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Using user-generated content to explore the temporal heterogeneity 

in tourist mobility 

 

Abstract 

 

In tourism studies, new means of data collection are opening up opportunities for disclosing 

hidden mobility patterns. This paper aims to analyze and model the tourist flow networks for 

different lengths of trip on urban scale, using user generated content (UGC) data collated 

from an open tourism web service. The textual UGC data, with high spatial and temporal 

resolution, is utilized to construct three tourist flow networks in response to length of trips. 

Social network analysis and a revised spatial interaction model are deployed for exploring the 

temporal heterogeneity in the tourist movements. This empirical study from Nanjing city has 

further confirmed the power law of distance decay in intra-urban tourist mobility. 

Furthermore, the research reveals temporal variations with length of trip. The paper highlights 

the role of time in the tourism study through incorporating a temporal dimension into the 

analyses and taking advantage of the availability of new data.  

 

Key words: Tourist movement, user generated content, social network analysis, gravity 

model, power law, temporal heterogeneity.   
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1. Introduction 

 

China, as the second largest economy in the world, is undergoing an economic transition from 

traditional manufacturing to modern services. In particular, rapid urbanization has stimulated the 

development of tourism. Domestic tourist numbers reached 3,262 million in 2013, following an 

average annual growth rate (AAGR) of 11.27% between 1990-2013. In 2013, China’s domestic 

tourism revenue reached RMB 2,627.61 billion yuan, with an AAGR of 12.5% between 1995 and 

2013 (CEIC China Database 2014). The challenges that this growth brings to China are subject to 

increasing research.  

 

Human mobility is a key concept subject to multidisciplinary study (e.g. tourism, geography, 

transport and sociology), where research has focused on social mobility, geographic mobility, 

occupational mobility, smart mobility and even everyday mobility. Although there might be varied 

foci and interests between these areas, analyzing and modelling flows of people on different 

(spatial and temporal) scales is a major concern in the mobility literature. For example, Stillwell, 

Bell, Ueffing, Daras, Charles-Edwards, Kupiszewski and Kupiszewska (2016) explored the 

scaling effects of distance decay in the case of internal migration in an international context. 

Tourism, as a form of mobility, particularly as a sub-set of a vast and heterogeneous complex of 

global mobilities, is increasingly integrated into wider processes of economic and political 

development and even constitutive of everyday life (Hannam, Butler, and Paris 2014). 

Understanding how tourists move through time and space has important implications for 

infrastructure and transportation development, product development, destination planning and the 

planning of new attractions, as well as management of the social, environmental and cultural 

impacts of tourism (Lew and Mckercher 2006).  

 

Understanding tourism mobility involves the scientific and empirical interpretations of spatial and 

temporal patterns of flows between destinations or attractions within a study area. The 

pre-requisite for reasonably analyzing and modelling tourist mobility is the collection of 

representative flow data of a high quality. Apart from secondary data, traditional methods of data 

collection are dominated by questionnaire surveys and interviews (e.g. Shoval and Raveh 2004; 

Asero, Gozzo, and Tomaselli 2016; Wong, Fong and Law 2016), which are time consuming, 

costly and labor intensive. Hannam, Butler, and Paris (2014) suggest that new technologies (e.g. 

sensor, social media and the internet), together with new means of high-resolution data collection, 

provide opportunities to develop sophisticated tools with which to explore mobility (Shoval and 

Ahas 2016), encompassing digital footprints (Önder, Koerbitz, and Hubmann-Haidvogel 2016), 

word of mouth (Ring, Tkaczynski, and Dolnicar 2016), user-generated content (UGC) (Lu and 

Stepchenkova 2015) and big data (Fuchs, Höpken, and Lexhagen 2014).  

 

Most of these studies focus on the spatial dimension of mobility, however, Leiper (2004, p.129) 

suggests that ‘‘different tourists tend to perceive the same destination in different ways and a very 

influential variable is the time available for spending in each place’’, because time has been 

increasingly recognized as a scarce commodity and limited resource. The valuation of time as 

commodity or resource, which determines the distribution and order of attraction visits, is very 

much affected by time availability during a trip. Fuchs, Höpken, and Lexhagen (2014) stated that 
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“the evidence and understanding of the role played by time are incomplete”. Using survey data, 

Shoval and Raveh (2004) revealed that both length of stay and number of previous visits to the 

city have a strong effect on the tourism consumption pattern, which is an initial exploration of the 

temporal dimension of tourism mobility. This paper, therefore, further explores the temporal 

heterogeneity in tourism mobility through the application of new means of data collection, to 

consider: how does the length of trip affect tourist mobility, which data sets can be utilized to 

analyze the influence, and what are the implications for tourism mobility theory?  

 

The second section of the paper presents a literature review of tracking and analyzing tourist 

mobility, before introducing the study area of Nanjing City (China), data collection and processing, 

and analytical methods in section Three, followed by the presentations from the analyses and 

models in Section Four. Section Five proposes a conceptual model summarizing and comparing 

tourist flow patterns in response to different trip lengths. The paper concludes with a discussion of 

the potential contribution to the study of tourism mobility.  

 

2. Literature review: tracking and analyzing tourist mobility 

 

Tourism mobility involves the details of a person (who), location (where), time (when) and 

context (what or environment) (e.g. Kim and Fesenmaier 2015). The 4-W approach enables 

analysis of where and when the tourist is and what they are doing. Information can be recorded on 

a variety of spatial, temporal, and human scales, where: spatial scale considers resolution and 

extent; the temporal scale includes interval and duration or length; and the human scale consists of 

sample and population. This approach underpins both the tracking and analysis of tourist mobility. 

  

2.1 Tracking 

 

There has been increasing growth of the use of sensors for tracking purpose, e.g. GPS, cell-tower 

identification, Wi-Fi positioning, Bluetooth, RFID, and camera, to list but a few. In terms of 

citizen science (Goodchild 2007), the individual tourist acts as a kind of ‘sensor’ allowing the 

tracking of movement through their physical movements together with the personal data they 

volunteer and share online. By reviewing the progress of tracking technologies, from GPS to smart 

phone, Shoval and Ahas (2016) predict the eventual development of smartphones that will connect to 

various external sensors, which will become the main facility for rapidly collecting the spatial and 

temporal data of tourist mobility. For example, online social networks (e.g. Twitter, Flickr, and 

Foursquare), already provide geo-referenced messages and photos with high spatial and temporal 

resolution. These new data sets have motivated the spatial and temporal analyses of tourist movement 

(Shoval and Ahas 2016), who argue that new tracking technology is promoting data collection from 

networks to analyze high spatial, temporal, and human scales. The Internet, in particular, has changed 

from a “publishing-browsing-platform” to a “participation-interaction-platform” (Xiang, Wang, 

O’Leary, and Fesenmaier 2015). For instance, Zhou, Xu, and Kimmons (2015) developed a method 

for detecting tourism destinations using geotagged photos from social media. Liu, Sui, Kang, and Gao 

(2014) utilized social media check-in data set submitted by approximately half a million users to 

analyze inter-urban trip patterns. As social networks and online communities create the social DNA of 

the Network Society (Castells 2001), a range of platforms have emerged specifically within the tourist 
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sector which utilize UGC, e.g. virtual communities, consumer reviews, personal stand-alone blogs, 

blog aggregators, and microblogging platforms, social networks, media sharing tools, and wikis (Lu 

and Stepchenkova 2015). UGC, which is textual or visual (e.g. Zhang, Wu, and Mattila 2016), can 

improve data availability, reduce data cost, and promote speed and simplicity of data collection, when 

compared with other methods (e.g. GPS-tracking, travel diary or questionnaire survey). After 

completing a systematic review of empirical research using UGC as a data source to address issues in 

tourism and hospitality applications, Lu and Stepchenkova (2015) conclude that textual UGC and 

qualitative content analysis are the leading data type and research method employed, although there is 

an increasing trend in quantitative analysis (e.g. big data analytics) using both textual and visual data. 

However, most of these applications focus more on destinations or attractions rather than tourists 

flows. 

 

2.2 Analyzing 

 

Mckercher and Lau (2008) summarized 78 tourist movement patterns within an urban destination 

using qualitative techniques. Quantitatively analyzing the mobility patterns is very much 

dependent on these scales (spatial, temporal and human scales), complicating how to aggregate 

these data at individual level, spatially and temporally. One approach is to conduct analysis at the 

individual level. For example, Vu, Li, Law, and Ye (2015) modeled the travel behaviors of 

inbound tourists to Hong Kong using geotagged photos and the Markov Chain Model. Time 

geography focuses on the movement and interaction of tourists in time and space, and has been 

extensively applied to visualizing, analyzing and modelling patterns of tourist mobility (e.g. 

Grinberger, Shoval, and McKercher 2014), and time-space constraints (Shoval 2012). Modsching, 

Kramer, Gretzel, ten Hagen (2006) analyzed the tourist’s spatial behavior, in particular the time 

spent for different activities at an urban destination using GPS tracking data. McKercher, Shoval, 

Ng, and Birenboim (2012) further explored the significant impacts of visitor numbers on their 

spatial patterns using the same kind of data. These studies highlighted the heterogeneous uses of 

time between activities during a trip. 

 

There is an increasing trend involving the aggregation of mobility data at the individual level into 

networks, as the basis for the analysis of the topological structure of the attraction system 

(Smallworld, Beckley, and Moore 2012). This is because understanding the network 

characteristics of tourism attractions has practical implications for the competitiveness, 

management, and planning of tourism (Stienmetz and Fesenmaier 2015). Travel patterns can be 

viewed as network, and therefore, subject to network analysis (e.g. Shih 2006), which include 

several structural indicators, e.g. centrality. Based on a core-periphery analysis of attractions 

network, Zach and Gretzel (2011) argued that the network structure provides a strong and practical 

basis for dynamically bundling products that create value for tourists and the destination. Hwang, 

Gretzel and Fesenmaier (2006) concluded that (social) network analysis methods can provide 

insights into structural properties of trips and allow for testing a variety of structural differences, 

after their successful analyses of multicity tourism behavior across the U.S. More interestingly, 

using UGC data from overseas tourists (textual trip diaries) from 6 websites and data from social 

medias, Leung, Wang, Wu, Bai, Stahura, and Xie (2012) demonstrated the strength of social 

network analysis methods through the analysis of the patterns of intra-destination tourist 
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movement networks to examine the impacts of the 2008 Olympic Games. These case studies have 

proved that both UGC data and social network analysis can be effectively integrated into 

analyzing the spatial patterns of tourist flows. However, temporal patterns of tourist flows are not 

reported yet.  

 

In the majority of tourism studies, distance plays a crucial role. Distance decay, sometimes 

referred to ‘friction of distance’, indicates declining interaction with an increase in distance. The 

distance decay effect is a universal phenomenon in geography for modelling spatial interaction 

between origin and destination sites. McKercher and Lew (2003) noted that distance decay was 

popular in tourism research in the 1960s and 1970s, when it was used as a proxy for forecasting. 

McKercher, Chan, and Lam (2008) summarized three types of distance decay curves: classic 

decay curve; plateauing decay curve; and a decay curve with a secondary peak to represent the 

global flow of tourists. The distance decay effect within tourism studies has focused on destination 

choices, such as outbound international travel (Hooper 2015). Actual decay curves have been 

found to exhibit a plateau, or a secondary peak (Smallwood, Beckley, and Moore 2012). However, 

few studies have explored the distance decay in tourist flow distributions. 

 

Greer and Wall (1979) observed that the type of trip undertaken influences the decay rate—short 

duration trips experienced the steepest curve, while longer duration trips tended to display more of 

a plateauing curve. This means that the distance decay effect may demonstrate temporal variations 

with length of trip. Halás, Klapka and Kladivo (2014) have explored the heterogeneity of distance 

decay effect in commuting patterns. However, in network analysis case studies, temporal 

heterogeneity has been ignored. For example, tourists’ spatial movement patterns during the fall 

might be different from the spring, summer, and winter seasons. Nicolau, Zach, and Tussyadiah 

(2016) confirmed a positive impact of both distance and first-time visitation on length of stay 

using data collected from 908 U.S. visitors to a tourism destination in the Atlantic Coast of the 

United States. This knowledge gap regarding the temporal heterogeneity in mobility analysis, 

therefore, forms a central aim of this paper. 

 

3. Methodology 

 

3.1 Study area 

 

Nanjing City is the capital of Jiangsu Province, which is located in eastern China and at the middle 

and lower reaches of the Yangtze River (Figure 1). Nanjing City comprises eleven districts, with 

an area of 6597 km2 and a total population of 8.22 million in 2014 (JSBS 2015). As a key node 

within the Yangtze River Delta, which is an emerging global city region, Nanjing has been a 

national center for education, research, transportation and tourism. Due to rapid urbanization, 

Nanjing has become a core mega city in this economically wealthy Yantze River Delta (Wu, 

Cheng, Chen, Hammel, and Wu 2014). In terms of tourism, this city, with 2500 years of urban 

history, has been the capital city of six different dynasties, and is now recognized as one of the 

four great ancient capitals of China (Yuan, Gao, and Wu 2016). With such a long historical culture 

and a unique natural landscape, Nanjing has been attracting domestic and overseas tourists. 

Nanjing hosted 5.66 million oversea tourists and 94.19 million domestic tourists in 2014 (JSBS 
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2015). With the total income of 150.48 billion yuan RMB in 2014, the tourism economy of 

Nanjing was ranked within the first few places and well recognized as a top tourism city (JSBS 

2015). Being focused on the internal mobility of tourists within a city, the study area is composed 

of 47 sub-districts, located to the south of the Yangtze River and within the ring roads (Figure 1).  

 

 

 

Figure 1. Location of the study area (Jiangsu province, Nanjing City and distribution of 

attractions) 

 

3.2 Data collection and processing 

 

The tourist flows dataset was compiled from a commercial web service called “Where to go?”

（www.qunar.com）(another application example can be seen from the case study by Wu and 

Pearce 2016), which was launched in late 2010. This web service, an equivalent of Trip Advisor in 

the western world, provides a platform for the public or specifically tourists all over the world to 

upload and exchange trip related information (e.g. story, narrative and photo for attractions and 

routes) across the world. Such UGC data, although in text or photo format, has high spatial and 
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temporal resolution. Spatially, all of the attractions visited are detailed with a specific popular 

name together with easily recognizable photos. Each attraction can then be geo-referenced by 

using longitude and latitude coordinates extracted from an open Geographical Information System 

(GIS) e.g. Tianditu web service. A point layer with all of these attractions can be overlaid with 

other GIS layers (such as road networks, collected from secondary sources) for further spatial 

analysis, after being projected into the local coordinate system. Temporally, the visits to attractions 

are recorded in order on a daily basis (some even on an hourly basis) and therefore it is possible to 

recognize which attraction was visited and on which date. In total, 1424 valid samples of complete 

trips (those trips with only one attraction visited were removed from the sample), involving 45 

attractions within Nanjing in 2012 (including traditional spots and also shopping streets, bars and 

pubs, and university campuses) (see Figure 1), have been recorded into a database.  

 

In terms of the network, each attraction is represented as a node, the direct line between a pair of 

nodes is denoted as edge (E), the number of tourists on the line is represented as flow. All of these 

edges form a network of tourist flow (or mobility). Suppose that a complete trip is composed of a 

departure train station, hotel, arrival airport and eight attractions from A to H (but E is outside of 

the study area), then this trip can be semantically represented by a flow between the seven 

attractions excluding E. Further, this flow is mathematically represented by a 7x7 matrix in which 

value 1 indicates a move and 0 means no move between a pair of origin and destination spots.  

 

Following this rule, each trip in the sample was transformed into a 45x45 relational matrix with 

only 1 or 0 values. For the whole set of samples, all of these 45x45 matrices are overlaid by a 

simple matrix addition operation. The final output – a flow network, is represented as a 45x45 

matrix, in which the value for each matrix element ij is the total flow of tourists from attraction i 

to j. With the temporal information (the attractions visited each day) available from the web 

service, these trips can be classified into: one-day trip, two-day trip, three-and-more-day trip. 

Accordingly, the flow network can also be split into three sub-networks of flows, which are 

comprised of flows from only one-day or two-day or three-and-more-day trip respectively. All of 

these networks will be used to analyze and compare the mobility and behavior of tourists in 

central Nanjing. Statistically, this network, formed of 1424 trips in total is composed of 45 nodes 

(Figure 1), 590 edges, with a total flow of 5337 on the network. The statistical patterns of the three 

categories are summarized in Table 1. This table demonstrates a clear trend that the numbers of 

trips and flows decreased with the length of trip but the total number of attractions and average 

numbers of attractions and routes per trip increased with the trip length.  

 

Table 1. Flow of tourists between attractions for different trip lengths 

 

 One-day trip Two-day trip Three-and-more-day trip Total 

Number of trips 897 367 160 1424 

Total Number of attraction visited 37 42 43 45 

Average number of attractions visited 3.55 6.86 11.01 5.24 

Number of edges valid 303 374 401 590 

Number of flows 2203 1803 1331 5337 
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3.3 Methods 

 

3.3.1 Analyzing mobility network between attractions 

 

In social network analysis, the basic measures of centrality are calculated through a n × n matrix 

of attractions to evaluate the structural features of networks. The measures classify the links 

among attractions according to their nodal role along tourist routes and identify the most important 

network attractions. This measure is composed of several metrics including in-degree, out-degree 

and degree centrality. In-degree is the total number of tourists arriving at a node or attraction and 

conversely out-degree the total number of tourists departing from a node or attraction (Table 2). 

As the sum of in-degree and out-degree, degree centrality (Table 2) allows for recognition of 

central attraction in the tourism networks. This paper proposes, therefore, a new index vergence 

(between -1 and 1) to measure the difference between inflow and outflow at each node.  

 

Table 2. Network metrics 

Level Metrics Calculation Equation 

Node 

(attraction) 

InDegree 



n

j

jiini lC
1

                                                           
(1) 

OutDegree 



n

j

ijouti lC
1

                           (2) 

Centrality inioutii CCC                         
(3) 

Vergence Si=(Couti - Cini)/Ci×100%                   (4) 

Entire valid 

network 

Network density  )1(/  nnED        
(5)               

Mean flow Ell
n

i

n

j

ij /
1 1


 

                 (6)          

   

Mean distance 

weighted by flow 

  


n

i

n

j

ij

n

i

n

j

ijij ldld
1 11 1

/                 (7) 

 

  

Network density D, describing the global level of linkages among the nodes, is defined as division 

of the total number of edges or links E by the maximum number of links on the network. The 

more connected the nodes are, the denser the network. This global measure varies from 0 to 1. If 

the value of network density is equal to 1, it means that the nodes are tied to each other. In this 

study, seven network metrics are employed to analyze the mobility of tourists between the 

attractions, which are detailed in Table 2 and explained as follows: 

 

Cini and Couti are the inflow and outflow of tourists arriving at and departing from attraction i 

respectively. lji is the number of flows or tourists from attraction j to i and lij from i to j. Ci is the 

degree centrality and Si the vergence value at attraction i respectively. D is density of the network，

E is the total number of edges, CD is the centrality of the network， l  is a mean flow, dij is the 
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network distance between two attractions i and j calculated using ArcGIS, and n is the total 

number of attractions. In terms of vergence index, if it is greater than 0, it is called divergence，

conversely convergence. When the vergence index is 1 (the maximum value), it means the first 

spot visited in the morning. When the vergence index is -1 (the minimum value), it means the last 

spot visited in the evening.    

 

3.3.2 Modelling flows of tourists between attractions 

 

Santeramo and Morelli (2016) concluded that distance is a main friction to tourist flows, but its 

effect varies with the intensity of tourist flows: the latter are less affected. A gravity model is 

commonly expressed as:  Iij=k Pi Pj f(dij), where Iij is the intensity of interaction between i and j，

Pi and P j are the attraction force at locations i and j respectively, dij is the network distance 

between i and j, f(dij) is a function of distance dij. In practice, Pi and P j are often measured by the 

economy and population in the two places, f(dij) is either an inverse power function d-β, or a 

negative exponential function e-βd. β is a spatial barrier co-efficient or distance friction coefficient. 

The greater the parameter β is, the more sensitive to distance it is, then the higher speed of decay it 

is. Wilson has further developed the gravity model based on entropy maximization into flow 

model (Wilson, 1967), which is Iij = k Oi Dj / f(dij), where dij and f(dij) remain the same, Iij is the 

intensity of flow from location i to j. When moving to tourist flows, Oi is the outflow at location i 

and Dj the inflow at location j. In this study, lij is used to measure Iij, the flows between two 

attractions, Couti for Oi and Cinj for Dj，dij the real travelling distance between attractions. 

 

)(/ ijinjoutiij dfCkCl       （9） 

 

In order to consider the variation in the effects of inflow and outflow at attractions, Equation 9 

above needs to be revised into Equation 10 as follows (see another example in Patuelli, Mussoni, 

and Candela 2013): 

)(/ ij

b

inj

a

outiij dfCkCl      （10） 

 

Where two parameters a and b are added into the equation to reflect the intensity of impacts of 

inflow and outflow on flows. Parameters α and b can be viewed as the elasticity of attractions 

interactions. This gravity model has also been applied by Morley, Rosselló, and Santana-Gallego 

(2014) for modelling tourism demand. The interpretation is straightforward. For parameter α, a 

one-percent increase in inflow size is expected to produce a proportional increase in the number of 

local flows, and the same for parameter b. 

 

To calibrate the parameters a, b and β, a natural log transformation is taken for equation 10, which 

results in equation 11 for the power function of f(dij) and equation 12 for the exponential function 

of f(dij). Then an ordinary least square (OLS) regression analysis is used to seek a best-fit equation 

with the real data set including flow of tourists, inflows, outflows and distance between 

attractions.  
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Ln(lij) = ln(k) + a * Couti + b * Cinj  - β * Ln(dij)   (11) 

 

Ln(lij) = ln(k) + a * Couti + b * Cinj  - β * dij       (12) 

 

4. Results  

 

Using the three flow networks defined above, social network analysis has been conducted and 

flow models have been calibrated respectively. Their network and flow characteristics are 

calculated separately for the purpose of comparison using the metrics defined in Table 2 and 

models in equations 11-12.  

 

4.1 Nodal position on the tourist flow networks 

 

 1）Nodal position on tourist flow networks 

 

The centrality value at each attraction was calculated using equation 3 for each network separately 

(Figure 2). There is a general trend: the centrality value decreases with the length of trip. The 

average centrality value over a network has decreased from 97.91 (one-day trip) to 80.13 (two-day 

trip) and further down to 59.16 (three-and-more-day trip) and their corresponding standard 

deviation from 188.51 to 115.97 and further down to 64.27. This indicates that a one-day trip is 

focused on more selective well-known attractions, whereas a three-and-more-day trip on most 

attractions. These results reflect that the nodal position on the network of attractions varies with 

trip length. For simplicity and interpretation purposes, all attractions are classified into only two 

categories: primary and others, based on their centrality values. It is found that the top four 

attractions with the highest value of centrality are the same for each network, which include the 

Confucian Temple, Sun Yat-sen’s Mausoleum, Xuanwu Lake and Presidential Palace. These four 

attractions are defined as primary spots and all the rest as others. However, each primary attraction 

has a varied value of centrality between the networks. On the one-day flow network, the centrality 

values of Confucian Temple, Sun Yat-sen’s Mausoleum, and Xuanwu Lake are all greater than 500. 

On the two-day flow network, the centrality values of the four primary attractions range between 

300 and 500, with the highest value of 476 taken by Confucian Temple. On the 

three-and-more-day flow network, the highest centrality value by Confucian Temple is 235 and 

lowest value by Xuanwu Lake 174. Therefore, as the core attractions in Nanjing, Confucian 

Temple and Sun Yat-sen’s Mausoleum are ranked the first two for all networks. These two 

attractions, as the only two recognized as 5A level (highest) attractions, are the most well-known 

ones across Nanjing. Both Xuanwu Lake and Presidential Palace are classified as 4A-level tourist 

attractions. The general declining trend of centrality values indicates that the importance of the 

four primary attractions in tourists’ travel behavior decreases with the length of trip. In some sense, 

this result confirms the role of time in ranking primary attractions, a theory of tourist attraction as 

highlighted by Bottia, Peypoch, and Solonandrasana (2008), which means the one-day trip is 

focused on discovery attractions, but the longer-length trip on escape attractions. 
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(a) One-day trip 

(b) Two-day trip 

(c) Three-and-more-day trip 

  

Figure 2. Mapping the centrality values of primary attractions across the study area 

       (Note：1 Confucian Temple, 2 Sun Yat-sen’s Mausoleum, 3 Xuanwu Lake, 4 Presidential Palace) 
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2）The visitation rates to primary attractions 

 

Visitation rates to the top four primary attractions are calculated for each length of trip, shown in 

Table 3, in which, the percentage of primary attraction k for trip t is calculated as the division of 

the number of samples involving attraction k for trip t over the total number of samples for trip t. It 

is clear to see that these visitation rates increase with the trip length. For short-length trips, only 

the selected primary attractions are visited quickly due to limited time availability. For 

longer-length trips, each of the most attractive primary sites, together with its surrounding minor 

sites will be visited each day due to higher time availability. 

 

Table 3. The visitation rates to primary attractions between the three trips  

 

Primary attraction One-day trip (%) Two-day trip (%) Three-and-more day trip (%) 

Confucian Temple 50.06 64.85 73.44 

Sun Yat-sen’s Mausoleum 45.38 58.27 61.88 

Xuanwu Lake 40.55 47.51 54.38 

Presidential Palace 36.62 55.54 59.38 

 

 

3）The vergence of attractions on flow networks 

 

On each network, a vergence value is calculated for each attraction using Equation 4 and then all 

of the attractions are classified into three categories: divergence, balancing and convergence, 

according to the vergence values. A one-day trip shares the same set of convergence-type spots 

(Confucian Temple), divergence-type spots (Sun Yat-sen’s Mausoleum) and balancing (the rest), 

with two-day trip. A three-and-more-day trip adds two more attractions (Xinjiekou Centre and 

Hulan street) to the convergence-type spots, and two other spots (Presidential Palace and Yangtze 

River Bridge) to the divergence-type spots. These variations indicate that tourists tend to start with 

a divergence-type attraction and end with a convergence-type attraction. It also implies that the 

flow network of a longer-length trip tends to be mixed with divergence-type and convergence-type 

spots, which might be determined by purchasing power, physical consumption and many other 

factors. These results demonstrate that temporality has great impact on intensity and direction of 

vergence.  

 

4.2 Flow characteristics on the tourist flow networks  

 

Using the values of tourist flows lij, the network density, mean flow and standard deviation are 

calculated using equations 5-7 for each network respectively. The network density is nearly the 

same between the three networks (0.216, 0.217 and 0.222 for one-, two- and three-and-more day 

trip respectively), which is very low. However, there is a large variation in mean flow and its 

standard deviation between the three networks, demonstrating a decreasing trend (7.27, 4.82 and 

3.32 in mean flow and 15.17, 8.83 and 5.28 in standard deviation for one-, two- and 

three-and-more day trip respectively). The trip over three days is more spatially uniform. It is clear 

to see that the short-term trip is characterized by the large flows between primary attractions that  
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(a) One-day trip 

 

                                                   (b)Two-day trip 

  

                              (c)Three-and-more-day trip 

Figure 3. Tourist flow networks for different lengths of trip 
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have higher values of centrality and conversely the longer-term trip by a small number of flows 

between minor attractions. For example, in the one-day trip, the total number of tourists from the 

Presidential Palace to Confucian Temple is 108 (out of 2203). The shortest network distances 

between attractions are calculated using ArcGIS 13.1, based on the road transport network on Bing 

Maps. According to Equation 7, the weighted average distance d is calculated for each network. 

The one-day trip network has the longest distance (5.51 km), the three-and-more day trip network 

the shortest (3.45 km) and the two-day trip network between both (4.39 km). This index has also 

shown that the tourist flows on short-term trips tend to be long distance, but the flows of long-term 

trip tend to be short distance. 

 

The top five flows over each network are defined as primary flows and the rest as others. The 

distributions of these primary flows are shown in Figure 3. Over the one-day trip network, the 

largest number of flows with a total value of 108 is from the Presidential Palace to Confucian 

Temple, followed by the flows with a value of 89 from Sun Yat-sen’s Mausoleum to Confucian 

Temple. These flows are characterized by a long distance between primary attractions. Over the 

two-day trip network, the largest number of flows with a total value of 113 is from Sun Yat-sen’s 

Mausoleum to Ming Xiaoling Mausoleum, followed by the flows with a value of 67 from the 

Presidential Palace to Confucian Temple. These flows are characterized by shorter distances 

between primary attractions than those over the one-day trip network. Over the 

three-and-more-day trip network, the largest number of flows with a total value of 67 is from Sun 

Yat-sen’s Mausoleum to Ming Xiaoling Mausoleum. The primary flows are dominated by short 

distances between two primary attractions. The comparisons between the three networks indicate 

that there is strong association between primary attractions and primary flows. Primary flows are 

connected with at least one primary attraction. The primary flows from short-term trips tend to 

include long-distance mobility between primary attractions. However, the primary flows from 

long-term trips tend to be short-distance mobility between a primary attraction and its surrounding 

other attractions. 

 

 

4.3 Flow models 

 

For each trip network, the power and exponential functions and their revised versions, selected to 

represent distance decay effects, are calibrated by OLS regression analysis (Equations 11 and 12). 

Comparing the results of regression analysis (Table 4), the adjusted R2 is the highest for the 

revised power functions, which are 0.724, 0.662 and 0.633 for one-day, two-day and a 

three-and-more-day trip respectively. Thereby, the model based on the revised power function is 

best fitted with the real tourist flows between attractions, so can better interpret the tourist flows. 

This has further confirmed that most flow networks of tourists have a degree distribution, which 

follows a power law for most part (Baggio, Scott, and Cooper 2010).  
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Table 4. Calibrated regression equations 

 

 Function Regression equation Adjusted R2 

One-day trip 

Power function 
373.0/0606.0 ijinjoutiij dCCT   0.455 

Revised power 

function 

248.0433.0424.0 /1307.0 ijinjoutiij dCCT   0.724 

Exponential 

function 

ijd

injoutiij eCCT
073.0

/0014.0   0.129 

Revised 

exponential 

function 

ijd

injoutiij eCCT
045.0426.0425.0 /1208.0   0.611 

Two-day trip 

Power function 
558.0/0023.0 ijinjoutiij dCCT   0.429 

Revised power 

function 

370.0387.0390.0 /02047 ijinjoutiij dCCT   0.662 

Exponential 

function 

ijd

injoutiij eCCT
092.0

/0015.0   0.172 

Revised 

exponential 

function 

ijd

injoutiij eCCT
046.0391.0369.0 /1537.0   0.517 

Three-and-mor

e-day trip 

Power function 
747.0/0037.0 ijinjoutiij dCCT   0.529 

Revised Power 

function 

529.0330.0308.0 /3848.0 ijinjoutiij dCCT   0.633 

Exponential 

function 

ijd

injoutiij eCCT
173.0

/0032.0   0.164 

Revised 

exponential 

function 

ijd

injoutiij eCCT
115.0298.0312.0 /3761.0   0.449 

 

 

In the three calibrated models using the revised power function, parameters a and b are all 

statistically significant at the 1% level. However, parameters a and b vary with trip length, from 

0.424 and 0.433 (one-day trip network) to 0.390 and 0.387 (two-day trip network) down to 0.308 

and 0.330 (three-and-more-day trip network), respectively. Comparatively, the three-and-more-day 

trip network demonstrates a larger difference between a and b, which is 0.022, than the other 

networks. It indicates a roughly smaller effect from outflows than inflows on tourist flows 

between attractions. 

 

The spatial barrier coefficients of flows between the attractions are all statistically significant at 

the 1% level, being 0.248, 0.370 and 0.529 for one-day, two-day and three-and-more-day trips 

respectively. In other studies of human mobility using mobile phone and taxi data sets, this 

parameter β is calibrated between 1 and 2 (Kang, Ma, Tong, and Liu 2012; Liu, Kang, Gao, Xiao, 
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and Tian 2012). Thereby, the parameter β in this study is beyond this range. In addition, in the 

study of long distance flows between cities in China using the data sets of passengers, its 

parameter β is also higher than this (Xiao, Wang, Liu, and Wang 2013). These variations indicate 

that the effect of distance on the flow of tourists within a city is smaller than that of long-distance 

travel and those of the daily travels of local residents. The travel from origin to destination cities 

needs to deal with a long distance, and with higher time and economic costs. However, the travel 

within a destination city only needs to deal with a short distance, as its friction coefficient is 

smaller than that from the long distance one. As a high transport cost has been invested, tourists 

often are concerned about flows rather than distance. In addition, distance friction is smaller than 

those of local peoples’ daily activities. 

 

The results from the regression analysis of the three types of trip exhibit that the influence of the 

attraction system on tourist flows decreases, but the distance decay effect increases with the 

increase of trip length. Or rather, for a short-period trip, a primary attraction has higher impacts on 

flows and the effects of distance between attractions decrease. Consequently, tourists tend to move 

to the primary attractions. For a long-term trip, the influence of attraction hierarchy on tourist 

flows decreases, but the distance decay effect increases, tourists tend to move to the other 

attractions within a shorter distance. This may imply that the flow network of tourists does not 

exhibit scale-free property as demonstrated by other tourism networks (see Baggio, Scott, and 

Cooper 2010). 

 

5. Discussion  

 

All of the attractions in Nanjing city can be classified into three attraction sub-systems: Sun 

Yat-sen’s Mausoleum attraction sub-system, Confucian Temple attraction sub-system and city 

center attraction sub-system (Jin, Huang, Xu, and Gu 2014). Tourist flows can be classified into 

two categories: intra-system flows and inter-system flows. The primary flows within and out of 

the systems have large variations between the three networks. During a one-day trip, the top four 

flows are all inter-system mobility. This demonstrates that the one-day flow network is dominated 

by the long-distance inter-system mobility. During a two-day trip, the primary flows include two 

inter-system flows and three intra-system flows. The former mainly occurs between the core 

primary attractions. During a three-and-more-day trip, all the primary flows are intra-system 

moves, which reveals that this network is dominated by the short-distance mobility with limited 

smaller number of long-distance inter-system flows.    

Based on this analysis, the patterns of tourist flows between attractions in Nanjing city are 

abstracted into a conceptual model (Figure 4). In the pattern of a one-day trip, primary flows are 

mostly distributed over the primary attractions between systems and few within the systems. 

These primary flows dominate the flows of the entire system, connecting different attraction 

sub-systems. Other flows are distributed within the system. 

 

In the pattern of a two-day trip, primary flows are mostly distributed between the primary and 

other attractions within the system, and few between the primary attractions of different systems. 

The other flows distribute uniformly between systems and within a system. In the pattern of a 

three-and-more-day trip, the primary flows uniformly distribute between the primary and other 
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attractions within a system and other flows between the primary attractions within different 

systems, and also between the primary and other attractions within the system.     

 

 

 

 

(a) One-day trip                   (b)Two-day trip                (c)Three-and-more-day trip 

 

Figure 4. Patterns of tourist flows between attractions for three networks 

 

There have been large variations in the patterns of tourist flow between the three networks. For the 

short-length trip, the flows between the primary attractions of different systems dominate the 

whole process of mobility. However, the long-length trip is characterized by intra-system flows. 

To understand the reasons, we have conducted interviews with the tourists from three networks, 10 

from each one. It has been found that:  

 

1) during the one-day trip, eight tourists decided to visit 2-3 well-known primary attractions 

within different systems (e.g. Sun Yat-sen’s Mausoleum, Confucian Temple, Presidential Palace 

and Xuanwu Lake), but two tourists tended to concentrate on one system by visiting its primary 

attractions and the other attractions around it. Due to the long distance between the primary 

attractions within different systems, the one-day trip is dominated by the inter-system flows.  

 

2) during the two-day trip, three tourists choose one system each day and have detailed visits of 

the primary attractions and its surrounding other attractions. Four tourists tend to visit all 

attractions within a system in one day, and only the primary attractions of the other two systems 

for the second day. A further three tourists did not have any specific preferences and focused more 

on primary attractions. As a result, the two-day trip network is characterized by long-distance 

inter-system and short-distance intra-system moves.  

 

3）during the three-and-more-day trip, due to the availability of sufficient time, ten tourists all had 

detailed plans and tended to concentrate on one attraction sub-system per day so that they could 

explore all of the attractions in detail. Their travelling efficiency can be maximized due to the 

short distances between attractions within each system. Consequently, this trip network is 

characterized by short-distance moves. 
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6. Conclusions  

 

In this paper, taking Nanjing City as a case study, user generated content (UGC) with high spatial 

and temporal resolution has been successfully utilized for constructing three flow networks 

corresponding to different lengths of trip, analysing the temporal heterogeneity of tourist mobility, 

allowing significant conclusions to be drawn, as follows: 

 

The position of each attraction, highly correlated with the centrality value, in the local attraction 

systems, declines with the length of trip. The intensity and direction of flow vergence also 

demonstrate significant temporality. The distance decay effect in intra-urban tourist movements, 

following power law, declines with the length of trip.  Their spatial barrier coefficients 

demonstrate that these spatial flows are less sensitive to distance, when compared with inter-city 

(Xiao, Wang, Liu, and Wang 2013) and the daily human movements (Liu Kang, Gao, Xiao, and 

Tian 2012). It also indicates the scale-dependent property of tourist flows.  

 

With the increase of trip length, the influence of attraction systems on flows is weakening, but the 

influence of distance is continuously enhancing. Tourists tend to change from long-distance 

inter-system to short-distance intra-system movements. These tourist behaviours might be 

explained by the theories of “process” oriented tourists (Lew and Mckercher 2006) and 

‘Escape/discovery attractions’ (Bottia, Peypoch, and Solonandrasana 2008). To achieve this, more 

contextual data from the web service needs to be extracted and analysed with text analytics, such 

as opinions and comments on these attractions. These temporal (decaying) effects mentioned 

above indicate the roles of time in perceiving, ranking and visiting primary attractions, which 

provide empirical evidence to the theories regarding time in tourism studies (Leiper 2004; Fuchs, 

Höpkenb, and Lexhagena 2014). 

 

This case study has confirmed that UGC data, a form of big data and digital footprint, can be 

utilized for exploring temporal effects in tourist mobility through a static network analysis and 

spatial interaction model at the aggregate level. However, social network analysis and spatial 

interaction models focusing on pattern analysis are not able to model spatial and temporal 

processes. The UGC data used in this paper is a small sample in terms of its temporal scale (only 1 

year). With a large size sample in the future, these UGC data can be further used to model the 

dynamics of tourists’ mobility (e.g. Yang, Fik, and Zhang 2013) through developing Markov 

Chain models (e.g. Vu, Li, Law, and Ye 2015). As one form of big data, many other elements of 

digital footprint, such as photos and narratives are not explored yet, which contain information on 

tourists’ experience, altitude and demographics, and can be used to analyse the tourists’ behaviour 

and emotions (e.g. sentiment analysis). The study is also subject to sampling bias as only a small 

proportion of tourists have recorded their trips online, and in particular, those who might be 

deprived of digital access are not sufficiently represented in the samples. This reflects the 

drawbacks of UGC though it has also provided evidence for the linkage between citizen science 

(Goodchild, 2007) and tourism studies (e.g. Brosnan, Sebastian, and Rock 2015). It is rewarding 

to see how citizen science can potentially be incorporated into travel studies. The limitations of the 

web service (where to go?) include no attribute data for tourists (e.g. age, gender, origin), number 

of visits (first-time or repeat visit), types of tourism (e.g. pleasure), where tourists’ stayed, and 
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how they travelled to the destination. These data, which are recommended for the web service to 

add in the future, will not only help to explore more spatial and temporal patterns and behaviour 

(e.g. different consumption patterns between first time and repeat visitors, and influence of hotel 

location on behavior patterns) but also interpret the mechanisms behind the disclosed spatial and 

temporal heterogeneity from the perspective of tourists’ behaviour. The incorporation of the 

temporal dimension into tourist mobility study will enhance understanding of the valuation of time 

in tourists’ behaviour.  

 

Theoretically, this case study reflects the tourist mobility in a rapidly developing city, whose 

tourism studies remains conceptually ill-equipped, given most of its theories have been generated 

from Western contexts (Winter 2009). This paper, therefore, begins to address this significant gap 

in the field through exploring the temporal heterogeneity of tourism mobility in a non-western 

context.  
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