P-matrix recognition is co-NP-complete

Jan Foniok
ETH Zurich, Institute for Operations Research
Rämistrasse 101, 8092 Zurich, Switzerland
foniok@math.ethz.ch

18 October 2007

This is a summary of the proof by G.E. Coxson [1] that P-matrix recognition is co-NPcomplete. The result follows by a reduction from the MAX CUT problem using results of S. Poljak and J. Rohn [5].

1 Considered problems

Our main interest is the complexity of deciding whether an input matrix is a P-matrix. A P-matrix is a square matrix $M \in \mathbb{R}^{n \times n}$ such that all its principal minors are positive. Such matrices were first studied by Fiedler and Pták [2].

P-MATRIX

Instance: A square matrix $M \in \mathbb{Q}^{n \times n}$.
Question: Are all the principal minors of M positive?
To start with, we use a well-known combinatorial problem.

SIMPLE MAX CUT

Instance: A graph $G=(V, E)$, a positive integer K.
Question: Is there a partition of the vertex set V into sets V_{1} and V_{2} such that the number of edges with one end in V_{1} and the other end in V_{2} is at least K ?

Garey, Johnson and Stockmeyer [4] showed that the SIMPLE MAX CUT problem is NP-complete.

The reduction from SIMPLE MAX CUT to P-MATRIX uses two intermediate steps. The first of them is the computation of the r-norm of a matrix.

For an arbitrary matrix $A \in \mathbb{R}^{n \times n}$, let

$$
r(A)=\max \left\{z^{\top} A y: z, y \in\{-1,1\}^{n}\right\} .
$$

Remark. The function r is a matrix norm.
Proof. For an arbitrary square matrix A, we have $r(A) \geq 0$ because $z^{\top} A y=-(-z)^{\top} A y$. Moreover if $r(A)=0$, then $z^{\top} A y=0$ for all choices of $z, y \in\{-1,1\}^{n}$, hence $A=0$. If $k \in \mathbb{R}$, then $z^{\top}(k A) y=k \cdot z^{\top} A y$, so $r(k A)=|k| \cdot r(A)$.

Let $A, B \in \mathbb{R}^{n \times n}$. Then

$$
\begin{array}{r}
r(A+B)=\max \left\{z^{\top}(A+B) y: y, z \in\{-1,1\}^{n}\right\}=\max \left\{z^{\top} A y+z^{\top} B y: y, z \in\{-1,1\}^{n}\right\} \\
\leq \max \left\{z^{\top} A y: y, z \in\{-1,1\}^{n}\right\}+\max \left\{z^{\top} B y: y, z \in\{-1,1\}^{n}\right\} \\
=r(A)+r(B) .
\end{array}
$$

Thus r is also subadditive.
The decision problem corresponding to r-norm computation is defined as follows.

MATRIX R-NORM

Instance: A matrix $A \in \mathbb{Q}^{n \times n}$ and a rational number K.
Question: Is $r(A) \geq K$?
For the last of the decision problems considered here, we need the notion of matrix interval. If A_{-}and A_{+}are $n \times n$ real matrices such that $A_{-} \leq A_{+}$(that is, for each r and s we have $\left.\left(A_{-}\right)_{r, s} \leq\left(A_{+}\right)_{r, s}\right)$, then the matrix interva* $\left[A_{-}, A_{+}\right]$is the set of all matrices A satisfying $A_{-} \leq A \leq A_{+}$.

A matrix interval is singular if it contains a singular matrix; otherwise it is nonsingular.

The decision problem we consider consists in testing whether a given matrix interval is singular. We will see that this is a computationally hard problem even when the difference $A_{+}-A_{-}$has rank 1 .

RK1-MATRIX-INTERVAL SINGULARITY

Instance: A non-singular matrix $A \in \mathbb{Q}^{n \times n}$ and a non-negative matrix $\Delta \in$ $\mathbb{Q}^{n \times n}$ of rank 1 .
Question: Is the matrix interval $[A-\Delta, A+\Delta]$ singular?
The rest of this exposition contains three polynomial reductions of these problems, ultimately proving that P-MATRIX is co-NP-complete.

[^0]
2 Reduction from SIMPLE MAX CUT to MATRIX R-NORM

Let $G=(V, E)$ be an undirected graph with $n=|V|$ and let $\ell=2|E|+1$. If $A(G)$ is the adjacency matrix of G, define $A=\ell \cdot I_{n}-A(G)$. Thus

$$
A_{u, v}= \begin{cases}\ell & \text { if } u=v \\ -1 & \text { if } u v \in E \\ 0 & \text { otherwise }\end{cases}
$$

Observe that for $y, z \in\{-1,1\}^{n}$ we have $z^{\top} A y \leq y^{\top} A y$ because of the choice of ℓ. Hence $r(A)=y^{\top} A y$ for some $y \in\{-1,1\}^{n}$.

Let $S \subseteq V$ be defined by $S=\left\{u: y_{u}=1\right\}$ and let m^{\prime} be the number of edges of G with one end in S and the other end in $V \backslash S$. In this way, m^{\prime} is the size of the cut defined by S and $V \backslash S$.

Then

$$
y^{\top} A y=n \ell+4 m^{\prime}-2|E|
$$

and therefore there is a cut in G of size at least K if and only if $r(A) \geq n \ell-2|E|+4 K$.
The described reduction (by Poljak and Rohn [5]) establishes the hardness of computing the r-norm.

Theorem 1. MATRIX R-NORM is NP-complete, even if input is restricted to nonsingular matrices.

Proof. It follows from the reduction above that MATRIX R-NORM is NP-hard. Observe that by the choice of ℓ the matrix A in the reduction is strictly diagonally dominant and thus non-singular.

A non-deterministic Turing machine can guess the values of $y, z \in\{-1,1\}^{n}$ and check in polynomial time that $z^{\top} A y \geq K$, so the problem is in the class NP.

3 Reduction from MATRIX R-NORM to RK1-MATRIX-INTERVAL SINGULARITY

For a matrix $A \in \mathbb{R}^{n \times n}$ define

$$
\rho_{0}(A)=\max \{|\lambda|: \lambda \text { is a real eigenvalue of } A\}
$$

and set $\rho_{0}(A)=0$ if A has no real eigenvalue.
Further for a vector $y \in \mathbb{R}^{n}$ define $D(y)$ to be the diagonal $n \times n$ matrix with diagonal vector y.

The following fact was proved by Rohn [6].
Lemma 2. Let A be a real non-singular $n \times n$ matrix and let Δ be a real non-negative $n \times n$ matrix. Then the matrix interval $[A-\Delta, A+\Delta]$ is singular if and only if $\rho_{0}\left(A^{-1} D(y) \Delta D(z)\right) \geq 1$ for some $y, z \in\{-1,1\}^{n}$.

Proof. For $y, z \in\{-1,1\}^{n}$ let $\Delta_{y, z}$ denote the matrix $D(y) \Delta D(z)$.
First suppose that $A^{-1} \Delta_{y, z}$ has a real eigenvalue λ such that $|\lambda| \geq 1$ and $A^{-1} \Delta_{y, z} x=$ λx for some $y, z \in\{-1,1\}^{n}$ and a non-zero vector x. Then

$$
\begin{gathered}
\left(1-\frac{1}{\lambda} A^{-1} \Delta_{y, z}\right) x=0 \\
\left(A-\frac{1}{\lambda} \Delta_{y, z}\right) x=0 .
\end{gathered}
$$

Hence $A-(1 / \lambda) \Delta_{y, z}$ is a singular matrix in the interval $[A-\Delta, A+\Delta]$ because

$$
\left|\frac{1}{\lambda} \Delta_{y, z}\right|=\left|\frac{1}{\lambda} D(y) \Delta D(z)\right| \leq \Delta .
$$

Therefore the interval $[A-\Delta, A+\Delta]$ is singular.
To prove the converse, suppose that B is a singular matrix, $B \in[A-\Delta, A+\Delta]$. Let x be a non-zero vector for which $B x=0$.

For $i=1,2, \ldots, n$ set

$$
t_{i}=\frac{(A x)_{i}}{(\Delta|x|)_{i}}
$$

We claim that $t \in[0,1]^{n}$. Indeed, $|A x|=|(A-B) x| \leq \Delta|x|$ because $B x=0$ and $B \in[A-\Delta, A+\Delta]$.

Moreover, set $z=\operatorname{sgn} x$. Then $D(z) x=|x|$ and

$$
\left(A-\Delta_{t, z}\right) x=A x-D(t) \Delta D(z) x=A x-D(t) \Delta|x|=0
$$

by the definition of t. Thus the matrix $A-\Delta_{t, z}$ is a singular matrix in the interval $[A-\Delta, A+\Delta]$.

Define $\psi(s)=\operatorname{det}\left(A-\Delta_{s, z}\right)$. The function ψ is affine in each of the variables s_{1}, \ldots, s_{n}. Since $\psi(t)=\operatorname{det}\left(A-\Delta_{t, z}\right)=0$, either there exists $y \in\{-1,1\}^{n}$ such that $\operatorname{det}\left(A-\Delta_{y, z}\right)=$ 0 , or there exist $y, y^{\prime} \in\{-1,1\}^{n}$ such that $\operatorname{det}\left(A-\Delta_{y, z}\right) \cdot \operatorname{det}\left(A-\Delta_{y^{\prime}, z}\right)<0$.

In the latter case, without loss of generality we may assume that $\operatorname{det} A \cdot \operatorname{det}\left(A-\Delta_{y, z}\right)<$ 0 . The function ϕ defined by $\phi(\alpha)=\operatorname{det}\left(A-\alpha \Delta_{y, z}\right)$ is continuous and $\phi(0) \phi(1)<0$, so ϕ has a root in $(0,1)$.

In either case, there exist $y \in\{-1,1\}^{n}$ and $\alpha \in(0,1]$ such that $\operatorname{det}\left(A-\alpha \Delta_{y, z}\right)=0$. Then

$$
\begin{gathered}
\operatorname{det}\left(\frac{1}{\alpha} A-\Delta_{y, z}\right)=0, \\
\operatorname{det}\left(\frac{1}{\alpha} I-A^{-1} \Delta_{y, z}\right)=0,
\end{gathered}
$$

hence $\frac{1}{\alpha}$ is a real eigenvalue of the matrix $A^{-1} D(y) \Delta D(z)$ and $\frac{1}{\alpha} \geq 1$, as we were supposed to prove.

This lemma provides a useful connection between singularity of matrix intervals and a parameter ρ_{0} dependent on the two matrices A, Δ that define the interval. Next we establish a connection between ρ_{0} and the r-norm of matrices.

From now on let $\mathbb{1}$ be the all-one vector $(1,1, \ldots, 1) \in \mathbb{R}^{n}$ and let $J=\mathbb{1} \cdot \mathbb{1}^{\top}$ be the all-one $n \times n$ matrix.

Lemma 3. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix, let α be a positive real number and let $\Delta=\alpha J$. Then

$$
\max \left\{\rho_{0}(A D(y) \Delta D(z)): y, z \in\{-1,1\}^{n}\right\}=\alpha \cdot r(A)
$$

Proof. First observe that $D(y) \Delta D(z)=\alpha \cdot D(y) \mathbb{1} \cdot \mathbb{1}^{\top} D(z)=\alpha \cdot y z^{\top}$ for arbitrary $y, z \in\{-1,1\}^{n}$. If λ is a non-zero real eigenvalue of $\alpha \cdot A y z^{\top}$ and x is a non-zero vector such that

$$
\alpha \cdot A y z^{\top} x=\lambda x \neq 0,
$$

then $z^{\top} x \neq 0$ and

$$
\begin{aligned}
\alpha \cdot z^{\top} A y z^{\top} x & =\lambda \cdot z^{\top} x, \\
\alpha \cdot z^{\top} A y & =\lambda .
\end{aligned}
$$

Thus $\rho_{0}(A D(y) \Delta D(z))=\alpha \cdot\left|z^{\top} A y\right|$. Hence

$$
\begin{aligned}
& \max \left\{\rho_{0}(A D(y) \Delta D(z)): y, z \in\{-1,1\}^{n}\right\} \\
&=\alpha \cdot \max \left\{\left|z^{\top} A y\right|: y, z \in\{-1,1\}^{n}\right\}=\alpha \cdot r(A)
\end{aligned}
$$

Now everything is set for Poljak and Rohn's reduction [5].
Theorem 4. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix, let K be a positive real number and let $\Delta=(1 / K) \cdot J$. Then $r(A) \geq K$ if and only if the matrix interval $\left[A^{-1}-\Delta, A^{-1}+\Delta\right]$ is singular.

Proof. By Lemma 2, the matrix interval $\left[A^{-1}-\Delta, A^{-1}+\Delta\right]$ is singular if and only if $\rho_{0}(A D(y) \Delta D(z)) \geq 1$ for some $y, z \in\{-1,1\}^{n}$. By Lemma 3, $\rho_{0}(A D(y) \Delta D(z)) \geq 1$ for some $y, z \in\{-1,1\}^{n}$ if and only if $r(A) \geq K$.

Corollary 5. RK1-MATRIX-INTERVAL SINGULARITY is NP-hard.
Remark. Poljak and Rohn [5] show that RK1-MATRIX-INTERVAL SINGULARITY belongs to the class NP by proving the existence of a singular matrix in every singular matrix interval, with a polynomial bound on the size of all entries of that matrix.

4 Reduction from RK1-MATRIX-INTERVAL SINGULARITY to P-MATRIX

The described reduction is by Coxson [1].

Let $A, \Delta \in \mathbb{R}^{n \times n}$. Consider the matrix interval $[A, A+\Delta]$. Let $\Delta^{i, j}$ be the matrix whose element in the i th row and j th column is $\Delta_{i, j}$ and which has zeros elsewhere. Then each matrix M in the interval $[A, A+\Delta]$ can be uniquely expressed as

$$
\begin{equation*}
M=A+\sum_{i, j=1}^{n} p_{i, j} \Delta^{i, j} \tag{1}
\end{equation*}
$$

where $p_{i, j} \in[0,1]$ for all values of i, j.
Each matrix $\Delta^{i, j}$ is a rank-1 matrix (even if Δ has higher rank), and so $\Delta^{i, j}=r_{i, j} s_{i, j}^{\top}$ for some vectors $r_{i, j}, s_{i, j} \in \mathbb{R}^{n}$. We can actually take $r_{i, j}$ to be $\Delta_{i, j}$ in its i th entry and zero elsewhere, and $s_{i, j}$ to be 1 in its j th entry and zero elsewhere.

Now let R be the matrix whose columns are all the n^{2} vectors $r_{i, j}$ and let S be the matrix whose columns are all the n^{2} vectors $s_{i, j}$. Thus $\Delta=R S^{\top}$. Moreover, if $p \in \mathbb{R}^{n^{2}}$ is the vector formed by the numbers $p_{i, j}$, we can write (11) as

$$
M=A+R D(p) S^{\top} .
$$

Suppose that A is non-singular. Then the matrix interval $[A, A+\Delta]$ is non-singular if and only if

$$
\begin{equation*}
\operatorname{det}\left(A+R D(p) S^{\boldsymbol{\top}}\right)=\operatorname{det}(A) \operatorname{det}\left(I_{n}+A^{-1} R D(p) S^{\boldsymbol{\top}}\right) \neq 0 \tag{2}
\end{equation*}
$$

for each vector $p \in[0,1]^{n^{2}}$.
Supposing that the matrix A is non-singular, inequality (2) holds if and only if

$$
\begin{equation*}
\operatorname{det}\left(I_{n}+A^{-1} R D(p) S^{\boldsymbol{\top}}\right) \neq 0 . \tag{3}
\end{equation*}
$$

In this way we have proved that for a non-singular matrix A, singularity of the matrix interval $[A, A+\Delta]$ is equivalent to the existence of a vector $p \in[0,1]^{n^{2}}$ that does not satisfy inequality (3). Since the expression in (3) is a multi-affine function of p, we can actually derive another condition.
Lemma 6. Let $\psi(p)=\operatorname{det}\left(I_{n}+A^{-1} R D(p) S^{\boldsymbol{T}}\right)$. Then inequality (31) holds for each $p \in[0,1]^{n^{2}}$ if and only if $\psi(p)>0$ for each $p \in\{0,1\}^{n^{2}}$.
Proof. First observe that $\psi(p)=\operatorname{det}\left(I_{n}+A^{-1} R D(p) S^{\boldsymbol{\top}}\right)$ is a multi-affine function of p, that is, for each i we have $\psi(p)=c_{1}+c_{2} p_{i}$, where c_{1}, c_{2} depend on i and p_{j} for $j \neq i$.

We claim that any multi-affine function $\phi:[0,1]^{k} \rightarrow \mathbb{R}$ is non-zero on the whole domain if and only if its values on the vertices $\{0,1\}^{k}$ have all the same sign. Assuming this claim holds, we notice that $\psi(0)=\operatorname{det} I_{n}=1>0$, so ψ is non-zero on $[0,1]^{n^{2}}$ if and only if it is positive on $\{0,1\}^{k}$.

To prove the claim, first suppose that ϕ is non-zero on $[0,1]^{k}$ but there are two vertices $u, v \in\{0,1\}^{k}$ such that $\phi(u)<0$ and $\phi(v)>0$. Following the path along the edges of $\{0,1\}$, we will find two vertices $u^{\prime}, v^{\prime} \in\{0,1\}$ that differ in exactly one coordinate and such that $\phi\left(u^{\prime}\right)<0$ and $\phi\left(v^{\prime}\right)>0$. Without loss of generality we may assume that $u_{1}^{\prime}=0$ and $v_{1}^{\prime}=1$, while $u_{i}^{\prime}=v_{i}^{\prime}$ for $i \geq 2$. Let $x \in[0,1]^{k}$ be defined by $x_{1}=\phi\left(u^{\prime}\right) /\left(\phi\left(u^{\prime}\right)-\phi\left(v^{\prime}\right)\right)$ and $x_{i}=u_{i}^{\prime}$ for $i \geq 2$. Then $\phi(x)=0$, a contradiction.

Conversely, if ϕ is positive (negative) on all the vertices, it is easy to prove by induction on face dimension that ϕ is positive (negative) in every internal point of each face.

Lemma 6 together with the discussion that precedes it imply the following characterisation.

Lemma 7. Let A be a non-singular matrix and let R, S be defined as above. Then the matrix interval $[A, A+\Delta]$ is singular if and only if

$$
\operatorname{det}\left(I_{n}+A^{-1} R D(p) S^{\mathbf{\top}}\right) \leq 0
$$

for some $p \in\{0,1\}^{n^{2}}$.
In order to get $D(p)$ from the middle of the product to the beginning, we use the following lemma, whose proof we present in the Appendix.

Lemma 8. Let $F \in \mathbb{R}^{k \times n}$ and $G \in \mathbb{R}^{n \times k}$. Then $\operatorname{det}\left(I_{k}+F G\right)=\operatorname{det}\left(I_{n}+G F\right)$.
This fact can be exploited to prove the following equivalence.
Theorem 9. Let A be a non-singular matrix and let R, S be defined as in Lemma 7. Then the matrix interval $[A, A+\Delta]$ is singular if and only if the matrix $M=I_{n^{2}}+$ $S^{\boldsymbol{\top}} A^{-1} R$ is not a P-matrix.

Proof. Because of Lemma 8 ,

$$
\psi(p)=\operatorname{det}\left(I_{n^{2}}+A^{-1} R D(p) S^{\boldsymbol{\top}}\right)=\operatorname{det}\left(I_{n^{2}}+D(p) S^{\top} A^{-1} R\right)
$$

If $p \in\{0,1\}^{n^{2}}$ and $p \neq 0$, the expression $\operatorname{det}\left(I_{n^{2}}+D(p) S^{\top} A^{-1} R\right)$ is equal to the principal minor of the matrix M obtained by selecting exactly those rows and columns that correspond to the 1 -entries of the vector p. Thus $\psi(p)$ is non-positive for some $p \in\{0,1\}^{n^{2}}$ if and only if the matrix M is not a P-matrix.

The proof is now completed by applying Lemma 7 .
Corollary 10. The problem P-MATRIX is co-NP-complete.
Proof. NP-hardness follows from Corollary 5 and Theorem 9 .
The problem belongs to co-NP because after guessing the rows and columns, the corresponding principal minor, which certifies the negative answer, can be computed in polynomial time.

Appendix: Proof of Lemma 8

One of the basic facts about determinants is that adding a multiple of a row to another row does not change the determinant. The following lemma (Theorem 3 in Section 2.5 of Gantmacher's book [3]) is a block version of this fact. Even though it holds for matrices with an arbitrary number of blocks, we state it just for 2×2 blocks. This variant is sufficient for the proof of Lemma 8 ,

Lemma 11. Let $A \in \mathbb{R}^{m \times n}$ be a matrix with block structure

$$
A=m_{m_{2}}\left\{\left(\begin{array}{ll}
\overbrace{A_{1,1}}^{n_{1}} & \overbrace{A_{1,2}}^{n_{2}}
\end{array}\right)\right.
$$

and let $X \in \mathbb{R}^{m_{1} \times m_{2}}, Y \in \mathbb{R}^{n_{1} \times n_{2}}$. Then

$$
\operatorname{det} A=\operatorname{det}\left(\begin{array}{cc}
A_{1,1}+X A_{2,1} & A_{1,2}+X A_{2,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
A_{1,1} & A_{1,2}+A_{1,1} Y \\
A_{2,1} & A_{2,2}+A_{2,1} Y
\end{array}\right)
$$

Proof. Since

$$
\left(\begin{array}{cc}
A_{1,1}+X A_{2,1} & A_{1,2}+X A_{2,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)=\left(\begin{array}{cc}
I_{m_{1}} & X \\
0 & I_{m_{2}}
\end{array}\right) A
$$

we have

$$
\operatorname{det}\left(\begin{array}{cc}
A_{1,1}+X A_{2,1} & A_{1,2}+X A_{2,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
I_{m_{1}} & X \\
0 & I_{m_{2}}
\end{array}\right) \cdot \operatorname{det} A=\operatorname{det} A
$$

Similarly

$$
\operatorname{det}\left(\begin{array}{ll}
A_{1,1} & A_{1,2}+A_{1,1} Y \\
A_{2,1} & A_{2,2}+A_{2,1} Y
\end{array}\right)=\operatorname{det} A \cdot \operatorname{det}\left(\begin{array}{cc}
I_{n_{1}} & Y \\
0 & I_{n_{2}}
\end{array}\right)=\operatorname{det} A
$$

Finally comes the proof of Lemma 8 .
Proof of Lemma 8. Applying Lemma 11 twice, we get

$$
\begin{aligned}
& \operatorname{det}\left(I_{k}+F G\right)=\operatorname{det}\left(\begin{array}{cc}
I_{k}+F G & 0 \\
G & I_{n}
\end{array}\right) \stackrel{(*)}{=} \operatorname{det}\left(\begin{array}{cc}
I_{k} & -F \\
G & I_{n}
\end{array}\right) \\
& \stackrel{(\dagger)}{=} \operatorname{det}\left(\begin{array}{cc}
I_{k} & 0 \\
G & I_{n}+G F
\end{array}\right)=\operatorname{det}\left(I_{n}+G F\right)
\end{aligned}
$$

Here (*) follows by applying Lemma 11 to rows with $X=F$ and (\dagger) follows by applying it to columns with $Y=F$.

References

[1] G. E. Coxson. The P-matrix problem is co-NP-complete. Math. Programming, 64(2):173-178, 1994.
[2] M. Fiedler and V. Pták. On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Math. J., 12 (87):382-400, 1962.
[3] F. R. Gantmacher. The Theory of Matrices, volume I. Chelsea, New York, 1959.
[4] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoret. Comput. Sci., 1(3):237-267, 1976.
[5] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Math. Control Signals Systems, 6(1):1-9, 1993.
[6] J. Rohn. Systems of linear interval equations. Linear Algebra Appl., 126:39-78, 1989.

[^0]: *This object is usually called an interval matrix. Since it is actually an interval and not a matrix, I beg the reader to pardon my decision to call it an uncommon but appropriate name.

