transition eventually occurs, P (Rem) will decrease according to the CCDF until

reaching the value of maximum duration max dur, where P (Rem) will be set to 0 thus

forcing the system to transition to other state.
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Figure 4.5: DHSMM duration model. In this example, P(Rem) @1 will be close
to 1 (unlikely transition); @2 P(Rem)=0.5, so transition will be determined by the
observations only; @3 as P(Rem) reaches 0, the system will be pushed to enter a new

state.

As can be seen in Fig. 4.3, the traditional approach for predicting a state duration is

based on sampling a duration time from the previously trained duration model. When

entering a new State Si, the τ time is calculated and the estate remains until this time

finishes. Then, based on the observation (bj) at time t + τ and transition probability

(aij), a new state is chosen and a transition occurs. The dynamic duration model

however, as can be seen in Fig. 4.4, does not calculate a fixed τ . Instead, from the

1-CDF of the duration model (duration model specifies a probabilistic distribution of

state duration for each state), a probability of remaining PRem is calculated. Each

timestep, the probability of remaining combined with the observation at that time is

compared with the probability of leaving. If the current stae is i and we are monitoring

the potential transition to a following state j, this can be expressed as:

bj(vkt+τ ) · P (Leave) > bj(vkt+τ ) · P (Rem), St+τ = j (4.11)

bj(vkt+τ ) · P (Leave) < bj(vkt+τ ) · P (Rem), St+τ = i (4.12)

This means that while the probability of leaving is not higher that the one of remaining,

the state i is not leaved.
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Figure 4.6: Example of different statistical functions fitted for arrival times.

To illustrate this, the example in Fig. 4.5 shows a CCDF generated from fitting the

data with a gamma distribution. P (Rem) is set to 1 until min dur. After that, each

time step DHSMM will calculate the joint probability of remaining and the observations

P (Rem, ot|si) for all possible states. P (Rem) will decrease over time and the transition

will happen when the joint probability of leaving will be higher than to remain (P (1−

Rem, bj |Leave) > P (Rem, bi|Remain)); setting P (Rem) = 0 when max dur is reached.

In our experiments, we have used a mixture of histogram visual inspection and a MSE

error function to choose the best probabilistic function fit for each class (see Fig. 4.6),

from which we will construct our CCDF. Our approach also allows to use several different

statistical functions for each state duration model.

4.4 Experimental Evaluation

In the experiments conducted in Chapter 3, we used activity datasets. With the objective

of giving our experiments a more comprehensive approach to general OBPM models, we

wanted to evaluate our approach using an occupancy dataset. In spite of a recent number

of datasets being made publicly available recently, it is difficult to find quality occupancy

datasets in terms of the number of features and samples, the reliability of the source,

or their impact in previous works. We therefore decided to modify one of the activity

sensor dataset [21] and adapt its contents to simulate an occupancy dataset. Since

an occupancy dataset could be based on presence and absence states, we modified the
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dataset so all the ‘quiet’ activities (including leavehouse or sleeping) where labelled as

‘absence’, and the rest of the activities where labelled as ‘presence’. This is consistent

with the fact that we labelled ‘presence’ all activities that required active occupant

presence and ‘absence’ the ones that not.

We have compared our approach with existing HMM and HSMM-based approaches for

real time occupancy detection. We have fed streamed data into the three models to

compare the classification accuracy when performing online occupancy detection. First,

the models have been trained offline and then, in each timestep, a likely state has been

predicted and compared with the labels (ground truth) in the test set.

4.4.1 Data Description

The data as explained above, was composed of 2 classes representing occupant presence

and absence. The observation data consisted of 14 different binary sensors as shown in

the description of D1. After pre-processing the data, there were a total of approximately

12,000 labelled samples, each representing an observation sequence of 14 features for each

time step, which were discretised into slices of 60 seconds.

4.4.2 Evaluation Metrics

To asses model performance, we have compared our DHSMM against traditional HMM

and HSMM approaches. We have performed n-fold cross validation and used various

standard metrics in [93] including: Accuracy = (TP + TN)/(P + N), Precision =

(TP/TP +FP ), and Recall – TP/(TP +FN). where P represents positive samples; N

represents negative samples; TP represents true positive; TN represents true negative;

FP represents false positive; FN represents false negative. Each new data point has

been processed by our system in a streaming fashion.

4.4.3 Results

In Fig. 4.7 we can see a comparison of the outputs of an HMM, HSMM, DHSMM

and the ground truth respectively. For each timestep, a probable class (absence or

presence) is generated. The more these pictures resemble the ground truth distribution,



Chapter 4. A Novel Online Dynamic DHSMM Model For OBPM 70

Figure 4.7: Predicted states from a) HMM, b) HSMM, c) DHSMM against the ground
truth in d).

the more accurate the classifier is. Compared to the ground truth in Fig. 4.7 (d) Ground

Truth), the HMM-based approach fails to reproduce the dynamics of the fast paced short

absence periods in many cases. The HSMM-based approach significantly improves the

representation of short periods compared to the HMM-based approach. However, it fails

to reproduce the sequences accurately.

The DHSMM increases the classification performance of Markov models as can be seen

in the graphs. The weighted inputs can be seen in Fig. 4.9, where we can see how

sensor 9 has the largest weight associated, and other such as 4, 8 or 12 have very little

contribution.

Fig. 4.7 and Fig. 4.8 show that our proposed DHSMM clearly outperforms the HMM

and HSMM-based approaches.

In Fig. 4.8, the accuracy, precision and recall are shown. Our proposed DHSMM has

a high accuracy of over 98% outperforming the HMM based approach 65.6% accuracy

and the accuracy of the HSMM 91.7%.

For precision and recall, our DHSMM achieves high levels of recall (99.28% and 91.92%)

and precision (99.16% and 92.99%). The results show that DHSMM significantly out-

performs both HMM and HSMM and is able to process streaming data with high degrees

of accuracy for this dataset.
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Figure 4.8: Confusion matrices, accuracy, precision and recall.

Figure 4.9: cRi Normalised weights corresponding to each sensor.

4.5 Discussion

Based on the findings in literature and the findings in our own experiments, we already

identified some of the challenges for OBPM. On order to create a solution that could
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take advantage of the Markov approaches that could perform online operations, we have

proposed the new DHSMM model. Comparing the HMM and HSMM model, we can say

that the semi-Markov property improves the classification accuracy. This is probably

due to the fact that OBPM datasets are related to time (both in terms of when the

states happen and how long do they last). Thanks the the dynamic duration model and

the weighted function we have proposed here, we have demonstrated that semi-Markov

models can indeed be used to perform online detection and that our DHSMM addresses

successfully some of the limitations noted in HMM and HSMM models when comparing

the classification accuracy.

The accuracy of DHSMM achieved 98% while the HMM-based approach shown 65.6%

accuracy and the HSMM model 91.7%. This means an increment of 50% and 7.5%

respectively. Although the HSMM model hugely improved the initial HMM values, our

DHSMM outperformed both approaches. Based on these results, we can conclude that

our DHSMM algorithm achieves the highest levels of classification performance while

handling online streamed data. Our approach improves the HMM and HSMM results

using the same data and under the same conditions for all the metrics evaluated. Our

model can accurately capture and predict occupancy periods with partially available

data.

However, our model still suffers from an important limitation. This comes from the fact

that in the context of OBPM, it is not unusual that the patterns in the data change

with time. Since the model parameters are the responsible for capturing those patterns,

when data patterns change, parameters should be able to change accordingly.

In the next Chapter, we have extended our Online DHSMM to perform incremental

learning. This will allow our model to be able to adapt to changes in data while im-

proving its computation performance while maintaining almost the same good result in

classification accuracy.



Chapter 5

Online Incremental Learning Of

Dynamic Hidden Semi-Markov

Model (DHSMM)

This chapter will focus on developing a new approach to incrementally learn over data

stream for occupancy detection, based on the online DHSMM developed in Chapter 4.

We describe incremental learning (differentiating it from online learning [94]) as the

updating of model parameters without storing any of the previous samples, which are

simply discarded. This is done by re-estimating parameters iteratively with new data

point, that are processed by the model but not kept in memory afterwards. As long

as new sensor data is observed, new values are given to the parameters in order to

incorporate the new information received.

The advantages of this approach are significant. Firstly, we can incorporate new knowl-

edge that perhaps it was not initially present in the training set. Therefore, enabling

our model to dynamically adapt to potential changes in the patterns underlying the

data. For example, an occupant might alter his/her sleeping patterns after getting a

new job or occupants starting a diet can change their eating/cooking patterns as well.

For example, if the activity sleeping would usually be modelled as starting at 8pm and

lasting for 7 hours, maybe after the new job the occupant has to go to bed not earlier

that 11pm and for a maximum period of 6 hours (due to shifts). In such an scenario,

we want to allow our model to potentially change its parameters to adapt to the new
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patterns in the data. Furthermore, performing incremental updating means that the

model do not need to be retrained from scratch, therefore improving the efficiency of

the model. In our context, fast real time updates are crucial as explained in Fig. 5.1.

Here, we see how in an online setting, after the initial training model, a new point 1

is included and a certain amount of time is needed to make a prediction and posterior

update of the model before new point 2 arrives. All operations must be finished by the

time the next point arrives in order to prevent lagging. After completing this, we can

discard all previous data and keep only the relevant information for us, which is ‘stored’

in the actual model parameters. Finally, when scarce data is available at an initial time,

a potentially inaccurate model can be incrementally updated to eventually match the

parameter estimation of the same model trained batch learning using the whole dataset.

All these concerns are particularly relevant in our context, as OBPM models are subject

to potential changes in occupant patterns. In addition, when the information has to be

used online to regulate BEMS or other smart home applications speed becomes crucial.

Therefore, our proposed model has to be able to perform incremental learning and do it

fast while maintaining high levels of accuracy performance.

Although some authors have devoted time and effort to the study of Markov and

Bayesian models in the context of the online learning and the incremental learning

(i.e. [95][96][97]), little work has been conducted to use semi-Markov approaches in

OBPM combination with online and incremental learning techniques. The current

HMM incremental parameter updating approaches, have significant limitations when

these models are extended to include hidden semi-Markov properties. Furthermore, in

order to perform updates for our specific DHSMM model, further considerations need

to be done due to the special nature of the dynamic duration model and the weighted

input observation model.

In order to describe how our approach can perform incremental learning from new data,

we start by introducing the three inference algorithms traditionally used for Markov

models as a starting point to describe how our approach overcomes its specific challenges.
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Figure 5.1: Online setting processing data.

5.1 Markov Models 3 Problems

Once a Markov model is built and the parameters λ = A,B, π are already learnt, they

can be used for more than calculating the joint probability and junt predict the current

state. In fact, there are three specific tasks that these models can perform by using

recurrent algorithms to alleviate the complexity of the operations to be performed.

These are commonly referred to as the three problems of interest [15].

For a previously trained model λ, the so called three problems of interest are:

• The Decoding Problem: For a given observation sequence O = o1, o2, ..., oN , we

want to calculate the most likely state sequence Q = q1, q2, ..., qN associated to

those observations. This is done by using the Viterbi algorithm.

• The Evaluation Problem: We want to calculate the probability of a new observation

sequence O = o1, o2, ..., oN . This can be expressed as the conditional probability

of p(O|λ) and can be done using the Forward-Backward algorithm.

• The Learning Problem: We focus on updating model parameters λ = A,B, π when

using a new set of observations O = o1, o2, ..., oN . To complete this we use the

Baum-Welch algorithm.
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5.1.1 Viterbi Algorithm

The Viterbi algorithm can be used to calculate the most likely sequence of states given a

sequence of observations iteratively. However, this algorithm need to be used alongside

a batch learning approach to make the sequences predictions.

The need for these algorithms, comes from the idea that the best immediate state (the

state that maximises the joint probability at some specific time) might not be the best

option if we also observe what is the next most probable states. As HMM models

work by using a transition probability, sometimes it happens that an particular lower

probability at a determined time, maximises the whole sequence once all the data has

been observed. The Viterbi algorithm uses the whole state sequence to find the most

likely sequence, by studying a whole observed sequence of observations. In order to

facilitate computations, we define an auxiliary variable

φt(i) = max
q1,q2,...,qt−1

p(q1, q2, ..., qt−1, qt = i, o1, o2, ..., ot|λ) (5.1)

as the highest joint likelihood that observations sequence and states up to time t = t

can have when the current state is i. Therefore, we can extend this by

φt+1(j) = bj(ot+1)[ max
1≤i≤N

φt(i)aij ], 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (5.2)

where the initial calculation,

φ1(j) = πjbj(o1), 1 ≤ i ≤ N. (5.3)

We can observe that the procedure to calculate φt is by recurring its value while choosing

the maximum probability at each time step. Once this is completed, state j∗ can be

calculated using

j∗ = arg max
1≤i≤N

φt(j), (5.4)

and back tracking the most likely sequence.



Chapter 5. Online Incremental Learning Of DHSMM 77

5.1.2 Forward-Backward Algorithm

The Forward-Backward (FB) algorithm is used to calculate the probability of being in

a determined state from time t = 1 to t = T . This is achieved by recursively calculating

the parameters known as α and β.

The forward α variable represents the probability of an observed sequenceO = o1, o2, ..., oN ,

ending at state i. It is expressed by

αt(i) = p(o1, o2, ..., ot, qt = i|λ) (5.5)

which is calculated

αt+1(i) = bj(ot+1)
N∑
i=1

αt(i)aij , 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (5.6)

and the initial calculation

αt+1(i) = πjbj(o1), 1 ≤ i ≤ N (5.7)

All this recursions are intended to calculate the final α variable:

αT (i), 1 ≤ i ≤ N (5.8)

which can be used to calculate the probability of an observed sequence given the model

p(O|λ) by

p(O|λ) =
N∑
i=1

αT (i). (5.9)

Similarly, the backward variable βt(i) is also the probability of an observed sequence

O = o1, o2, ..., oN . But this time, instead of calculating from time t = 1 to t = t, we

calculate from t = t to the final observed sequence data point at t = T . This can be

expressed as:

βt(i) = p(ot + 1, ot + 2, ..., oT |qt = i, λ) (5.10)
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Again, recursions allow us to do these calculations easily

βt(i) =

N∑
i=1

βt+1(i)aijbj(ot+1), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (5.11)

where the initial calculation at time t = T

βT (i) = 1, 1 ≤ i ≤ N (5.12)

We note that

αt(i)βt(i) = p(O, qt = 1|λ), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (5.13)

As with the forward example, p(O|λ) can also be calculated using the β variable:

p(O|λ) = p(O, qt = 1|λ)
N∑
i=1

αt(i)βt(i) (5.14)

5.1.3 Baum-Welch Algorithm

The Baum-Welch (BM) algorithm is used to update the model parameters based on the

forward α and backward β variables. We introduce two new variables ξ and γ, which

will be calculated using the already calculated FB variables. The first BW variable ξ

defines the probability of being in a state i at time t and moving to state j at t = t+ 1.

The equations

ξi,j = p(qt = i, qt+1 = j,O|λ) (5.15)

which equals to

ξi,j =
p(qt = i, qt+1 = j|O, λ)

p(O|λ)
(5.16)

This can expressed in terms of α and β,

ξi,j =
αt(i)aijβt+1(ot+1)∑N

i=1

∑N
j=1 αt(i)aijβt+1(ot+1)

. (5.17)
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On the other hand, the variable γ is used to calculate:

γi,j = p(qt = i|O, λ) (5.18)

This second variable can also be calculated using the FB,

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(5.19)

Finally, the relationship between γ and ξ is:

γt(i) =
N∑
i=1

ξi,j . (5.20)

5.1.4 Traditional Parameter Update

Given the previous algorithms and auxiliary variables, the traditional method for pa-

rameter update would be as follows:

Priors Πi:

π′i = γ1(i); (5.21)

Transition aij :

a′ij =

∑T−1
i=1 ξi,j∑T−1
i=1 γi,j

; and (5.22)

Emissions b(vk)j:

bj(k)′ =

∑
ot=Vk

T−1

i=1

γi,j∑T−1
i=1 γi,j

(5.23)

5.2 The Proposed Online Incremental Learning DHSMM

Model

Built upon our Online DHSMM model, we have developed a novel incremental learning

approach by performing the following operations:
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Figure 5.2: Model update HMM vs HSMM.

1. We calculate the β using an approximation technique based on a slidHMM ap-

proach [98], which allows us to calculate its value by using only the current single

observation ot instead of the usual ot−1.

2. Using the approximated β, we can calculate ξ and γ variables using the traditional

BW algorithm which allow us to update the priors and the emissions.

3. Due to the semi-Markov properties of our approach, to update the transition pa-

rameter, we use a numerical adjustment based on a learning rate parameter.

4. Finally, we update the duration model by adjusting the parameters of the prob-

abilistic functions used to fit the state durations (Gamma or Gaussian) using

Bayesian inference methods based on conjugate priors.

A graph to visualise how parameter updating is performed for HMM and for DHSMM

can be seen in Fig. 5.2. To update traditional HMM models, we can use the BW algo-

rithm to update priors, emissions and transitions. For the incremental online DHSMM,

we need to use β approximation value in order to perform the BW algorithm operations,

which will be used to update emissions and priors. For the transitions we use a numer-

ical approach and for the durations we rely on Bayesian inference techniques. While

HMM is updated each timestep, due to the semi-Markov properties of our approach,

transitions and durations are updated once per state transition.
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5.2.1 β Parameter Approximation

The main problem when doing these updates in an online setting is that all of them

require information from one step ahead in time. Particularly, the variable β, which

uses the observation ot+1 to calculate its value in time t. To address this issue, we have

followed the idea in [98] so we can obtain an approximation of the β parameter without

future data. This approach is called slidHMM and so far it is only been evaluated used

for HMM models. Therefore, we have adapted this idea to work in an online setting for

DHSMM approach, which only uses a single new observation at time t.

The approximation is based on the premise that each βt(i) ≈ βt(j). Therefore:

βt(i) =
N∑
i=1

βt+1(i)aijbj(ot+1), (5.24)

would approximately equal to:

βt+1(i) =
βt(i)∑N

i=1 aijbj(ot+1)
. (5.25)

As can be seen, approximating the β values for all states allow us to approximately

calculate this variable using only previous data. Having solved this issue, we can use this

updated β to recalculate ξ and γ and perform the updates according to the traditional

methods discussed early. The two parameter updates that can benefit from this approach

are the priors and the emissions which are conducted as follows:

Using this approach we can update the priors and emissions as follows:

5.2.1.1 Priors Model Updating

Priors π can be updated following the traditional HMM approach by plugging the β

approximation value into the formula to obtain the BW variables ξ and γ.

5.2.1.2 Observation Model Updating

In the case of the B observation parameter, we follow the same rationale as with the

priors, but we also need to adapt the update to our DHSMM approach. Specifically,
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DHSMM works by including different inputs each one corresponding to a sensor signal.

However, the traditional HMM updating gives you an update for the whole observation

probability (which includes all sensor signals). To address this, we calculate the differ-

ence between the emissions probability bj(k) and bj(k)′ and we distribute that difference

between the sensors that have actually been triggered at that time (see Fig. 5.3).

Figure 5.3: Observation update.

5.2.2 Transition Model Updating

There is a limitation when incrementally updating the transition model aij . While is

fine to use this technique when a new batch sequence is feed, this parameter cannot be

efficiently updated using the ξ and γ variables when we only include one new sample at

a time. This is due to two reasons:

1. The fact that we receive a new sample each time does not mean we receive a new

transition (in a HSMM framework, transitions happen after a number of samples)

so we do not update transition each time step.

2. The fact that transitions are less frequent that samples make not efficient the

frequentist calculations in which the BW algorithm are based.
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Figure 5.4: A transition model updating process.

Therefore, to update this parameter we apply a numerical approach using a learning

rate parameter λ, which is applied to the transitions that has been newly sampled from

the streamed data. As can be seen in Fig. 5.4, this process consists in adding the value

of learning rate λ parameter to the transition parameter and re-normalise the matrix

again. The steps are: 1) We identify the transition aij , 2) We add the value of λ to that

particular transition in the transition matrix; 3) We normalise A.

There are different criteria to determine how to calculate λ [99][100].The learning rate

parameter is calculated defining how many updates we need to change completely the

values of this parameter. For example, if the probability of going from i to j is 1, and

we want to reduce it to the opposite value of 0, we need to define how many steps we

want this to take. If we choose a λ parameter of 0.001, we would need 1000 steps to

move from 0 to 1 while if the parameter is set to 0.01, 100 step would be necessary to

do this change.

In our experiments, we have chosen a parameter λ = 0.01 as we want to to observe

actual changes in the model and also this is small enough to require a good number of

updates to make significant changes. It is important to note that, although the patterns

might change in the data, not necessarily are always towards the same values. In fact,

in practice, these new values tend to hoover around some determined values instead of

showing significant shifts towards values significantly distant from the original ones.
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5.2.3 Duration Model Updating

The duration model also cannot be updated every time a new point is processed. Instead,

this update is made effective once the current state ends (so a new whole duration can

be added). The algorithm keeps track of the number of steps the state was occurring

and uses this duration value for the updating process.

The duration updating has to be performed over the parameters that define the proba-

bilistic function the model each state duration. For example, if the new duration value

belongs to an state which duration we modelled using a Gaussian distribution, the up-

date will be performed over the two parameters namely mean and standard deviation.

Here, we have developed an approach to update two of the most common and suitable

distribution functions that we can use to model our states durations: Gaussian and

Gamma distributions.

5.2.3.1 Gaussian Distribution

We use this distribution as is one of the most common probabilistic functions and it

can be fitted easily even when there is not much data available. The Gaussian pdf is

represented by:

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(5.26)

where x is one sample and its probability is parametrised by the mean (µ) and standard

deviation (σ).

In order to update these parameters, we apply the conjugate Bayesian analysis approach

for these type of distributions [101]. Using the conjugate priors, we can estimate that

the parameters posteriors after having included a single new point can be calculated as

follows:

If we have an initial Gaussian distribution of the form

X ∼ N (µ0, σ0) (5.27)
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where X refers to the expected duration of a occupancy state or activity duration. We

can express the updated parameters after including a new value x by

µ|x ∼ N

(
σ2

0

σ2 + σ2
0

x+
σ2

σ2 + σ2
0

µ0,

(
1

σ2
0

+
1

σ2

)−1
)

(5.28)

where this x is a new value in the dataset and we want to update the parameters to

accommodate this new value.

5.2.3.2 Gamma Distribution

The gamma distribution is also one of the most well known probability distributions.

We include this function because from previous analysis we could check that it was one

of the most successful fitted functions when fitting the data from states durations. The

Gamma pdf is represented by:

βα

Γ (α)
xα−1e−βxIx (0,∞) , where α > 0 and β > 0 (5.29)

In this occasion, the parameters to model are α and β parameters. To update these

parameters, we apply a conjugate approach as well, but including the following consid-

erations:

If we have a Gamma distribution such as that

G ∼ Gamma(α0, β0) (5.30)

We can left the β parameter fixed, and we can update the α parameter from β and the

new x point

α′ = α0 + (x̄0 − x) (5.31)

β′ = β0 (5.32)
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Where x̄0 is the median of the previous training data.

5.3 Update Analysis

In order to evaluate the updating methods, we run a series of experiments focusing on the

evolution of the parameters while are being updated. We have based these experiments

on the study of the transition model and the duration models.

5.3.1 Transition Updating Analysis

A transition matrix aij shows the probability of transitioning from state i (rows) to state

j (columns). We have used the House A from the Dataset 1 used in the experiments

in Chapter 3 to see how the transition parameter accommodates new data. We firstly

trained a transition model using a third of the data (see Fig 5.5, picture a)) and we

updated the parameter point by point to compared it with a transition model obtained

using all the available data (picture b). It can be noted that a) is indeed different

from b) (used offline 1/3 and 3/3 of the data respectively). Using a) as an starting

point, we update the model and we see in c) how with an extra 1/3 of the data there

is an improvement but not enough. Finally, d) shows the final transition matrix after

having been updated with the 2/3 of the data. In an ideal situation, the matrices in

b) and d) should be almost identical which they are not. However, we can note that

the probabilities starting in a) move towards the figures in b) in most of the cases,

which indicates that the values are moving on the right direction. Ideally, the best case

scenario would give similar results for both batching and incremental learning. Although

not identical, the results obtained here are likely to improve should the available data

was larger (only over 400 transitions are available here). However, these are good enough

to consider them promising, since most of the values improve the resemblance between

the batch training and the one accommodating the updated values (similarity between

Fig 5.5 b) and d)).



Chapter 5. Online Incremental Learning Of DHSMM 87

(a) Batch: one third. (b) Batch: all data.

(c) Batch: one third. Increm: one third. (d) Batch: one third. Increm: two thirds.

Figure 5.5: a) 1/3 Batch data. b) All Batch data. c) 1/3 Batch + 1/3 Incremental
d) 1/3 Batch + 2/3 Incremental.

5.3.2 Duration Updating Analysis

In order to visualise how parameter would behave when including new data points we

have used only the absence durations to fit a Gamma function with a fraction of the

data while including the rest of the data sequentially and updating the model parameters

iteratively. Using the dataset from Chapter 4, we have fitted a Gamma function with

occupant daily arrival times using a third of the data and plotted the PDF. We then

incrementally update the parameters using the rest of the data. Fig. 5.6 shows how

the distribution shape changes slightly as the new data is also belonging to the initial

distribution. The green line shows the last updated distribution and the black one shows

the distribution obtained using all the data from the beginning. We can see that the

updated distribution clearly adapts towards the one obtained with the full data.

5.4 Experimental Evaluation

In pursuance of an evaluation of the benefits of our incremental learning approach, we

have conducted a series of experiments to compare how the different parameters change

using our “incremental” vs a “non-incremental” approach (non-incremental refers to

retraining or rebuilding the model keeping all previous values). To this purpose, we

have used the same dataset used in the online model evaluation presented in Chapter 4.
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Figure 5.6: Gamma parameters updating.

5.4.1 Experimental Setup

We have used the D1 used for Chapter 4 experiments. As this dataset contains only two

occupancy states as labels (absence and presence), the transition matrix does not need

to be updated (always 0 for self transitions and 1 for absence to presence and vice-versa).

Similarly, as we only use the prior model at the start we do not have to update that

parameter either. We thus present an evaluation of the observation model, the duration

model and the results achieved. We have also evaluated the computational cost for both

approaches so we can have an insight of the efficiency of the model in terms of speed

and scalability.

We have conducted the experiments as follows:

• Retraining Approach: We initially trained the model using a third of the data.

Later, we processed the second third of the data adding one new sample at a

time and retraining the model each time using both the old data and the new

datapoint. We finally using the last third of the data to test the model with the

current parameters.

• Updating Approach: We also initially trained the model using a third of the

data. We then processed one point at a time but updating the model incrementally

(we only keep parameters, all previous datapoints are discarded). Finally, again

we use the last third of the data for testing the updated model.
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Figure 5.7: Final observation model after using the retraining approach. Each pair
of columns on the left give the probability of Sensor1-Sensor14 being OFF(0) or ON(1)

when each state occurs.

Figure 5.8: Final observation model after using the updating approach. Values are
similar to the one obtained with the retrainings.

5.4.2 Observation Model

In this dataset we have 14 sensors and 2 possible states. The observation model shows

the probability of each sensor being triggered by a determined state. In Fig. 5.7, we see

the observation model obtained by retraining the model, whereas in Fig. 5.8 shows the

observation model after updating the model. Although slightly different, both seem to

have captured which are the most significant sensors for each state. The high probabil-

ities for 0 values are common for sparse datasets.



Chapter 5. Online Incremental Learning Of DHSMM 90

Figure 5.9: The curves on the left represent the evolution of the pdf for the presence
state while retraining the model. On the right, the evolution for the absence state.

Figure 5.10: Similar to Fig. 5.9, here we can see how the pdf changes while updating
the model.

5.4.3 Duration Model

Both states (presence and absence) durations were modelled using Gamma functions.

Therefore we use the Gamma updating method as discussed in previous sections. In

Fig 5.9 we can see how the pdf function evolves when the model is retrained. On the

other hand, Fig 5.10 shows the evolution of the function by using our updating method

instead of the retraining. As was the case with the observation model, although the final

values are slightly different, they are similar enough to produce similar results.

In Fig 5.11 we can additionally monitor how the alpha parameter for both states evolved

with each retraining/updating depending on the approach. It can be noted different
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Figure 5.11: The two curves above show how the presence α parameter evolved. Final
values are not different as expected. The two curves below belong to the absence α,

again similar values for updating and retraining.

paths but again we can see a similar final behaviour, specially with state absence where

the value alpha for both approaches is almost identical.

5.5 Results

So far, we have been able to verify that either retraining the model using all the data

each timestep or updating the parameters using only a new point to learn incrementally,

the models produce are initially fairly similar. The experimental results also confirm

that the models are similar and accurate enough as the retraining approach achieved a

97% of accuracy (similar to the results in Chapter 4 experimental evaluation) and the

updating approach obtained an almost identical 96% of accuracy. This similarity can be

visually validated when plotting both states predictions against the ground truth (see

Fig. 5.12).

This slightly lower accuracy results are due to the fact that the incremental approaches

are learning the parameters ‘slower‘, therefore they perform slightly poorer compared to

batch learning. However, the differences are minimal and the results are still significant.

In addition to accuracy, it is important to attend to operational time. As it can be

seen in Fig. 5.13, not only the operation time for the updating is substantially lower

(a cent of a second versus roughly a tenth of a second). Moreover, as the updating is

always done by including a new point, the time it gets to perform the operations do not
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Figure 5.12: Both approaches achieve high standards of accuracy.

Figure 5.13: The time needed to retrain increases and is significantly higher that the
updating approach. Updating approach is scalable over streaming data.

vary. However, when retraining the model the number of data used increases (unless

a memory size or number of samples constraint is imposed) and therefore the time to

perform the retraining increases accordingly. Therefore, although the accuracy results

are similar, the computational time is much more favourable to the incremental learning

approach.
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5.6 Discussion

Based on the experimental results, we can see that there is a small decrease in overall

classification accuracy when comparing the incremental learning with the batch learning.

This is expected due to the fact that in this setup where the data is similar at all times,

the batch learning parameters get the best possible parametrisation straight forward,

while the incremental learning options seem to learn the parameters accurately enough

but slower. That would explain the slightly differences reported.

In terms of scalability, even though our datasets were not very big, an important increase

in computational cost can be noted from the reported results when we incorporate new

data by retraining the model. Due to our dataset not being too big, it only took a tenth

of a second to retrain the model. As we are using a 60 second time granularity, we have

more than enough time to perform the model retraining operations between each time

step. However, for datasets with a lager number of samples/features, retraining time

would increase and could become a potential issue. This issue becomes critical when we

have limited time to perform all operations. Due to all these reasons, we can argue that

our model overcomes this limitation as the processing time remain constant. Therefore,

we can conclude that our model is scalable to large datasets.

Summarising, in contrast to non-incremental learning/traditional batch learning ap-

proaches, our approach significantly improves the efficiency of the model by reducing

the time and the amount of memory necessary to store old data points as those are dis-

carded. The incremental learning DHSMM approach not only improves model efficiency

but also almost matches the high levels of accuracy while making the model significantly

faster and scalable.



Chapter 6

A Novel Framework For

Multi-Occupant Modelling Using

A Dynamic Hidden Semi-Markov

Model Approach

Most of existing OBPM approaches focus on single occupant only. There is little work

done on multiple occupants. In this chapter, we present a novel model framework based

on DHSMM for multi-occupant behaviour pattern detection, consists of single-layer and

multi-layer approaches.

The following sections will detail the existing works, challenges on multiple-occupant

behaviour pattern modelling and our proposed approach and experimental evaluation.

6.1 Current Work

Multi-occupant pattern detection has been recognised as one of the main challenges

for OBPM models [23]. For example, the work in [102] aims to detect occupancy to

regulate HVAC systems in buildings. Using a variety of techniques such as regression or

stochastic models, they attempt to establish occupancy profiles of multi-occupant based

upon sensor data and time+date information to asses the impact of each of these more

94
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realistic profiles on the building energy performance. A similar approach is taken in the

work in [103], where they used a multi-agent system to simulate occupancy interactions

based on thermal condition variations to study the effects of occupancy presence over

the building energy performance. In spite these efforts, it can be concluded from their

results due to the lack of real data, which limits these works to the use of synthetic data

with the subsequent issues to validate and escalate the results reported.

Some researchers have attempted to model multi-occupant activities based on two datasets:

the ARAS dataset [2] and the CASAS dataset [64], limited to a maximum of 2 occupants.

These two dataset have enabled series of works that have attempted to model multi-

occupant activities although both limited to a maximum of 2 occupants. Both datasets

have several different sensors deployed in smart homes environments and are used to

infer up to 27 activities performed by 2 different persons at the same time sharing the

same space. These works include the works presented in [104][105][106] or [107], where

they used ARAS and CASAS datasets to infer occupant activities based on data-driven

algorithms with no intrusive sensors.

Although addressing multi-occupant models additional work hs to be done to improve

the current limitations. For example in the work in [104], they addressed milti-occupant

models but they only used Naive Bayes and HMM models, which are limited for OBPM.

Similarly, in [105] the author claimed having improved CASAS results but they limited

their experiments to CRF and HMM models. Another model based in CRF was pro-

posed in the work in [106], where they used different pre-processing techniques and data

association techniques, athough this work was more focused on presenting a bechmark

of results that introducing a novel technique. Finally, the work in [107] similarly used

adapted CRF and HMM models claiming multi-occupant accuracies between 87% and

96%.

All these works used well-know traditional methods to improve the accuracy of previous

reported methodologies. However, none of them attempted to study the implications of

working in an online setting would have to be taken into account. Moreover, they never

tried to perform any sort of incremental learning and the results reported never gave

indications of the model efficiency, computational times or scalability of their models.

In spite these recent efforts, there are really few works that have attempted to model

multi-occupant scenarios successfully in the context defined in this thesis. Moreover, so
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far as we are aware there has not been any approaches that attempted to model multi-

occupant patterns using explicit duration Markov models and processing the datasets

in an online fashion with incremental learning parameter updating.

6.2 Main Challenges

We have identified three main factors that have a significant impact on the design and

performance of multi-occupant models: association, interaction and data scarcity.

6.2.1 Sensor Readings Association

As discussed in the previous chapters, the sensors involved in this work are non-intrusive,

which is an advantage in terms of intrusiveness and privacy issues. However, due to not

including any specific personal data, detecting multiple occupants in the same space

becomes a real challenge and it is difficult to know which sensor readings have been trig-

gered by each one of the occupants. Ambient sensors such as the ones we ae considering

(e.g. temperature, motion or CO2) do not make any differentiations in their readings to

be related to occupants unlike video, RFID or information from smart homes. For these

models to be successful on their predictions, they have to be able to extract underlying

separated patterns by processing the inputs as a whole. All these considerations are the

reason why detecting multiple occupants remains one of the main challenges in spite of

recent efforts.

In Fig. 6.1, we see that when there is only one occupant (left) it is relatively easy to

assign each of the firings to a determined occupant (as there is only one). However,

when more than one occupant is present in the same place at the same time (right), it

becomes significantly harder to ascertain which signal corresponds to each occupant.

6.2.2 Occupant Interaction

There are cases where occupants can be performing the same activity at the same time

or performing an action collaboratively. In these occasions, it also becomes really hard

for OBPM models to make a successful differentiation from the states sequences be-

longing to each occupant as well. This becomes increasingly challenging due to the
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Figure 6.1: Association

fact that the triggering of physically close sensors do not necessarily imply there has

been a real interaction between the occupants. Similarly to sensor readings association,

the uncertainty about occupant interactions also contributed to harden the prospect of

performing successful classification tasks in these scenarios.

In Fig. 6.2, we see that when occupants are performing well defined separated activities

(left), algorithms have less problems to model each state accurately. When activities

are being performed concurrently or collaboratively (right) it becomes much harder to

model them properly and assign the according labels to each occupant.

Figure 6.2: Interaction

6.2.3 Limited Publicly Available Data

The datasets available for multi-occupant modelling are really scarce. Due to this, most

of the experiments conducted in existing works have been conducted using two of the

most representative datasets: i.e. CASAS dataset [64] and ARAS dataset [2]. Due to

this important limitation in available data, it becomes even more difficult to develop

models with good robustness and scalability.
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6.3 Framework For Multiple Occupant Pattern Modelling

And Detection

Here we propose an online incremental learning framework to detect multiple occupants

based on our DHSMM approach. We have conducted several experiments using the

popular multi-occupant ARAS dataset [2].

6.3.1 Dataset Description

ARAS dataset contains data collected in two different houses (HouseA and HouseB)

and include a total of 20 sensors and up to 27 different activities to be modelled (see

Table 6.1).

These activities correspond to all the possibilities each occupant have. There are no

activities that are performed by a collaboration of occupants, however any of the activ-

ities can be performed by any occupant at any time. This means that activities can be

concurrent since can be performed by each activity at all times. Interleaved or single

occupant concurrent activities are not present in this dataset.

The data is provided as a list which shows the date and time a sensors has been triggered,

and the label and the occupant associated to that sensor firing as can be seen in Fig. 6.3.

The sensors associated to each activity can be seen in Table 6.2. This dataset is divided

into 30 days where data has been collected at different times. For our experiments we use

a leave-one-out cross validation approach for the validation of results, which means that

we train the model using one day of the data and we update the model incrementally

with the rest 29 days of data.

6.3.2 The Proposed Methodology

Built upon our DHSMM approach, we have proposed two methods to handle the multi-

occupant data, so our model captures the separated occupant patterns:

1. Single-Layered approach: a single-layer model is used to detect all occupants states

producing only one output. Therefore, the activities of all occupants need to be

encoded in the same label. For example, if we consider two possible states and
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Table 6.1: ARAS dataset consists of up to 27 different activities or labels (left) and
a total number of 20 sensors or features of diverse nature.[2]

Activity Explanations Sensor Explanations

ID ACTIVITY Column Sens ID Sens Type Place
1 Other 1 Ph1 Photocell Wardrobe
2 Going Out 2 Ph2 Photocell Couch
3 Preparing Breakfast 3 Ir1 IR TV receiver
4 Having Breakfast 4 Fo1 Force Sens Couch
5 Preparing Lunch 5 Fo2 Force Sens Couch
6 Having Lunch 6 Di3 Distance Chair
7 Preparing Dinner 7 Di4 Distance Chair
8 Having Dinner 8 Ph3 Photocell Fridge
9 Washing Dishes 9 Ph4 Photocell Kitchen Drawer
10 Having Snack 10 Ph5 Photocell Wardrobe
11 Sleeping 11 Ph6 Photocell Bathroom Cabinet
12 Watching TV 12 Co1 Contact Sens House Door
13 Studying 13 Co2 Contact Sens Bathroom Door
14 Having Shower 14 Co3 Contact Sens Shower Cab. Door
15 Toileting 15 So1 Sonar Distance Hall
16 Napping 16 So2 Sonar Distance Kitchen
17 Using Internet 17 Di1 Distance Tap
18 Reading Book 18 Di2 Distance Water Closet
19 Laundry 19 Te1 Temperature Kitchen
20 Shaving 20 Fo3 Force Sens Bed
21 Brushing Teeth
22 Talking on the Phone
23 Listening to Music
24 Cleaning
25 Having Conversation
26 Having Guest
27 Changing Clothes

Figure 6.3: ARAS Dataset, House A.
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Table 6.2: Sensors, activity associated and location

Ambient Sensors Actions /
Location

Force Sensor or Pressure Mat Sleeping, sitting, napping /
Under the beds and the couches

Photocell Opening the drawers and the wardrobes /
In the drawers, the wardrobes and the refrigerator

Contact Sensors Opening and closing of the doors, cupboards/
On door frames, shower cabin, cupboards

Proximity Sensors Detecting close distance objects /
On the chairs, on the closets and on the taps

Sonar Distance Sensors Detecting presence /
On the walls, door frames

Temperature Sensors Cooking /
Near the oven in the kitchen

Infrared Receiver Watching TV /
Near the TV

two occupants, the number of possible outputs will be 22 = 4. (See Fig. 6.4).

The single layer approach models each output as a combination of of activities.

The output class will always be a combination of the activity each occupant is

performing.

2. Multi-Layered approach: is based on the idea of using a multi-layered model. A

number of models equal to the number of occupants is trained, so each model

incorporates the labels of one of the occupants (See Fig. 6.5). In this case, we have

separated and independent models one for each occupant, and they give separated

outputs. However, both outputs are combined to evaluate them against the ground

truth where we have also a separated class for each occupant.

6.4 Experimental Evaluation

For our experiments, we use the HouseA of the ARAS dataset, and we apply both

the single-layered approach and the multi-layered approach. This dataset is actually

made of 27 different activities, however we combine them into 6 larger groups of states

per occupants. As explained in [1], the most frequent activities namely sleeping, eating,

personal hygiene, going out and relaxing have been grouped together; the rest have been

grouped into ‘other’. As we have 2 occupants performing 6 different activities each, we
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Figure 6.4: One model is used to perform two occupant activity detection. The labels
are used in a combined way, and the output of the model is a class which encodes a

combination of the activities each occupant is performing.

Figure 6.5: One layer of models is used for each occupant. The features are shared
between all the models. However, each of the models are trained using the labels of
one different occupant. Therefore, each of them detects the activity performed by their

associated occupant.

can have 62 total number of combinations possible. We adopt this approach because is

the one followed in [1] so we can have a baseline to compare the results they obtained

against our own.
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6.4.1 Single-Layered Approach With 6x6 Activities (Combinations)

In this first experiment, we follow the combination of 6 labels per occupants using the

single-layered approach. Here, we model each combination as a possible outcome or state

of the system. As we have 36 possible combinations, the single-layered model has 36

states or classes. The numbers are from 11 (occupant 1 performing 1, while occupant 2

performing 1 as well) to 66 (both occupants perform activity 6). We use a single-layeres

DHSMM to try to classify up to 36 different classes.

In Fig. 6.6 we can see the confusion matrix of all the predicted combined activities vs

the ground truth. Each pair of numbers represent a combination of sequences. For

example 12, means Occ1 performing activity 1 (Sleeping) and Occ2 performing activity

2 (Eating). In spite of having a large number of possible states, the model is able to

predict correctly a big number of occurrences. The overall accuracy of our DHSMM

approach is of 68.99%, which is over the results the dataset publishing team reported:

accuracy of 61.5% using a HMM model.

6.4.2 Multi-Layered (2-Layers) Approach With 6 + 6 Activities

In this occasion we have a separated set of outcomes. Fig. 6.7 and Fig. 6.8 show both

confusion matrices for Occ1 and Occ2 respectively. We can see that the model performs

significant better than other approaches not only in accuracy, but also in recall and

precision values as well.

In order to further evaluate the multi-occupant framework, we repeat the process but

on this occasion we use a multi-layered approach where two DHSMM models are use in

order to model an occupant per model. We obtain an accuracy of 79.64% and 78.30%

respectively for Occ1 and Occ2, and a total overall of 78.97%.

6.4.3 Multi-Layered (2 Layer) Approach With 27 + 27 Labels

In this last experiment, we have used our DHSMM with the multi-layered approach,

but on this occasion we have used the whole 27 activities for each occupant instead

of combining them into only 6 as in previous experiments. The purpose of this last
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Table 6.3: Compared with the baseline value of 61.5% of accuracy, our DHSMM
approach achieves better results of accuracy, both using 6 and 27 activities. Multi-

layered shows highest classification accuracy.

Multi-Layer (27 Act) Multi-Layer (6 Act) Single Layer (6 Act)

Occupant 1 69.45% 79.64% -
Occupant 2 69.22% 78.30% -
Combined 69.34% 78.97% 68.99%

experiment was to analyse the robustness and adaptability of our model with a more

complex representation of the data.

The accuracies in these experiments are 69.45% and 69.22% respectively for Occ1 and

Occ2. Fig. 6.9 and Fig. 6.10 present the confusion matrix and shows how much more

complex these models are compared to the ones used with only 6 activities.

6.5 Discussion

Based on the experimental results, we can conclude that the multi-layered approach is

able to better capture the patterns in the data when we are modelling one occupant. In

Fig. 6.11, we can see how the accuracies of the models detecting the occupants separately

are performing better than the single-layer model detecting both occupants.

Furthermore, even if we use all 27 labels instead of the reduced way with only 6, we can

see that the multi-layered approach still shows good performances (see Table 6.3).

Generally, our DHSMM improves the results reported in previous works and shows

that is able to handle large volumes of activity data in an efficient way even with the

challenging setup of working in an scenario including multi-occupant data in an online

setting with incremental parameter update.

Using a reduced number of labels, our DHSMM based model shows that can reach values

close to 80% of accuracy using a multi-layered approach and close to 70% when using

a single-layer model. Both results are significantly higher that the results obtained by

the dataset publishing team in their experiments [1], where they obtained an accuracy

of 61.5% using a similar single-layered HMM approach and the same number of reduced

labels (from 27 to 6). Furthermore, we have extended our experiment using the whole
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set of labels available and showed that our DHSMM model improves that result with a

multi-layered approach and 27 activities per occupant.

The experimental evaluations show that our approach can perform activity recognition

in an online setting using data from multiple occupants while overcoming the traditional

limitations present when using online HSMM-based models.
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Figure 6.7: Confusion matrix of the multi-layered approach for Occ1 and 6 activities.

Figure 6.8: Confusion matrix of the multi-layered approach for Occ2 and 6 activities.
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Figure 6.11: The multi-layered approach using one model per occupant performs
better than the single-layered approach which combines the labels of both occupants.



Chapter 7

Conclusion And Future Work

In this thesis, we have introduced the concept of occupant behaviour pattern modelling

(OBPM) and why this is relevant as a potential solution for buildings scenarios. The

main objective has been the designing of an algorithm that could process data to extract

real occupant information that could be used to regulate building systems according to

actual occupant needs. In order to achieve this, we have identified potential limita-

tions and challenges these particular modelling techniques suffer, especially when the

systems are intended to perform operations in real-time through streamed sensor data.

To overcome these challenges, we have studied potential solutions by evaluating different

methods to compare their performance. Based on our findings, we have proposed a novel

model that extends traditional approaches to capture the occupancy and activity infor-

mation in real-time scenarios. Therefore, improving traditional levels of performance

while providing a better solution in terms of scalability and model complexity.

7.1 Contributions

In this work, several goals have been successfully achieved towards the development of a

novel data-driven approach to fast and accurately model and detect occupancy patterns

for both single occupant and multiple occupants, using real time sensor data. The main

achievements can be summarised as follows:

110
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1. We have conducted a comprehensive survey on previous research related to Occu-

pant Behaviour Pattern Modelling (OBPM) and different machine learning tech-

niques currently adopted. We have focused our efforts on previous works ad-

dressing human behaviour pattern modelling in buildings using only non-intrusive

sensors data (e.g. motion, contact, pressure,...). This study allowed us to gain

greater understanding about the current state-of-the-art and identify the main

methodologies used so far in the existing literature.

2. We have proposed a benchmark of experiments, where we have conducted a thor-

ough comparison and evaluation using existing well-known machine learning tech-

niques for OBPM based on publicly available real datasets. Here we used several

metrics of performance evaluation such as accuracy, precision or recall in addition

to processing time and model complexity. Additionally, to understand the factors

that might have an impact over the overall model performance, we have investi-

gated and identified other aspects and limitations that could affect the accuracy

of the models, including different data pre-processing techniques. These experi-

ments included classification of occupant states using several well-known machine

learning techniques including k-nearest neighbours (kNN), hidden Markov mod-

els (HMM), hidden semi-Markov models (HSMM) and support vector machines

(SVM). The objective was to evaluate the performance of different algorithms in

a OBPM context to assess which approaches can be better suited for the task at

hand. Additionally, we performed a series of supplementary experiments where

we introduced different data pre-processing techniques (timeslice and chunk ap-

proaches) and variable sampling frequency.

After analysing the results, we learnt that in HSMM-based models given this sce-

nario, the sequential properties of the Markov models work well to model the sensor

sequential data. In fact, HSMM outperformed HMM performance in terms of clas-

sification accuracy, while not incurring in prohibitive training times as happened

with other models such as SVM. HSMM learned parameters, which include the

traditional transition, observation and priors; are extended with a duration model

that helps to capture states more accurately. However, there are some problems

when modelling real-time scenarios due to HSMM needing whole data batches

for modelling a state and the rigid methods when sampling the duration of the
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next state. Consequently, the experiments showed that HSMM-based modelling is

promising; however, it still suffers limitations as follows:

a) HSMM features observations contain just one value per sample, which means

that there is no way to give more relevance to certain sensors (inputs) in

scenarios were the physical deployment of the sensors favours the interaction

of some of them over the rest. For example, a sensor in a central hallway will

be more likely to be triggered that one located in a small corner of a less used

room.

b) If a state is defined throughout all its duration, we need all the observations

at the same time in order to estimate what state and for how long is going

to occur.

3. We have developed a novel dynamic hidden semi-Markov model (DHSMM) to

process online streaming data and make occupancy state predictions in real time.

This included some of the most attractive properties of the HSMM models for

sequential data analysis, but it was specifically designed to address the challenges

identified when using HSMM models for OBPM purposes in an online setting. Our

DHSMM extended the capabilities of traditional HSMM models in two ways:

• The weighted observation model: we have fed the sensor observations into the

model as separated inputs (one per sensor) and calculated the observation

probability by aggregating all the signals together. Additionally, we have

included a set of weights associated to each of the sensor signals based on a

correlation function (MSE function) to help our model better represent the

significance of each of the sensor signals involved.

• The dynamic duration model: We have predicted each state duration based

on an inverse cumulative distribution function, which we used to calculate the

probability of remaining versus the probability leaving the state dynamically

(each timestep). This was intended to improve HSMM traditional online per-

formance, which bases the duration prediction on a random duration sample

calculated at the beginning of each state. To validate our DHSMM approach,

we included several experiments using datasets containing presence/absence

occupancy data achieving good levels of performance.
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• We have developed a novel incremental learning approach for our online

DHSMM model, defining incremental learning as updating of model parame-

ters without being allowed to store any of the previous samples (all previous

samples are simply discarded). This is achieved by re-estimating parameters

iteratively while new data is being processed by our system. As long as new

sensor data is observed, new values can be assigned to the model parame-

ters in order to incrementally incorporate the new information received. To

do this, we have proposed several different novel approaches to update the

various model parameters (i.e. priors, observation, transition and duration

models):

a) Observation and Priors: We have used a novel technique including a β

value approximation calculated using the Baum-Welch algorithm using

only one new sample of data. Using this approximation, priors and obser-

vations can be updated following traditional HMM framework parameter

updating approaches.

b) Transition: Due to the nature of HSMM approaches, we have introduced

a numerical approach to the updating of the transition model, consisting

in adding a learning rate value (λ) each time a specific transition took

place.

c) Duration: To update the parameters of the functions used to describe

the duration model, we have used a combination of Bayesian inference

techniques based upon conjugate priors, to stablish an updating methods

for the parameters of distributions such as Gamma and Gaussian.

4. Finally, we have proposed a novel multi-occupant framework for OBPM models in

order to perform occupancy and activity detection in scenarios where more than

one occupant is present. We conducted experiments to validate out proposal by

evaluating multi-occupant approaches including a method where each occupant

is modelled by an independent model with common features (multi-layered incre-

mental online DHSMM) and a second method where all occupants are modelled

together by modelling the states as combinations of states belonging to each occu-

pant (single-layered). The final experimental evaluation shows how our approach is
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able to performs fast and accurate occupant behaviour pattern detection in an on-

line setting using with data from various occupants and overcoming the traditional

limitations present when using HSMM-based models.

7.2 Challenges

In this project, several challenges have been encountered throughout its development.

In the initial stages, this project aimed to create an embedded software tool that could

seamlessly be implemented in BEMS. This tool was meant to provide occupant and

energy consumption information to study, not only human/building interactions but

also the real impact these could have over the energy consumption of the buildings.

HAving this data available, it would have enabled us to the development of solutions

directly linked to the relationship between energy and occupancy.

To collect this data, our team studied several ways to deploy our own sensor network

at the university facilities. The sensor network would collect data from occupants in a

controlled space while labelling their occupancy states at all times. This data, would

have been used later to model human/building interactions by means of machine learn-

ing algorithms. Unfortunately, the resources available were limited and due to time

constraints, the sensor network was not deployed and the data was never collected. This

fact motivated the decision of researching publicly available quality datasets to train and

validate our models. Even though there is an increasing number of datasets available

nowadays, specific datasets that could fit in the context of this project were scarce and

hard to find. There were also occasions where the datasets were only used for privately

funded projects, therefore the data was never made available to other researchers.

After a thorough research in repositories and testbeds, we identified the most suitable

datasets (mentioned in the different chapters of this thesis) following some specific cri-

teria: they contained a significant number of samples and they were the datasets used

in high quality previous researches related to the modelling of human/building interac-

tions. In spite of finding several high quality datasets, none of them matched completely

the characteristics of the datasets our own designed network would have provided. The
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main differences were found in the fact that the current public datasets were more ac-

tivity oriented compared to occupancy, and that none of them linked occupant patterns

to energy efficiency and CO2 emission levels.

Having the dataset limitation, we decided to accordingly modify the scope of our re-

search, leaving aside the particularities of the energy efficiency aspect and focusing on

occupant pattern modelling for all types of applications, namely healthcare, security or

smart homes. Due to the fact that this contextual side of the project was not relevant

any more, we could focus our efforts in the development of a more robust and sophisti-

cated algorithm. By doing this, we could develop a more thorough solution and we were

able to devote all our time and efforts to the building our novel DHSMM algorithm.

Additionally, since we never had the option to use our own physical system, it became

impractical to embed our algorithm in a real BEMS to evaluate other aspects in the

design of these algorithms. However, we had the opportunity of studying in depth a

significant number of publicly available datasets and their associated publications. This

eventually proved to be an invaluable help to better understand how the techniques of

modelling human behaviour work from many new perspectives.

Finally, in spite of all the mentioned limitations, the resulting outputs from this project

completely satisfactory and enabled us to explore new routes and lines of investigation

that proved equally, if not more, rewarding and fulfilling as the ones initially set.

7.3 Future Work

Future work will include the implementation of our software in real world building

management systems (BEMS) applications. The sensor information can be captured in

real time and subsequently used to improve the energy efficiency of the buildings by

regulating systems ‘on the fly’. By making these different technologies work together,

we can evaluate the challenges and practical aspects of implementing these technologies.

Moreover, having identified a significant scarcity of occupancy datasets, researchers ded-

icated to this topic should be encouraged to make available their datasets and findings,

so more effort can be devoted to the development of new solutions or the improvement of

the existing ones. The same could be said for works that, based on these new datasets,
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present frameworks and baselines to perform model comparison. Due to the evolving

nature of the development of new algorithms based on multiple different approaches

(e.g. machine learning, data fusion and IoT, knowledge-driven models...), baselines and

frameworks will be particularly helpful to identify the best solutions for each case or

application.

Finally, our DHSMM model could be applied to other field and topics related to mod-

elling human behaviour and patterns discovery such as human gesture detection or low

level activity recognition, as it has proven to be a robust and reliable solution in the

scenarios where it has been evaluated so far. Up to our knowledge, this is the first time

that a model based on a HSMM approach has been able to be used for online and in-

cremental learning in a human pattern modelling scenario; furthermore being evaluated

in challenging setups including multi occupant datasets.
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