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Abstract 
 

The  celebrated  theorem  of Robertson  and Seymour states  that  in the  family of 

minor-closed graph classes, there is a unique minimal class of graphs of unbounded 

tree-width, namely, the class of planar graphs. In the case of tree-width, the restriction 

to minor-closed classes is justified by the fact that the tree-width of a graph is never 

smaller than the tree-width of any of its minors.  This, however, is not the case with 

respect to clique-width,  as the clique-width  of a graph can be (much) smaller than 

the  clique-width  of its  minor.   On the  other  hand, the  clique-width  of a graph is 

never smaller  than  the  clique-width  of any of its  induced  subgraphs, which allows 

us to be restricted to hereditary classes (that is, classes closed under taking induced 

subgraphs),  when  we study  clique-width.   Up to  date,  only finitely  many minimal 

hereditary classes of graphs of unbounded clique-width have been discovered in the 

literature.  In the present paper, we prove that the family of such classes is infinite. 

Moreover, we show that the same is true with respect to linear clique-width. 
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1    Introduction 
 

Clique-width  is  a graph parameter  which is  important  in theoretical  computer  science, 

because many algorithmic problems that are generally NP-hard become polynomial-time 

solvable when restricted to graphs of bounded clique-width [4]. Clique-width is a relatively 

new notion and it generalises another important graph parameter, tree-width, studied in 

the literature for decades.  Clique-width is stronger than tree-width in the sense that 

graphs of bounded tree-width have bounded clique-width, but not necessarily vice versa. 

For instance,  both  parameters  are  bounded for trees,  while  for complete  graphs only 

clique-width is bounded. 

When we study classes of graphs of bounded tree-width, we may assume without loss 

of generality that together with every graph G our class contains all minors of G, as the 

tree-width of a minor can never be larger than the tree-width of the graph itself.  In other 

words, when we try to identify classes of graphs of bounded tree-width, we may restrict 

ourselves  to  minor-closed  graph classes.   However,  when we deal  with  clique-width  this 

restriction is not justified, as the clique-width of a minor of G can be much larger than 
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the clique-width of G.  On the other  hand, the clique-width of G is never smaller  than 

the clique-width of any of its induced subgraphs [5].  This allows  us to be restricted  to 

hereditary classes, that is, those that are closed under taking induced subgraphs. 

One of the most remarkable outcomes of the graph minor project of Robertson and 

Seymour is the proof of Wagner’s conjecture stating that the minor relation is a well-quasi- 

order [13]. This implies, in particular, that in the world of minor-closed graph classes there 

exist minimal classes of unbounded tree-width and the number of such classes is finite.  In 

fact,  there is just one such class (the planar graphs),  which was shown even before the 

proof of Wagner’s conjecture [12]. 

In the world of hereditary classes the situation is more complicated, because the in- 

duced subgraph  relation  is  not  a well-quasi-order.   It contains  infinite  antichains,  and 

hence, there may exist infinite strictly decreasing sequences of graph classes with no min- 

imal one.  In other words, even the existence of minimal hereditary classes of unbounded 

clique-width  is  not  an obvious  fact.   This fact  was recently  confirmed  in [8].  However, 

whether the number of such classes is finite or infinite remained an open question.  In the 

present paper, we settle this question by showing that the family of minimal hereditary 

classes of unbounded clique-width is infinite.  Moreover,  we prove that the same is true 

with respect to linear clique-width. 

The organisation  of the paper is as follows.  In the next section,  we introduce basic 

notation and terminology.  In Section 3, we describe a family of graph classes of unbounded 

clique-width  and prove  that  infinitely  many of them  are  minimal with  respect  to  this 

property.   In Section  4, we identify  more classes  of unbounded clique-width.   Finally, 

Section 5 concludes the paper with a number of open problems. 
 
 

2    Preliminaries 
 

All  graphs in this paper are undirected, without loops and multiple edges.  For a graph 
G, we denote by V (G) and E(G) the vertex set and the edge set of G, respectively.  The 

neighbourhood  of a vertex v ∈ V (G) is the set of vertices adjacent to v and the degree of v 

is the size of its neighbourhood.  As usual, by Pn  and Cn  we denote a chordless path and 

a chordless cycle with n vertices, respectively. 

In a graph, an independent  set is a subset of vertices  no two of which are adjacent. 

A graph is bipartite  if its vertices  can be partitioned  into  two independent sets.  Given 

a bipartite graph G together with a bipartition of its vertices into two independent sets 

V1  and V2, the  bipartite  complement  of G is  the  bipartite  graph obtained  from G by 

complementing the edges between V1 and V2 . 

Let G be a graph and U ⊆ V (G) a subset of its vertices.  Two vertices of U will be 

called U -similar  if they have the same neighbourhood outside U . Clearly, U -similarity is 

an equivalence relation.  The number of equivalence classes of U -similarity will be denoted 

µ(U ). Also, by G[U ] we will denote the subgraph of G induced by U , that is, the subgraph 

of G with vertex set U and two  vertices  being adjacent in G[U ] if and only if they are 

adjacent in G. We say that a graph H is an induced subgraph  of G if H is isomorphic to 

G[U ] for some U ⊆ V (G). 

A class X  of graphs is hereditary if it is closed under taking induced subgraphs, that 

is, G ∈ X  implies H  ∈ X  for every induced subgraph H  of G.  It is well-known that a 
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class of graphs is hereditary if and only if it can be characterised  in terms of forbidden 

induced subgraphs.  More  formally, given  a set  of graphs M , we say that  a graph G is 

M -free if G does not contain induced subgraphs isomorphic to graphs in M . Then a class 

X  is hereditary if and only if graphs in X  are M -free for a set M . 
 

The notion  of clique-width  of a graph was introduced in [3].  The clique-width  of a 

graph G is denoted cwd(G) and is defined  as the minimum number of labels needed to 

construct G by means of the following four graph operations: 
 

•  creation of a new vertex v with label i (denoted i(v)), 
 

•  disjoint union of two labelled graphs G and H (denoted G ⊕ H ), 
 

•  connecting vertices with specified labels i and j (denoted ηi,j ) and 
 

•  renaming label i to label j (denoted ρi→j ). 
 

Every graph can be defined by an algebraic expression using the four operations above. 

This  expression  is  called  a k-expression  if it uses  k different  labels.   For instance,  the 

cycle  C5  on vertices  a, b, c, d, e (listed  along the  cycle)  can be defined  by the  following 

4-expression: 
 

η4,1 (η4,3(4(e) ⊕ ρ4→3 (ρ3→2(η4,3 (4(d) ⊕ η3,2 (3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))). 
 

Alternatively, any algebraic expression defining G can be represented as a rooted tree, 

whose leaves correspond to the operations of vertex creation, the internal nodes correspond 

to  the  ⊕-operations,  and the  root  is  associated  with  G.   The  operations  η and ρ are 

assigned  to  the  respective  edges  of the  tree.   Figure  1 shows the  tree  representing  the 

above expression defining a C5 . 

✓✏ ✓✏ ✓✏ ✓✏ ✓✏✓✏ 

C5 
η4,1 η4,3

 + 
ρ4→3 ρ3→2 η4,3 + η3,2 + η2,1 + 1(a) 

✒✑ ✒✑ ✒✑ 

✓✏ ✓✏ 

✒✑ ✒✑✒✑ 

✓✏ ✓✏ 
4(e)  4(d)  3(c)  2(b) 
✒✑ ✒✑ ✒✑ ✒✑ 

 
 

Figure 1: The tree representing the expression defining a C5 

 
Let  us observe  that  the  tree  in Figure  1 has a special  form known as a caterpillar 

tree (that is, a tree that becomes a path after the removal of vertices of degree 1).  The 

minimum number of labels needed to construct a graph G by means of caterpillar trees 

is called the linear clique-width of G and is denoted lcwd(G). Clearly, lcwd(G) ≥ cwd(G) 

and there are classes of graphs for which the difference between clique-width and linear 

clique-width can be arbitrarily large (see e.g. [2]). 
 

A notion which is closely related to clique-width is that of rank-width (denoted rwd(G)), 

which was introduced by Oum and Seymour in [10]. They showed that rank-width and 

clique-width are related to each other by proving that if the clique-width of a graph G is 

k, then 

rwd(G) ≤ k ≤ 2rwd(G)+1 − 1. 
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Therefore a class of graphs has unbounded clique-width if and only if it also has unbounded 

rank-width. 

For a graph G and a vertex v, the local complementation  at v is the operation that 

replaces the subgraph induced by the neighbourhood of v with its complement.  A graph 

H is a vertex -minor  of G if H can be obtained from G by a sequence of local complemen- 

tations and vertex deletions.  In [11] it was proved that if H is a vertex-minor of G, then 

the rank-width of H is at most the rank-width of G. 
 

Finally, we introduce some language-theoretic terminology and notation.  Given a word 

α, we denote by α(k) the k-th letter of α and by αk  the concatenation of k copies of α. 

A factor of α is a contiguous subword of α, that is,  a subword α(i)α(i + 1) . . . α(i + k) 

for some i and k. An infinite word α is periodic if there is a positive integer k such that 

α(i) = α(i + k) for all i. 
 
 

3    Minimal classes of graphs of unbounded clique-width 
 

In this section, we describe an infinite family of graph classes of unbounded clique-width 

(Subsections 3.1 and 3.2).  The fact  that each of them  is a minimal hereditary class of 

unbounded clique-width will be proved in Subsection 3.3. 

Each class  in our family is  defined through  a universal  element,  that  is,  an infinite 
graph that  contains  all graphs from the  class  as induced  subgraphs.  All  constructions 

start from the graph P given by 
 

V (P ) = {vi,j  : i, j ∈ N}, 

E(P ) = 
{
{vi,j , vi,j+1} : i, j ∈ N

  
. 

 

The  jth  column of P  is  the  set  Vj   = {vi,j   : i ∈ N},  and the  ith  row of P  is  the  set 

Ri  = {vi,j  : j ∈ N}.  Observe that each row of P  induces an infinite chordless path, and 

the graph P  is the disjoint union of these paths.  Moreover, any two consecutive columns 

Vj  and Vj+1  induce a 1-regular graph, that is, a collection of disjoint edges (one edge from 

each path). 

Let α = α1 α2 . . . be an infinite binary word, that is, an infinite word such that αj  ∈ 

{0, 1} for each natural j.  The graph P α  is obtained from P  by complementing the edges 

between  two  consecutive  columns  Vj   and Vj+1  if and only if αj   = 1.  In other  words, 
we apply bipartite complementation  to the bipartite graph induced by Vj  and Vj+1.  In 

particular, if α does not contain 1s, then P α = P . 

Finally, by Gα we denote the class of all finite induced subgraphs of P α . By definition, 

Gα is a hereditary class.  In what follows we show that Gα is a minimal hereditary class of 

unbounded clique-width for infinitely many values of α. 
 

 

3.1     The basic class 
 

Our first example constitutes the basis for infinitely many other constructions.  It deals 

with the class G1∞ , where 1∞  stands for the infinite word of all 1s. Let us denote by 
 

Fn,n   the subgraph of P 1 

 

induced by n consecutive columns and any n rows. 
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In order to show that G1∞ is a class of unbounded clique-width, we will prove the following 

lemma. 
 

Lemma  1. The clique-width of Fn,n  is at least ⌊n/2⌋. 
 

Proof. Let cwd(Fn,n)  = t. Denote by τ a t-expression defining Fn,n  and by tree (τ ) the 

rooted  tree  representing  τ .  The  subtree  of tree (τ ) rooted  at  a node x will  be denoted 
tree (x, τ ).  This subtree corresponds to a subgraph of Fn,n, which will be denoted F (x). 

The label of a vertex v of the graph Fn,n  at the node x is defined  as the label that v has 

immediately prior to applying the operation x. 

Let  a be a lowest  ⊕-node in tree (τ ) such that  F (a) contains  a full column of Fn,n. 

Denote the children of a in tree (τ ) by b and c. Let us colour all vertices in F (b) blue and 

all vertices in F (c) red, and the remaining vertices of Fn,n  yellow.  Note that by the choice 

of a the graph Fn,n  contains a non-yellow column (that is, a column each vertex of which 

is non-yellow),  but none of its columns are entirely red or blue.  Let Vr  be a non-yellow 

column of Fn,n.  Without loss of generality we assume that r ≤ ⌈n/2⌉ and that the column 

r contains  at  least  n/2  red vertices,  since  otherwise  we could consider  the  columns  in 

reverse order and swap the colours red and blue. 

Observe that edges of Fn,n  between different coloured vertices are not present in F (a). 

Therefore, if a non-red vertex distinguishes two red vertices u and v, then u and v must 
have different labels at the node a. We will use this fact to show that F (a) contains a set 

U of at least ⌊n/2⌋ vertices with pairwise different labels at the node a. Such a set can be 

constructed by the following procedure. 
 

1. Set j = r,  U = ∅  and I = {i : vi,r  is red}. 
 

2. Set K = {i ∈ I : vi,j+1  is non-red}. 
 

3. If K ;= ∅, add the vertices {vk,j  : k ∈ K } to U . Remove members of K from I . 
 

4. If I = ∅, terminate the procedure. 
 

5. Increase j by 1. If j = n, choose an arbitrary i ∈ I , put U = {vi,m  : r ≤ m ≤ n − 1} 

and terminate the procedure. 
 

6. Go back to Step 2. 
 

It is not difficult to see that this procedure must terminate.  To complete the proof, it 

suffices to show that whenever the procedure terminates, the size of U is at least ⌊n/2⌋ 

and the vertices in U have pairwise different labels at the node a 

First,  suppose that  the  procedure terminates  in Step  5.  Then  U is  a subset of red 

vertices from at least ⌊n/2⌋ consecutive columns of row i. Consider two vertices vi,l  , vi,m  ∈ 

U with  l < m.  According to  the  above procedure, vi,m+1,  is  red.   Since  Fn,n   does not 

contain an entirely red column, there must exist a non-red vertex w in the column m + 1. 
According to the structure of Fn,n, vertex w is adjacent to vi,m  and non-adjacent to vi,l. 

We conclude that vi,l  and vi,m  have different labels.  Since vi,l  and vi,m  have been chosen 

arbitrarily, the vertices of U have pairwise different labels. 

Now suppose that the procedure terminates in Step 4. By analysing Steps 2 and 3, it 

is easy to deduce that U is a subset of red vertices of size at least ⌊n/2⌋.  Suppose that 
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vi,l  and vk,m  are two vertices in U with l ≤ m.  The procedure certainly guarantees that 

i ;= k and that both vi,l+1  and vk,m+1  are non-red.  If m ∈ {l, l + 2}, then it is clear that 

vi,l+1  distinguishes vertices vi,l  and vk,m, and therefore these vertices have different labels. 

If m ∈/ {l, l + 2}, we may consider vertex vk,m−1  which must be red.  Since Fn,n  does not 

contain an entirely red column, the vertex vk,m  must have a non-red neighbour w in the 

column m − 1. But w is not a neighbour of vi,l , trivially.  We conclude that vi,l  and vk,m 

have different labels, and therefore, the vertices of U have pairwise different labels.  This 

shows that the clique-width of the graph Fn,n  is at least ⌊n/2⌋. 

 
3.2     Other classes 

 

In this section, we discover more hereditary classes of graphs of unbounded clique-width 

by showing that for all n ∈ N such classes have graphs containing Fn,n  as a vertex-minor. 
 

Lemma   2.  Let  α be  an infinite  binary  word containing  infinitely  many 1s.  Then  the 

clique-width of graphs in the class Gα is unbounded. 
 

Proof. First fix an even number n. Let β be a factor of α containing precisely n occurrences 

of 1, starting and ending with 1. We denote the length of β by ℓ and consider the subgraph 

Gn  of P α  induced by ℓ + 1 consecutive columns corresponding to β and by any n rows. 

We will now show that Gn contains the graph Fn,n  defined in Lemma 1 as a vertex-minor. 

If β contains 00 as a factor, then there are three columns Vi , Vi+1, Vi+2  such that each 

of Vi ∪ Vi+1  and Vi+1 ∪ Vi+2  induces a 1-regular graph. We apply a local complementation 

to each vertex of Gn  in column Vi+1  and then delete the vertices of Vi+1  from Gn . Under 

this  operation,  our graph transforms  into  a new graph where  column Vi+1   is  absent, 

while columns Vi  and Vi+2  induce a 1-regular graph. In terms of words, this operation is 

equivalent to removing one 0 from the factor 00. Applying this transformation repeatedly, 

we can reduce Gn  to an instance corresponding to a word β with no two consecutive 0s. 

Now assume β contains 01 as a factor, and let Vj , Vj+1  and Vj+2  be three consecutive 

columns such that Vj ∪ Vj+1  induces a 1-regular graph, while the edges between Vj+1  and 
Vj+2  form the bipartite complement of a 1-regular graph. We apply a local complemen- 

tation to each vertex of Vj+1  in turn and then delete the vertices of Vj+1  from Gn . It is 

not difficult to see that in the transformed graph the edges between Vj  and Vj+2  form the 

bipartite complement of a matching.  Looking at the vertices in Vj+2  we see that for any 

two vertices x and y in this column, when a local complementation is applied at z ∈ Vj+1 

the adjacency between x and y is complemented if and only if both x and y are adjacent 

to z. Since |Vj+2| = n is even, we conclude that after n applications of local complemen- 

tation Vj+2  remains an independent set.  In terms of words, this operation is equivalent 

to removing 0 from the factor 01. Applying this transformation repeatedly, we can reduce 

Gn  to an instance corresponding to a word β which is free of 0s. 

The above discussion shows that Gn  can be transformed by a sequence of local com- 

plementations and vertex deletions into Fn,n.  Therefore, Gn  contains the graph Fn,n  as 

a vertex-minor.  Since n can be arbitrarily large,  we conclude that the rank-width, and 

hence the clique-width, of graphs in Gα is unbounded. 
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3.3     Minimality  of classes Gα  with a periodic  α 
 

In the  previous  section,  we proved  that  any class  Gα  with  infinitely  many 1s in α has 

unbounded clique-width.  In the present section, we will show that if α is periodic, then 

Gα  is a minimal hereditary class of graphs of unbounded clique-width,  provided that α 

contains  at  least  one  1.   In other  words,  we will  show that  in any proper  hereditary 

subclass of Gα the clique-width is bounded. Moreover, we will show that proper hereditary 

subclasses of Gα have bounded linear clique-width.  To this end, we first prove a technical 

lemma, which strengthens a similar result given in [8] from clique-width to linear clique- 
width.  Let us repeat that by µ(U ) we denote the number of similarity classes with respect 

to an equivalence relation defined in Section 2. 
 

Lemma  3. Let m ≥ 2 and ℓ be positive integers.  Suppose that the vertex set of G can be 

partitioned into sets U1, U2 , . . . where for each i, 
 

(1) lcwd(G[Ui ]) ≤ m, 
 

(2) µ(Ui ) ≤ ℓ and µ(U1 ∪ · · · ∪ Ui) ≤ ℓ. 

Then lcwd(G) ≤ ℓ(m + 1). 

Proof. If G[U1 ] can be constructed  with  at  most  m labels  and µ(U1) ≤ ℓ, then  G[U1 ] 

can be constructed with at most mℓ different labels in such a way that in the process of 
construction any two vertices in different equivalence classes of U1 have different labels, 

and by the end of the process any two vertices in the same equivalence class of U1 have the 

same label.  In other words, we build G[U1 ] with at most mℓ labels and finish the process 

with at most ℓ labels corresponding to the equivalence classes of U1. 

Now assume we have constructed the graph Gi  = G[U1 ∪ · · · ∪ Ui] using mℓ different 
labels making sure that the construction finishes with a set A of at most ℓ different labels 

corresponding to the equivalence  classes of U1 ∪ · · · ∪ Ui.  By assumption,  it is possible 

to construct G[Ui+1 ] using a set B of at most mℓ different labels such that we finish the 

process with at most ℓ labels corresponding to the equivalence classes of Ui+1 . We choose 
labels  so  that  A and B  are  disjoint.   As  we construct  G[Ui+1 ] join  each  vertex  to  its 

neighbours in Gi  to build the graph Gi+1  = G[U1 ∪ · · · ∪ Ui ∪ Ui+1].  Notice that any two 

vertices in the same equivalence class of U1 ∪ · · ·∪ Ui or Ui+1 belong to the same equivalence 

class of U1 ∪ · · · ∪ Ui ∪ Ui+1.  Therefore, the construction of Gi+1  can be completed with 

a set of at most ℓ different labels corresponding to the equivalence classes of the graph. 

The conclusion now follows by induction. 
 

Now let α be an infinite binary periodic word of period p with at least one 1. In the 

following three lemmas, let Hk,t be any subgraph of P α  induced by the first k rows and 

any t consecutive columns. 

It is not difficult to see the following fact. 
 

Lemma  4. A graph with n vertices in Gα is an induced subgraph of Hk,t for any k ≥ n 

and any t ≥ n(p + 1). 
 

Now, with the help of Lemma 3 we derive the following conclusion. 
 

Lemma  5. The linear clique-width of Hk,t is at most 4t. 
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Proof. Denote by Ui  the i-th row of Hk,t. Since each row induces a path forest (that is, a 

disjoint union of paths), it is clear that lcwd(G[Ui ]) ≤ 3 for every i.  Trivially, µ(Ui ) ≤ t, 

since |Ui| = t. Also, denoting Wi  := U1 ∪ . . . ∪ Ui, it is not difficult to see that µ(Wi) ≤ t for 

every i, since the vertices of the same column are Wi-similar.  Now the conclusion follows 

from Lemma 3. 
 

Next we use Lemmas  3, 4 and 5 to prove the following result. 
 

Lemma  6. For any fixed k ≥ 1, the linear clique-width of any Hk,k -free graph G in the 

class Gα is at most (4k − 2)(8k + 1). 
 

Proof. Let  G be an Hk,k-free  graph in Gα.  By Lemma  4, the  graph G is  an induced 

subgraph  of Hn,n   for some n.  For convenience,  assume that  n is  a multiple  of k, say 

n = tk. We fix an arbitrary embedding of G into Hn,n   and call the vertices of Hn,n   that 

induce G black. The remaining vertices of Hn,n  will be called white. 

For 1 ≤ i ≤ t, let us denote by Wi  the subgraph of Hn,n  induced by the k consecutive 

columns  (i − 1)k + 1, (i − 1)k + 2, . . . , ik.   We  partition  the  vertices  of G into  subsets 

U1 , U2 , . . . , Ut  according to the following procedure: 
 

1. For 1 ≤ j ≤ t, set Uj  = ∅.  Add every black vertex of W1 to U1 . Set i = 2. 
 

2. For j = 1, . . . , n, 
 

•  if row j of Wi  is entirely black, then add the first vertex of this row to Ui−1  and 

the remaining vertices of the row to Ui . 

•  otherwise, add the (black) vertices of row j preceding the first white vertex to 

Ui−1  and add the remaining black vertices of the row to Ui. 
 

3. Increase i by 1. If i = t + 1, terminate the procedure. 
 

4. Go back to Step 2. 
 

Let us show that the partition U1, U2 , . . . , Ut  given by the procedure satisfies the as- 

sumptions of Lemma 3 with m and ℓ depending only on k. 

The procedure clearly assures that each G[Ui ] is an induced subgraph of G[V (Wi) ∪ 

V (Wi+1 )].  By Lemma 5, we have lcwd(G[V (Wi) ∪ V (Wi+1 )]) = lcwd(Fn,2k ) ≤ 8k. Since 

the linear clique-width of an induced subgraph cannot exceed the linear clique-width of the 

parent graph, we conclude that lcwd(G[Uj ]) ≤ 8k, which shows condition (1) of Lemma 3. 

To show condition (2) of Lemma 3, let us call a vertex vj,m  of Ui  boundary if either 
vj,m−1  belongs to Ui−1  or vj,m+1  belongs to Ui+1  (or both).  It is not difficult to see that 

a vertex of Ui  is boundary if it belongs either to the second column of an entirely black 
row of Wi  or to the first column of an entirely black row of Wi+1.  Since the graph G is 

Hk,k -free, the number of rows of Wi  which are entirely black is at most k − 1. Therefore, 

the boundary vertices of Ui  introduce at most 2(k − 1) equivalence classes in Ui. 

Now consider two non-boundary vertices of Ui  from the same column. It is not difficult 

to see that these vertices have the same neighbourhood outside of Ui.  Therefore, the non- 

boundary vertices of the same column of Ui  are Ui -similar and hence the non-boundary 

vertices give rise to at most 2k equivalence classes in Ui.  Thus, µ(Ui ) ≤ 4k − 2 for all i. 

Similar argument show that µ(U1 ∪ . . . ∪ Ui ) ≤ 3k − 1 ≤ 4k − 2 for all i.  Therefore, by 

Lemma 3, we conclude that lcwd(G) ≤ (4k − 2)(8k + 1), which completes the proof. 
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Theorem 1. Let α be an infinite binary periodic  word containing  at least one 1.  Then 

the class Gα is a minimal hereditary class of graphs of unbounded clique-width and linear 

clique-width. 
 

Proof. By Lemma  2, the  clique-with  of graphs in Gα  is  unbounded.   Therefore,  linear 

clique-width  is  unbounded too.   To prove  the  minimality,  consider  a proper  hereditary 

subclass X  of Gα and let G ∈ Gα \ X .  By Lemma 4, G is an induced subgraph of Hk,k 

for some finite k. Therefore, each graph in X  is Hk,k -free.  Observe that the value of k is 

the same for all graphs in X .  It depends only on G and the period of α.  Therefore, by 
Lemma 6, the linear clique-width (and hence clique-width) of graphs in X is bounded by 
a constant. 

 

 

4    More classes of graphs of unbounded clique-width 
 

In this section, we extend the alphabet from {0, 1} to {0, 1, 2} in order to construct more 

classes of graphs of unbounded clique-width.  Let α be an infinite word over the alphabet 

{0, 1, 2}.   We  remind  the  reader that  the  letter  1 stands  for the  operation  of bipartite 

complementation between two consecutive columns Vj  and Vj+1  of the graph P , that is, 

if αj  = 1, then two vertices vi,j  ∈ Vj  and vk,j+1  ∈ Vj+1  are adjacent in P α  if and only if 

they are not adjacent in P . 

The new letter 2 will represent the operation of “forward” complementation, that is, 

if αj  = 2, then two vertices vi,j  ∈ Vj  and vk,j+1  ∈ Vj+1  with i < k are adjacent in P α  if 

and only if they are not adjacent in P . In other words, this operation adds edges between 

vi,j   and vk,j+1  with  i < k.   The  bipartite  graph induced  by two  consecutive  columns 

corresponding to the letter 2 is known in the literature as a chain graph. 

Of special interest for the topic of this paper is the word 2∞  = 222 . . .. The class G2∞ 

is also known as the class of bipartite permutation graphs and this is one of the first two 

minimal classes of graphs of unbounded clique-width discovered in the literature [8]. We 

will denote by 
 

Xn,n  the subgraph of P 2 

 

induced by n consecutive columns and and any n rows. Figure 2 

represents an example of the graph Xn,n with n = 6. 
 

The unboundedness of clique-width in the class G2∞  follows from the following result 

proved in [1]. 
 

Lemma  7. The clique-width of Xn,n is at least n/6. 
 

In what follows,  we will prove that that every class Gα  with infinitely many 2s in α 

has unbounded clique-width by showing that graphs in this class contain Xn,n as a vertex 

minor for arbitrarily large values of n. We start with the case when the letter 1 appears 

finitely many times in α. 
 

Lemma  8. Let α be an infinite word over the alphabet  {0, 1, 2},  containing  the letter 2 

infinitely many times and the letter 1 finitely many times.  Then the class Gα has unbounded 

clique-width. 
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Figure 2: The graph X6,6 

 
 

Proof. First fix a constant n. Let β be a factor of α containing precisely n instances of the 

letter 2, starting and ending with the letter 2 and containing no instances of the letter 1 

(since letter 2 appears infinitely many times and letter 1 finitely many times in α, we can 

always find such a factor).  We denote the length of β by ℓ and consider the subgraph Gn 

of P α  induced by ℓ + 1 consecutive columns corresponding to β and by any n2n−1  rows. 

We will now show that Gn  contains the graph Xn,n as a vertex-minor. 

Using arguments identical to those in Theorem 2, we can show that any instance of 00 

can be replaced by 0 with the help of local complementations and vertex deletions. 

Now each instance  of 0 is  surrounded by 2s in β.  Consider  any factor  02 of β and 

let  Vj , Vj+1 , Vj+2  be three  columns  such that  Vj  ∪ Vj+1  induces  a 1-regular  graph and 

Vj+1 ∪ Vj+1  induces a chain graph. If we apply a local complementation to each vertex 

of Vj+1  in turn, it is easy to see that the edges between Vj  and Vj+2  form a chain graph. 

Looking at the vertices in the column Vj+2  we see that for any two vertices x and y, when 

a local complementation is applied at z ∈ Vj+1  the edge between x and y is complemented 

if and only if both x and y are adjacent to z. Therefore, x and y are adjacent if and only 

if min{|N (x) ∩ Vj+1|, |N (y) ∩ Vj+1|} is odd. Hence the vertices of Vj+2  in the even rows 

induce an independent set.  So, applying a local complementation to each vertex of Vj+1 

in turn and then deleting column Vj+1  together with the odd rows allows us to reduce the 

factor 02 to 2. This transformation also reduces the number of rows two times.  Since the 

factor 02 can appear at most n − 1 times, in at most n − 1 transformations we reduced 
Gn  to a graph containing Xn,n.  Therefore, Gn  contains Xn,n as a vertex minor. 

Since n can be arbitrarily large, we conclude with the help of Lemma 7 that graphs in 

Gα can have arbitrarily large clique-width. 

 
To extend  the  last  lemma  to  a more general  result,  we again refer to  [11], which 

introduces another useful transformation, called pivoting.  For a graph G and an edge xy, 
the graph obtained by pivoting xy is defined to be the graph obtained by applying local 

complementation at x, then at y and then at x again. Oum shows in [11] that in the case 

of bipartite graphs pivoting xy is identical to complementing the edges between N (x) \ {y} 

and N (y) \ {x}.  We will use this transformation to prove the following result. 
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Lemma  9. Let α be an infinite word over the alphabet  {0, 1, 2},  containing  the letter 2 

infinitely many times.  Then the class Gα has unbounded  clique-width. 
 

Proof. First, fix a constant n.  Let β be a factor of α containing precisely n instances of 

the letter 2, starting and ending with the letter 2. Let Gn  be the subgraph of P α  induced 

by the columns corresponding to β and by any n2n + n2 rows.  To prove the lemma, it is 

enough to show that Gn  contains either Fn,n  or Xn,n as a vertex minor. 

Consider any two consecutive appearances of 2 in β and denote the word between them 

by γ. In other words, γ is a (possibly empty) word in the alphabet {0, 1}.  If γ contains at 

least n instances of 1, then by Lemma 2 Gn  contains Fn,n  as a vertex minor. Therefore, 

we assume that the number of 1s in γ is at most n − 1.  If γ contains no instance of 1, 

then we apply the idea of Lemma 8 to reduce it to the empty word. If γ contains at least 

one instance of 1, we apply the idea of Lemma 2 to eliminate all 0s from it. 

Suppose that after this transformation γ contains at least two 1s, that is, β contains 

211 as a factor.  Let Vj , Vj+1, Vj+2  and Vj+3  be the four columns such that Vj+1 ∪ Vj+2  and 

Vj+2 ∪ Vj+3  induce bipartite complements of 1-regular graph and Vj ∪ Vj+1  induces a chain 

graph. Let x be the vertex in the first row of column Vj+1  and y be the vertex in the last 

row of column Vj+2.  It is not difficult to see that if we pivot the edge xy and delete the 

first and the last row, then the graphs induced by Vj+1 ∪ Vj+2  and by Vj+2 ∪ Vj+3  become 

a 1-regular.  In other words, we transform the factor 211 into 200. Then we apply the idea 

of Lemma 2 to further transform it into 2. 

Repeated applications of the above transformation allows us to assume that γ contains 
exactly one 1, that is, β contains 212 as a factor.  Let Vj , Vj+1, Vj+2  and Vj+3  be the four 

columns such that Vj ∪ Vj+1  and Vj+2 ∪ Vj+3  induce chain graphs and Vj+1 ∪ Vj+2  induces 

the  bipartite  complement  of a 1-regular  graph.  Let  x be the  vertex  in the  first row of 
column Vj+1  and y be the vertex  in the  last  row of column Vj+2.   It is  not difficult  to 

see  that  if we pivot  the  edge xy and delete  the  first  and the  last  row, then  the  graph 

induced by Vj+1 ∪ Vj+2  becomes 1-regular, while the graphs induced by Vj ∪ Vj+1  and by 

Vj+2 ∪ Vj+3  remain chain graphs.  In other words, we transform the factor 212 into 202. 

Then we apply the idea of Lemma 8 to further transform it into 22. 

The above procedure applied at most n − 1 times allows us to transform β into the 

word of n consecutive 2s.  In terms of graphs, Gn  transforms into a sequence of n chain 

graphs. Moreover, it is not difficult to see that if initially Gn  contains n2n + n2 rows, then 

the resulting graph has at least n rows, that is, it contains Xn,n as a vertex minor. 
 

 

5    Conclusion and open problems 
 

In the preceding sections, we have described a new family of hereditary classes of graphs 

of unbounded clique-width.   For many of them,  we proved  the minimality.   Our results 

allow us to make the following conclusion. 
 

Theorem 2.  There  exist  infinitely  many minimal  hereditary  classes  of graphs  of un- 

bounded clique-width and linear clique-width. 
 

Proof. Let n be a natural number and α(n)   = (0n 1)∞ .  Since α(n)   is an infinite periodic 

word, by Theorem 1 Gα(n)   is a minimal class of unbounded clique-width and linear clique- 

width. 
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If n  < m,  then  Gα(n)    and Gα(m)    do not  coincide,  since  Gα(n)    contains  an induced 

C2(n+2) , while Gα(m)   does not (which it is not difficult to see).  Therefore, Gα(1) , Gα(2) , . . . 

is an infinite sequence of minimal hereditary classes of graphs of unbounded clique-width 

and linear clique-width. 

 
A full description  of minimal classes  of the  form Gα  remains  an open question.   To 

propose a conjecture addressing this question, we first define the notion of almost periodic 

word. An infinite word α is almost periodic if for each factor β of α there exists a constant 

ℓ(β) such that every factor of α of length at least ℓ(β) contains β as a factor. 
 

Conjecture  1. Let α be an infinite word over the alphabet  {0, 1, 2}.  Then the class Gα 

is a minimal hereditary class of unbounded clique-width if and only if α is almost periodic 

and contains at least one 1 or 2. 
 

Note that almost periodicity implies that either 1 or 2 appears in α infinitely many 

times.  It is not hard to verify that this condition  is necessary for the class Gα  to have 

unbounded clique-width.  In other words, if α contains finitely many 1s and 2s the class 

Gα has bounded clique-width. 

We conclude the paper by discussing an intriguing relationship between clique-width 

in a hereditary class X  and the existence of infinite antichains in X  with respect to the 

induced  subgraph relation.   In particular,  the  following question  was asked in [6]: is  it 

true that if the clique-width in X  is unbounded, then it necessarily contains an infinite 

antichain?  Recently, this question was answered negatively in [9]. However, in the case of 

so-called coloured induced subgraphs, the question remains open. 
 

Coloured induced subgraphs.  We define this notion for two colours, which is the 

simplest case where the above question is open. Assume we deal with graphs whose 

vertices are coloured by two colours, say white and black. We say that a graph H is 

a coloured induced subgraph of G if there is an embedding of H into G that respects 

the colours.  With this strengthening of the induced subgraph relation, some graphs 

that  are  comparable  without  colours  may become incomparable  if equipped  with 

colours.  Consider, for instance,  two chordless paths Pk  and Pn.  Without colours, 

one of them  is  an induced  subgraph  of the  other.   Now imagine  that  we colour 

the endpoints of both paths black and the remaining vertices white.  Then clearly 

they become incomparable with respect to the coloured induced subgraph relation 

(if k ;=  n).  Therefore,  the set  of all paths coloured  in this way create  an infinite 

coloured antichain.  Let us denote it by A0 . 
 

In [6], it was conjectured that hereditary classes of graphs of unbounded clique-width 

necessarily contain infinite coloured antichains.  We believe this is true.  Moreover, we 

propose the following strengthening of the conjecture from [6]. 
 

Conjecture 2. Every minimal hereditary class of graphs of unbounded clique-width con- 

tains a canonical infinite coloured antichain. 
 

The notion of a canonical antichain was introduced by Guoli Ding in [7] and can be 

defined for hereditary classes as follows.  An infinite antichain A in a hereditary class X 

is canonical  if any hereditary subclass of X  containing only finitely many graphs from A 
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has no infinite antichains.  In other words, speaking informally, an antichain is canonical 

if it is unique in the class. 

To support  Conjecture  2, let  us observe  that  it is  valid for all minimal classes  Gα 

described in Theorem 1. Indeed, all of them contain arbitrarily large chordless paths and 
hence all of them contained the infinite coloured antichain A0  defined above.  Moreover, 

this antichain  is canonical, because by forbidding all paths of length greater  than k for 

some fixed k, we are left with subgraphs of P α  occupying at most k consecutive columns, 
in which case the clique-width of such graphs is at most 4k by Lemma 5. 

There  exist  many other  infinite  coloured  antichains,  but  all available  examples  are 

obtained from the antichain A0  by various transformations.  We believe that any infinite 

coloured  antichain  can be transformed from A0  in a certain  way and that any minimal 

hereditary class of unbounded clique-width can be transformed from P α  (for some α) in 

a similar way. Describing the set of these transformations is a challenging research task. 
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