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Abstract 

Siblings of patients with Crohn’s disease (CD) have elevated risk of developing CD and display aspects of 

disease phenotype, including faecal dysbiosis. In our recent article we have used 16S rRNA gene targeted 

high-throughput sequencing to comprehensively characterise the mucosal microbiota in healthy siblings 

of CD patients, and determine the influence of genotypic and phenotypic factors on the gut microbiota 

(dysbiosis). We have demonstrated that the core microbiota of both patients with CD and healthy 
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siblings is significantly less diverse than controls. Faecalibacterium prausnitzii contributed most to core 

metacommunity dissimilarity between both patients and controls and between siblings and controls. 

Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within 

groups, of which genotype had the largest effect. Individuals with elevated CD-risk display mucosal 

dysbiosis characterised by reduced diversity of core microbiota and lower abundance of F. prausnitzii. 

The presence of this dysbiosis in healthy people at-risk of CD implicates microbiological processes in CD 

pathogenesis. 
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In contrast to skin, lung or eye, where barrier function is prioritised and the range of substances targeted 

for absorption are limited, the surface of the gut has uniquely evolved to actively interact with a wide 

variety of ingested constituents of the host’s environment. Why the regulation of this intricate interface 

between humans and their environment degenerates in inflammatory bowel disease (IBD) is unclear. 

However, in some genetically predisposed individuals an abnormal immune reaction to gut microbes 

develops and results in chronic intestinal inflammation. Traditionally, two main clinical entities have 

been described: Crohn’s disease (CD) and ulcerative colitis. However, genetic and microbiome studies 

have challenged this dogma; for example some studies support a difference between small intestinal-

restricted and colonic-involving CD.[1, 2] 

A genetic predisposition to IBD is fundamental and relatives of patients are at enhanced risk of 

developing IBD themselves.[3, 4] The interaction between the gut microbiota and the gut immune 

system is pivotal in IBD pathogenesis[5] and in patients with IBD abnormalities can be demonstrated in 

both the gut immune system and the gut microbiota (dysbiosis) as well as alterations in intestinal 

permeability and increased concentrations of neutrophil-derived calprotectin in faeces.[6] However, 

whether dysbiosis has a role in disease pathogenesis or is merely consequent to inflammation cannot be 

determined by examining only individuals with established IBD. For example, increased faecal γ-

proteobacteria have been widely described in CD[5, 7] particularly increased in Escherichia coli,[8] and 

putative mechanisms by which E. coli may contribute to CD pathogenesis include the capacity to adhere 

to and invade the intestinal mucosa,[9, 10] as well as the persistence of these bacteria in epithelial cells 

and macrophages.[11] However, there are also potential mechanisms by which E. coli may be increased 

opportunistically as a consequence of CD, such as the increased activity of nitric oxide synthases 

associated with inflammation,[12] which could favour the survival of these nitrate-reducing bacteria, or 

increased intestinal luminal pH secondary to a reduction in faecal butyrate producers frequently 

reported in CD – potentially favouring the survival of organisms that are inhibited at acidic pH such as E. 
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coli.[13] Moreover, there is also evidence that the abundance of γ-proteobacteria may be affected by 

drugs such as immunosuppressant and 5-ASA drugs used to treat CD.[14] There has therefore been an 

ongoing conundrum as to whether the dysbiosis in IBD patients is a feature of  pathogenesis or whether 

it occurs after disease onset as a result of established inflammation. The temporal relationship between 

dysbiosis and disease onset is not easily examined in humans, however these factors may be more 

readily manipulated in animal models. There is a strong implication from animal models of IBD that the 

microbiota are a key part of disease pathogenesis given that in several animal models of gut 

inflammation, animals kept in germ-free conditions do not develop disease.[15-18] Genotype-

environment interactions may also be examined in animal models, such as that described between 

Atg16L1 and murine norovirus in a mouse model of CD.[19] However, extrapolation from animal data to 

human disease should be approached with caution. Studying individuals before they develop CD, or 

individuals who share genetic and environmental exposures that predispose to IBD, but in whom the 

cumulative effect of these triggers is, as yet, insufficient to produce the full-blown disease phenotype, 

i.e. healthy relatives of IBD patients, provide a window into pathogenic pathways in the absence of the 

obfuscating influence of established, chronic CD.   

In our recent publication “Siblings of patients with Crohn’s disease exhibit biologically relevant dysbiosis 

in mucosal microbial metacommunities”[20] we used 16S rRNA gene targeted high-throughput 

sequencing to test the hypothesis that dysbiosis exists in the mucosal microbiota of healthy siblings of 

CD patients, and is therefore not merely a consequence of established disease. In addition, we examined 

the influence of genotypic and phenotypic factors, on that dysbiosis. Twenty-one patients with quiescent 

CD and 17 of their healthy siblings were recruited via gastroenterology outpatient clinics, in addition to 

19 unrelated healthy controls. Participants at the peak age when CD is diagnosed (16-35 years),[21] were 

specifically targeted in order that data from this study is most relevant to the population in which any 

future pre-disease screening programme is the most viable. In addition, enrolling only young relatives of 
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CD patients increases the possibility of including individuals who will go on to develop CD. Healthy but 

genetically predisposed relatives may manifest biomarkers that reflect genetic risk or environmental 

exposures and crucially, may reveal their cumulative and combined effects. In addition, an accurate 

description of the ‘at risk’ state in siblings and offspring of CD patients raises the potential to predict and 

prevent disease. Moreover, longitudinal surveys in families who are enriched for both genetic and 

environmental risk factors provide a cohort with greater incidence of CD. However, the analysis of CD 

pathogenesis in healthy siblings is not completely straightforward. First, the degree of genetic 

relatedness of full-siblings is on average around 50% but detailed analysis of sibling genomes reveals that 

their similarity may vary between 37 to 62%.[22] Secondly, expression of risk phenotypes may depend 

on environmental exposures that may vary between family members; for example aspirin may induce 

increased intestinal permeability.[23] Finally, one of the advantages of family studies (the capacity to 

examine genotype-environment interactions) is also a limitation in that it may not be possible to 

determine whether a phenotype that is shared between siblings is shared because of genotype (e.g. 

genetic determination of gut microbiota) or shared environment (e.g. maternal microbial inoculum 

determining neonatal gut microbiota). Such questions may be addressed using twin cohorts. Despite 

these limitations, studies of healthy, at-risk relatives of patients with CD may uniquely contribute to the 

illumination of pathogenic pathways that are not easily discernible in studying patients with established 

disease. 

We showed that core microbiota of both CD patients and healthy siblings were significantly less diverse 

compared with healthy unrelated controls. This finding confirms that dysbiosis is not merely a 

consequence of intestinal inflammation but is also present in at-risk, healthy individuals, clearly 

implicating the microbiota in CD pathogenesis. The significance of reduced microbial diversity is not fully 

understood but it is interesting to speculate on because this is a feature of the dysbiosis in a variety of 

diseased states including obesity,[24, 25] colorectal cancer,[26] eczema,[27] and in addition has been 
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linked with smoking.[28] Perhaps lower diversity is associated with incomplete occupation of ecological 

niches resulting in reduced resistance to colonisation by more pro-inflammatory species; alternatively a 

more restricted gut metagenome may contain a lower array of microbial genes that results in the loss of 

key functions. Currently it is not clear whether reduced diversity in itself has a specific functional 

consequence or if it functions as a barometer for the overall health of the gut microbiota. 

Using metacommunity profiling we also showed that the sibling core microbial composition is more 

similar to their CD affected siblings than to matched healthy controls, figure 1. Moreover, reduced 

Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity both between 

siblings and controls, and between patients and controls. As a proportion of core species F. prausnitzii 

had a higher relative abundance in healthy controls (30.9%) than either patients with CD (22.4%) or 

siblings (24.2%). Interestingly, we had also previously demonstrated a similar finding in luminal samples 

from the same cohort (published separately): siblings had significantly lower concentrations of several 

Firmicute groups including Clostridia cluster IV, Roseburia spp. and F prausnitzii which was lower in 

siblings (median 9.27, IQR 8.12-9.78 log10 copies/g) compared with controls (median 9.59, IQR 9.34-10.14 

log10 copies/g, p=0.048) as well as between patients (median 6.88, IQR 5.03-9.35 log10 copies/g) 

compared with controls (p=0.006), figure 2.[29] Thus, the finding of sibling dysbiosis including reduced 

abundance of F. prausnitzii is robust, having been demonstrated in analyses using different techniques 

(454 pyrosequencing and qPCR), and in both mucosa-associated and faecal microbiota  

There has been intense speculation regarding the role of F. prausnitzii in CD pathogenesis as it is the only 

microbial factor shown to be predictive of the natural history of CD[30] and of the response to 

treatment.[31] It may be speculated that loss of F. prausnitzii could result in the loss of key functions that 

contribute to gut health, for example the production of short-chain fatty acids, in particular butyrate, 

[32] and NFκB-mediated effects.[33] However, we would be cautious in constructing pathogenic 
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hypotheses based on the functions of this particular species, rather interpreting these data as implicating 

that loss of F. prausnitzii is a sensitive indicator of a broader change in the gut microbiota. Furthermore, 

data is emerging demonstrating increases in F. prausnitzii in new onset paediatric Crohn’s disease, 

indicating that the role this species plays in pathogenesis is complex.[34] Interestingly, increased E. coli 

contributed to the dissimilarity between patients and healthy controls but not to the dissimilarity 

between siblings and healthy controls. Thus it may be that the CD dysbiosis comprises microbial factors 

that contribute to pathogenesis (as exemplified by lower F. prausnitzii), overlaid with microbial 

alterations that are consequent to inflammation (as exemplified by higher abundance of E. coli). 

Alternatively, the sibling dysbiosis may represent an incomplete version of the full CD dysbiosis, which is 

insufficient to lead to full-blown CD. Only longitudinal studies can answer this question. 

Genotype contributes to CD pathogenesis[35] and in addition the composition of the gut microbiota is 

partly determined by genotype.[36] In our study we demonstrated that genotype relative risk (a 

composite score of genotypic risk across 72 loci associated with CD) was the most significant factor in 

explaining variance between the three cohorts, (patients, healthy siblings and healthy, unrelated 

controls) and also within each cohort. There is an evolutionary advantage to be accrued through host 

genetic influence over the colonisation by commensals in order to maximize host fitness. Furthermore, 

microbiota differ markedly from one host habitat to another, such as skin compared with gut,[37] and 

this indicates that there are selection pressures, potentially under host control, that determine the 

differential survival of bacteria in these sites. It would therefore be surprising if the capacity to influence 

host microbiota had failed to evolve within the human genome. If the host can shape the microbiota, it 

therefore follows that due to natural variation, in some individuals a suboptimal genotype will produce a 

less well-adapted phenotype, and furthermore may even result in disease. Recent data in animal models 

supports the role for the gut immune system in shaping the microbiota and suggests that this effect may 

be at least in part dependent on a pathway involving both polyreactive and bacteria-specific secretory 
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IgA,[38] as well as mediated through gut epithelial cells and Hopx+ cell-derived miRNAs, which enter 

bacteria and regulate bacterial gene expression and growth, in turn affecting the microbiota composition 

and susceptibility to colitis.[39] Furthermore specific SNPs have been associated with gut microbiota 

composition in a cohort of healthy relatives.[36]  

We have shown that perturbations in the mucosal gut microbiota occur not only in individuals with 

Crohn’s disease but also in otherwise healthy individuals at elevated risk of Crohn’s disease, thus 

dysbiosis is not merely a consequence of inflammation. However, studies of paediatric IBD highlight 

paradoxical increases in species such as F. prausnitzii[34, 40] that are widely reported to be reduced in 

adults with IBD. Whilst this finding might suggest that alternative pathogenic pathways exist in paediatric 

IBD, it might also indicate that gut microbiota composition may evolve during pathogenesis. Rather than 

focussing on the microbial composition at the point when the individual develops the disease, it may be 

that the influence of the gut microbiota occurs long before disease onset. It may be speculated that 

there are critical periods during immune development when dysbiosis may exert its influence. The 

evidence for the importance of the early childhood period comes from several sources: studies of human 

migration from areas of low prevalence to high prevalence and vice versa indicate that in some 

populations IBD risk is associated with the area of birth,[41] implicating events in the perinatal or early 

childhood period in IBD pathogenesis. Many of the epidemiological associations with IBD link to early 

childhood, including breastfeeding, tonsillectomy, childhood vaccinations, childhood infections, [42] 

birth rank[43] and birth in hospital.[44] In conjunction, several of these factors have been shown to 

influence the gut microbiota[45], and the acquisition of the gut microbiota in humans appears to occur 

predominantly over the first two years of life.[46] In animal models gut immune maturation is influenced 

by the timing of introduction of gut microbiota,[47] implying that early microbial exposure may have the 

capacity to condition immune responses in the long-term. Moreover, other animal studies have 

implicated even pre-natal effects of the maternal microbiota on the developing immune system of the 
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foetus/ neonate. Such influences may be effected through factors including microbial molecular transfer 

mediated by maternal immunoglobulins transmitted both trans-placentally and through lactation.[48] 

Defining the interrelated processes of human immune development and microbial acquisition may have 

a significant impact on our understanding of the pathogenesis of IBD. 

Given the factors discussed above, it may be hypothesised that environmental factors impact on the 

acquisition of the gut microbiota during the prenatal, neonatal or early childhood period, which in turn 

creates a persistent inflammatory immune tone, thus laying the foundations for future IBD risk. Defining 

the relationship between microbial acquisition, immune phenotype and IBD risk requires longitudinal 

studies and the results of ongoing studies including the MECONIUMstudy  (Exploring MEChanisms Of 

disease traNsmisson In Utero through the Microbiome; a study comparing the bacterial profiles of 

pregnant women with and without IBD with their new-born babies and in addition assessing the 

influence of infant feeding practices and antibiotic use early in life on microbiota acquisition) and the 

GEM project (Genetics, Environment and Microbiota Project: A longitudinal study of relatives of patients 

with Crohn’s disease)[36] are eagerly awaited. 
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Figure 1. Dendrogram showing the microbial community dissimilarity between the three groups: The 

composition of the whole microbiota as determined by Bray-Curtis index, is more similar between 

patients and their healthy siblings than between healthy siblings and healthy controls, and this pattern is 

driven by similarity in the core microbiota between patients and siblings rather than the rare microbiota. 
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Figure 2. Concentrations of different Firmicute populations in faecal samples were significantly lower in 

patients (n=22) and siblings, (n=21) compared with controls, (n=25). 


