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“I know it’s a measurement error, because it’s messing up my data”

Shawn Achor



Abstract

Many in vitro cytometric methods requires the sample to be destroyed in the process.

Using image analysis of non-invasive microscopy techniques it is possible to monitor

samples undisturbed in their natural environment, providing new insights into cell de-

velopment, morphology and health. As the effect on the sample is minimized, imaging

can be sustained for long un-interrupted periods of time, making it possible to study

temporal events as well as individual cells over time. These methods are applicable in

a number of fields, and are of particular importance in embryological studies, where no

sample interference is acceptable.

Using long term image capture and digital image cytometry of growing embryos it is

possible to perform morphokinetic screening, automated analysis and annotation using

proper software tools. By literature reference, one such framework is suggested and the

required methods are developed and evaluated. Results are shown in tracking embryos,

embryo cell segmentation, analysis of internal cell structures and profiling of cell growth

and activity. Two related extensions of the framework into three dimensional embryo

analysis and adherent cell monitoring are described.
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Chapter 1

Aims & Objectives

1.1 Introduction

The human body is a gigantic symbiotic collaboration between individual cells. The

study of cellular behavior is of great importance to our understanding of human body

functions, development, response to pathogens and the effect of treatments. Each cell

functions as an individual entity with its own resource consumption, energy production,

waste disposal and reproductive cycle. At the same time, several cells cooperate to

form tissues and organs and a cell is far from an isolated organism. T.W. Deacon has

described a multi-cellular organism as ”critically incomplete” [9]. Cells interact with

their neighbors and with the rest of the body through chemical, electrical or tactile

signaling, and it is this ability for communication and self-organization which makes it

possible for us to function as one organism. Understanding one cell’s function is far from

understanding the body. It is by studying individual cells in their living context, that

we can best understand cellular interaction.

Computer vision is the technique of extracting semantics from images. With biologi-

cal staining in combination with image-based analysis it is possible to extract genetic,

proteomic, metabolic, molecular and morphological information of cells. In some cases,

staining with fluorescence or dyes is not suitable, due to the sensitive nature of the

sample or particular requirements of the experiment. When stains cannot be used, the

computer analysis task is challenged by the transparent nature of the biological samples,

low image contrast and high noise levels. Overcoming these obstacles and obtaining a

robust marker-free image-based automatic analysis opens up new possibilities in cytom-

etry; long-term and continuous monitoring of individual cells under various conditions,

comparative studies of the behavior of different cell types in the same image field, au-

tomatic monitoring of stem cell and tissue culture for implantation and organ growth,
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operator-free in-the-background gathering and analysis of large amounts of single cell

data and a better analysis of especially sensitive tissue material or material restricted

by ethical considerations. One such case is the clinical study of human embryo growth.

Embryos as well as the individual embryonic cells display highly individual growth char-

acteristics and are an excellent model for three-dimensional inter-cellular interaction and

for developmental biology. Human embryos are particularly difficult to study because of

ethical concerns. At the same time the study of human tissue has the greatest relevance

to the understanding of human health and development. Many studies can be performed

on animal tissue but differences exist, and in order to extrapolate correctly from animal

models, it is necessary to understand the differences between the human and the animal

model. Also, for long-term monitoring of human embryos for fertility treatment, no al-

ternatives to non-invasive analysis exist. The procedure for embryo evaluation is today

to a large extent performed as manual assessment, due to a lack of properly evaluated

software tools. This is a time-consuming and subjective process requiring expert knowl-

edge. In recent years advances in computation and hardware have aided to overcome

many of the technological issues in continuous cell and embryo monitoring, and biology

is slowly changing from a qualitative to a quantitative field. With an increase in data

gathering and availability of data storage, the problem has shifted from limitations in

data generation to limitations in data analysis and understanding.

1.2 Definition of Aim

The overall aim of this Thesis is:

The development of a technological base for a unified framework for image analysis of

human embryos in vitro.
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1.3 Background

1.3.1 The Cell

The eukaryote cell is a complex organism of compartments, membranes and vesicles,

controlled by its genetic code. Each cell in our body carries the same genetic code and

many cells function in collaboration using an intricate system of signaling pathways. All

cells originate from the same single cell, the zygote. During development, the zygote

divides into several cells forming an embryo. In its early stages it consists of a small

body of identical daughter cells. At this stage every cell has the capacity to form any

cell type in the body. As an embryo grows into a fetus, the cells successively differentiate

and are eventually only capable of carrying out the specialized tasks of their own tissue.

Several tissue types are then organized into organs, which function together to carry out

our bodily functions.

A cell multiplies through the process of cell division, or mitosis. In mitosis, the cell grows

in size and duplicates its DNA in the replication process. Finally the DNA, organized in

chromosomes, is divided between the two daughter cells. The sequence from one mitotic

division to the next is referred to as the cell cycle, a process carefully regulated by

several signal substances. Gametes (sperm or eggs) are produced by specialized cells in

the process of meiosis, in which the amount of DNA and chromosomes in each daughter

cell is halved.

Given the complicate nature of the cell division and the sheer amount of DNA to be

correctly duplicated, it is perhaps not surprising that faults often occur. The cell cycle

contains a large number of check points and regulatory mechanisms correcting for repli-

cation and division errors. In some cases - when correction is not possible - cell death

is induced by means of apoptosis. When replication errors occur in an embryo of only a

few cells in total, it can lead to the demise of the entire embryo. On occasion the embryo

can continue developing normally despite an early division error, leading to syndromes

such as Down’s. When replication errors occur at later fetal stages or in the full-grown

adult body, it can lead to the development of tumors and sometimes cancer.

1.3.2 Visualizing the Cell

The main advantage of manual image analysis is the human’s superior ability to recog-

nize properties of interest in images of widely varying appearance. The main drawback

is the tedious process of manually marking and counting structures of interest, but also a

subjective bias, leading to differences in results obtained from different observers. Using
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computing, the throughput can be increased and the subjectivity reduced. On an ab-

stract level, computer vision is the use of image data to infer something about the world.

In medical imaging, a common task is to identify structures in an image and then infer

something about the health of the patient, the effect of a drug, or identifying positions

of anatomic or cellular structures. Image cytometry is the computerized measurement

of cell properties using images. Properties measured can be anything from counting cells

or cellular structures, to performing statistical analysis of pixel values and extracting

shape information from relevant areas. Measurements can be performed manually or

with the aid of a computer, in which case we call it digital image cytometry.

In non-visualizing imaging techniques and tomography, such as magnetic resonance

imaging, techniques for visualizing data have existed for some time. In microscopy the

gathered data is directly visualized in two dimensions and few other ways to present the

data have evolved. Presentation tools are usually limited to a variety of two-dimensional

image displays and interactivity is often lacking. Many methods exist for enhancing the

visual appearance of cells. Some of these make use of attaching fluorophores, dyes or

other contrast-enhancing agents to visualize structures of interest within a cell. Dyes

and flurophores are added to cells in a complex chemical process, often involving several

steps of incubation and washing, which takes a lot of time and makes the analysis costly

and cumbersome. In some cases, the use of dyes is not possible at all because of the

nature of the sample or its intended use after analysis. Examples include living tissue

intended for transplantation, in vivo imaging, or imaging of tissues where the dye or the

process of attaching it can be expected to interfere with measurements. Moreover, the

process of adding the dye is a step in the analysis itself and introduces further sources

of error. All sorts of interference with the sample must be assumed to influence the

analysis in some way, and we can never be completely sure how representative the image

of a dye is of the prevalence of the underlying structure.

Over time, numerous methods have evolved to non-invasively enhance the contrast of

biological specimen. A few of the most common non-invasive microscopy techniques

are described in Chapter 2.2. Non-invasive microscopy is appealing because of the

inherent ability to study samples completely without interference, and the possibility

to study cells in their natural environment. Label-free analysis also has the potential

of significantly reducing laboratory preparation time and lowering cost, especially if

combined with high throughput computer aided analysis.
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1.3.3 Time Lapse Imaging

Time lapse imaging (TLI) is the capture of images in sequence to register a temporal

process within the sample. Time lapse imaging is desirable not only for the study of

dynamic processes, but is in fact necessary when doing automatic image capture, in or-

der to make sure all events of interest are recorded. The philosophy being: if we do not

know when an event occurs, the best approach is to capture the whole process. Some

technical challenges exist when performing automatic time lapse imaging of biological

samples. One is the interference between the imaging setup and the incubation chamber

used to keep the sample under favorable growth conditions. Either the optical set-up

must incorporate a climate chamber to accommodate the living cellular material or - if

the microscope is instead meant to sit inside an incubator or other external chamber -

the optics must be shielded to protect it from the humidity, temperature and pH of the

chamber. When imaging over prolonged periods of time, technical limitations such as

drifting focus must also be considered. Another reason for caution is potential sample

damage due to repeated exposure to the light source. There is a trade-off between infor-

mation gathered and potentially harmful sample exposure, and the frequency of image

capture must be carefully chosen depending on the study end-point and the expected

frequency of the dynamics under study. In the case of simultaneous monitoring of mul-

tiple samples, two solutions exist. In scanning, either the imaging hardware or sample is

moved and re-positioned at each image capture. In this case there is a trade-off (limited

by the moving mechanics) between samples imaged and images captured per sample.

In full-field the image captured includes all samples simultaneously. In this case, there

is instead a trade-off between the number of samples imaged and the image resolution

available to each sample.

1.3.4 The Embryo: A Three-dimensional Tissue Model

A developing embryo is an example of a three-dimensional model for cell-cell interac-

tion. Embryos as well as the individual embryonic cells display highly individual growth

characteristics with interactions in three dimensions. An embryo is defined as the phase

in a baby’s development from the time of the first mitotic splitting of the zygote into

two cells until the end of the eighth week of gestation after which it is called a fetus.

The developmental stages of the early human embryo can be generally described (Fig-

ure 1.1), but the growth pattern of every embryo is unique and little is know about the

details of the mechanism behind it. Throughout embryo growth and until the moment

of hatching, the embryo is surrounded by a protective enclosure, the zona pellucida.

The first stage - the zygote - has two pronuclei; one originating from each parent, which
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Figure 1.1: Overview of embryo growth [5].

will both disappear in preparation for the first mitotic cell division, a process known as

syngami. The embryo now enters the cleavage stage, where a number of successive cell

divisions increase the cell count. A cell within the embryo is called a blastomere. After a

few days, the cells start to interact and form close membrane-to-membrane connections

with one another. At this stage it is called a morula, and individual blastomeres are now

no longer visible under the microscope. In the morula stage, cell division continues and

eventually the cells will rearrange around a hollow sphere; a blastocyst is formed. The

compartment enclosed within the cells is called the blastocoel. Already at this stage, the

cells have been targeted to perform specialized tasks and this division of labor is visible

in the early blastocyst with one layer of cells, the trophectoderm, forming the sphere,

and another, the inner cell mass, located to one side. Eventually, the inner cell mass

will develop into the fetus, and the trophectoderm will form the anchorage to the wall

of the uterus.

1.3.5 Embryo Time Lapse Imaging

In Vitro Fertilization (IVF) is the process of extracting gametes donated by a couple,

performing the fertilization outside the body and after a few days growth, implanting

the young embryo in the uterus of a woman where it - if all goes well - attaches and

grows into a healthy fetus. Despite 30 years of practice, the success rate for implanta-

tion of embryos into the uterus in IVF is still only around 30% [10, 11]. Thus, when

transferring embryos from in vitro culture and implanting them, it is critical that only
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the highest quality embryos are selected. Selecting the embryo with the highest chance

of survival will not only optimize the chance of live birth, but also reduce the need for

multiple embryo transfer, with the subsequent risk of twin pregnancy and the neonatal

complications and maternal pregnancy-related health problems associated. Embryo se-

lection can be performed based on a number of criteria and much research has been done

in identifying morphological features correlated with embryo health. Other methods for

embryo selection exist, such as genetic screening and metabolic profiles of culture media,

but have not been proven to increase pregnancy rates [12–18]. Discussions concerning

the relevance of embryo morphology in quality assessment exist [19], but it is likely that

it will continue to play a large part in IVF embryo evaluation also in the future.

Prior to implantation, the embryo is kept in an incubator for a time period of 2-5 days.

Traditionally, embryo quality assessment has been performed by manual inspection using

light microscopy at intermittent time points during embryo development. Identification

of key points in embryo development, along with annotation of images, is one tool com-

monly used by embryologists to make it possible to share and archive the information

leading up to diagnosis. A combination of incubator technology with non-invasive imag-

ing has recently made it possible to monitor embryos continuously during the course of

their development without any known consequences to their health. At the same time

a lot of image material is being generated in IVF clinics around the world, covering

precisely a period in embryo growth of which we currently know very little. Instead

of studying the embryo at fixed times, the embryo can now be monitored continuously,

making it possible to study morphokinetics and assess the dynamics of embryo devel-

opment in a way that has not previously been possible. It has since been shown that

the timing of key occurrences within the embryo can vary greatly between embryos that

have similar morphological appearance at the conclusion of the recording period and

that embryo morphology can change in a matter of hours [20–23], emphasizing the fact

that dynamic monitoring is preferred over intermittent monitoring of embryos.
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1.4 Objectives

1.4.1 Definition of Objectives

An automated, standardized framework for embryo selection using TLI must address

several questions. First it must be concluded if time lapse monitoring in itself can be

regarded as without effect on embryo health, and second if dynamic monitoring will

provide any new information. Regardless of whether time lapse is used or not, a number

of standardized criteria must be decided upon. The current selection of embryos is

primarily based on morphology and a unified evidence-based objective ranking strategy

is lacking, though attempts have been made to work out such a strategy [24]. Ways to

automate the embryo image analysis process and complement the manual work would

save time in IVF research, and could also introduce new ways to assess embryo quality

as well as providing a tool for standardization.

When validating the potential of any new method to predict embryo health, it must also

be defined what is meant by embryo health and embryo quality. The embryo may appear

to be of top quality and successfully develop a blastocyst during culture but still fail to

implant. If we are only concerned with the effects of in vitro culture, the formation of a

high quality morphological apperance may be enough, but ideally, successful pregnancy

or live birth outcome may be a more realistic measure of the embryos potential to survive.

In fulfillment of the aim of this Thesis (Chapter 1.2) we formulate the following four

objectives:

1. What choice of hardware has the best potential for automatic embryo analysis?

2. What endpoint should be used when evaluating the selected criteria?

3. What additional data is available using TLI compared to intermittent monitoring?

4. Which criteria are most relevant for automatic monitoring?

1.4.2 About this Thesis

Chapter 2 briefly addresses Objective 1-3 and describes the current state-of-the-art. The

remainder of this Thesis is focused on the fulfillment of Objective 4 by evaluation of the

criteria selected in Objective 3, using methods from computer vision and probabilistic

theory. Chapter 3 summarizes the results when methods are applied to embryo imaging,

referencing enclosed papers. The methods used are not limited to embryo monitoring,

which is shown in Chapter 4 describing one additional application in toxicology as well

as a possible extension to the embryology framework using a combination of non-invasive
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and invasive imaging methods, with applications in developmental biology. Chapter 5

includes a discussion of the implications of the findings, an outlook on the future and

suggestions for continued work.





Chapter 2

Methods

2.1 Addressing the Objectives

2.1.1 Objective 1: Choice of Methodology

We can require that a framework for long-term non-invasive cell monitoring fulfills at

least the following criteria:

� Environment: Use a hardware and environment constructed to sustain the sam-

ple for the time of study. The imaging procedure, sample mount and light exposure

must be without effect to the sample. The system should also be in need of low

maintenance and capable of imaging during long periods of time without operator

supervision. This includes insensitivity to focal drift, no need for frequent change

of cell culture medium or other environment and an enclosed chamber to avoid

contamination.

� Imaging: Use an imaging technique capable of non-invasive enhancement of cel-

lular structures, producing images suited for digital analysis. The images should

contain low levels of noise and optical artifacts and at the same time display a

high level of detail.

� Software: Use a digital analytical framework capable of sufficient robustness to

handle real-time image analysis of clinically produced images.

Under optimal conditions, there can be a dialogue between image acquisition and digital

analysis so that the conditions of image acquisition can be improved to optimize for

digital analysis. In a clinical environment this is not always possible, and it is here
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beneficial if the digital process is robust enough to handle a broad range of imaging

conditions. All images used in the work leading to this Thesis were acquired in either

clinical or laboratory settings outside the control of the software analyzer. This limited

the possibility to adjust the image acquisition at the hardware stage, and provided a

situation close to that of clinical data collection. The main objective was to investigate to

which extent these real world images could be used to extract meaningful information.

This Chapter gives a brief overview of the methodology chosen when targeting the

four objectives described in Chapter 1.4.1. Some information has been extracted from

literature and in discussion with collaborators in embryology and cell biology. The

methods developed have been mainly in software and are described in further detail in

Chapter 2.3. Important for the successful implementation of image analysis techniques

has been the understanding of the imaging hardware and its characteristics. Chapter 2.2

gives an overview of relevant hardware techniques.
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2.1.2 Objective 2: Choice of Study Endpoint

The work with this Thesis aimed to develop a model to rank embryos, not to calculate

chance of success, therefore considering embryo parameters only and leaving out couple

and treatment characteristics. When aiming to rank embryos within the same IVF

treatment cycle it is of little interest to have perfect discriminating capability with

implantation potential (i.e. live birth outcome) and in this context, a relative score is

sufficient for comparison. Many studies use blastocyst as endpoint [33–38]. It has been

argued [39] that using blastocyst formation as a predictive endpoint has limitations,

since it yields a high number of embryos deemed of lesser quality, which may still result

in implantation. Therefore blastocyst development is a surrogate endpoint at best, but

can still be useful in the selection of positive selection criteria. Targeting Objective 2,

the choice of the formation of a blastocyst was chosen as a sufficient endpoint when

evaluating criteria for a software analytical framework.

One benefit of this choice is the potential of being able to predict blastocyst formation.

Transfer of blastocysts generally yields higher implantation rates than transfer at the

cleavage stage, but the higher implantation rate must be weighed against the potential

drawbacks of longer culture, so a way to predict blastocyst formation would provide a

way to reduce culture time, while at the same time maximize the chance of success. If

the same criteria would apply when using live birth as an outcome, remains to be seen.
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2.1.3 Objective 3: Choice of Study Target

Figure 2.1: Examples of embryo instances posing analytical challenges. a) Deformed
embryo located close to the container wall. b) Fragmented embryo. c) Unevenly sized
blastomeres. d) Multinucleation is normal in the case of the zygote, but at later embryo

stages can be a sign of replication problems.

Several studies [33, 34, 40] have addressed the potential role of time-lapse monitoring in

clinical selection of competent embryos. The majority have investigated the correlation

between the timing of mitotic divisions and embryo quality [33, 41–47]. It has been

demonstrated that early cleavage is correlated with embryo survival because early cleav-

age embryos are likely to cleave more evenly [35, 48]. A relationship has been observed

between either prolonged or delayed duration of the 2nd to 3rd mitosis and blastocyst

formation [49], and further examples of morphological criteria include pronuclear ap-

pearance and orientation [50], embryo respiration [17], chromosomal abnormalities [51],

degree of fragmentation [52], number, size, shape of blastomeres, degree of blastocoelic

expansion, cellular composition and compactness of the inner cell mass and trophec-

toderm [53]. It has also been shown that uneven blastomere size (Figure 2.1b) and

multinucleation (Figure 2.1d) can preclude implantation [43]. Recently, a study [54]

concluded that rhythmic contractions induced by sperm entry in the zygote of mice may

predict embryo viability. These vibrations took place at a scale of seconds. See [55] for

an overview of criteria.

Making use of the proposed criteria, there are several proposed prediction models for

embryo ranking described in literature, giving a good indication of the most promising

morphological and morphokinetic criteria for embryo health, but it remains to be seen

whether the new data available (embryo dynamics, timing of events etc.) is also relevant

to embryo health. Most models were developed on small data sets [56–60]. A recent

review [61] concluded no significant effects to embryo selection when based on data

from TLI. A few larger studies include Loendersloot [62] and Racowsky [63] where the

correlation of eight potential predictive criteria for embryo quality in 6021 embryos was

studied. Ciray [24] proposes guide-lines for a standard methodology and terminology

for TLI use, but before adoption into clinical practice, any framework be subject to a
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number of larger, randomized clinical studies, preferably as prospective cohort, multi-

center trials.

Table 2.1: Selected study target embryo traits

Embryo event Target

Embryo Tracking of position

location to facilitate analysis

Syngami Providing reference

point in time

Timing of mitotic splittings Embryo

and interval between mitosis health

and development

Timing of blastocyst formation Embryo

health, development and

providing study endpoint

Blastomere number Embryo health

and development

Embryo movement and activity Embryo health

Embryo fragmentation Embryo health

Table 2.1 summarizes the embryo structures focused in this Thesis. Table 2.2 summarizes

in more detail the current proposed criteria known from literature. Also included in both

tables is the location of the embryo within the growth container. Though being assumed

of no importance to embryo health, knowing the location makes it possible to extract

image information continuously in the presence of vibrations and dislocation of embryos

during the necessary procedure of replacement of growth medium. Column 3 and 4

indicates expected visibility and detectability in HMC images [64]. The chosen criteria

in Table 2.1 have been selected primarily based on their expected detectability in the

HMC images produced.
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Table 2.2: Summary of embryo selection criteria for digital image cytometry

Embryo Relevance Visibility Expected Requires Required Ref.

trait to embryo (HMC) detectability TLI temporal

health (HMC) resolution

Embryo no yes high no ≤ 10 min [33–35]

location [36–38]

Timing of yes yes high yes ≤ 10 min [34, 47]

mitosis [43, 52]

Interval between yes yes high yes ≤ 1 h [42, 44]

mitosis [43, 47]

Duration of yes yes medium yes ≤ 1 min [33]

mitosis

Blastomere size, yes yes low no - [43]

shape

Blastomere yes yes low no - [52, 62]

number

Timing of yes yes high yes ≤ 1 h [62]

compaction

Fragmentation yes yes medium no - [34, 52]

number

Embryo yes no - no - [17]

respiration

Embryo activity, yes yes medium yes 1 s–1 min [54]

movement

Chromosomal yes no - no - [51]

abnormalities

Nuclei yes yes medium yes ≤ 1 min [22]

appearance

Nuclei yes yes medium no - [43]

number

Timing of pronuclear yes yes high yes ≤ 1 min [41, 50]

formation

Pronuclear yes yes medium no - [50]

orientation

Pronuclear size, yes yes low no - [41]

shape

Timing polar yes yes very low yes - [41, 50]

body formation

Polar body yes yes very low no - [50, 51]

orientation, number
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2.1.4 Objective 4: Evaluation of Criteria

In this Thesis, work has been focused on selecting relevant criteria in Objective 3, de-

velop methods to detect them, and finally evaluating those methods (Objective 4) using

the imaging hardware and study endpoint chosen in Objectives 1 and 2, respectively. In

the evaluation of results, images have been compared manually, with the help of embry-

ology expertise. It is noteworthy that trials which compare the computer aided quality

assessment with a manual assessment should ideally be made on the same data set and

using the same incubator, lest it will also indirectly compare the quality of incubators.

In the studies described in this Thesis, the comparative evaluation has been done on

the same images as the computer analysis, thus avoiding the problem of separate ex-

perimental set ups. Instead, it introduces a reason for caution as the manual evaluation

is made on image sequences different from the manual microscopy procedure normally

used by embryologists and there can have been discrepancies caused by the fact that:

1. There is a limited number of focal planes, and embryologists are confined to study

the images after capture, with no manual real-time control of focus.

2. In the experimental set up used, the embryos have a tendency to migrate towards

the edge of the container, causing image artifacts, and making them harder to evaluate,

by both human and computer (Figure 2.1a).

3. To the human, the embryo captured with the time lapse imaging does not appear

the same as under a traditional microscope due to differences in imaging technique and

lighting conditions, causing uncertainty in manual evaluation due to lack of experience.

The following Chapter 2.2 gives and overview of non-invasive microscopy imaging and

Chapter 2.3 describes of digital image processing methods and the implemented varia-

tions of each used in this Thesis.
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2.2 Non-invasive Microscopy

As an alternative to using contrast-enhancing agents, there exist methods to optically

enhance the contrast of relevant structures in the sample. This section contains a brief

introduction to a few commonly used full-field non-invasive microscopy techniques. In

Chapter 2.2.6 follows an analysis of the case of embryo imaging and a motivation for

the choice of HMC (Chapter 2.2.4) as imaging technique.

2.2.1 Brightfield Imaging

Figure 2.2: Texture fibers viewed by brightfield imaging [127].

Brightfield imaging is a collective term for the simplest form of microscopy where light

is transmitted through a sample and recorded by a camera. A brightfield microscope is

very simple to set up and use, but does not have the ability to image non-pigmented

specimens such as living cells. The sample appears against a bright background and

the contrast is determined by the ability of the sample to absorb the wavelength of

the light transmitted. Brightfield microscopy is best used with naturally pigmented

samples (Figure 2.2). Living cells are often close to transparent in white light and

samples are then stained to enhance contrast. In addition, several optical techniques

exist, capable of non-invasively enhacing the contrast of the sample. Some of those are

so common that they are loosely referred to as ”brightfield microscopy”, even though

each technique has very distinctly different characteristics. Two common techniques are

described below; Phase Contrast microscopy (Chapter 2.2.3) and Hoffman Modulation

Contrast microscopy (Chapter 2.2.4). The former is common in in vitro cell culture

imaging and the latter often used in embryo imaging.
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2.2.2 Darkfield Imaging

Figure 2.3: Texture fibers viewed by darkfield imaging [128].

Darkfield imaging are imaging methods which exclude any unscattered light, causing

the sample to appear brighter on a darker background (Figure 2.3) and enhancing the

contrast of any imaged (unstained) sample.

A central aperture blocks light directly from the light source and the sample is only

imaged by light incident at an angle. A ring aperture is then used to collect light only

from the light path along the optical axis, effectively removing the angled light from

the source. The image on the sensor is formed only by light which has been scattered

by the specimen. Darkfield is a simple yet effective method to non-invasively enhance

sample contrast but has the disadvantage of low light levels available for collection. To

compensate the sample must be strongly illuminated and the heavy light exposure can

cause sample damage. However, the low light level also means the image is almost

entirely free from optical artifacts.

Optically, a darkfield image may appear as the negative of a brightfield image, but

this is not the case. Structures are imaged differently, and details visible with one

technique may be completely invisible in the other. Darkfield microscopy is most useful

for studying boundary structures with a high difference in refractive index, thus imaging

cell membranes more effectively than internal cell structures. It is best suited for thin

samples and with high differences in refractive index (such as for sharp edges) and thick

samples, it may produce artifacts. Preparation and quality of the sample can greatly

affect the accuracy of the image and sample contamination such as dust or medium

debris will easily appear as structures of the sample itself. Darkfield Microscopy is

generally not a reliable tool to obtain quantitative measurements of specimens due to

the strong dependence on the placement of condenser and aperture and its relation to
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image appearance. It has been used for embryo studies in a number of research set ups

and commercial products.

2.2.3 Phase Contrast Imaging

Figure 2.4: Texture fibers viewed by phase contrast imaging [129].

The first phase contrast microscope was built in 1938 by Frits Zernike [130]. Today,

phase contrast is standard in most modern microscopes. Together with a phase con-

trast objective, it provides the possibility to non-invasively enhance the visibility of low

contrast samples in their natural environment.

In a typical biological sample, the scattered light is phase shifted 90°due to the thickness

of the sample and its refractive index difference with respect to the surrounding medium.

In the phase contrast microscope the background light is phase shifted another 90°by the

means of a phase ring, causing constructive interference between the scattered foreground

light and the phase shifted background light, resulting in an increase in brightness in

the areas of the image containing a sample. The intensity of background light is further

dimmed by a gray filter. Some of the foreground light will also be dimmed, but to much

less extent than the background.

Disadvantages of phase contrast microscopy include distortions to thicker specimens

and a high degree of image artifacts, the most apparent observed as a halo effect around

edges (Figure 2.4), obscuring details along the specimen perimeter. Modern advances

exist which help to reduce the halo effect, but it cannot be completely eliminated. In the

above described technique and in Figure 2.4, the sample is brighter than the background.

In a variation of the set up, the background light is phase shifted by -90°. In this case,

the foreground appears darker than the background and the halo is inversed. The halo

is the reason for using Phase Contrast Microscopy mainly for single layered cell lines and
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other thin objects, and not for embryos and other samples with strong three dimensional

character.

2.2.4 Hoffman Modulation Contrast Imaging

Figure 2.5: a) Schematic setup of Hoffman Modulation Contrast Microscopy. Polar-
ized light passes through a semi-permeable slit (bottom), is focused using a condenser
and passes at an angle through the specimen. After being collected by an objective,
the light passes through a modulator (top) which is a mirror of the slit. Any gradient
in refractive index in the specimen will shift the light on the modulator towards more
(b) or less (d) attenuation, whereas undisturbed light will be recorded at intermediate

(or gray) pixel levels (c)[8].

Hoffman Modulation Contrast (HMC) Imaging was invented by Hoffman in 1975 [131],

and is today a common technique for non-invasive contrast enhancement of biological

samples, available in many commercial microscopes. Light is passed through a pair of

off-axis slits, converting gradients in sample optical path to bands of light and dark

appearance, depending on the spatial sample direction (Figure 2.5).

Disadvantages in HMC include optical artifacts, which is particularly apparent when

manually examining images, as the angular position of the slits lead to a pseudo three-

dimensional effect. The orientation of the specimen has implications for the image since

the system is most sensitive to gradients perpendicular to the orientation of the slit. On

the other hand images are free from the halo shown in phase contrast images.

Advantages includes good contrast, low light exposure, excellent resolution and a short

depth of field, giving the opportunity of focal sectioning at a resolution controllable by

the numerical aperture of the objective. The ability to section is also influenced by the

homogeneity of the sample. HMC is commonly used for embryology studies, including

a number of commercial products.
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2.2.5 Digital Holographic Microscopy

Figure 2.6: a) Schematic setup of Digital Holographic Microscopy. Laser light (top
left) is divided into two paths; one reference beam (top) and one passing through the
sample (left, enlargement). The combined beams form an interference pattern on the
camera (top right). A typical pattern is shown in b). Using a succession of Fourier
transforms and image adjustment an image of the sample can be computed. The

computed image of cells growing in a Petri dish is shown in c) [7].

Dennis Gabor was first to invent a way to encode the phase of light in a single recording,

i.e. a hologram [132]. The technique was later used as base for the development of digital

holography [133–136]. Some years later, the first Digital Holographic (DH) microscopy

images showing living cells were published [137].

In DH (Figure 2.6), low intense light from a laser is divided into two paths, one transmit-

ted through the sample, the other providing background reference. On the sensor, light

from the two interferes, constructing a pattern characteristic of the sample. An image

can be calculated from the interference patters by a set of Fourier transforms, resulting

in an intensity map where gray levels are related to sample thickness and refractive index

difference between sample and surrounding environment.

Advantages to DH include the quantitative nature of images - gray level intensity can be

directly correlated with physical traits, and the ability to visualize un-stained samples

in their natural environment. Disadvantages include sensitivity to the settings of the

image calculation and image artifacts for samples thick enough to scatter light more

than one image wavelength, thus making this technique more suitable for thin samples.
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Like Phase Contrast Microscopy, DH is better suited for thin samples such as adherent

cell lines and tissue samples of only a few cell layers.

2.2.6 Embryo Imaging

In this Thesis we limit ourselves to a comparison between three systems commercially

available for embryo monitoring. Two of those are based on Hoffman Modulation Con-

trast (HMC) imaging (Chapter 2.2.4), one of which uses scanning imaging [25] and

one full-field [26]. The third is a full-field system based on Darkfield (DF) imaging

(Chapter 2.2.2) [27]. All of them are combined with incubator technology to provide a

beneficial environment for embryo growth. The aim of this Thesis is not to evaluate a

commercial product, but rather the potential of the technique, and will therefore not

take into account any differences originating from limitations posed by the technologi-

cal setup, such as choice of light source and cultivation chamber. For an overview and

comparison of available commercial systems, see [28]. No difference has yet been seen in

growth and implantation rates of embryos grown in the standard intermittent incubator

system and a time lapse incubator system [29–31]. One study [32] found a higher rate

of miscarriage for the TLI group, indicating there are reasons for caution. However, the

same study noted no effect on pregnancy rates or embryo health prior to implantation.

At present, it is therefore safe to conclude that the imaging process and the incubation

is not a liming factor in the experiment. Table 2.3 summarizes the three technological

approaches.

The scanning HMC is the only system where the imaging equipment and incubator is

integrated, while the other two are systems where a stand-alone microscope is placed

inside a standard incubator. With a sensitive image sensor, the light exposure for both

HMC systems can be significantly reduced compared to that on a standard manual

HMC microscope, whereas the exposure levels for DF are inherently higher. Where the

scanning technology introduces constant movement of the samples, the full-field imaging

has the advantage of a completely undisturbed environment. On the other hand, the

scanning makes it possible to make full use of the image field, thus providing much better

resolution. For the work in this Thesis, scanning HMC has been chosen primarily for this

reason. The HMC has a disadvantage in that the images are bi-gradient, which makes

edge structures less apparent. On the other hand, it has the ability for focal slicing with

the option to reconstruct the entire three-dimensional structure of the sample. Focal

slicing with HMC suffers some bleed-through from out-of-focus material, but the de-

focused information is superimposed on focused image details, which makes it potentially

possible to handle in image processing. The resolution of focal slicing is ultimately

determined by the relationship between the depth of field and the sample size. The



24 Chapter 2. Methods

Table 2.3: Comparison of embryo imaging systems

Scanning Full-field Full-field

HMC HMC DF

Imaging method HMC HMC DF

Movement Yes No No

of sample

Focal planes Multiple Multiple Single

Images Grey Grey Dark

background, background, background,

bi-gradient bi-gradient single

gradient

Limit to temporal No. of Image Image

resolution samples acquisition acquisition

Limit Numerical Samples Samples

to image aperture per image per image

resolution

Most visible Internal cell Internal cell Cell

features structure, structure, membranes,

small small large

structures structures structures

scanning procedure limits the temporal resolution, but instead provides a higher spacial

resolution, maximizing the ability for analysis of internal embryo structure. Table 2.4

summarizes the drawbacks and benefits of using HMC from the perspective of digital

image cytometry.

2.3 Digital Image Analysis

In this Chapter is given an overview of the foundation for the methods for image analysis

used in the experimental section. The methods range from standard image processing

techniques to edge detection, segmentation and feature extraction. Image processing

is a general term describing any kind of manipulation of image data. The purpose

is usually to provide more favorable conditions for later processing steps. The digital

image consists of discrete picture elements, pixels, the value of which represents the

image intensity. In a color image, each image consists of three layers, one for each color

channel. In this Thesis we are only concerned with gray scale images, i.e. all channels

carry the same pixel value. For the benefit of future reference we define the original
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Table 2.4: Advantages and disadvantages of HMC for automated image analysis

Advantages Disadvantages

High image resolution Image edge hard

and high level of detail to detect and

of internal cellular structure difficult to interpret

Low sample light exposure and No color information

the ability to adjust imaging

wavelength to minimize sample

damage

Focal sectioning possible Resolution of focal

sectioning limited by

microscope numerical

aperture

gray scale image F (x, y), with dimensions X and Y respectively, as a two-dimensional

matrix of gray levels i, to a maximum gray level I. Furthermore we can define mean µ

and standard deviation σ of F (x, y) as:

µ =
1

X · Y

X∑

x=1

Y∑

y=1

F (x, y), (2.1a)

σ2 =
1

X · Y

X∑

x=1

Y∑

y=1

[F (x, y) − µ]2. (2.1b)

Several image analysis steps are necessary when making measurements on digital images.

In a sense, an image analysis task can be thought of as a basic recipe, which can be varied

to accommodate different purposes and where a number of parameters vary a few key

settings in the algorithm. For research and analysis tasks, the goal is often to develop

algorithms of sufficient robustness to make the results reproducible on a large image set

with as little manual adjustment of parameters as possible. Only when no parameters

need to be set can the algorithm be called automatic, otherwise it is referred to as semi-

automatic. The exact implementation of each step need to be adjusted depending on

the nature of the images, the application and the intended outcome of the analysis. A

complete overview of methods is beyond the scope of this Thesis, but a few key steps are

commonly present and will be described further in the following sections. The methods

can be divided into:

� Per pixel translations, where all pixel values in the image are replaced by another

value. An example is the application of an image filter (Chapter 2.3.1), or a
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segmentation process (Chapter 2.3.3,2.3.5).

� The location of interest points or regions, such as edges (Chapter 2.3.2) or image

features (Chapter 2.3.7).

� Dimension reduction, where the image information is compacted using a set of

descriptors (Chapter 2.3.7).

There are reasons for caution in image manipulation since even a simple transformation

may affect the result of the final analysis. On the other hand, some pre-processing may

be necessary, especially when comparing images obtained from different sources with

highly varying lighting and capture conditions.

2.3.1 Filters

After applying a filter, the new pixel values F ′(x, y) consist of the weighted sum of the

intensities of pixels in the surrounding area, defined by the size of the filter g(xg, yg).

The weights are stored in the filter kernel, a matrix with entries

F ′(x, y) =

Xg∑

xg=1

Yg∑

yg=1

F (x− xg, y − yg) · g(xg, yg) (2.2)

By convention, a filter is applied by convolution, so that the top left weights the image

pixels in the bottom right. If the filter is symmetric, this makes no practical difference.

If the filter is asymmetric, it can be used to detect directions in the image. A commonly

used symmetric filter is the gaussian filter used for blurring:

g(xg, yg) =
1

2πσ2
exp(−

x2g + y2g
2σ2

) (2.3)

The Prewitt [138] filter is a simple approximation of a first degree derivation:

P̂x =




1 0 −1

1 0 −1

1 0 −1


 (2.4a)

P̂y =




1 1 1

0 0 0

−1 −1 −1


 (2.4b)
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while the Laplacian filter [139] is an approximation of the Laplacian operator L̂ = ▽
2:

L̂ =




0 −1 0

−1 4 −1

0 −1 0


 (2.5)

In practice, the Laplacian operator is often combined with a Gaussian smoothing in order

to reduce noise. Due to the associative nature of convolution filters, the application of a

Gaussian followed by a Laplacian filter to an image is equivalent to the application of a

Gaussian to the Laplacian filter and applying the resulting Laplacian of Gaussian filter

to the image.

2.3.2 Edge Detection

In microscopic imaging, polarization effects from the optics must be taken into account

when applying asymmetric filters. In a DH or fluorescent image the foreground cells are

brighter than the background. The image is unpolarized, and we will refer to this type

of image as single gradient. In an HMC image on the other hand, foreground pixels

along structure borders are both brighter and darker than the gray background. The

reason is optical polarization; the angle of incident light produces a shift in edges in one

half of the image compared to the other half. The direction of change in optical path

length is given by the polarity of the artifacts. We will refer to this type of image as

bi-gradient. Applying an unsymmetric filter to a bi-gradient image can have unforeseen

effects and when applying a gradient-based edge detector, the bi-gradient image displays

double edges, if edges are at all located.

In the HMC microscope, light is passed through a pair of off-axis slits, converting gra-

dients in sample optical path to bands of light and dark appearance, depending on the

spatial sample direction (Figure 2.7). In this example, the slit pair is positioned so

that image gradients appear symmetrical around a horizontal axis. This effect is most

apparent when plotting the image as an isocontour (Figure 2.7b). This will result in

ambiguity when applying asymmetric image operators, such as a derivative (Figure 2.7c-

d) and certain edge detectors. A Canny edge detector is based on the application of

two Prewitt filters (Eq 2.4) in x and y-direction, respectively. Applied to the raw HMC

image (Figure 2.7e) it is clear that the filter may find edges on both sides of the lighter

and darker bands, resulting in an uncertainty when trying to determine the location

of the border of the embryo or of a single blastomere. Since the direction of light de-

pends on the azimuthal angle between slits and sample, this effect can be reduced at the

hardware stage by rotating the sample around a vertical axis and combining information
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Figure 2.7: Edge detection in HMC images. a) Original image. Bright outlines at the
top of the well show a polarity opposite to that of the embryo, where the bright outlines
are at the bottom. b) Contour. c-d) Prewitt filter applied (Eq 2.4), approximating
derivation in x and y direction, respectively. e) Canny edge detector applied [8]. The

location of edges is shifted and broadened as a result of the optical artifacts.

from several images along the rotation. When hardware adjustment is not possible, edge

detection must proceed by other means.

If foreground and background pixels have differing ranges of pixel values, we can de-

fine a suitable intensity threshold separating the two. There are several methods for

determining a suitable threshold. Many of those are histogram based, taking advantage

of the fact that background and foreground pixels are more abundant than indetermi-

nate pixels. In this case, foreground and background pixels will display as peaks in a

histogram, separated by a local minimum, where the threshold can be placed. This is

the case in single gradient images. In bi-gradient images, the histogram will contain

two minima instead of one, and the background pixels will occupy the central peak. In

those cases, a double threshold can be used to extract edges (Figure 2.8). A method for

extracting edge information in bi-gradient images is evaluated in Paper III [3]. Here,

the edge map was constructed from the lowest and highest pixel ranges in the image I

using the threshold

t = c ·median(I). (2.6)
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Figure 2.8: Grey scale distribution in DH (a-c) and HMC (d-f) images. a,d) Original
image. b,e) Histogram over pixel values. Threshold(s) have been marked, one in DH
image (b), two in HMC image (e). c,f) Thresholded image at the threshold defined in

b and e, respectively.
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If applied to the image as it is, this results in a high number of false positive edges. To

filter those out, a focus filter (Chapter 3.3.1.1) was constructed and used to compute a

convex hull around regions in focus which in turn was used to exclude false positives.

2.3.3 Segmentation

A segmentation is a transformation which assigns labels to different regions of the image,

identifying them as contents of separate meaning. A simple example of segmentation is a

threshold, separating image pixels into foreground and background, and a more complex

to separate the foreground into different segments [140]. What is defined as foreground

may vary and is determined by the purpose of the study. Segmentation can be seen as

a classification task in itself, but in the work described in this Thesis, segmentation is

used as a pre-processing step, identifying relevant image content.

When thresholding is not sufficient to identify object contours, a common approach is

the application of an edge finding filter. It exploits the fact that pixels values change

more rapidly at edges. The basis for this type of filter is often the first or second image

derivative, or an approximation thereof. Simple thresholds or edge detectors will not

help us in separating clustered objects from each other. In the case of DH images, the

brighter foreground pixels are often locally less bright at object borders, and we can

use this to separate clustered cells. A robust segmentation technique for this kind of

problems is the watershed segmentation [141]. It can be intuitively understood if we

think of the image as a landscape, being immersed in water. In the case of a DH image,

the pixel values are first inverted, so that the center of each bright object represents

a local minimum. A level (the water) then rises from each local minimum, forming a

basin. When water from two basins meet, the border between two objects is defined. All

pixels associated with the same basin are then given the same label, and are regarded

as belonging to the same object.

2.3.4 Segmentation vs. Segmentation Free

There are many examples of segmentation in microscopic images [68–75] and in non-

destructive in vitro cell imaging, segmentation has been performed in a number of studies

in Darkfield [69, 76], Digital Holography [77], Phase Contrast [68, 70, 78–81] and Bright

Field [82]. In HMC, several attempts have been made to detect embryo traits using

segmentation [83–86] by manual selection of a region of interest (ROI) [87–89] or by

a combination [76] with varying degrees of success. Because of the bi-gradient nature

of HMC, images are hard to segment accurately using traditional edge-based methods,

watersheds, thresholds or level sets, and have so far been limited to the 4 cell case [83].
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The segmentation is often simultaneously the most vital and the most difficult step

in an analysis task. The result of the segmentation is critical for the outcome of the

analysis, and a manual segmentation is impractical for large image sets. For some

tasks where the image data set is highly diverse it may be very difficult to construct

a segmentation algorithm which is robust enough to perform well across the entire set.

Under clinical conditions, images are often hard to segment due to presence of clutter,

poor lighting and imperfect focus. In these cases, manual segmentation can be used,

identifying regions of interest before calculation commences. For clinical conditions, a

cumbersome initialization of calculation does not necessarily speed up the workflow.

Instead, a segmentation-free approach may be more robust, but instead not provide the

same detailed information. In the case of cells, many important analytic end-points

such as information on cell size and shape, and calculation of cell lineage require full

segmentation of the image. In some cases, it may be possible to use a shape-controlled

segmentation, not requiring perfect edge detection but instead exploiting the fact that

the sought structure is of known shape (Chapter 2.3.5). Other study endpoints, such

as the number of cells and degree of fragmentation can sometimes be extracted without

segmentation using image descriptors (Chapter 2.3.6).

2.3.5 The Hough Transform

Figure 2.9: Annotated raw image of an embryo, indicating structures of interest. A
− well outline. B − zygote boundary. C − pronucleus [2].

In Figure 2.9, three typical structures in an HMC embryo image are outlined. They all

have a close to circular shape, a fact which can be exploited using shape-based segmenta-

tion in the form of a Hough Transform (HT). The HT detects possible circular structures
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in an image in decreasing order of strength (Chapter 2.3.5). The HT benefits from being

able to detect also structures with partial or fragmentized outlines, an advantage under

clinical circumstances, where high levels of noise can be expected. The HT operates on

an edge image and here we can choose a gradient-based edge detector such as Canny

edge, if edges are not extremely thick or with a high difference in refractive index, in

which case we risk detecting double edges (Chapter 2.3.2).

Figure 2.10: Principle of the circular Hough Transform. a) A set of circle candidates
for one point in ℜ space are mapped to a set of points in Hough space (b), where the
set of coordinates for each point represents the centroid position of the circle. c) Two
circle candidates matched to points in ℜ space have different strength as seen in Hough
space (d), depending on the number of points in ℜ space they intersect. Selecting
the strongest peak in Hough space is equivalent to selecting the most probable circle

candidate in ℜ space (red).

A Hough Transform (HT) can be seen as a type of segmentation procedure, in which the

foreground is modeled as a particular shape object. Figure 2.10 shows a circular HT,

where a circle is parameterized as:

(
x− x′

r
)2 + (

y − y′

r
)2 = 1, (2.7)

with centroid position (x′, y′) and radius r as parameters, thus producing a three-

dimensional Hough space. In Figure 2.10a, we reduce the dimensionality by drawing

a set of circles with the same radius, all passing through a single point in ℜ space.

Mapped to Hough space (Figure 2.10b) they will each appear as a point, determining

the centroid position of each circle. In Figure 2.10c we simplify matters further by

approximating two circles to a set of points in ℜ space, where we select the circle candi-

dates such that they are all located at the same y. We now collect the number of points

matched by each circle candidate in ℜ space into the corresponding bin (given by the

circle’s x′ position) and plot it as a histogram. The relative difference in frequency rep-

resents the relative strength in Hough space for each circle candidate and the strength

with which a structure appears in the image is represented by the number of points in



Chapter 2. Methods 33

Figure 2.11: Example of test images with a) 1, b) 2 and c) 4 cells per embryo. All
images are from separate embryos, illustrating differences in lighting conditions. d-f)
Illustration of image feature extraction of the example images a-c). Region A: Excluded

information, region B: Outer layer, region C: Inner embryo [6].

the corresponding bin (Figure 2.10d). The shapes most likely to exist in the image can

be extracted by selecting peaks in Hough space in order of decreasing height. In the

case of cell detection, we would prefer to model cells as ellipses rather than circles, and

the circular HT can be readily extended to a four-dimensional elliptic space using

(
x− x′

a
)2 + (

y − y′

b
)2 = 1, (2.8)

where a and b are major and minor axis, respectively. The main advantage of the HT

is its tolerance to gaps in the boundary description and subsequent resistance to image

noise. A disadvantage is that it sometimes returns large number of false negatives, and

another that the complexity of the accumulator increases as o(Dρ−2) [142], where D is

the size of the image space and ρ is the number of parameters. Thus, by increasing

the number of parameters, the noise in Hough space will increase accordingly, and it is

advantageous to select as few parameters as possible to describe a shape.

2.3.6 Image Descriptors

An image descriptor or feature descriptor is a fixed size vector, with dimension ≤ X · Y

of the image, describing a set of image identifying characteristics. In an inference prob-

lem, this is a common way to reduce the amount of information and describe the image

in the compact form necessary for efficient computation. A simple example of an image

descriptor is a histogram. It effectively transforms the image of dimension X · Y to
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a fixed size array, whose elements note the frequency of image gray scale values within

a predefined range. Descriptors in general may be calculated manually, as response to

a filter or a set of filters, or by any kind of specific algorithm. The choice of descrip-

tor is highly dependent on the endpoint of the study and may consist of geometrical

information such as area and shape, textural information such as regularities within the

image, the location and appearance of specific interest points or statistical measures of

intensity values (mean, max or distribution). Many descriptors have been developed

over the years and it is outside the scope of this Thesis to describe them all. Instead we

satisfy ourselves with defining a list of criteria relevant to cell imaging and discuss the

considerations which have lead up to them. For this Thesis, the choice of descriptors has

been a combination of customized descriptors defined by these criteria, together with

several Texture Descriptors (Chapter 2.3.7), which gave the opportunity to describe any

regularities of cell and embryo interior. The extracted image features can then be used

for classification, a form of probabilistic inference (Chapter 2.4).

In the case of imaging cells randomly distributed over an image imaged with a technique

where the pixel intensity is related to physical properties in the sample, a suitable

descriptor should:

� be rotationally invariant (cells are located randomly and are not expected to grow

directionally)

� not necessarily require a segmented contour (shape information may help, but

should not be required since full object segmentation is not always possible)

� focus on characterizing small regions within the image, rather than large sections

� not be scale invariant (ideally we fix the scale at the hardware stage, and wish to

use features to compare scale, rather than impose scale invariance)

� not necessarily be optimized for speed, since cells naturally grow and divide at a

rate slower than the image acquisition.

2.3.7 Texture Analysis

A common way to study a regular structure, or texture, in an image is by means of a Gray

Level Co-Occurence Matrix (GLCM). It can be thought of as an intermediate matrix,

whose values indicate how often one pixel-value in an image tends to be similar to its

adjacent values. A mathematical definition [96] of a GLCM G of an image F (x, y) with

a maximum of I gray levels describes the number of times gray level i is oriented with

respect to gray level j such that F (x+1, y+1) = j, where i, j ∈ [0, G], where i, j ∈ [0,H],
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and H < I is the number of gray level used in the GLCM, and will determine the scale

at which we look at the texture. We can normalize the GLCM, G, so that:

H∑

i=1

H∑

j=1

[G(i, j)] = 1. (2.9)

In this way, each value in G(i, j) will denote the probability of a range of gray levels

to appear in each others’ proximity. If we can not assume the cells and texture to be

randomly oriented in the image, we may have to compute several GLCM along each

texture direction. Given the G it is then straight forward to compute a number of

texture features:

The energy Senergy describes the uniformity of the texture. In a uniform image, the

number of gray-tone transitions are few, and the co-occurence matrix will have fewer

entries of high magnitude, Hence a homogeneous image has high energy.

Senergy =

H∑

i=1

H∑

j=1

[G(i, j)]2 (2.10a)

The entropy Sentropy describes the randomness of the elements in the matrix. A homo-

geneous image has lower entropy than an inhomogeneous image. So an image with low

entropy will have high energy.

Sentropy = −

H∑

i=1

H∑

j=1

G(i, j) · log[G(i, j)] (2.10b)

Cluster shade Scs and cluster prominence Scp are measurements of the skewness of the

image. An image with high skewness will be highly asymmetric.

Scs =
H∑

i=1

H∑

j=1

[i+ j − µx − µy]3G(i, j) (2.10c)

Scp =

H∑

i=1

H∑

j=1

[i+ j − µx − µy]4G(i, j) (2.10d)

Contrast Scon

Scon =
H∑

i=1

H∑

j=1

|(i− j)|2G(i, j) (2.10e)
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and correlation, where Scorr refers to the correlation between elements. A high correla-

tion means the image will be more complex than if the correlation is low.

Scorr =

H∑

i=1

H∑

j=1

G(i, j)
(i − µx)(j − µy)

σxσy
(2.10f)

The homogeneity Shom is large if values are gathered along a diagonal.

Shom =
H∑

i=1

H∑

j=1

G(i, j)

1 − |(i− j)|2
(2.10g)

2.4 Inference & Classification

Classification of image features used a number of standard supervised classification meth-

ods and variations thereof. This section begins with an overview of probabilistic theory

with definition of concepts such as inference and logistic regression and then gives an

overview of the specific methods used in this Thesis and motivation for the implemented

changes for the purpose of cell classification.

In the mathematical definition of an inference problem, we take a set of observations

(images) of the world v and from it infer a state from the set of states w in the world,

where each component of the vector v is an observation (an image) and each component

of w is a real world state. If w is continuous, w ∈ [−∞,∞], we have a special case of

inference, which we define as regression. If w ∈ [0,K] is discrete, with K ∈ ℜ being a

limited vector, we call it classification.

The inference Q(w|v) is defined as the real world state we can deduce from each image

state. E.g. if we see an image of an object we think resembles a dog, we conclude it is

a dog. There is an inherit ambiguity in visual data, i.e. several real world states can

share the same image state v and vice versa. For instance, a change in light and angle

can cause different objects to appear the same way (Figure 2.12).

Ideally, we would like to compute the inference Q(w|v) as a 1:1 relationship, i.e. com-

bine observations with conclusions as a set of pairs (vα, wα), each having a definitive

certainty. As a consequence of observational ambiguity, all we can do is compute a

posterior probability distribution P (w|v) over possible states w. If we see an image of

an object we think resembles a dog, we conclude there is a certain probability that it

actually is a dog, but if the image is not very clear, we may also deduce there is a small

probability it is a cat, a garden statue or something else entirely. We have computed

a limited collection of sample posteriors from the image: dog, cat, statue. Most often,
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Figure 2.12: Illustration of the ambiguity on an inference problem. Two three-
dimensional objects, when viewed from one angle, can lead us to infer them to share
the same world state w (a). Using an observation from a different angle (b), we infer a

completely different solution.

we go for the most probable solution, as long as evidence does not change to make us

believe otherwise. We call the most probable solution the maximum a posteriori (MAP)

solution. To complicate things further, it is not possible to compute P (w|v) over all

possible states - there is still a small probability that the image of the dog is an image

of something we have not been able to deduce. We learn as children what a dog is sup-

posed to look like and our brain draws on this experience when interpreting the image,

but without that experience we could not draw the same conclusions - we can not infer

something we can not imagine. We may say that we can only infer probabilities that

are somehow built into our model of the world.

We may now formulate the solution for a visual problem as composed of three compo-

nents:

� A model to describe our expectations - our translation from world to image and

vice versa, describing the relationship between the observation v and the world w.

The model is described using a set of learned parameters ψ.

� A learning algorithm which computes the parameters for our model ψ from training

examples (vα, wα).

� An inference algorithm which takefusings a new observation vβ and uses the model

to return the posterior P (w|vβ , ψ) over world states w.

The model construction can be of two types:

� Inferring the world state from the observation P (w|v) (conclusion) or

� Inferring the observation from the world P (v|w) (prediction).
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The first type of model is referred to as a discriminative model, and in the case of

imaging it is the same as drawing conclusions about the world from what is seen in the

image. The second type is referred to as a generative model. In the case of imaging, it

would be equivalent to setting up a model for how the real world object is translated

into the image, e.g. modeling the light reflected or transmitted by the object and how

it is translated by the optical setup, recorded by the camera sensor, digitized and finally

displayed on a screen or as a print. The relationship between the two model types is

described by Bayes’ rule:

P (w|v) =
P (v|w)P (w)

P (v)
=

P (v|w)P (w)∫
P (v|w)P (w)δw

. (2.11)

Commonly, we also assume that the data in our observations (the components of each

observation vα) are independent of one another, a condition known as Näıve Bayes. The

solution to a discriminative problem is often referred to as logistic regression (not to be

confused with linear regression, which is defined as the solution to a regression problem

of continuous world states). Table 2.5 summarizes the different cases.

Table 2.5: Methods for inference

Model discriminative Model generative

P (w|v) P (v|w)

Regression Linear Linear

v ∈ [−∞,∞], w ∈ [−∞,∞] regression regression

Classification Logistic Probability

v ∈ [−∞,∞], w ∈ [0,K] regression density function

All inference problems can be interpreted in the light of this abstract framework. In the

context of this Thesis, we are concerned only with classification, i.e. w ∈ [0,K] using the

discriminative models and logistic regression solutions described further in Chapter 2.4.1.

For microscopy imaging, including HMC, the generative model is only of indirect interest,

as it often would be very difficult to calculate exactly. Our model ψ varies depending on

the problem, and so does the learning algorithm and resulting inference algorithm. In

most cases, we compute the posterior directly. In all cases, we have satisfied ourselves

with computing the MAP, leaving out the full posterior probability distribution (PPD).

This is often a practical approach in computer aided diagnosis (CAD) where we are

concerned only with detection or exclusion of a world state w which is significant of a

certain cellular state, such as disease or health. Computation of the full PPD has the

benefit of returning a probability confidence score to our conclusion, but also introduces

a more complex computation and possibly increased computation time. In most real
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world cases of CAD, a computer diagnosis is not enough to decide on patient treatment

and the opinion of a human expert observer must be consulted anyway, making the

confidence score returned from the PPD of less practical value. The best we can do in

CAD, is returning a suggestion of disease, an annotation which serves as a notification

for a human observer to take a closer look.

2.4.1 Logistic Regression

The goal of a logistic regression problem is to determine a posterior probability dis-

tribution P (w|v) mapping a set of observations v, each taking on continuous values

v ∈ [−∞,∞], to a discrete set of world states w ∈ [1, ...K]. The discrete set may be

modeled as a Bernoulli distribution using λ ∈ [0, 1], where λ is our result class. To model

the distribution, we construct the linear activation function:

ω = φ0 + φ · v (2.12)

and apply a logistic sigmoid function sig(ω) which maps the range [−∞,∞] to [0, 1]:

sig(ω) =
1

1 + exp(−ω)
(2.13)

The result is a PPD

P (w|φ0, φ, v) = sig(ω) (2.14)

where we can adjust the parameters of the activation so that ω = φ · v to simplify:

P (w|φ, v) = sig(ω) (2.15)

In training, the goal is to maximize the likelihood:

P (w|v, ψ) =

L∑

α=1

P (wα|vα, ψ) =

L∏

α=1

λwα(1 − λ)1−wα (2.16)

using L sample pairs in the training data set.

By computing the log probability, the expression simplifies into a sum, the maximum

log likelihood :
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log[P (w|v, ψ)] =

L∑

α=1

wαlog[λ] +

L∑

α=1

(1 − wα) · log[1 − λ] (2.17)

2.4.2 Extension to Multiple Classes

If K = 2 we have only two classes, and the classification problem is binary. In the real

world however, multiclass problems, K ≥ 2 are common. A range of methods exist to

extend algorithms for binary classification to multiple classes.

The optimization is readily extended to multiple classes by describing the posterior as a

categorical distribution with λ(x) = [λ1, ...λK ] as functions of the data. Instead of one

activation (Eq 2.12), we have K:

ωk = φk · v, (2.18)

K local optimizations:

log[P (w|v, ψ, λk)] =
L∑

α=1

wαlog(λk) +
L∑

α=1

(1 − wα) · log(1 − λk) (2.19)

and K parameters for the model; ψ = φ1, ...φK , mapping the activation states to each

λk as

λk = Λ[ω1, ...ωK ] =
exp(ωk)

K∑
n=1

exp(ωn)

(2.20)

where Λ maps the set of continuous activation functions to discrete categories λk

∑

k

λk = 1. (2.21)

2.4.3 Classification

Often the task of inference is discrete; to label the image or an area within an image

as belonging to some predefined class. In this case, the inference problem is commonly

termed classification. In the simplest terms, a classification task in image analysis is
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the process of assigning the correct label to an image or part of an image. Classifi-

cation is an important task in computer vision. Several algorithms have been around

for decades and with the arrival of cheap and efficient computer power, their use have

over the years increased. Many algorithms have been applied to medical image analysis,

especially for the detection of abnormalities where the task can be seductively simple;

classify structures into healthy or unhealthy. This is an example of a binary problem

but in many cases, the classification is multiple, such as when separating cells into the

different stages of the cell cycle. The separating border between two groups in class

space is referred to as a decision boundary (Figure 2.14). Depending on what side of the

decision boundary a new data ends up on, it is classified as belonging to each respec-

tive group. Classification algorithms can roughly be divided in two groups; supervised

and unsupervised techniques. A supervised approach uses training images labeled with

known classes to define the parameters of the model ψ through reverse engineering. The

model obtained can then be used to classify unlabeled images, provided the training set

was representative enough. Unsupervised learning on the other hand, attempts to clas-

sify images directly, often by grouping images with similar characteristics together, but

without assigning any labels. Unsupervised methods is the common name for methods

not requiring labeled training data. They are mostly useful in image encoding, image

matching and as a preprocessing step for further supervised schemes.

2.4.4 Supervised Learning

A common approach to a supervised learning problem is the generation of a descrip-

tor, consisting of image features, which is then fed into a classifier. Images are usually

preprocessed and structures sometimes segmented prior to feature extraction. The pa-

rameters for the classifier are learned in a training step where features from images are

classified and parameters set to achieve the best possible match with the known result.

The training step requires a representative set of labeled data - the ground truth - to

infer the correct parameter setting of the classifier. Supervised learning methods often

benefit from having a large set of labeled training data available.

2.4.5 Decision Trees

A solution to the logistic regression has a few drawbacks. It can only compute linear

decision boundaries and will become inefficient or tend to overfit in higher dimensions.

More complex decision boundaries can be computed if we introduce a nonlinear transfor-

mation of observations. Another way is to divide the data space v into distinct regions

and use a different classifier to each region. The result is a nested logistic regression
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model, sometimes also referred to as a decision tree [126].

ω = (1 − Ω(vα, ω))φ0 · vα + Ω(vα, ω)φ1 · vα, (2.22)

where Ω is a gated sigmoid :

Ω(vα, ω) = sig(ω · vα). (2.23)

A decision tree has advantages over a nonlinear logistic regression in that it omits the

nonlinear transformation and is thus simpler and potentially faster, since each node

only produces a binary classification and each data point will only take one unique path

through the node tree.

2.4.6 Multiclass Decision Trees: The Random Forest

In the multi-class case, instead of maximizing the log Bernoulli probability, we strive to

optimize the log Bernoulli probability of the training class labels. In the case of more

than two classes, decision trees are usually termed random forests. Like in the binary

case, data is passed to only one child branch, and eventually ends up in a single leaf,

but in this case, each node has several possible branches, and an optimization function

at each node determines the chosen branch.

Figure 2.13: Principle of a two level binary Decision Tree. At each node, the de-
scriptor is evaluated according to some optimization function separating the data set
in two groups. The classification progresses step-wise downward, until all members of

the data set ends up in one of the bottom nodes (the leaves).

2.4.7 Support Vector Machines

So far, we have described probabilistic algorithms for classification. Another approach

is to use non-probabilistic classification algorithms. An example of these are Support

Vector Machines (SVM), which have become very popular for image classification tasks
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and for historical reasons they are readily available in most software packages. The

simplicity in their implementation and the computational speed makes them useful for

a broad range of applications, where the full probabilistic inference is not as much of

interest as the class output. In solution to a binary classification problem, a SVM

separates two clusters of data by means of a plane (Figure 2.14), placed to maximize the

gap between the members of each cluster closest to the decision boundary (the support

vectors). Originally, the SVM was designed to handle only binary problems, but a

number of extensions to multiple classes exist.

Figure 2.14: Principle of a Support Vector Machine. A decision boundary is defined
using the fewest possible, separating descriptors (the support vectors), marked in red.

2.4.8 Multiclass SVM: The DAG-SVM

The SVM was originally designed for binary problems, but a number of extensions have

been developed to handle multiple classes. Most of them progress as a conglomerate of

binary classifiers in different combinations. One approach is to perform K classifications

for K classes, where each class is classified versus all the others - an approach known

as one-versus-all. Each classification returns a confidence score which decides the final

class. In the case of embryo classification, this approach has a number of disadvantages.

Each classifier must produce a real-valued confidence score, and its scale may vary

between classifiers. Also, the group of positives will always be smaller than the group of

negatives, which consists of all other classes. If the classification is intended to separate

embryos of different number of cells, the distribution will be even more skewed since the

more cells the embryo contains, the shorter the time between division and less images

representative for each class are available. One way to avoid the demand to return

a confidence score is to perform K(K − 1)/2 binary classifications without confidence

score and select the class voted for by the majority of classifiers. A downside is that
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this method may lead to ambiguity, as the same number of votes may be cast for several

classes. A third approach is to perform a step-wise exclusion, where the entire sample set

is subject to K(K − 1)/2 successive and pair-wise one-versus-one classifications. When

first implemented, this approach was referred to as a Directional Acyclic Graph SVM

(DAG-SVM) [99]. It avoids the problem of having to report a confidence score, as well

as the problem of ambiguity with a voting scheme.

Figure 2.15 illustrates the DAG-SVM for a 4-class problem with classes A,B,C and D.

For the first classification class A versus class B, it is concluded that all samples classified

as belonging to class B, do not necessarily belong to class B, but can in any case not

belong to class A. For the sake of argument, we call this sample cluster Ã (not-A). In

the next step, the group Ã then compares class B with class C. If classified as C, it is

concluded that samples from this sample cluster are not necessarily C, but in any case,

do not belong to B, and may be called ÃB̃ (not-A-nor-B). Classification progresses step-

wise until only one class remains and the last one-versus-one classification then finally

separates class C from D.

Figure 2.15: Principle of a DAG-SVM applied to 4 classes. Circles denotes classifi-
cation nodes, lines decisions on classes and dots final classification result. An object

classified as not belonging to a class k is denoted by k̃ [6].
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Results

In this Chapter, we focus in turn on the seven chosen criteria for embryo health (Ta-

ble 2.1), describe in detail the methods developed to study them and evaluate the result.

In cases where the results have been published, references are provided to the original

publication. All relevant results and figures have been replicated in this Thesis, but the

publications are also included as appendices.

3.1 Tracking of Embryo Location

In HMC imaging embryos are imaged in a circular well, one embryo per well, and image

contents from the well surrounding the embryo and from outside of the well are of little

importance to the analysis. The majority of a typical HMC image consists only of the

contents and surroundings of the embryo growth chamber, and usually less than 25%

of the images is actual embryo content (Figure 2.9B). Embryos are usually stationary

within the well, but may shift position suddenly when medium is replaced at a few days

interval. For automatic analysis, this means that the embryo position will have to be

tracked during the sequence. In Paper II [2], a method is described which detects embryo

location, using a HT (Chapter 2.3.5). The code was implemented in Matlab [92].

3.1.1 Methods

Figure 3.1 shows an example of how an embryo has been displaced in a well following

change of medium. The time frame between Figure 3.1a and Figure 3.1b is one capture.

A circular HT (Chapter 2.3.5) was applied to a Canny edge map (Chapther 2.3.2) of the

raw image and the mean of the highest peaks defined the embryo position.
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Figure 3.1: Tracking and automatic selection of embryo interior. The same embryo
captured before (a) and after (b) dislocation. After filtering trajectories outside well
boundaries (not shown), a median of several possible trajectories for inner zona pellu-

cida boundaries was used to detect the region of the embryo [2].

3.1.2 Results

Figure 3.2: Correctly detected embryo outlines for 140 images of embryos from zygote
to blastocyst stage, as a function of maximum pixel dislocation. Showing calculations

for each of 7 categories separately (gray) and total (black) [2].

Figure 3.2 shows the number of successful embryo outlines for embryos with 1-7 cells,

plus blastocyst stage. Images considered potentially difficult were placed in a separate

category. Location detection was compared using the location of the bounding box

centroid. If an accurate detection was defined as within 10 pixel variation, a detection

accuracy of 92.9% was achieved for all number of cells, and an accuracy of 95.0% if

the class of difficult images was ignored. As a comparison, the manual selection of

embryo outline had an accuracy of 70% for 1 pixel variation, when repeated on the same
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picture by the same person, and 100% was within 5 pixel variation. The embryo outline

detection was also tested on four image series where fresh medium was supplied at one

point in the series, displacing the embryo within the well. In Figure 3.3, the positions

of four embryos were automatically detected after being displaced.

Figure 3.3: Embryo location in image (pixels) before and after change of medium in
the containing well. The embryo position in the first image has been set to (0,0), with
all other positions calculated relative to the first. Position defined as the position of

the centroid detected by Hough transform, with radius 100-120 pxl [2].

3.2 Classification of Embryo Cell Number

Timing of mitotic splitting and the duration of mitosis are important cues to embryo

development, as discussed in Chapter 1.3.5. Normally, it would require full segmentation

of images and tracking of cells, but an indirect method to detect the timing of events in

a time sequence is the classification of the sequence into groups of images belonging to

different predefined states, each defined by the number of cells in the image. In Paper VI

[6], the aim is to classify images in an embryo time sequence into groups with different

number of cells, thus indirectly detecting the moment of mitosis between each group.

3.2.1 Methods

A set of embryos imaged by HMC were manually classified in groups of 1-8 cells for

comparison. A training set was constructed using randomly selected subsets comprising

10% and 20% of the total image set, respectively. The total data set consisted of 620

8-bit gray scale images in series from 18 embryos. 12 features were used for classifica-

tion. All were standard gray level image features; gray level mean, variance, maximum,

minimum, root mean square, kurtosis, skewness, energy, entropy, contrast, correlation
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and homogeneity[96]. To select an initial ROI, and to spatially filter out irrelevant im-

age data, the embryo region was automatically detected (Chapter 3.1). Features were

extracted from two separate regions; the entire embryo (Figure 2.11d-f: Region B) and

on the inner embryo (Figure 2.11d-f: Region C only). The perimeter for region C was

at half the radius of region B. Intuitively, from Figure 2.11d it is clear that this spatial

filtering will have a strong effect on features since e.g. all cell membranes are eliminated

for region C. Three state-of-the-art classifiers were compared; a Näıve Bayes classifier

with a Gaussian kernel [97] (Chapter 2.4), a Random Forest (RF) [98] (Chapter 2.4.6)

and a DAG-SVM [99] (Chapter 2.4.8). Also introduced was a slicing multiclass SVM

(SS-SVM). Experiments were performed in three sets with the total image set containing

1-4, 1-6 and 1-8 cells, respectively. Results are given as the mean value of ten repeated

identical experiments, with the training set selected randomly from the complete image

set each time. The computational performance was evaluated using a standard 4 core

PC with 8 GB RAM, with the code implemented in Matlab® 7.12.0.635 (R2011a) [93].

3.2.1.1 Sample Slicing SVM

Figure 3.4: Principle of SS-SVM using an example of four cells. Class A has the
highest cluster distance in feature space, and is excluded first. Classification progresses

until all classes are determined [6].

In classification, one disadvantage of DAG-SVM (Chapter 2.4.8) is the performance

reduction for higher number ofK classes. Assuming some prior knowledge of the distance

between sample clusters in feature space, we may improve performance and slice the

sample set successively in a set of cascading one-versus-all classifications, inspired by
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what has previously been described in [90, 91]. With the successive slicing SVM (SS-

SVM), we improve performance by exploiting the fact that for embryos, we have prior

knowledge of the hierarchy of the classification problem: The appearance of one cell

compared to two cells differs more than the appearance of two cells compared to three,

and so on. The test set is successively divided in smaller and smaller sets, until only one

class remains for each sample. The order of classification must be previously decided

upon by some general clustering method or by prior knowledge of cluster hierarchy.

When classifying number of cells we assume that the optimal order of classification is

from the lowest number of cells to the highest and the cluster distance can be expected

to decrease for higher number of cells in the image. Simply put, the difference between

an image containing one and two cells will be larger than the difference between an

image containing three and four cells and so on. Exploiting this fact, we first separate

all samples with one cell from the rest, progressing with classification of 2,3 cells etc.,

until we reach the class with the maximum number of cells (Figure 3.4). Using this

method, we need only K classifiers of type one-versus-all, one for each class, as opposed

to K(K − 1)/2 for the DAG-SVM.

3.2.2 Results

The accuracy for the SS-SVM was slightly higher than that of the DAG-SVM, with

89.4% correctly classified for the 1-4 cell case, 80.8% for the 1-6 cell case, and 74.9%

for the 1-8 cell case (Figure 3.5). For some values, the DAG-SVM outperformed the

SS-SVM, and for a few isolated values, they were both outperformed by the RF, but

overall the predictive performance of the SS-SVM was comparable to the DAG-SVM. In

Figure 3.6, the feature set was split into two groups, one set from each ROI, and classified

using the SS-SVM. The result was improved by up to 45% by combining features from

both ROI, compared to using features from one ROI only. In Figure 3.7, the Receiver

Operator Characteristic (ROC) is plotted for each class and for each classification of

image series comprising 1-4, 1-6 and 1-8 cells, respectively. The mean sensitivity for the

classes in the 1-4 cell set was 82.2%, slightly higher than the mean sensitivity of 80.0%

for the 1-6 cell set and 79.9% for the 1-8 cell set. The mean of the fallout was 4.75% for

the 1-4 cell case, 4.43% for the 1-6 cell case and 5.34% for the 1-8 cell case. For a small

class set (1-4 cells) the computational performance of the DAG-SVM was comparable to

that of the SS-SVM, but for an increased number of classes, the SS-SVM outperformed

the DAG-SVM by 63% (1-6 cells) and 73% (1-8 cells). The overall best performance

was for the Näıve Bayes classifier, outperforming the SS-SVM by 86% (1-4 cells) and

88% (1-6 cells). For the 1-8 cell case, no results for the Näıve Bayes are shown, since

the Gaussian kernel failed to estimate the parameters (Figure 3.8).
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Figure 3.5: Accuracy as a function of maximum number of cells in the classification
for all four classification methods. Mean values and confidence intervals are calculated

from 10 classifications. The Bayes classifier failed to classify in the 1-8 cell case [6].

Figure 3.6: Accuracy as a function of number of features for the SS-SVM. The total
feature set was 24 features, a combination of 12 features from the inner embryo and
12 features from the entire embryo (referred to as outer). Calculation was performed
twice, with the training set selected as 10% and 20% of the total image set, respectively.
The classification was performed for 1-4 cells. Mean values and confidence intervals are

calculated from 10 classifications [6].
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Figure 3.7: ROC of SS-SVM. Each data point represents one class in the image sets
1-4 cells (diamond), 1-6 cells (triangle down) and 1-8 cells (triangle up) [6].

Figure 3.8: Calculation time as a function of maximum number of cells for classifica-
tion of the entire test set. Methods used were SS-SVM (square), DAG-SVM (diamond),

Bayes (triangle down) and RF (triangle up) [6].
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3.2.3 Discussion

The high classification accuracy is highly dependent on the fact that even if training

images are separate from test images, they can still come from the same embryo, and so

the training set is expected to be highly representative. In this case, the classification

of number of cells is possible to a high accuracy even up to eight cells. A practical

implementation of this approach would however require a manual selection of a few key

frames per embryo, containing different number of cells. Ideally, a classification should

be able to progress using training images from a set of training embryos, and then be

applicable to images from another set of test embryos. The data set of 18 test embryos is

too small to reliably train a classifier under those circumstances and this is an important

continued point of investigation.

3.3 Embryo Activity Analysis

Variance is an extremely simple - thus also very robust - image characteristic. Paper IV

[4] includes an example of the use of image variance to detect embryo activity, mitotic

stagnation and rhythmic blastocoelic expansions. Mitotic stagnation is a sign of poor

embryo quality and blastocoelic expansions conversely a state of normal embryo devel-

opment. At the temporal resolution available, it is not possible to capture inter-cellular

vibration at high frequencies, but intra-cellular movement and embryo movement are

readily detectable.

3.3.1 Methods

Images in embryo sequences were captured with 0.2h interval between pictures. Fig-

ure 3.12 shows an example, where two embryos from the same patient are imaged si-

multaneously. The image was spatially filtered (Chapter 3.1) to region A, B and C

(Figure 2.11) and the variance of the embryo interior (region C) relative to the variance

in the cultivation well (region A) was calculated. The total image series of 448 images

spanned from 4.7h (4-6 blastomere stage) to 94.1h of development, at a focal plane lo-

cated approximately half-way through the embryo. For this analysis, only one of the

available seven focal planes was used for analysis. The optimal plane was selected using

a focus filter.
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Figure 3.9: Hoffman Modulation Contrast image of blastocyst stage embryo at 136.2h,
showing one original image (a) and seven images, captured at separate focal planes, with
extracted regions in optimal focus (b-h). Focal planes cover the embryo from slightly
above the embryo waist (b), down to the bottom of the containing well (h). The inner
cell mass is in focus on the first slide (b). The original image corresponds to the 5th
image in the series (f). Images (b)-(h) have reversed contrast for display purposes [8].

3.3.1.1 Focal Filtering

Being a focal slicing technique, HMC images are captured on several focal planes per

imaging time point. Some of these images will only contain out-of-focus objects and

others contain a mix of objects in-focus and out-of-focus. Out-of-focus objects contribute

very little to the analysis and can even contribute negatively by providing inaccurate

information, and must be removed prior to image feature extraction.

In cameras with autofocus, calculation of the image focus is often based on calculation

of image contrast and several autofocus algorithms have been evaluated for microscopy

[65, 66]. In optical microscopy [67], where the depth of field is usually very short, and

when studying human embryos using optical microscopy with a short depth of field, the

entire embryo is rarely in focus at one optical setting. Instead, the user may be required

to adjust the focus back and forth in order to get a complete view of the sample. By

recording images automatically at several focal planes, image contrast calculation can

be used to filter images or areas of images out-of-focus. Prior to handling, captured

images, F (x, y), were filtered with a Gaussian filter to remove speckle noise. To detect

the image contrast variation, a Laplacian filter (Eq 2.5) was applied. Note that due to

the asymmetrical nature of HMC, the symmetrical Laplacian was chosen, rather than

the direction dependent gradient (Chapter 2.3.2). To detect areas of high sharpness, an

H-maxima transform, H, was applied to the result L̂(F ), and the resulting image was

converted to a binary mask filtering the original image, F (Figure 3.9,3.10,3.11). The
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Figure 3.10: 7-image stack of Hoffman Modulation Contrast images of blastocyst
stage embryo at 136.2h, and the extracted focused regions. The extracted regions have

reversed contrast for display purposes [8].

method is evaluated in Paper I [1], and has been used in several of the enclosed papers

for selection of the optimally focused image in an image stack, or for spatial filtering

within an image, extracting areas in focus [94].

3.3.2 Results

The first embryo experienced several cell divisions during the first hours of the series,

after which it formed a blastocoel at approximately 44.7h. After this, the embryo un-

derwent a series of morphological changes where it reverted back and forth between

a blastocyst and a tight central cell structure (Figure 3.12). These changes were also

reflected in the image variance (Figure 3.13), both when looking at the internal and the

entire embryo, though being less pronounced for the latter. The second embryo experi-

enced a reduction in division activity after approximately 34h and suffered from heavy

fragmentation from image 54h and forward. Within the region of interest of the embryo,

this is shown as a reduced image variance when compared to the healthy embryo.
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Figure 3.11: Step-by-step procedure for focal filtering. a) Original image. b) Lapla-
cian of Gaussian applied. c) H-maxima transform highlights focal regions. d) A close
transform further extends the selected area in focus to enclose a region, rather than
isolated image patches. e) A threshold selects a mask. f) Original image filtered by

mask.
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Figure 3.12: Two embryos at 85.3h (a,c) and 85.5h (b,d). The blastocoel starting
to form for the healthy embryo (a-b). The second embryo shows heavy fragmentation

(c-d), and the embryo activity is low [4].

Figure 3.13: Variance of half embryo interior (a) and full embryo (b) relative to mean
of embryo intensity. Line represents position of example images (Figure 3.12). Solid:

healthy embryo, dashed: fragmented embryo [4].
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3.3.3 Discussion

This examples shows the ability to use the temporal derivative of a TLI series to detect

movement - or lack thereof - in living tissue. The importance of the correct spatial

filtering is clear when comparing results from the full embryo and the internal parts.

These results do not constitute a complete evaluation of this approach, but formed a

basis for subsequent evaluations.

3.4 Embryo Fragmentation

Fragmentation can be an indicator of poor embryo health, but fragments can also be

produced and reabsorbed during normal embryo growth [34, 52], making TLI a neces-

sary tool to study the dynamics of fragmentation. It has been previously shown that

the reduced activity of a fragmented embryo can be detected (Chapter 3.3). In this in-

vestigation, we evaluate a method to detect degree of fragmentation directly in images.

3.4.1 Methods

Images in embryo sequences were captured with 0.2h interval between pictures. Fig-

ure 3.12 shows an example, where two embryos from the same patient are imaged si-

multaneously. The image was spatially filtered (Chapter 3.1) to region A in Figure 2.11.

The entire image was then divided using a square pixel grid of sizes in the range 5–100

pixels. The variance of pixel values in each grid element was calculated and normalized

using the variance of Region A (entire embryo).

3.4.2 Results

Figure 3.14 shows a comparison between two embryos, one experiencing low degree of

fragmentation (a-b), the other embryo higher (c-d). A heat map constructed from the

normalized variance values is used to visualize fragmented regions. Using a suitable

threshold, the degree of fragmentation within the embryo can be readily calculated.

3.4.3 Discussion

This examples shows the ability to use relative variance to detect embryo regions of

higher fragmentation. A normalization to the image region of the embryo was selected

in order to make the results comparable between images captured at different light
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Figure 3.14: Comparison of variance for low fragmentation (a-b) and high fragmen-
tation (c-d) embryo. a,d) Original image overlayed with image grid elements containing
fragmentation. c-d) Heatmap of local image variance throughout image highlight heav-

ily fragmented areas.

conditions. However, there is reason for caution when comparing images with very

high degree of fragmentation, in which case the variance of the entire embryo region

will also be affected. In order for this method to quantifiably measure differences in

fragmentation, a consistent measure of normalization must be used. These results do

not constitute a complete evaluation of this approach, and further analysis would require

a comparative manual annotation of fragmentation of separate image regions.

3.5 Profiling Embryo Developmental Stages

In HMC microscopy, as in other bi-gradient images, edges are the most prominent struc-

tures. For cells, the main source of edge structure is the cell membrane. As cells divide
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the number of cell membranes increase, and consequently the number of edges in the

image. Conversely, cell compaction and loss of focus increase image smoothness and

cause a loss of edge structures. As the number of edges in the image increases, the

two-dimensional distribution of image intensity changes (Chapter 2.3.2). Image vari-

ance is a measure of the distribution of gray levels in an image and can function as an

indirect measure of edge structures, and also of embryo developmental stages. Paper V

[5] profiles embryo growth during a course of 5-7 days growth using image variance.

3.5.1 Methods

Image variance is computed in a filtered ROI within the embryo (Chapter 3.1) and

compared to manual profiling of embryo growth (Figure 3.15). The spatial filter was

set to 50% of embryo radius, and the variance calculated as fraction of the variance for

the total embryo. The ratio was chosen so that during the cleavage stage, no single

cell would appear completely outside the ROI, and for the blastocyst stage, the region

would be small enough to exclude the trophectoderm. The result is a timeline profile,

describing embryo development (Figure 3.16), effectively reducing the information of the

four-dimensional image series to a one-dimensional sequence, which was then used

for further analysis detecting gradients and local minima and maxima. Six characteristics

were chosen on the basis of their visbility in the graph and combined to a set of features

for blastocyst detection.

� The width (duration) of the negative gradient at compaction.

� The height of the maximum variance detected at the end of the cleavage stage.

� The height of the maximum variance detected at cavitation.

� The timing of compaction.

� The timing of the maximum at the end of the cleavage stage.

� The total number of variance gradients during the entire development (a sign of

strong fluctuating behavior, indicating poor quality).

A total of 39 embryos were examined from zygote to blastocyst stage, or to the equivalent

point in time if no blastocyst was formed. Length of time lapse sequences varied between

350-500 images, the equivalent of 5-7 days of growth.
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Figure 3.15: a) Illustration of computational pipeline of the captured image series of
an embryo. The optimal focal plane from the image stack was selected. A region of in-
terest (ROI) was selected within each individual image, and one value of the variance in
image intensity was computed for each ROI. This process was repeated for each capture
in the image series, resulting in a function v(t) describing the variance as a function
of time. v(t) was then further analyzed for the occurrence of detectable key events,
profiling the embryo development. Finally the profiles for embryos forming blastocysts
and for those not forming blastocysts were compared. b) Image intensity variance of
an embryo during the course of 280 frame captures, normalized to the first image in
the series. Divisions during the cleavage stage are detectable as sudden increases in
image variance, due to the number of increased edges in the image, as blastomeres
undergo mitosis. At the onset of compaction, individual blastomere membranes are
no longer distinguishable, and the variance drops and remains at a low level during
the morula stage. The variance increases once more as blastocoel expansion sets in,
and may fluctuate strongly during the blastocyst stage, if the embryo displays several
cycles of collapse and re-expansion. The growth of the embryo has been considered in
five stages. A) Initial divisions from fertilization to onset of compaction. B) Onset to
completion of compaction. C) Morula. D) Cavitation. E) Blastocyst. The mean and
change in variance has been calculated for each section. Dashed trend lines have been

added for illustrative purpose [5].
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Figure 3.16: Profile of three representative embryos showing decreasing quality (a-c).
Variance was calculated from the image intensity at a circular region encompassing the
center of the embryo. A few example images are shown at points where characteristic
changes are visible in the variance profile. For a good quality embryo (a), mitotic
divisions are visible as successive increases in image variance, and the morula stage as
a period of lowered variance. b) illustrates a clearly expressed pronuclear breakdown,
but experiences fragmentation during the cleavage stage, even though a blastocyst is
eventually formed. In c), the pronuclear breakdown is also apparent, but the embryo

develops early fragments, never reaching a blastocyst stage [5].
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Figure 3.17: a) Average variance for 14 training embryos before and after mitotic
division. P-values are P ≤ 0.05 for first and second division, P ≥ 0.1 for division 3-7.
The negative variance before the first division is due to the drop in variance during
syngamy. b) Gradient of image variance for embryo developmental stages for the 14

training embryos. P ≤ 0.001 for adjacent stages [5].

3.5.2 Results

In total, 37 out of 39 tested embryos had sufficient quality to detect the first five mitotic

divisions. Computational detection was compared to manual detection for divisions of

up to the 4 cell and 8 cell stages (Figure 3.17). The uncertainty in the exact location

of division increased with the number of blastomeres. From the total image set of 37

embryos, 100% of divisions from 1 to 2 cells were detected, 73% from 2 to 3 (or 4) cells,

30% from 3 to 4 cells, and 59% from 4 to 5 (or 6) cells. The identification of the time

at which a mitotic division occurred was comparative to manual detection of the same

event, since also experts would sometimes disagree on the number of cells in the image

(Figure 3.18).

The method of locating the timing of mitotic divisions shows a larger span between

maximum and minimum deviation from the true position compared to manual detection,

but on average, our method performed better. 62% of cleavages identified by automatic

detection were located at the exact same capture frame as manually identified by experts.

The same agreement for manual detection between different experts was only 35%. The

results of the automatic method improved if only the 1-4 cell stages were considered,

compared to all 1-8 cell stages. The results depended heavily on image capture frequency

and at a rate of three captures per hour, some cell divisions were lost by under-sampling,

most commonly the 3 and 5 cell stages. The change in variance was most prominent

between the compaction and cavitation stages, one order of magnitude higher than that

for the entire cleavage stage. Results also showed a high variation between patients,

especially in the duration of the morula stage (Figure 3.19). Last, a set of measures

from the time series profiling was used to classify the embryos into two groups, one of
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Figure 3.18: Standard deviation in manual annotation for the evaluation embryo in
terms of a) timings of mitotic divisions up to 8 cells and b) detection of the beginning of
developmental stages: 1-Compaction, 2-Morula, 3-Cavitation and 4-Blastocyst. Bars
represent lower to upper quartile, whiskers minimum and maximum values. c) The
deviation from expert determined location of division in terms of timeframes for the
divisions that were detected, plotted vs the number of cells preceding the division. Bars

represent lower to upper quartile, whiskers minimum and maximum values [5].
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good quality, one of bad. The result was compared to the manually observed appearance

of a blastocyst at the end of the time series, assuming the embryos forming blastocysts

as being of good quality. The best overall result was correct detection of a blastocyst

being formed in 71.8% of cases, but at a cost of 28.2% false positive detection with little

sensitivity to parameter setting [5].

Figure 3.19: Duration in hours, automatically measured, of four stages of embryo
development for seven patients (Total 28 embryos). a) Cleavage (the time from first
frame to onset of compaction). b) Compaction (time from onset until completed). c)
Duration of morula stage. d) Duration of cavitation stage (time from onset of cavitation
to blastocyst). Patients 6 and 7 had only one embryo each completing all four stages.
Bars represent lower to upper quartile, whiskers minimum and maximum values [5].

3.5.3 Discussion

As in Chapter 3.3, a time profiling is essential for understanding embryo development,

and requires a dimension reduction from X · Y pixel values to something more man-

ageable. Here it is shown that even the most extreme dimension reduction, down to

a single metric, is enough to give an indication of embryo behavior through all stages

from fertilization to implantation. It is theoretically possible to increase the detail of the
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profile by combining several one-dimensional metrics, by combining a more fine-grained

spatial filtering or using a combination of both.

3.6 Detection of Syngami

Figure 3.20: Example of pronuclear disappearance in preparation for the first mitotic
splitting of the zygote. Before (a) and after (b) [2].

Considering the internal of the cell, there are a few structures of high diagnostic interest

visible in HMC images, the nucleus being the most prominent. When comparing image

time lapse series in a clinic, the moment of fertilization is often used as a reference point

in time. If combining image data from several clinics, the time from fertilization to

the first captured image may not be known. In this case, the moment of pronuclear

appearance or disappearance (syngami) can be used as a common calibration point

(Figure 3.20). As such it has the benefit of being short (less than one image capture

= 12 min) and normally being the first easily detected biological event following the

start of incubation. The timing of syngami at the onset of the first mitotic splitting

as well as the general shape and size of nuclei may also provide clues to embryo health

[50, 100, 101]. Paper II [2] describes a computerized detection of syngami using a set of

different computational approaches.

3.6.1 Methods

For 20 embryos, 20 images per embryo were selected so that approximately half the time

series showed pronuclei and the other half did not. After a spatial filtering of embryo
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Figure 3.21: Number of failed detected nuclei as a) false positive (FP) and b) false
negative (FN), respectively, calculated average over 10 images as function of number of
angles each image has been rotated and the threshold % of images where the nucleus

needs to appear in order to be counted [2].

location (Chapter 3.1) was applied. Four methods were chosen and compared: direct

detection of PN using the HT (HT+PN), comparison of the image difference (ID)

Σn
x=1Σ

m
y=1(I(x, y, tk) − I(x, y, tk−1))

2, (3.1)

the image variance (V),

v(t) =
1

n ·m
· Σn

x=1Σ
m
y=1(I(x, y, t) − I(x, y, t))2, (3.2)

and the image variance within the ROI selected as the embryo outline by the HT

(HT+IV). The ability of each computational approach was evaluated for its ability to

separate images from before and after the moment of syngami. For detection of circles

using the HT, false positives were defined as circles displaced more than one nuclear

radius. When comparing the circle location, a displacement of the centroid of at most 3

pixels resulted in the shapes being counted as identical.
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3.6.1.1 Noise Reduction in the Hough Transform

The outline of the embryo itself is fairly strong, and could often be detected directly

using the strongest HT circle (Figure 3.22h). In contrast, the nuclei are very weak, even

when focus is optimized. For those cases the HT resulted in a high number of randomly

appearing false positive hits. By introducing a slight disturbance to the image in the

form of a trigonometric rotation

xn+1 = xn · cos(θ) − yn · sin(θ)

yn+1 = xn · sin(θ) + yn · cos(θ)
. (3.3)

textcolorgreenAs the pixels in the image are square-shaped, a rotation (except for 90°)

results in slightly shifted absolute pixel values, causing the false circular shapes to appear

in new locations, whereas the true shapes were slightly more consistent. This can be

exploited by successively rotating the image, apply the HT to each rotation and average

over the results. Figure 3.22a-g sketches the flow [2].

The described method was used in several enclosed papers. First to track the embryo

throughout the image sequence, making sure the change of medium (2-3 occasions per

5 day sequence) did not affect the measurements. Second, the same spatial filter was

used to exclude image content external to the embryo and as base for embryo region

selection. Third it is used to detect nuclei using the rotation step described above

(Chapter 2.3.5).

The number of angles to compute, and the threshold over which a structure needed

to appear were optimized using a series of training images and the results are given in

Figure 3.21. Here, false negative is determined as the probability of loosing the pronuclei

detection. A rotation of 4 angles (90°) gave identical results, as expected. For a rotation

of 6 angles (60°), an improvement was apparent for a threshold of 75% and above, giving

a reduced number of false positives to below one per image at the expense of ≤ 30% risk

of obtaining a false negative. For an increased number of rotations, a further decrease in

false positive rate was observed but at the risk of an increased number of false negatives.

3.6.2 Results

In Figure 3.23 the change in all metrics is compared before (images with pronuclei)

and after (images without pronuclei) syngami. The spatially filtered variance gave the

only statistically significant difference, and only at spatial filtering of ≤ 50% of embryo

radius. Figure 3.24 illustrates the variance shift observed using two image examples
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Figure 3.22: Detection of zygote and pronucleus in human embryo. a) Original image.
b) Canny edge detection. c) 5 most significant circular structures selected. d) 10 most
significant circular structures selected. e) Overlap of circular structures selected from
the same image rotated 6 · 60°. f) Outline of pronucleus indicated, overlap of three
calculations at separate angles. g) Outline of pronucleus selected. h) Outline of zygote

selected [2].



Chapter 3. Results 69

Figure 3.23: Values before and after syngami, averaged over 10 images each from 20
different embryos. Vales are given in % compared to the last image on which pronuclei
are visible by eye. Time between images captured is 20 min. Measurements used were
image difference (ID), image variance (V), detection of pronuclei using Hough Transform

(HT+PN) and image variance at four different spatial filter settings (HT+IV) [2].

before and after syngami, and in Figure 3.25 the variance at 50% has been plotted (at

image number 10), relative to the first image in the series. Syngami effectively lowers the

variance of the embryo interior by approximately 25% over the course of at most three

image captures. Time between images is 12 minutes. The increase in image variance

approaching image number 15 is caused by the onset of mitosis. The best overall result

was achieved at 83.0% accuracy for all 20 image series, using 20 images per series.

3.6.3 Discussion

The ability to detect syngami is of paramount importance for multiclinical trials, as

it detects a common reference point in time with which to compare embryo growth.

Luckily, pronuclei are the easiest detectable nuclear structures, since the embryo at this

time only consists of a single zygote. Further detection of nuclei during the cleavage

stage would provide important information of nuclei number, shape, size and position.

It would require the same spatial filtering, but now using each blastomere as filter

reference, rather than the entire embryo. Thus, a continued analysis of nuclei for later

stage embryos requires a successful segmentation of embryo blastomeres.

3.7 Embryo Cell Detection

An accurate detection of cell region is one of the keys to successful digital image cy-

tometry. As cell borders are usually defined by the edges in the image produced by the
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Figure 3.24: Calculation of variance in image intensity using pronuclei as an example.
Images a) and b) were captured 20 min apart. The frequency of image gray scale values
(0-255) within a selected ROI (white circle) at half embryo radius has been plotted as
histograms, and the mean and variance calculated. c) Difference in image variance
before (blue) and after (red) pronuclear breakdown. Standard deviation calculated as
mean over the training set of 14 embryos (P ≤ 0.0001). d) Detection accuracy of the
training (14 embryos) and test (25 embryos) sets, respectively. The computation is
governed by a single threshold (gradient of decreasing variance over time). Pronuclear
breakdown is defined as gradients larger than some threshold, yielding an increase in

true positive (TP) accuracy as the threshold decreases [5].
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Figure 3.25: Image variance of ROI selected by Hough Transform at 50% of embryo
radius, compared to the first image in the series, before and after syngami (marked by
gray vertical line). Black line shows average over 20 embryos, bars indicate standard

deviation [2].

differences in refractive index between the cell membrane and the internal and the ex-

ternal of the cell, edge detection is the most straight forward approach to cell detection.

Although many common edge detectors are very efficient for edge detection in a single

gradient image (Chapter 2.3.2), the detection of cells in an HMC embryo image set up

requires a different approach. In Paper III [3] we describe an approach for detecting

edges in bi-gradient images and apply it to HMC images of human embryos.

3.7.1 Methods

Images from 18 embryos containing 1-6 cells with cell outlines marked manually were

used for the analysis. The image was first spatially filtered (Chapter 3.1) and a Canny

edge transform applied. A set of elliptic model candidates representing cells were then

located using a HT (Chapter 2.3.5), producing an initial set of cell candidates. In order

to reduce computation time the candidates were computed using a circular HT, and the

circular shape was then adjusted to an ellipse by stretch and rotation. Each candidate

was then matched to a double thresholded edge map of the raw image. Figure 3.26

shows an example of edge detection, matching to edge map and validation to manual

detection for a 2 cell and 6 cell case, respectively. The edge map was constructed from

the lowest and highest pixel ranges in the image F using the threshold

T = m ·median(F ). (3.4)

where the median was selected to reduce the influence of pixel outliers. The use of two

thresholds gave two image masks which were then added to a binary edge map, excluding

the middle range of pixel value (i.e. the background). A focus filter provided a convex
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hull around the regions in focus (Chapter 3.3.1.1) and was used to further exclude image

background such as the zona pellucida region. In matching, the elliptic perimeter was

compared to the edges, and as one cell was found, its trace was successively removed

from the edge map. The matching progressed until all cells were found [95]. It is

noteworthy that this approach required an initial guess of the number of cells in the

image. In our case, we used the classification described in Chapter 3.2 to provide this

primer. To compare results we define a correctly located cell as one where the centroid

of the predicted ellipse is contained within the manually defined region and a correctly

described cell outline as one where the Intersection over Union (IOU) between result

and prediction is ≥ 70%.

3.7.2 Results

Results show a high degree of localization agreement, finding ≥ 80% of cells up to the 4

cell stage and ≥ 70% up to the 6 cell stage (Figure 3.27). Accuracy in detecting outlines

was high only for the 1 cell stage, then at best 43% up to the 4 cell stage (the 3 cell

case slightly lower). The main reason for this was deviation from a perfect elliptic shape

in manually drawn outlines, where the 2 and 3 cell case often displayed more irregular

outline than a case of more than 4 cells. Table 3.1 shows the accuracy as the similarity

requirement is reduced to 40%. The overall score was 43.8% for IOU = 70% and 83.8%

for IOU = 40%.

Table 3.1: Comparison of embryo outline detection

Number of cells 1 2 3 4 5 6 Total [102]

IOU≥70% 90.0 40.0 33.3 43.4 31.4 25.0 43.8 83.9

IOU≥40% 100.0 87.5 76.9 85.5 74.3 78.3 83.8 -

3.7.3 Discussion

The construction of the edge map transforms the bi-gradient image into a single gradient

image and the matching of candidates of fixed shape to the map eliminates the need for

a complete outline. This is an advantage when handling potentially overlapping objects

in a noisy image. Limitations include the inability to separate objects with a high

degree of overlap, naturally limiting this method to 6-8 cell embryos. A previous study

using Dark Field microscopy reports an average cell location accuracy of 83.9% using the

same similarity measure (IOU ≥ 70%) for up to the 4 cell stage [102]. No results on each

number of cells or confidence intervals are reported, making correct comparison difficult,

but with the inherent capability of DF microscopy to detect edges, a discrepancy is not
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Figure 3.26: Step wise detection of cells in an embryo of two cells (a-c) and 6 cells (d-
f). a,d) Original image, with elliptic candidates detected. b,e) Edge map with convex
hull (red) and matched candidates (blue). c,f) Comparison between computed location

(blue) and manual (red), x:s represent ellipse centroids [3].

Figure 3.27: Localization (a) and Outline (b) detection accuracy from 1 to 6 cells [3].
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surprising. However, it is difficult to extend a computational method based on DF to

more than 4 cells, and DF is not capable of separating information from several focal

planes. Further evaluation of this technique should therefore address this potential and

include selection of cell outlines at several focal planes simultaneously, exploiting the fact

that the focal filtering responds quite differently to objects in focus, compared to objects

out of focus. See e.g. Figure 3.26d. In this image, the top cell is slightly defocused,

making the dark cell membrane to appear slightly thicker than the underlying cells.
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Extended applications

4.1 Three-dimensional Visualization

Many physical cell models, including tumorous cells in vitro are two-dimensional. In

their natural environment, cells grow and interact in three dimensions. Thick tissue

samples containing hundreds or thousands of cells are hard to study for practical rea-

sons, especially in situ. An embryo is an excellent model of three-dimensional cell inter-

action, containing anything from two to a few hundred cells in a self-contained natural

environment. To study it in the third dimension it is necessary to perform either tomog-

raphy or some kind of focal slicing in order to separate image planes. Focal slicing is the

technically less complicated of the two. Paper IV [4] illusrtates this and in Figure 4.1 a

3D model is constructed using confocal microscopic images of embryos. 3D imaging is

useful for a better understanding of the embryo structure and the positioning of blas-

tomeres relative to each other. In this example, nuclei are marked for visibility but in

principle any marked structure can be used. The drawback is that a fixed embryo can

no longer be used for further analysis or growth. The same type of optical sectioning is

also possible in some non-destructive techniques including HMC, however not with the

same resolution as in confocal imaging. The majority of embryo HMC sample data used

in this Thesis comprised 7-9 focal planes per time point. If a successful segmentation of

this type of image could be achieved and three-dimensional visualization was possible,

it would open new doors in the area of embryology, both for clinical purpose, but also

for the understanding of early human development.
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Figure 4.1: 3D rendering of the segmented data (a) [8] from a confocal image stack.
Rendered top view (b) and side view (c) [4] of an embryo in blastocyst stage. The shapes
shown are embryo nuclei (121 in total), spread along the inner wall of the blastocoel.
The flattening of the embryo is due to the deformation caused by the imaging process.

Blastocyst diameter is approximately 120 µm [4].

4.1.1 3D Modeling of Confocal Imaging

The short depth of field of confocal imaging makes it ideal for focal slicing and three-

dimensional visualization. Paper IV [4] explores this option using confocal images of

embryo nuclei marked with DAPI. Images were captured 1 µm apart. The results were

segmented using a combination of region growing segmentation filters (Neighbourhood

Connected Thresholding and Confidence Connected Thresholding) and Watershed seg-

mentation [103]. The resulting bodies were then put together in a three-dimensional

representation of the complete embryo [104] and the position and relative size of the

blastomere nuclei were readily calculated. Note how the flattening of the embryo be-

comes apparent when applying a side view (Figure 4.1). This is a physical effect of

being sandwiched between microscope slides. The nuclei along the perimeter form the

trophectoderm. A denser pack of nuclei to the right of the top view image form the

inner cell mass (Figure 4.1a-b).

4.1.2 2.5D Modeling of HMC Imaging

In Paper VIII [8], a manual segmentation of HMC images was used to compute a prim-

itive circular embryo cell model. Blastomere outlines were selected using the software

EmbryoSegmenter [105], and a simple spherical model was adjusted to the segmenta-

tion outline assuming the segmentation to be at the waist, i.e. on the widest part of

the blastomere. The spherical shape represents a first order simplification of the true

blastomere shape, and can readily be extended to a more complex model, if information

from several focal planes is considered [106].
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Figure 4.2: a) Segmentation outlines at blastomere waist are used to guide spherical
cell models. b) All structures present in the original image can be visualized. Here
showing nuclei and nucleoli, as well as a large fragment (visible to the right of image

center). The different structures have been artificially colored for clarity [8].

Figure 4.3: 6 cell stage embryo, with blastomeres modeled as spheres, rotated about
its central axis. Bounding box added for clarity. Connected regions between blastomeres

differ depending on blastomere size and location [8].
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4.1.3 Cell Connectivity

Figure 4.4: Cleavage stage embryo observed during development from 0 to 34h, show-
ing 1, 2, 4, 5, 6 and 7 cell embryos, respectively. The boundary of the zona pellucida is

indicated in gray [8].

Even with the simple model described in Chapter 4.1.2, some information on cell posi-

tion, shape, size and connectivity can be extracted. During the cleavage stage, as the

blastomeres undergo mitosis, contact regions between them increase when cellular com-

munications are initiated. As the embryo grows, it transforms from a package of loosely

aggregated cells into a complete entity. Contact regions increase between blastomeres

during the cleavage stage, as cellular communications are initiated. At the onset of the

compaction stage and at the following cavitation, the blastomeres adhere together more

closely and start to form a single interacting multi-cellular organism. In Figure 4.4, six

steps of development from one to seven blastomere stages of a cleavage stage embryo

have been modeled. The increase in connectivity with higher cell number is shown in

Figure 4.5.

The connectivity is computed from the spherical model

C =
Acon

(Acon +Auncon)
=

r2

r2 + 4pπR2
(4.1)
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Figure 4.5: Blastomere volume and connectivity for the embryo in Figure 4.4. Blas-
tomere volume has been normalized to the volume of the zygote and to number of cells
in the embryo. The connectivity is displayed as percentage of surface area. Bars show
both mean and standard deviation, calculated for each number of blastomeres. Apart
from the 4 cell stage, which differs in both volume and connectivity, the total volume

is constant, whereas the connectivity increases [8].

Figure 4.6: The intersection plane between two spheres is described by a circle,
definitions [8].

where the value of p is given by integrating over the surface of the sphere across an angle

ϕ and dividing with the total area of the sphere (Figure 4.6),

p =
1

4πr2
·

π∫

−π

ϕ∫

0

r2sin(θ)δθ · δϕ, (4.2)

where

sin(ϕ) =
r

R1,2

. (4.3)
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4.2 In vitro Cell Monitoring for Drug Response Assess-

ment

The genetic changes associated with a cancer tumor often differ between patients. As a

consequence, the optimal treatment for cancer is also highly individual. Today’s cancer

treatments are often administered based on generalized knowledge or using trial-and-

error. With a more personalized approach, it may not only be possible to significantly

improve treatment and outcome for cancer patients but also to avoid the resource waste

of drugs administered in vain. In addition to individual patient responses to drugs, indi-

vidual tumor cells may also react differently to the same treatment, as some cancer cell

types are more malignant whereas others may be more benign. By better understanding

individual cell reactions to anti-cancer agents, it would be possible to target drugs better

to the most malignant cancer cells.

Tumorous cell lines grown in vitro are a widely used model for cell studies. They can

roughly be divided into suspension and adherent cells. Suspension cells are for instance

lymphoma cell lines, growing in a medium solution where individual cells are physically

separated from one another and little or no interaction occurs. Adherent cells grow

attached to a substrate such as the bottom of a cell culture container or on top of each

other. In terms of cell-cell studies, adherent cell lines provide a two-dimensional model

for both cell growth, interaction and motility. When studied, adherent cells are usually

detached from the growth substrate, marked with dyes or fluorophores and analyzed.

Most assays in use today study the average characteristics of large groups of cells

and drug response studies have traditionally focused on concentration of a compound

throughout the bloodstream and major organs. In in vitro analysis, the first step of

drug testing, tumorous cells are prepared as parallel cultures and exposed to a range

of concentrations. The effect is then measured and compared on a culture-by-culture

basis. A more fine-grained analysis on cell-by-cell basis would make it possible to study

how cells react when exposed to a toxin depending on their cell type, tissue type and

stage in the cell cycle. Moreover, it would allow the entire analysis to take place in the

same container, removing the need for parallel experiments and the need for adherent

cell detachment. Single cells can be monitored over time, and different drug response

to different cell types can be studied simultaneously within the same image field. This

opens up a whole new perspective on cellular research, where cells are viewed not as

a uniform mass, but as a spectrum of individuals. Understanding cell behavior on an

individual level would not only allow for more personalized medical care, personalized

studies of drug response and adverse drug effects, but also lead to a more detailed, in

depth understanding of the mechanisms by which we function as biological entities.
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In Paper VII [7], classification using a set of features from images of cells grown in vitro

is used to study differences in cell morphology, health and viability while exposed to a

toxic substance, etoposide, and imaged using DH (Chapter 2.2.5).

4.2.1 Background

Measure of cell viability using chemical assays is a common way to assess the effect of

toxic exposure to cells. Often, reduction in viability is preceded by changes in genetic

expression, metabolism and morphology [107, 108]. It can be a slow process which

extends over several days depending on the concentration of toxin. In order to study

morphokinetic properties at this time scale, non-invasive imaging is a necessary tool.

Etoposide is a cytotoxic chemotherapy drug, commonly used as an anti-cancer agent [109,

110], causing cell death by apoptosis. The effect to cells at sub-apoptotic concentrations

and during long-term exposure is yet poorly understood, but reports of effects include

drug resistance and risk of secondary leukemia [111].

4.2.2 Methods

Figure 4.7: Cell filtering using double thresholding. The same image (control day
1) segmented using a) Minimum error thresholding, b) Otsu thresholding and c) The
result of Minimum error thresholding, filtered using the Otsu thresholding to identify

cells [7].

Digital holography is a full-field imaging technique where pixel values are directly re-

lated to cellular dry mass, and since the images from a mathematical point of view are

similar to those from a standard epifluorescence microscope the same image analyzing

algorithms can often be used. In cellular biology, DH has been used for a number of ap-

plications, including in vivo studies [112], sub-cellular motion within living tissue [113],

migration studies [114–117] and studies of morphological changes [118–121], proliferation

[77] and apoptosis [122].



82 Chapter 4. Extended applications

A robust segmentation method for many cell image modalities is the watershed segmen-

tation (2.3.3). Here, a threshold will define the boundary between the foreground cells

and the background. The selection of threshold computation can yield highly varying

results to segmentation (Figure 4.7). In this example Otsu thresholding (OT) [123]

yielded a higher cut-off than Minimum Error Thresholding (MET) [124], resulting in a

more accurate location detection of cells as out-of-focus debris in the growth medium

were not selected. On the other hand, MET gave a more accurate cell outline. Assuming

that Otsu thresholding gave a correct location detection of cells, the segmentation using

OT could be used to filter the result using MET, effectively removing image debris.

The filtration was done comparing the bounding boxes of MET segmentation and OT

segmentation and discards all objects not represented in both [125].

Prostate cancer cells were cultivated during three days after exposure to etoposide and

imaged by DH once per day. Images were segmented into regions, each describing the

contents of one cell. Each cell region was then modeled using a set of gray scale features,

and classified in groups according to morphology (Figure 4.8). The result was compared

with the known concentration to which the cells had been exposed, and also to the result

of MTS, a standard chemical assay for viability. The critical step in image processing

was the segmentation of the image into cellular regions. A spatial filter was applied to

adjust the description of the cell boundaries. Three methods were used to classify cells;

a DAG-SVM [99], a Näıve Bayes classifier and a RF [126]. 10% of cells were used for

training, the rest for validation. Each classification was repeated ten times, and the

results averaged. The performance was evaluated using a standard 4 core PC with 8 GB

RAM, with the code implemented in Matlab® 7.12.0.635 (R2011a).

Cells were exposed to a total of 5 concentrations of etoposide, and we used the we use

the sensitivity and specificity as indicators of classification quality:

Sensitivity =
E(c ≥ cmin) ∪ T (c ≥ cmin)

T (c ≥ cmin)
(4.4a)

Specificity =
E(c < cmin) ∪ T (c < cmin)

T (c < cmin)
(4.4b)

Here, E(c) is the set of cells being classified as concentration c and T (c) is the set of

cells actually exposed to concentration c and cmin is a threshold concentratiron. Cells

were defined as treated if c ≥ cmin.
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Figure 4.8: Algorithmic overview of the classification of cells exposed to a treatment,
based on their imaged morphological characteristics. Images are segmented and filtered,

features extracted and used to train a supervised classifier [7].

4.2.3 Results

First the individual cell data is combined sample-by-sample to study the morphological

effects in bulk (Figure 4.9) for the ten most prominent features. For concentrations 0.25-

1 µM, no effects were detectable by MTS absorbance (Figure 4.11), but clear changes

occurred in morphology. The cell area was the most dominating morphological effect

of long-term LC-etoposide exposure, but textural changes were also prominent. All ten

features showed statistically significant differences between treated and control.

Qualitatively, treated cells differed from control in a number of ways (Figure 4.10). The

control cells show normal exponential cell growth, filling the culture vessel by day 3.

Healthy cells display throughout a compact spindle or prolonged elliptic shape, with

uniform cell size from day 1 to day 3. The 5 µM concentration shows the most distinct

case of toxicity, with immediate arrest in cell growth and reduction in cell number at

day 2 and day 3. Cell shapes are slightly rounded day 1 and by day 2 and day 3 mostly

spherical and detached from the bottom of the cell culture vessel. Concentration from

0.25 µM - 1 µM show intermediate stages of varying severity. Images from 1 µM day 2,

0.25 µM day 3 and 0.5 µM day 2 and day 3 show similar morphological changes. These

changes, which appear to be consistent with onset of, or low level exposure to, etoposide

toxicity are rounded, flattened shape and increased cell area with cells still attached to

the bottom of the cell culture vessel. In some cases, an increased granularity can be

seen within cells, though this may be caused by the increased area and flatness, giving a



84 Chapter 4. Extended applications

Figure 4.9: Variable values compared to control, calculated from sample-wise mean.
Day 1 (solid), 2 (dashed) and 3 (dotted) after treatment. x-axis represents etoposide
concentration; 0.25 µM (diamond), 0.5 µM (square) and 1 µM (circle), respectively.
Error bars represent standard deviation, and for clarity, each series has been slightly

offset in x-direction [7].
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Figure 4.10: Typical appearance of DU-145 imaged by Digital Holography after sev-
eral days exposure to LC-etoposide treatment [7].

Figure 4.11: MTS absorbance as % of control day 2 and 3, as a function of etoposide
concentration, after 2 hours of MTS incubation [7].
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Figure 4.12: Proliferation curves for DU-145 under the effect of etoposide 0 µM
(dashed), 0.25 µM (diamond), 0.5 µM (square), 0.1 µM (circle and , 5 µM (cross).
Measurements were done at the same time and values for x-axis have been displaced

slightly to display confidence intervals [7].

higher contrast to variations in internal cellular structure than can be seen in the health

compact elliptical shape. It appears as if cell proliferation has been halted at this stage,

but with little or no increase in cell mortality, and the cell number is approximately

constant.

Measurement of cell growth was consistent with the MTS results, and close to expo-

nential for the control cells, as could be expected (Figure 4.12). It is notable that the

morphological changes were detectable already day 1 with DH for all examined concen-

trations of etoposide, whereas changes in MTS absorbance were only detectable for the

highest concentration of etoposide (5 µM) on day 3.

There was a lower probability of separating control and the lowest concentration used

(0.25 µM) as well as of separating higher concentrations from each other. When com-

paring the positive and negative predictive power we note a more rapid change from 0.25

µM to 0.5 µM, reflecting the fact that cell morphology changes more rapidly at these

concentrations. There was a best case sensitivity in separating control from treated

(etoposide ≤ 0.25 µM) at 88%±0.17 on Day 3, at a specificity of 94%±0.001 .

The data on 5 µM was very scarce due to very low number of cells in each image (typically

≤ 10 cells), giving high standard deviations and low predictive power in results. The

accuracy of prediction increased throughout Day 1-3 for all classifiers, reflecting the fact

that cell morphology becomes more and more distinct (Figure 4.10). In most cases, the
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Figure 4.13: Positive predictive power for classification of cells exposed to a concen-
tration or higher (x-axis). Classifications used are SVM (Black), Näıve Bayes (Gray)
and RF (White). Three methods for outline detection were used in segmentation; Otsu,
Minimum Error (Min.Err.) and Minimum Error filtered with Otsu (Filtered). Results

have been grouped according to day of measurement taken [7].

multiclass SVM was the best classifier. It was closely matched by RF, but the errors for

RF were higher, especially when cell morphology differed strongly (Figure 4.13). Day

1 there was only marginal difference between the three segmentation methods, but for

Day 2-3 the Otsu thresholding gives the most reliable classification. The computational

performance of the Näıve Bayes classifier was an order of magnitude better than that of

the SVM, while the RF rank between the two [7].

4.2.4 Discussion

Despite the high positive predictive power, the ability to pinpoint the concentration for

a single cell was low, reflecting the individual nature of cells. Thus, single cell imaging

may be more convenient for individual cell monitoring than for determination of drug

exposure. Variations in the cell border using different selections of threshold also had a

large impact on accuracy, reflecting the fact that one of the most prominent effects of

LC-etoposide exposure was the increase in cell area. For Day 2-3 the Otsu thresholding

gives the most reliable classification. This can be due to the fact that cell area is larger

for treated cells, but that a thresholding including the cell perimeter does not contribute

significantly to cell classification.
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The causes of the morphological changes observed have yet to be examined, but may be

connected to cell cycle arrest, since they are accompanied by a reduction in proliferation

rate. However, changes are not directly related to reduction in viability or metabolism, as

detected by MTS. For a future investigation, it would be of interest to let the incubation

proceed to investigate if viability changes would occur in time. Also, by interrupting

the exposure to etoposide, it would be possible to examine if the effects of etoposide are

reversible or not.



Chapter 5

Discussion

5.1 Conclusions

In this Thesis, the potential of non-invasive clinical imaging for analysis of embryos

growing in vitro has been evaluated. It has also been shown that there is a potential for

extension to other cell types, growth varieties and imaging hardware [7].

Methods have been developed to track the location of embryos through a time series

[2] at 92.9% accuracy under noisy conditions, making it possible to perform automatic

image analysis despite sample disturbance and displacement. The potential of the em-

bryo imaging hardware selected to perform focal slicing has been demonstrated, and

techniques for automatic focal filtering were developed to make use of the slicing capa-

bility [1]. Focal filtering can be used as a pre-processing step to facilitate image stack

analysis or as a method for automatic focus of microscope hardware when images are

captured during long periods of time or when the capturing process is automatic and

the sample inaccessible inside incubator and imaging equipment. If connected back to

the hardware, it can be used as an input for mechanical automatic focus. Focal filtering

can also be used in image analysis for spatial filtering, selecting the regions of interest

and for partial segmentation. It provides a means to quantify image sharpness and the

opportunity to select different image regions at different image planes of the same stack,

thus taking the first step towards non-invasive three-dimensional image analysis.

Furthermore, it has been shown how several known embryological traits can be detected

in non-invasive imaging using standard computer vision techniques (or varieties thereof).

Table 5.1 summarizes the results.

Features of biological interest suggested in literature (Table 2.2) are for the most part

based on visual analysis, relying on the expertise of clinicians to identify structural
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Table 5.1: Summary of evaluated target embryo traits

Property Detection Reference

accuracy (HMC)

Embryo location 70.0% [3]

(1-6 cells)

Syngami 83.0% [2]

Timing of 80.8% [6]

mitotic (1-6 cells)

splittings

Blastocyst formation 71.8% [5]

Blastomere number 80.8% [6]

(1-6 cells)

Embryo Detectable,

activity not quantified

Embryo Detectable,

fragmentation not quantified

information in images as healthy or non-healthy. A computerized evaluation introduces

the possibility of extraction of non-visual metrics, with the advantage of being objective

and easy to calculate, and the disadvantage of sometimes being hard to directly relate to

biological characteristics. Several embryo characteristics which relate to embryo health

are based solely of the timing of morphological events such as timing and duration

of mitosis. During the work with this Thesis, methods were developed to explore the

possibility of analysis of non-visual metrics [2, 5, 6] and it is shown that in time sequence

analysis, they can be used to detect the timing of events without a more complicated

full visual analysis and segmentation.

To summarize, the main outcome of this study is an evaluation of health criteria for

embryo monitoring, and their potential for automatic image analysis. The evaluation

has been based on HMC imaging, a commonly used method for embryo imaging, which

has so far been used very little for computerized diagnostics. The methods used are

tailored for embryo analysis, but can also benefit other fields of study in Life Science, a

fact which has also been demonstrated in this Thesis.

5.2 Future Work

There are several reasons for caution when comparing the new TLI systems with tra-

ditional microscopy and evaluation. One obvious improvement to both manual and
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Table 5.2: Comparison of embryo selection criteria: HMC & DF

Embryo Expected Expected Means of

trait detectability detectability improvement

(HMC) (DF)

Embryo very high unknown

location

Timing of high very high Temporal resolution

mitosis

Interval between high very high Temporal resolution

mitosis

Duration of high high Blastomere detection

mitosis

Blastomere size, low high 3D visualization

shape

Blastomere low high Blastomere detection

number

Timing of high medium Temporal resolution

compaction

Fragmentation medium medium

Embryo - -

respiration

Embryo activity, medium medium Temporal resolution

movement

Chromosomal - -

abnormalities

Nuclei medium low Blastomere detection

appearance

Nuclei medium low Blastomere detection

number

Timing of pronuclear high low Temporal resolution

formation

Pronuclear medium low Spatial resolution

orientation

Pronuclear size, low low Spatial resolution,

shape Image detail

Timing of polar very low very low Spatial resolution

body formation

Polar body orientation, very low very low Spatial resolution

number
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computer aided evaluation is the construction of the embryo container. In the circular

wells used, embryos tend to migrate to the edge of the well (Figure 2.1a), making both

manual and computerized analysis difficult. An optimization of well shape to facilitate

imaging and avoid artifacts caused by the well edges would significantly improve the

robustness of image evaluation.

The selected imaging technique HMC had the potential of revealing internal embryo

and cell detail at high resolution but had limitations in the detection of embryo and

blastomere outlines [3]. Studies [102] have shown the capability of other non-invasive

imaging techniques (DF) to extract outline information at the expense of image detail.

Table 5.2 summarizes the embryo selection criteria suggested by literature (Table 2.2),

now comparing both HMC and DF as detection technique. As can be seen, the two

methods largely complement one another. For nuclei detection, which is possible for

HMC, a detection of blastomere outlines is required which is hard to accomplish using

HMC. Using DF, blastomere outline detection is possible for up to four cells. For a

detailed clinical analysis, a combination of both imaging techniques carries the potential

of the most complete automatic scanning of embryo image characteristics known today.

To HMC alone, there are a number of possibilities to improve image detail and achieve

higher resolution images by hardware adjustment. One is the numerical aperture of the

optical set up, which would decrease the image depth of field, thus making it possible to

achieve a more fine grained focal slicing and a better image stack resolution. Another

is the rotation of the sample relative to image optics, which - despite being complicated

to achieve mechanically - would annul the undesired effect of image polarity, making it

possible to use gradient-based edge detectors and also render a tomographic image of

the sample.

The spherical structure of an embryo is exploited in this Thesis by the construction

of separate ROI for feature extraction (Chapter 3.1,3.5). Here, the properties for an

internal region are compared to the entire embryo (see e.g. Figure 2.9). In Chapter 3.4,

the use of a more detailed grid was demonstrated, but it is also pointed out that a

square grid is not consistent with embryo geometry and that a standardized region for

normalization is lacking. The zona pellucida may be the best image region to use for pixel

value normalization, as it is expected to stay static until the moment of hatching and

will not be as effected as the embryo exterior by sample contamination. In Chapter 3.3

it has been shown that a concentric, circular grid layout is necessary to analyze embryo

rhythmic contraction and motion, such as the repeated blastocoelic expansions and the

formation of the morula and in Chapter 3.6 is investigated the effect of changing the

circular grid proportions. This symmetry could be exploited further using a more fine-

grained grid (Figure 5.1).
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Figure 5.1: Suggested layout for polar embryo image grid.

A more detailed analysis of vibrational and motion events will also require a higher

frequency image capture than what was available for this analysis. Table 2.2 lists ex-

pected image capture intervals for a number of embryo health related criteria. Part of

the limitation was caused by the scanning procedure, limiting the temporal resolution

of sequence capture. Studies using higher temporal resolution have suggested [54] that

today’s imaging frequency in TLI may be under-sampling, thus missing influential events

in embryo morphokinetics. For high end study purposes, it would be interesting with

the option to sacrifice the number of samples imaged for a higher temporal resolution.

Given this, there is an interesting possibility in the study of rhythmic movement and

embryo activity and motion.

If not limited to non-invasive technologies, there is the potential for combining the

methods described with confocal microscopy or fluorescence, e.g. in the study of an-

imal embryo models in evolutionary development. Here, a non-invasive imaging can

contribute to the analysis by continuous monitoring over long periods of time and serve

as a complement to a more detailed analysis of molecular targets using attached fluo-

rophores.

There is also potential for improvement in the selection of methods and the choice of

model for embryo health. In this Thesis non-visual characteristics have been targeted
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by means of hand-crafted image features. Given large amounts of training data, there is

a possibility to use machine learning to automatically extract features using e.g. deep

learning. In several challenges in recent years in medical imaging, neural networks and

deep learning algorithms have emerged as the most accurate. However, these methods

rely on large (≫1000) sets of labeled training data, and requires substantial computa-

tional power in the training stage. Medical imaging analysis is a field with high variabil-

ity in the nature of the data, and transferring classifiers from one field to another may

not always be possible. It may therefore take some time before suitable classifiers are

available in the areas where imaging data is now being gathered in increasing extent.

5.3 Outlook: A Framework for Large Scale Analysis of

Medical Imaging

[Single cell studies] ”opens up a whole new perspective on cellular research, where cells

are viewed not as a uniform mass, but rather as a broad spectrum of individual bodies,

all contributing in its own way to the characteristics of the tissue” [7].

What is needed in order to progress computer vision to the realm of

clinical medical image analysis?

Using computer vision, it is possible to extract more information from images than ever

could be possible by manual means. To progress with large scale data analysis of images

it is necessary to access a large amount of images and it is vital to be able to combine

and compare large amounts of data in a standardized fashion. Today, large scale data

analysis is not possible for small and medium sized enterprises, or for research institutions

without access to their own data storage. When collaborations in data sharing take place,

it often involves a cumbersome and time-consuming alignment procedure of the source

material. To allow also smaller institutions to take active part in the development of

drugs, medical instrumentation and diagnostic tools, data must be shared in a more

efficient manner.

Supervised learning methods often benefit from having a large set of labeled training

data. Crowd sourcing enables annotation of large data sets for real world images, but the

application for medical imaging may require deeper understanding and expert knowledge

of image content [143, 144]. The conditions under study are also sometimes very rare,

resulting in less image material available. To obtain large medical data sets for training

is challenging for several reasons. First, it is often difficult to obtain funding for the

construction of data sets alone. Second, privacy issues make it more difficult to share
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medical data than natural images. Third, the breadth of applications in medical imaging

requires that many different data sets need to be collectively shared. Despite this, there

is rapid progress in collection and sharing of clinical data. As images are often routinely

labeled in the clinic, it is also possible that routine sharing in the future will enable

access to multi-clinical data. One prerequisite is that the storing and annotation is done

in a standardized format, and the earlier this standardization can be initiated, the less

the risk that historical data will become inaccessible and obsolete in a future global

system.

There are several obstacles causing delay in data sharing and disrupting scientific progress:

� Data is stored locally and inaccessible due to technical and ethical constraints

� A global approach to data tagging and data storage format is lacking, making data

hard to compare, even if it could be accessed without restraint

� A common standard for manual data annotation is lacking, making it hard to

establish a ground truth for comparison with computerized analysis, as algorithms

are developed

If steps could be taken in medical imaging to remove those obstacles, and an agreement

could be reached to share and store data in a standardized manner, the scientific ap-

proach to the medical and biological sciences would change forever. In order to not only

supply users in the high end of image processing, but also be useful in a routine, clinical

setting, work need to progress in the following:

� generalization of methods including agreement of the definition of general concepts

such as ”image quality” and agreement of standards for data storage, format and

meta-data.

� establishment of multi-clinical cooperation around standards and data annotation

for comparison

� establish cooperation around clinical trials for method evaluation.

Work in this direction has already begun. Public data sets have been released and are

being routinely used in experimental validation [145, 146]. Several research groups also

routinely release their raw data, and a multitude of initiatives have emerged in recent

years, dedicated to the coordination of research data reporting [147–149] and more and

more software for image analysis is being released as open source, such as the software

used in this Thesis (Figure 5.2).
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When standardizing a framework, it is not only validation of data which has to be

reported in a comparable fashion, researchers themselves need to report results in a

comparable fashion. An issue illustrated by three recent studies, all using the same

data set and reporting results in three different forms [150–152]. The risk of different

reporting metrics is a common and not unsurprising issue in a new emerging field,

where research is advancing simultaneously on multiple fronts, sometimes merging from

different disciplines, and sometimes diverging into new research areas. Some of this

research diversity can be expected to reduce as the area matures and as methods migrate

from the laboratory to the clinic. In the meantime, it is important for researchers in

this field to take special care to pay attention to other research efforts and to report

their own results in several ways and in accordance with previous reports to allow for

comparison whenever possible.

Figure 5.2: EmbryoSegmenter for annotation, selection of focus level and blastomere
outlines [105].

Biological sciences are progressing from a qualitative field with evaluation based on ex-

perience, to a quantitative field, heavily dependent on computer guided assessment and

evaluation of metrics. The task of developing computer systems capable of reliable med-

ical image analysis will require a high degree of future cooperation between software

developers and clinical scientists active in the field. The implications of making wrong

decisions in a clinical environment are potentially severe and any software solution must
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be implemented with great care, but a healthy skepticism for technology must not pre-

vent us from critically evaluating it and embracing it wherever possible to improve our

understanding of ourselves and the world.
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[7] A L Mölder, J Persson, Z El-Schich, S Czanner and A Gjörloff-Wingren. Machine

learning for the study of etoposide-treated in vitro adherent cells based on non-

invasive imaging growth characteristics. Submitted for publication, 2016.
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Abstract

The most critical quality property for an image is its focus. Without a good sharpness, the image will be meaning-

less for both human eyes and for computerised analysis. As the use of camera recordings increase around us, both

in our daily life, for the purpose of documentation, communication, surveillance or for recreational purposes, so

it also increases in the laboratory and in the science communities. More often, images are captured as part of

the scientific process. Often as a method of documentation, but more and more also as a part of the analytical

process itself. The number and complexity of available algorithms for image segmentation, computer vision or

pattern recognition continues to grow and is likely to play a large role in how we handle data in the future. When

we hand over more and more of medical surveillance and diagnostic tasks to automation, it is crucial that we can

rely on the accuracy of these automatic procedures. One way to ensure a level of quality, and to make sure we

do not waste time trying to analyse material of poor standard, is to make sure that the images we introduce to

an analytical pipeline hold a high enough quality. Image quality may depend on a number of properties such as

focus, level of noise and a number of spherical and chromatic aberrations. Here we propose a simple, adjustable

software framework for detection of image focal planes, making it possible to extract image sections for further

analysis.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: scene

analysis—Depth cues

1. Introduction

Many algorithms for automatic focus rely on computation of

the power spectrum[1]. In cameras with moving lenses, it is

also possible to adjust the focus based on the image contrast,

a method often referred to as contrast detection autofocus.

Several images are then captured in sequence, while search-

ing for a local maxima of the image contrast or the gradient

of the image contrast. This is usually not done for the entire

image but, for a selected area of interest. Several autofocus

algorithms have also been evaluated for microscopy[2], [3].

In optical microscopy[4], where the depth of field is usually

very short, and when studying human embryos, the entire

embryo is rarely in focus at one optical setting. Instead, the

user may be required to adjust the focus back and forth in

order to get a complete view of the sample. Here, we imple-

ment a variety of the contrast detection, adapt it to Hoffman

Modulation Contrast microscopy[5], and use it as a filter to

select regions of interest within an already captured image

of a human embryo.

2. Materials and methods

2.1. Sample preparation

Human tissue sample material was anonymously donated

by patients and the project has been approved by Coventry

Research Ethics Committee (04/Q2802/26) and the Human

Fertilisation and Embryology Authority (R0155). Fresh em-

bryos unsuitable for transfer or cryopreservation and thawed

embryos no longer required for treatment were cultured us-

ing Medicult media (Origio, Redhill, UK) for up to 7 days

and incubated in 37°C 5%CO2 in air. Embryos were other-

wise untreated or undisturbed during the imaging process.

© The Eurographics Association 2014.
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2.2. Image capture

During image capture, embryos were cultured in an Em-

bryoscope (Fertilitech, Copenhagen, Denmark), and images

were captured at up to 7 focal depths and 5 recordings per

hour using a Hoffman Modulation Contrast optical set-up,

with a 635nm LED as light source. Image capture ran for up

to 95 hours.

2.3. Algorithms

All image processing was done using standard libraries from

Matlab. Prior to handling, captured images, I(x,y), were fil-

tered with a Gaussian filter to remove speckle noise. For

most images, the gaussian filter had a size of 5x5 pixels, and

a standard deviation of 1. To detect the image contrast vari-

ation, a Laplacian filter,

L(I) =
∇

2I

4
=

1

4
· (

d2I

dx2
+

d2I

dy2
) (1)

was applied. Note that due to the asymmetrical nature of

Hoffman Modulation Contrast imaging[6], the symmetrical

Laplacian was chosen, rather than the direction-dependant

gradient. To detect areas of high sharpness, an H-maxima

transform, H, was applied to the result L(I), using an 8-

connected neighbourhood, and suppressing maxima lower

than 15% of the image maximum. The recovered maxima

were then extended using a close transform with a 7 pixel

diameter circular structure element, and the resulting image

was thresholded and converted to a binary mask, M. Holes

were removed from the mask using a filling function, and

the mask was then used to extract the corresponding region

from the original image, I.

3. Results

Figure 1 shows the extraction of regions in focus, based on

the contrast detection algorithm, from an image of a hu-

man embryo. The embryo is in its blastocyst stage and has

the shape of a hollow sphere, with cells covering its walls.

Due to the varying distribution of cells, the spherical shell

of the embryo may vary in tissue content. The stack moves

from slightly above the horizontal embryo central plane and

downwards until it reaches the embryo base, where struc-

tures on bottom of the embryo container are also encoun-

tered, and can be seen outside the embryo circumference.

4. Discussion

A reliable and robust algorithm for focus level detection may

be useful not only as a pre-processing step for image analy-

sis, but also as method for automatic focus of microscope

hardware[7], when the images are being captured during

Figure 1: A human embryo, captured at seven different fo-

cal planes: extraction of regions of interest based on image

contrast.

long periods of time, when the capturing process is auto-

matic, or when the microscope is placed in a climate cham-

ber, as is often the case in time-lapse sequencing. Here we

present the construction of a simple algorithm for focal plane

detection in Hoffman Modulation Contrast microscopic im-

ages. We intend to use this algorithm to facilitate future anal-

ysis of these images, by selecting images, or regions of im-

ages, as appropriate for segmentation, pattern recognition or

other computerised analysis. With this type of quality de-

tection as a basis, we hope to be able to quantify the image

sharpness, thus being able to exclude regions of an image,

or whole images, from further treatment, if their quality is

deemed as being too poor. For the future, we propose to gen-

eralise the quality detection to cover several types of images.

Only when more than one image set can be evaluated against

the same standardised criteria can we have a true comparison

of the image quality.
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Abstract—The assessment of embryos in vitro is an important
tool both in In Vitro Fertilization (IVF) treatment and for
research purposes. Traditionally, such assessment has been done
manually and demands extensive training and expertise. Inter-
observer variability limits the use of evaluation, and the manual
labor increases the cost of treatment and research. To this end,
feature extraction and automatic annotation using computer
aided tools would both improve objectivity and save time. Due to
the sensitivity of embryos, any evaluation must be performed
using non-invasive imaging techniques, which sets a limit for
the ability to artificially enhance image contrast, and computer
aided assessment of microscopic images under clinical conditions
also poses a number of difficulties due to the high level of noise
and the unpredictable imaging environment. To overcome this,
we propose a framework using a Hough Transform (HT) for
the extraction of circular shapes in microscopic embryo images,
and also use the algorithm for successful automatic profiling of
the pronuclear breakdown (PNB) at syngami and detection of
its timing. The best results are achieved when using a HT for
embryo outline detection in combination with image variance of
the embryo interior. Using our method, we achieve an overall
accuracy of 95.0% detecting the position of the embryo outline,
and 83.0% detecting the timing of the PNB.

I. INTRODUCTION

Despite 30 years of practice, the success rate for im-
plantation of embryos into the uterus in IVF is still only
around 30% [4]. Embryos can be selected for transfer based
on a number of morphological criteria, but the sensitivity
of embryos makes them difficult to monitor, as only non-
destructive methods can be used. Traditionally, embryo quality
assessment has been performed by manual inspection using
light microscopy at intermittent time points during embryo
development. Identification of key points in embryo develop-
ment, along with annotation of images, is one tool commonly
used by embryologists to make it possible to share and archive
the information leading up to diagnosis.

Recent developments in the construction of incubators and
cultivation chambers has recently made it possible to monitor
embryos growing in vitro prior to implantation over the course
of several days, without any recorded consequences to their
health. This increases the amount of image material available
and also increases the work load for medical personnel. In
order to speed up the process and make it more objective,

tools for decision support and computer aided diagnosis are
required. Ways to automate part of the image analysis process
and complement the manual work would save time in IVF
research, and could also introduce new ways to assess embryo
quality.

Image analysis is a commonly used tool in many medical
imaging applications, and often a key initial step is a successful
image segmentation, assisted by artificial coloring of the
sample. Despite sophisticated optics to improve image contrast
the necessity to use non-invasive imaging introduces limits to
the contrast enhancement possibilities in embryo imaging. A
system often used is Hoffman Modulation Contrast imaging
(HMC) [9], where changes in sample refractive index and
thickness are translated to image amplitude, causing changes
in optical path length to appear as lighter or darker bands
on a grey background. The nature of the resulting image,
along with the artefacts created by the image optics, makes
it difficult to use global segmentation methods or methods
identifying objects of arbitrary shape, such as watersheds,
thresholding or level sets. Several attempts have been made to
detect embryo features using segmentation [7][1][5][11] or by
manual selection of a region of interest (ROI) [8][3][12]. For
clinical conditions, a cumbersome initialization of calculation
does not necessarily improve working conditions, and it is
less likely that all images will have the quality needed for a
detailed segmentation in the presence of clutter, poor lighting
and imperfect focus, resulting in image objects having broken
or smudged edges. One approach to solve this would be the
introduction of a pre-processing step, in which images are
filtered or excluded based on their level of noise. Such pre-
processing can greatly improve results, but may also introduce
a time-consuming step of parameter optimization, which is
not desirable in a clinical context. Here we wish to attempt
another approach, where the filtering is done using a simple
trigonometric operation, which will allow the use of raw
images ’as is’.

A. Proposed approach

Fig. 1 shows three structures of interest in embryology: The
outline of the well, the embryo (here defined by the inner zona
pellucida) and (pro)nuclei (with possible nucleoli), all of which
appear as highly circular shapes under the microscope. The



shape and size of nuclei may provide clues to embryo health
[6][13]. The appearance of two pronuclei (PN) is an early sign
of successful fertilization, and for image series of embryos
where the time of fertilization is unknown, the appearance of
PN can be used as an early calibration point in time. Also,
the timing of the pronuclear breakdown (PNB) at the onset of
the first mitotic splitting (Fig. 2) has been reported to relate to
live birth outcome [2].

In an attempt to automate part of the embryo evaluation
process, this study investigated the possibility to detect PNB
automatically using pattern recognition in series of embryo
images in vitro with four different computational approaches,
utilizing a circular HT on HMC images.

A Hough Transform (HT) allows parameterization of a
known shape, transforming each structure in the image infor-
mation to a corresponding bin in an accumulator, the Hough
space [10]. When mapped to Hough space, each potential
shape will occupy a point in the accumulator, and the strength
with which it appears in the image is represented by the
number of points in the corresponding bin. The parameters for
the shapes most likely to exist in the image can be extracted
by selecting peaks in Hough space in order of decreasing
height. The main advantage of the HT is its tolerance to
gaps in the boundary description and its resistance to image
noise. A HT is particularly useful in attempts to locate shapes
of known structures under noisy conditions and on varying
backgrounds, where the position of the shape is unknown. The
main disadvantage is that the complexity of the accumulator
increases as o(Ap−2) [14], where A is the size of the image
space and p is the number of parameters. Thus, by increasing
the number of parameters, the noise in Hough space will
increase accordingly, and a peak representing a shape may
not appear much higher than its random neighbors. For this
reason, a circular HT was used with three parameters and
a three dimensional accumulator; a centroid location in two
dimensions, a and b, and a radius r:

(x− a)2 + (y − b)2 = r2 (1)

In this case, each circular shape in an image I(x, y) was
mapped to a peak in Hough space, where the height of the
peak represented the strongest circular structure of a particular
radius. In our images, a HT applied to an embryo image
resulted in a high number of randomly appearing false positive
hits, but the high sensitivity also led to inconsistent results un-
der rotational transformation. For the detection of nuclei, this
sensitivity was used to filter out incorrectly detected shapes,
by repeating the transform under rotation and comparing the
results.

II. MATERIALS AND METHODS

A. Embryo culture and image capture

Time lapse images of human embryos fertilized in vitro
were acquired as anonymized image sequences provided by
Unisense Fertilitech. Embryos were cultured in 25 µl culture
media (Origio, Redhill, UK) under mineral oil for up to 6
days, incubated in 37°C in an atmosphere of 5%CO2 in air.
Embryos were mounted in wells in an EmbryoSlide (Unisense
Fertilitech, Copenhagen, Denmark), one embryo per well.

Fig. 1. Annotated raw image, indicating structures of interest. A − well
outline. B − zygote boundary. C − pronucleus.

Fig. 2. Example of pronuclear breakdown (PNB) in preparation for the first
mitotic splitting of the zygote. Before (a) and after (b).

The images were captured using the Embryoscope system
(Unisense Fertilitech, Copenhagen, Denmark), with up to 7
focal depth planes using HMC optics and a 635 nm LED
as light source. The complete test set consisted of image
series of 20 embryos. Each image series consisted of 290–
454 image stacks, each stack of images being recorded at
20 min intervals. Embryos were usually stationary within the
well during image capture, but since at regular intervals, fresh
medium was supplied to the well, the embryo was occasionally
visibly displaced between captures.

B. Training sets and choice of standard

For nuclei, 10 images with 1-2 visible pronuclei were
chosen as a training set to trim the detection parameters. For
the embryo outlines, a training set of 140 images was selected,
and up to 28 images were chosen randomly from each embryo
and placed in one of seven categories by visual inspection,
showing zygote, 2 cell stage, 3-4 cell stage, 5-6 cell stage,
>7 cell stage and blastocyst, respectively. Images considered
potentially difficult were placed in a separate category. Each
category consisted of 20 images, with no more than 4 images
from a single embryo per category. To provide ground truth for
nuclei, a true positive (TP) or false positive (FP) classification
was determined by eye, with the criterion that false positives
were displaced more than one nuclear radius (Fig. 3b-c). For
detection of the zygote outline, a manual annotation was
performed on each image preceding computation, and the
displacement of the centroid of the annotated bounding box
(Fig. 1B) relative to the centroid of the detected circle was



Fig. 3. a) Canny edge detection of the original image(Fig. 1). ) 5 most
significant circular structures selected. d) 10 most significant circular structures
selected. e) Overlap of circular structures selected from the same image rotated
6 · 60°. f) Outline of pronucleus indicated, overlap of three calculations
at separate angles. g) Outline of pronucleus selected. h) Outline of zygote
selected.

Fig. 4. Correctly detected embryo outlines for 140 images of embryos
from zygote to blastocyst stage, as a function of maximum pixel dislocation.
Showing calculations for each of 7 categories separately (grey) and total
(black).

used as a measure for the accuracy of the location detection.
The accuracy of the manual outline selection was measured by
repeatedly selecting the embryo outline for the same image.

C. Software Implementation

A Canny edge detector was used to detect edges in raw
images (Fig. 3a). Circular structures in the edge map were
then parameterized using a circular HT (1). Circular structures
were selected based on relative peak height in Hough space.
For the parameterization, the span of a and b corresponded to
the image width in pixels, and r was chosen as (20 . . . 25)

Fig. 5. Embryo location in image (pixels) before and after change of medium
in the containing well. The embryo position in the first image has been set to
(0,0), with all other positions calculated relative to the first. Position defined as
the position of the centroid detected by Hough transform, with radius 100-120
pxl.

Fig. 6. Number of failed detected nuclei as a) false positive (FP) and b) false
negative (FN), respectively, calculated average over 10 images as function of
number of angles each image has been rotated and the threshold % of images
where the nucleus needs to appear in order to be counted.

pixels for nuclei, and as (100 . . .120) pixels for embryo
outlines. In the latter case, r was constructed using increments
of 10 pixels, reducing the complexity of the accumulator,
and thus reducing computational time. When extracting the
EmbryoSlide or zygote outline (Fig. 1A), the desired outline
was given by the strongest peak, without further filtration.
When detecting nuclei or embryos of less circular shape
(Fig. 1B,C), the correct outline only appeared as one in the
group of 5-10 strongest Hough peaks, being weaker than a
number of randomly appearing circular structures in the edge
map. For these cases, the raw image was transformed using a
trigonometric rotation,



xn+1 = xn · cos(θ)− yn · sin(θ)
yn+1 = xn · sin(θ) + yn · cos(θ)

(2)

before repeating the Canny edge detection and HT. Unless the
image was rotated n · 90°, image values were shifted enough
due to resampling of the image, to cause the random Hough
peaks to appear in new locations. The result was a collection,
C, of j circular structures per image, for i images,

Ci,j = [ci,j(x, y), ri,j ], (3)

where c(x, y) is the centroid position, and r is the radius.
After rotation, structures where | ci,j − ci+k,j |≤ 3, ∀k 6= 0, j
were counted as the same. Circular structures appearing in less
than a number T of images could then be excluded, leaving
only the real circular structures.

D. Automatic identification of pronuclear breakdown

Image series of all 20 embryos, with 20 images per embryo
were analyzed and compared in an attempt to profile the PNB
as shown in Fig. 2. Four methods were chosen and compared:
direct detection of PN using the HT (HT+PN), comparison of
the image difference (ID)

Σn
x=1Σ

m
y=1(I(x, y, tk)− I(x, y, tk−1))

2, (4)

the image variance (V),

v(t) =
1

n ·m
· Σn

x=1Σ
m
y=1(I(x, y, t) − I(x, y, t))2, (5)

and the image variance within the ROI selected as the embryo
outline by the HT (HT+IV). The ROI within the embryo was
selected in four varieties; the complete embryo - referred to as
HT+IV(100%) and a circular ROI with successively smaller
radius, giving a measurement of the variance of the embryo
interior. They are referred to as HT+IV(75%), HT+IV(50%)
and HT+IV(25%) (with radius 75%, 50% and 25% of the
radius of the embryo outline), respectively. Using the gradient
of the variance of the ROI

g(tk) =
v(tk)− v(tk−1)

v(tk)
. (6)

Cases where g(tk) < glim are defined as PNB, where glim
is some gradient threshold. For the two last computations;
HT+IV(50%) and HT+IV(25%), the number of positive and
negative hits were computed and compared. A positive signal,
i.e. the PN disappearance was defined as the image where the
PN visibly began to disappear, and the image immediately
following, whereas all the rest were considered negative for
PNB.

III. RESULTS

A. Embryo outline detection

The zygote outline was detectable without rotational fil-
tering (Fig. 3f) for all cases tested, if the HT could be done
using a radius span of < 20 pixels. If the radius span was
larger, several false positives were detected also for the zygote
outline, and were in that case filtered by six 60°angle rotations
of the image. Rotational filtering was also necessary for the 2

Fig. 7. Value of four calculations on images before and after PNB (marked
by grey vertical line). Black line shows average over 20 embryos, bars indicate
standard deviation. a) The numerical difference between each image and the
previous image in the series (ID). b) Number of pronuclei detected by Hough
Transform (HT+PN). c) Variance of total image (V). d) Variance of ROI
selected by Hough Transform at 50% of embryo radius (HT+IV(50%)). All
values are shown relative to the first image in the series.

cell and 3-4 cell stage, where the overall shape of the embryo
appeared less circular. Fig. 4 shows the number of successful
embryo outlines for the seven growth categories. If an accurate
detection was defined as within 10% of the manually annotated
values (and if the embryo is assumed to have a 100 pixel
radius), a detection accuracy of 92.9% was achieved for all
seven classes combined, and an accuracy of 95.0% if the class
of especially difficult images was ignored. (Fig. 10 shows some
examples of images in this category.) As a comparison, the
manual selection of embryo outline had an accuracy of 70%



Fig. 8. Image values before and after PNB, averaged over 10 images each
from 20 different embryos. Vales are given in % compared to the last image
on which pronuclei are visible by eye. Time between images captured: 20
min.

Fig. 9. Comparison of number of detected transitions from PN to no PN in 20
series of embryo images, consisting of 20 images each for the two algorithms
showing the best potential. A true positive signal is determined by eye as the
image where the PN start to break down, and the image immediately following
(20 min later).

for 1 pixel variation, when repeated on the same picture by
the same person, and 100% were within 5 pixel variation. The
embryo outline detection was also tested on four image series
where fresh medium was supplied at one point in the series,
severely displacing the embryo. In Fig. 5, the positions of four
embryos were automatically detected after being displaced.

B. Pronuclei detection

Pronuclei were detectable only after rotational filtering,
because the outline of the pronucleus was suppressed by
several stronger, but randomly located circular structures in the
edge map. After repeating the circle detection on a number
of rotated images, the circular structures were summed up
and thresholded. The several randomly appearing circles had
only partial overlap, in contrast to the pronucleus, which was
detected in closely the same position in a large part of the
images (Fig. 3a-e). The two parameters; number of angles to
compute, and the threshold over which a structure needed to
appear in order to be counted as a true structure, given in
percent, were optimized using a series of 10 training images
containing 1-2 PN each. The results are given in Fig. 6.
The parameters for the original HT implementation, without
rotation, was set to give 15 false positives initially. A rotation
of 4 angles (90°) gave identical results, and an increased

Fig. 10. Examples of difficult images, including imperfections in lighting
conditions (a,b), deformed embryo placed close to the imaging well (c), and
visible foreign objects (b,d).

number of false positives can be seen for 8 and 12 angles,
as expected. For a rotation of 6 angles (60°), an improvement
was apparent for a threshold of 75% and above, giving a
reduced number of false positives to below 1/image at the
expense of < 30% risk of obtaining a false negative. For
an increased number of rotations, a further decrease in false
positive rate was observed. However, at the same time the
risk of experiencing a false negative, i. e. losing the detection,
increased.

C. Detection of pronuclear breakdown

The mean of four of the six parameters in percent of the
last image containing PN is shown in Fig. 7, where the first
mitotic splitting is initiated at image 10 with the breakdown
of the PN. For comparison, all values have been normalized
to 1 for the first image. Fig. 8 shows a comparison of the
ability of the four methods to distinguish images before and
after PNB for all 20 test embryos. The ID in Fig. 7a shows an
increase at the PNB, as expected, but the signal was often
masked by slight displacements of the well, causing large
random jumps in the signal. The detection of PN (HT+PN) in
Fig. 7b shows a decrease at the PNB, but at a high variation
of randomly appearing circular structures, especially toward
the end of the time series (> image 15), where the cleavage
began for several of the test series. The V in Fig. 7c was not
as affected by image field dislocations as the ID, but on the
other hand was not able to detect the small changes in image
detail at the PNB. The HT+IV(50%) and HT+IV(25%) were
the only measurements with a distinct difference before and
after PNB (Fig. 8), showing a decrease in ROI variance at the
PNB, and also an increase at the onset of cleavage, as expected
(Fig. 7d). Fig. 9 shows a comparison of the HT+IV(50%) and
HT+IV(25%) for varying thresholds glim for the gradient of
the image variance. The best overall result was achieved by
the HT+IV(50%),with 83.0% (80% TP, 17% FP) accuracy for
all 20 image series, using 20 images per series.



IV. CONCLUSIONS

We have shown a method which automatically locates the
embryo position from microscopic images at 92.9% accuracy
even under noisy conditions. The detection accuracy was lower
than for manual detection, but on the other hand required
no user interaction with each image. We have also shown
that the detection of the breakdown of pronuclei can be done
automatically using the image variance, when an appropriate
ROI is selected by a Hough Transform.

Our method of Hough detection performed best when
the images contained clear circular structures. Embryo shapes
showing edges differing strongly from a circular shape, such
as the 2 cell stage and the blastocyst stage were more difficult
to detect. One solution is to handle more complex shapes
by introducing more parameters in the Hough Transform.
However, care must be taken as the complexity of the transform
increases rapidly.

For pronuclei and nuclei detection, there was a trade-off
between falsely detected structures, and failing to detect the
object we were looking for (false negatives). Here we have
shown, that by using rotational filtering, we were able to reduce
the number of false hits. For our purpose, automatic annotation,
it was desirable to reduce the number of false positives at the
expense of having a larger probability to drop the detection
of nuclei and the overall best results were < 1/image at the
expense of < 30% risk of obtaining a false negative for a
60°rotation.

Other options of nuclei detection, such as pre-processing
to allow the edge detector to select only pronuclear structures,
selection of a different edge detector, or different method of
rotation are possible, and for future work, we will attempt to
compare this with our method of rotational filtering.

The accuracy for embryo detection was 95% within 10%
margin, but dropped dramatically to 59.2% within 5% margin.
This can be compared to the accuracy of manual detection,
which was 100% for both cases. (The manual accuracy may
have been lower, if a comparison had been possible between
several users.) However, the main reason for mismatch in
the detection was the difference in outline definition between
manual and computed. Whereas the manual selection was
consistently done along the inner outline of the zona pellucida,
the computation could select a stronger circular structure if the
embryo was slightly displaced within the zona. To correct this
for future work, it would be of interest to relax the demand
for a circular shape, use the HT circle only as a starting
point, and fine-tune the embryo outline detection by also using
other image clues. Lastly, we have shown that when the ROI
is restricted to the embryo interior, the achieved accuracy
of detecting location was enough to detect the pronuclear
breakdown at 83% accuracy.
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Abstract—Detecting cells in a growing embryo is necessary
for in vitro evaluation of embryo health, cell development and
computation of cell lineage. Because of the sensitive nature of
embryos, there are technical and ethical limitations imposed on
the hardware available to examine them. Non-invasive imaging
in combination with digital image cytometry is an appealing
option, but faces a number of computational challenges, including
disturbance from sample contamination, out of focus image
regions, samples of low contrast and overlapping sample objects.
Through optical modulation it is possible to enhance contrast,
but the resulting images are bi-gradient in nature, further
complicating cell detection. We present an algorithm for cell
detection in bi-gradient images with overlapping objects, able
to handle cell detection up to the 6 cell stage.

I. INTRODUCTION

Most common edge detectors are based on gradient detec-
tion, such as Canny, Sobel and Laplacian of Gaussian [Par97].
They are all very efficient for edge detection in a single
gradient image, i.e. an image where pixel values increase or
decrease continuously from image background to foreground.
Examples include common microscopy techniques such as
fluorescent imaging, brightfield and darkfield microscopy and
confocal microscopy. The images from many optical contrast
enhancing techniques are bi-gradient, i.e. the background pix-
els span the intermediate range of pixels values, and the pixels
within the minimum and maximum range both belong to the
foreground. Examples include common microscopy techniques
such as phase contrast imaging and Hoffman Modulation
Contrast (HMC) imaging. When applying a gradient based
edge detector, the bi-gradient image displays double edges,
if edges are at all located. In this study we describe a novel
pathway for detecting edges in bi-gradient images, apply it to
HMC images of human embryos and validate the result.

II. MATERIALS AND METHODS

A. Sample preparation

Human embryos were donated to research by patients
undergoing IVF treatment, with informed consent. The project
was approved by Coventry Research Ethics Committee
(04/Q2802/26) and the Human Fertilisation and Embryology
Authority (R0155). Embryos no longer required for treatment
were cultured using Medicult media (Origio, Redhill, UK) for
up to 7 days and incubated in 37°C 5%CO2 in air.

B. Image capture

During image capture, embryos were cultured using Em-
bryoscope (Fertilitech, Copenhagen, Denmark), and images
were captured at up to 7 focal depths and 6 recordings per
hour using a HMC [Hof77] optical set-up, with a 635nm LED
as light source. Images from 18 embryos containing 1-6 cells,
with cell outlines marked manually, were used for the analysis.

C. Image analysis

A set of elliptic model candidates representing cells were
computed and combined for the best match with an edge
map of the image. In matching, the elliptic perimeter was
compared to the edges, and as one cell was found, its trace
was successively removed from the edge map. The matching
progressed until all cells were found.

1) Cell candidate location: Elliptic bodies in each image
were first located using Hough Transform of a Canny edge
version of the raw image [MCCH14]. The size range of elliptic
structures to detect was set by the number of cells expected in
the image. Before progressing to matching with the edge map,
ellipses with excessive overlap were removed.

2) Edge map: The edge map was constructed from the
lowest and highest pixel ranges in the image I using the
threshold

t = c ·median(I). (1)

If applied to the image as it is, this results in a high number
of false positive edges. To filter those out, we constructed
a focus filter [MCC14], computed a convex hull around the
regions in focus and used this to exclude false positives. In the
case of embryos, we know there is only one embryo per image,
so we also add a pre-processing spatial filtering, where we
detect the embryo region using a Hough Transform [Hou62].

III. RESULTS

Figure 1 shows the result of edge detection, matching to
edge map and validation to manual detection for a 2 cell and
6 cell case, respectively. To compare results (Figure 2) we
define a correctly located cell as one where the centroid of
the predicted ellipse is contained within the manually defined
region, and a correctly described cell outline as one where the
Intersection over Union (IOU) between result and prediction
is ≥ 70%.



Fig. 1. Stepwise detection of cells in an embryo of two cells (a-c) and 6 cells
(d-f). a,d) Original image, with elliptic candidates detected. b,e) Edge map with
convex hull (red) and matched candidates (blue). c,f) Comparison between
computed location (blue) and manual (red), x:s represent ellipse centroids.

IV. DISCUSSION

The benefit of the described approach is two-fold. First,
the construction of the edge map transforms the bi-gradient
image into a single gradient image. This operation would have
been trivial, if it were not for the need for focal filtering. The
second advantage lies in the matching of candidates to the
edge map. As long as the edge map contains some pixels
along the candidate perimeter, it will be detected and there
is no need for a complete outline. This is an advantage when
handling potentially overlapping objects, which is the case in
a three dimensional embryo. Limitations include the inability
to separate objects with a high degree of overlap, naturally
limiting this method to 6-8 cell embryos.

Results show a high degree of localization agreement,
finding ≥80 % of cells up to the 4 cell stage and ≥ 70%
up to the 6 cell stage. Accuracy in detecting outlines was high
only for the 1 cell stage, then at best 43% up to the 4 cell
stage (the three cell case slightly lower). The main reason for
this was deviation from a perfect elliptic shape in manually
drawn outlines, where the 2 and 3 cell case often displayed
more irregular outline than a case of more than 4 cells.

For future work we intend to adjust the outline more
accurately, and also examine the possibility of extracting cells
at different focal levels simultaneously. To do this, we wish to
further exploit the fact that the focal filtering responds quite
differently to objects in focus, compared to objects out of focus

(Figure 1d, top cell).

Fig. 2. Localization (a) and Outline (b) detection accuracy from 1 to 6 cells.
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Abstract
In this work we propose a framework for visualisation of 
semi-automatically  segmented  microscopic  images  of 
human  embryos.  A  large  part  of  the  education  of 
biologists  consists  of  learning  to  interpret  the  output 
from  a  variety  of  analytical  methods  and  medical 
imaging modalities, which can be more or less abstract 
in nature. Even in visual microscopy, the optical setup 
and the different ways to increase contrast between the 
sample and background produce image artefacts which 
have  to  be  taken  into  account  when  interpreting  the 
image. In  in vitro fertilisation, the correct evaluation of 
the quality of the embryo is crucial for successful future 
development  of  the  implanted  foetus.  Embryos  are 
selected  for  transfer  based  on  a  number  of 
characteristics, such as blastomere symmetry, degree of 
fragmentation  and  number  and  size  of  blastomeres. 
Traditionally, this evaluation has to a large extent been 
done by manual observation through visual microscopy, 
and  obtaining  the  necessary  expertise  takes  years  of 
training. Here we show how the output from different 
analytical methods may be combined and how creative 
visualisation  and  improved user  interaction  with  large 
data sets may improve the understanding of the sample 
under study. We show how existing computer-aided tools 
can be used  in embryo selection and discuss automation 
as  a  way  to  quantify  the  subjective  bias  of  manual 
embryo selection. We use data from human embryos as a 
case study, but the methods may be applied to any type 
of biological or microscopic material.

Keywords: Human-computer  interaction,  medical 
visualisation, embryology,  image segmentation, pattern 
recognition, computer-aided diagnosis
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1   Introduction

In  several  standard  computer  applications,  computer 
vision  algorithms  are  readily  available,  and  in  many 
fields of research there is a vast collection of tools for 
imaging  and  plotting,  allowing  the  user  to  produce 
different visualisations of the data. In many cases these 
tools allow for multidimensional plotting, rescaling, the 
application  of  cross  sections,  the  use  of  transfer 
functions,  the  addition  of  annotations,  and  the  sorting 
and rescaling of data through various gates or histogram-
based offsets. In the area of medicine, where the output 
from the method of detection is not visualised  a priori, 
such  as  MRI,  techniques  for  presenting the data  have 
evolved for some time. Also, novel technique has made 
it possible to gather more and more data simultaneously 
in  several  dimensions and  modalities.  With this  trend, 
the understanding of this data through a limited set of 
cross-sections has also become more difficult,  and the 
interpretation  of  medical  images  has  come  to  require 
more and more time in the education of the physician or 
the  biologist.  In  microscopy,  where  data  is  directly 
visualised  in  two  dimensions,  little  efforts  have  been 
done to present this data in any other way. Although the 
use of images from microscopic data has increased, the 
presentation tools available are usually two dimensional 
in nature, and lack interactivity. In microscopy, the same 
sample may look very different under different optical 
set-ups  and  the  interpretation  of  microscopic  images 
requires a high level of expertise. The aim of this paper 
is  to  give  some  insight  into  how  standard  computer 
vision techniques can be applied to microscopic data and 
how creative visualisation can help in the interpretation. 
We discuss how the physical process of image capture 
may influence the final image, and how knowledge of 
this  process  in  some  cases  can  be  used  to  further 
improve the computer analysis. It  is our hope that this 
article  may  further  improve  the  microscopists 
understanding of the world of computer vision, and how 
they may use it for their benefit. We also believe that this 
article  may  be  of  interest  to  the  computer  scientists 
working in the field of computer vision, developing or 
studying algorithms for automated image analysis in the 
medical field. 
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The background section of this paper (2)  first  gives a 
short overview of a few in embryology commonly used, 
yet  very  different  microscopic  techniques  (2.1),  then 
gives an overview of the embryo selection process (2.2), 
time-lapse microscopy (2.3) and segmentation (2.4) and 
how  these  can  be  applied  to  embryology.  Section  3 
discribes the methods used and in the results section (4) 
we describe data extraction using two separate imaging 
techniques; HMC and confocal imaging. We apply three 
different  methods  of  analysis  to  the  data  sets,  using 
successively  more  refined  methods  of  segmenting  the 
image. Last, we discuss future work where we intend to 
extend the knowledge of human embryo development by 
combining  information  from  several  techniques.  The 
beginning  of  each  result  section  briefly  describes  the 
methods used.

2   Background and related work
2.1 Microscopic Imaging

Microscopic  techniques  can  roughly  be  divided  into 
quantitative or non-quantitative imaging, and destructive 
or  non-destructive  techniques.  Non-descructive 
techniques is preferrable in many cases, where there is a 
need to keep interference with the sample at a minimum. 
In  in  vitro fertilisation  (IVF),  the  sample  under 
observation cannot be manipulated or disturbed in any 
way, but must be observed "as is", if it is to be used for 
implantation. With a few exceptions, most quantitative 
imaging  is  in  some  way  destructive,  so  for  research 
purposes,  destructive  techniques  can  sometimes  be 
desirable.  

The two destructive techniques most commonly used in 
the study of  embryos are fluorescence microscopy [1] 
and confocal microscopy [2].  Microscopical techniques 
which can be counted as non-destructive include bright- 
and  dark-field  microscopy,  phase-contrast  microscopy 
(PC)  [3],  Hoffman  Modulation  Contrast  (HMC) 
microscopy [4], Differential Interference Contrast (DIC) 
[5] microscopy and digital holography (DH) [6], [7]. For 
uses in cellular biology, see [8], [9]. Of these, bright- and 
dark-field  microscopy  produces  an  image  of  the 
amplitude of the transmitted (or reflected) light, as we 
are  used  to  seeing  it.  However,  cellular  material  is 
usually highly transparent, and for such objects, we can 
get a better sample-to-background contrast, if we study 
the  phase  of  light  instead  of  the  amplitude.  PC 
microscopy and HMC imaging are techniques where the 
phase  information  of  diffracted  light  is  optically 
converted  to  amplitude  information.  Microscopic 
imaging  techniques  such  as  these  are  very  good  for 
visualisation,  but  cannot  be  directly  translated  to 
quantitative data. DIC and DH are techniques where the 
sample phase-shift is imaged directly, and can therefore 
count as quantitative imaging techniques.

Figure  1:  Examples  of  cellular  images  with  common 
microscopic techniques. Phase contrast image of L-929 
mouse fibroblast (a),  HMC image of a human embryo 
(b),  Digital holographic image (a) of mouse fibroblast 
L-929 (c) and Confocal image of a human embryo (d). 
Scale bars: 100µm.

2.2 The Embryo selection process

When selecting an embryo suitable for implantation, the 
embryologist may look at a number of criteria, such as 
pronuclear  appearance  and  orientation  [10],  [11], 
number,  size,  shape  of  blastomeres,  degree  of 
fragmentation  [12],  degree  of  blastocoelic  expansion, 
cellular composition and compactness of the inner cell 
mass  and  trophectoderm [13].  Discussions  concerning 
the  relevance  of  embryo  morphology  in  quality 
assessment  exists  [14],  but  it  is  likely  that  embryo 
morphology will  continue to  play a  large  part  in  IVF 
embryo evaluation.

Traditionally,  embryos  have  been  studied  using  a 
microscope  (commonly  HMC)  only  at  certain  time 
points  during  the  course  of  their  development.  It  has 
been shown in time-lapse studies that the timing of key 
occurrences within the embryo can vary greatly between 
embryos  that  have  similar  morphologic  appearance  at 
the conclusion of the recording period, and correlation 
has  been  shown  between  the  timing  of  key 
developmental  events  and  embryo  quality  [15].  Some 
features, such as embryo fragmentation, which is usually 
connected  with  poor  prognosis,  have  shown  a  high 
degree  of  variation  in  time-lapse  studies  [16],  and 
embryos  have  also  shown  the  capacity  to  reabsorb 
fragments [17]. It may be that the spatial and temporal 
pattern of fragmentation has  higher impact on embryo 
quality than merely the presence of fragmentation [16], 
[18].  Such  indication,  in  combination  with  new 
possibilities for time-lapse imaging of human embryos 
for an extended period of time with less negative effects 
to their health, makes it likely that the use of time-lapse 
recordings is going to increase in the future. 
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2.3 Time Lapse Microscopy

Time-lapse  microscopy  is  the  recording  of  an  image 
sequence at intervals during a continuous period of time 
[17].  The  length  of  the  period  and  the  time  between 
intervals is determined as a trade-off between temporal 
resolution  and  potential  sample  deterioration.  In 
fluorescence  microscopy  and  confocal  microscopy, 
which both count as destructive imaging techniques, the 
sample is usually fixed and no longer evolving, and it is 
rather fluorophore bleaching than  potential damage to 
the sample itself,  which  limits  sampling frequency.  In 
non-destructive  light  microscopy  on  the  other  hand, 
imaging of  live samples may be possible over several 
days, or even weeks. Long-term time-lapse imaging does 
not only require that the imaging technique causes low 
stress to the specimen. It  also requires that the sample 
can be kept undisturbed in a favourable atmosphere for 
an  extended  period  of  time.  Novel  construction  of 
incubators and cultivation chambers has recently made it 
possible to monitor embryos during the course of several 
days,  without  any  registered  severe  consequences  to 
their health.

There are difficulties other than the pure technical when 
combining automatic long term time-lapse imaging and 
microscopy.  When  examining  embryos  under  the 
microscope, the three dimensional structure is very much 
of  interest.  In  a  traditional,  manually  handled 
microscope, much information can be gained by making 
proper  use  of  the  microscope  controls,  moving  the 
sample around, scanning the focus, adjusting strength of 
illumination  or  making  use  of  various  filters  and 
apertures in order to scan the three dimensional object in 
real  time.  In  an  automated  time-lapse  set-up,  the 
possibility  to  manipulate  optics  is  reduced  when  the 
optical  set-up  must  incorporate  a  climate  chamber  to 
accommodate  the  living  cellular  material.  If  the 
microscope is instead meant to sit inside an incubator or 
other external chamber, the possibility to manipulate the 
optics  is  equally reduced,  either  because  its  operation 
requires  the  doors  of  the  chamber  to  be  opened,  or 
because the optics is again shielded, to protect it  from 
the high humidity of the chamber.  In many time-lapse 
set-ups,  the  possibility to  adjust  image  quality  in  real 
time has vanished, and the biologist  is now limited to 
study the images some time after they are captured. This 
calls  for  new  techniques  to  visualise  this  already 
captured data in creative ways, and possibly to regain 
some of the interactivity which was lost to the user in the 
process.  Also,  with  the  increased  use  of  cameras  and 
automated microscopic equipment, the amount of image 
data  obtained  has  increased.  Here  is  a  possibility  for 
more analytical material, but lots of data also means that 
time has to be spent interpreting the data. It  would be 
beneficial to automatically point out features of interest 
in order to decrease the user workload.

2.4 Segmentation

There  exists  several  examples  of  the  segmentation  of 
microscopic  images  in  general  [19]–[26],  and 
segmentation of embryos in particular [27]–[31], but so 
far few attempts have been made to apply fully- or semi- 
automatic image treatment to the problem of selecting 
embryos.  There  are  a  number  of  potential  benefits  of 
automated   image  processing:  Sampling  time  can  be 
used  for  image  processing,  and  the  large  amounts  of 
stored image data available after capture will make the 
images available for further analysis and for validation 
by other  experts.  Automatic  procedures  will  make the 
system less subjective, and the evaluation process will 
be more transparent, given that the automation process 
itself  is  made  transparent.  However,  the  differences 
between  a  standard  camera  image  and  microscopic 
images  have  a  number  of  pitfalls,  when  applying 
standard image processing algorithms.

3   Materials and methods
The experimental section is divided into three parts. In 
the first, we apply a number of simple full image field 
transformations to a set of embryo images, to illustrate a 
common problem when working with the entire image. 
In  the  second,  we  restrict  the  region  of  analysis  to 
regions  of  interest,  and  show  how  analysis  of  non-
quantitative data still can give useful information. In the 
third and final section we illustrate how an embryo can 
be  visualised  in  three  dimensions  given  enough scans 
and a complete segmentation.

3.1 Asymmetric Imaging

Images of  a  human embryo at  72.6h after  fertilisation 
were  captured  with  the  Embryoscope®  system 
(Fertilitech,  Copenhagen,  Denmark),  using  HMC 
imaging at 635 nm. The raw images were plotted using 
Matlab,  and  a  Canny  edge  and   a  one  dimensional 
gradient was computed.

3.2 Embryo activity

The images in Figure 4 and 5 were captured in a 90h 
time-lapse  series  using  the  Embryoscope®  system 
(Fertilitech, Copenhagen, Denmark), with a 0.2h interval 
between pictures. The embryos were mounted in wells in 
an  EmbryoSlide® (Fertilitech,  Copenhagen,  Denmark) 
(Figure 3), one embryo per well, and the imaging of both 
wells  (3  and 6 respectively)  was done simultaneously, 
using a 635 nm LED. Both embryos are from the same 
patient. Three circular regions of interest were selected 
per image, one representing the total image field of the 
well (A), one selecting the body of the embryo within 
the  zona  pellucida  (B),  and  one  selecting the  embryo 
centre at half the diameter of the embryo outline B (C) 
(Figure 4). The regions of interest have been manually 
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chosen from one image slide, and then applied to the rest 
of  the  image  series.  The  variance  of  each  region  of 
interest was computed and plotted for each image in the 

 

 

upper half of the sample well with the dark upper edges 
of the blastomeres themselves.

 



Figure 5: The embryo of well 3 at 85.3h (a) and 85.5h 
(b). The blastocoel starting to form. The embryo of well 
6  at  85.3h  (c)  and  85.5h  (d).  Heavy fragmentation  is 
visible,  and  the  embryo  activity  is  low.  Scale  bar: 
100 µm.

Figure  6:  Variance  (a)  of  region  A.  Arbitrary  units. 
Image variance of region B (b) and region C (c) relative 
to mean of region A. Line represents position of example 
images (Figure 5). Solid: well 3, dashed: well 6.

The  first  embryo  in  well  3  experiences  several  cell 
divisions during the first hours of the series, after which 
it  forms  its  first  indication  of  a  blastocoel  at 
approximately 44.7h. After this, the embryo undergoes a 
series  of morphological  changes where it  reverts back 
and forth between a blastocyst  and a tight  central cell 
structure (Figure 5). These changes are clearly reflected 
in the image amplitude and variance (Figure 6, solid).

The second embryo in well 6 experiences a reduction in 
division  activity  after  approximately  34h,  and  clearly 
suffers from heavy fragmentation from image 54h and 
forward (Figure 5). Within the region of interest of the 
embryo,  this is shown as a decreased image intensity, as 
well as a reduced image variance, when compared to the 
first embryo, even though for the image as a whole, the 
conditions  are  reversed.  The  effects  are  even  more 
marked when the more restricted region of interest C is 
chosen (Figure 6, dashed).
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4.3 Three dimensional Visualisation

Here  we  show  that  microscopic  data  from  confocal 
images can generate enough data to form the basis for a 
three dimensional plotting with very little undersampling 
artefacts (Figure 7). The position and relative size of the 
blastomere nuclei are readily calculated. Note how the 
flattening  of  the  embryo  (a  physical  effect  of  being 
sandwiched  between  microscope  slides)  becomes 
apparent when applying a side view (Figure 7b).

5   Conclusion and future work
Here we have shown how existing methods for image 
analysis  may  be  combined  to  extract  additional  data 
from  embryological  data  sets,  and  how  computer 
analysis may be used to quantify results. Also, using 3D 
plotting,  not  only  can  we  get  a  much  more  intuitive 
understanding  of  the  embryo  structure  and  the 

positioning of blastomeres relative to each other – it is 
also possible to get a measurement of cellular or nuclear 
volume, which is not possible with a single scan. With a 
three  dimensional  display,  it  is  possible  to  view  the 
sample from different directions, thus getting a clearer 
view  of  its  spatial  layout,  and  gaining  a  better 
interactivity with the sample.   Here we show that  the 
methods for a complete analytical chain from raw image 
to three dimensional vector plotting exists, and for future 
work  we  intend  to  put  these  methods  together  into  a 
working  one-piece  semi-automatic  framework  for 
embryo evaluation, simulation and visualisation. Clearly, 
the accuracy of the 3D model depends on the amount of 
available data, the xy-resolution and the number of scans 
in  z-direction.  Confocal  microscopy  has  been  chosen 
here because the low depth of field allows us to separate 
the signal  between images in the stack, thus obtaining 
cleaner data. Optical sectioning is also possible in some 
non-destructive techniques, in particular in HMC which 
has  a  relatively low depth of  field  compared  to  other 
types of light microscopy. If a successful segmentation 
of this type of image could be achieved, it would open 
new doors in the area of embryology, both for clinical 
purpose, but also for the understanding of early human 
development. An improved embryo selection can in turn 
result  in a greater number of successful  implantations, 
less need for multiple embryo transfer, which will in turn 
increase the chance of survival for the foetus and reduce 
the risk to both the foetus and the mother. 
A  computerised  model  of  an  embryo  is  useful  for 
embryologists for training purposes, and would also in 
many ways  be  of  great  help  when  understanding  the 
three  dimensional  dynamics  of  the  embryological 
content,  and  may  bring  further  insight  into  the  early 
stages  of  human  embryo  formation.  In  the  future  we 
intend to further investigate the possibilities  to extract 
data from microscopic images, in particular focusing on 
the  non-destructive  modalities,  and  using  other 
techniques such as confocal microscopy as an endpoint 
and method for comparison.

6   Acknowledgements
The  authors  acknowledge  Prof.  Geraldine  Hartshorne 
and  Dr.  Sarah  Drury of  Warwick  Medical  School  for 
their  contributions  in  sample  handling  and  image 
gathering,  and  Kieran  Rafferty  of  MMU  for  his 
assistance in confocal image segmentation.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7:  3D rendering of the segmented data 
from a confocal image stack. Top view (a) and 
side view (b) of an embryo in blastocyst stage. 
The shapes shown are embryo nuclei (121 in 
total), spread along the inner wall of the 
blastocoel. The flattening of the embryo is due 
to the deformation caused by the imaging 
process. Blastocyst diameter is approximately 
120 µm.
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Semiautomated Analysis of Embryoscope

Images: Using Localized Variance of Image

Intensity to Detect Embryo Developmental

Stages
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� Abstract
Embryo selection in in vitro fertilization (IVF) treatment has traditionally been done
manually using microscopy at intermittent time points during embryo development.
Novel technique has made it possible to monitor embryos using time lapse for long peri-
ods of time and together with the reduced cost of data storage, this has opened the door
to long-term time-lapse monitoring, and large amounts of image material is now rou-
tinely gathered. However, the analysis is still to a large extent performed manually, and
images are mostly used as qualitative reference. To make full use of the increased amount
of microscopic image material, (semi)automated computer-aided tools are needed. An
additional benefit of automation is the establishment of standardization tools for embryo
selection and transfer, making decisions more transparent and less subjective. Another is
the possibility to gather and analyze data in a high-throughput manner, gathering data
from multiple clinics and increasing our knowledge of early human embryo develop-
ment. In this study, the extraction of data to automatically select and track spatio-
temporal events and features from sets of embryo images has been achieved using
localized variance based on the distribution of image grey scale levels. A retrospective
cohort study was performed using time-lapse imaging data derived from 39 human
embryos from seven couples, covering the time from fertilization up to 6.3 days. The
profile of localized variance has been used to characterize syngamy, mitotic division and
stages of cleavage, compaction, and blastocoel formation. Prior to analysis, focal plane
and embryo location were automatically detected, limiting precomputational user inter-
action to a calibration step and usable for automatic detection of region of interest
(ROI) regardless of the method of analysis. The results were validated against the opinion
of clinical experts. VC 2015 International Society for Advancement of Cytometry

� Key terms
Key terms: automated image analysis; image-based embryo classification; computer-
aided diagnosis; automated annotation; time-lapse microscopy; embryoscope;
embryology

IN vitro fertilization (IVF) has been in clinical use for more than 30 years. Neverthe-

less, there is scope for improvement of the embryo selection procedure. By refining

selection based on a greater understanding of embryo quality, we could not only

reduce multiple births but also save patients the cost and distress of multiple failed

attempts. Time-lapse imaging of embryos offers the prospect of such improvements

and recent advances in incubator and imaging technology have enabled frequent

observation and image capture of individual embryos at intervals of a few minutes.

However, with the increased amount of generated imaging data, it is essential to find

quality markers suitable for automated detection via computer-aided diagnostic

tools. This technology has also opened up a new area of research studying the impact
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of timing of key occurrences in embryo development. Cur-

rently, key events require to be identified and annotated man-

ually, which is time consuming and limits the usefulness of

the instrumentation. Noninvasive markers suitable for

computer-aided diagnosis are being sought to standardize

embryo selection procedures, speed up the annotation pro-

cess, and provide diagnostic support.

Embryo quality is well known to relate to embryo mor-

phology (1–3) but is not sufficiently precise an indicator to

predict outcome reliably in individual patients. Embryo evalu-

ation today is commonly undertaken using annotations of rel-

evant features by experts at intermittent time points during

development. Attempts have been made to standardize man-

ual selection (4) and decision support systems exist for evalu-

ating embryos (5–9). However, manual annotation is time

consuming, the evaluation will vary according to the observer,

and the different clinical conventions used (10). Automatic

procedures to aid annotation would make the analysis less

subjective and greatly reduce the manual workload involved.

Many reports have highlighted the need to observe

embryo development dynamically (11–15). To thoroughly

assess the benefits and drawbacks of time-lapse embryo imag-

ing, large scale randomized clinical studies need to be per-

formed, but before they can be done, at least two vital steps

remain: The identification of the most promising markers to

use and the setup of a system capable of collecting and analyz-

ing large amounts of embryo data in a standardized and robust

manner and consistency in evaluation is crucial to the useful-

ness of results. When migrating from a manual to an auto-

mated system, it may not be possible to require 1:1

correspondence between measurements, if the two selections

are made based on distinctly different criteria. In these cases, a

comparison must be made between manual and automatic

evaluation, to establish the presence and size of any offset. Such

comparative studies will need not only expertise in current

methodology in both current embryo selection procedures and

manual annotation but also a firm understanding of computer-

ized image analysis and the nature of the image material used.

Several systems for automated embryo analysis using var-

ious approaches have previously been reported. One time-

lapse system available uses an image-based decision tool ana-

lyzing cleavages to the four-cell stage using dark field optics

(16). A few systems rely on direct modeling of physical condi-

tions (17,18), requiring a highly controlled environment as

well as detailed knowledge of the optical setup, something

which is not always possible under clinical conditions. Other

systems perform pattern recognition on microscopic images.

Usually, a correctly performed segmentation (18–21) provides

the most detailed information on blastomere position, shape,

and outline, but this can be prone to errors, especially when

used under clinical circumstances where complete and accu-

rate segmentation may not always be possible. Using a semi-

automatic approach, where a region of interest (ROI) has

been selected manually (22–24); it is often possible to perform

various computer vision and pattern recognition tasks even in

a clinical setting. However, with a manual input required to

initialize computation, this approach may instead increase

user interaction with images, making it more suitable for

indepth research purposes than for routine clinical work or

large scale studies.

As an alternative, this study investigates the possibility of

accessing relevant information using variations in image gray

level in bright field images. The result is a framework for the

detection of key events in embryo development without requir-

ing samplewise initialization. At the same time, a graphical inter-

pretation of embryo development as viewed in vitro is presented,

serving as a complement to manual inspection of images.

MATERIALS AND METHODS

Embryo Culture and Image Capture

Time-lapse image series of human embryos fertilized in

vitro were acquired as anonymized sequences of human

embryos donated to research with ethical approval from Cov-

entry Research Ethics Committee (04/Q2802/26) and the

Human Fertilisation and Embryology Authority (R0155).

Embryos were cultured in 25 lL culture media (Origio, Red-

hill, United Kingdom) under mineral oil for up to 6 days,

incubated at 37 �C in an atmosphere of 5% CO2, 5% O2, and

90% N2. The images were captured using the EmbryoscopeVR

system (Unisense Fertilitech, Copenhagen, Denmark), with up

to seven focal depth planes, 15–25 lm apart, recorded at 20-

min intervals using a Hoffman modulation contrast (HMC)

optical setup (25) and a 635 nm LED as light source. Fresh

medium was supplied at intervals, but embryos were other-

wise undisturbed during imaging. The total dataset consisted

of image series of 39 embryos from seven different couples, of

which 28 developed into blastocysts. Fourteen series of

embryos (of which nine developed to blastocysts) were used

in an initial study (referred to as training set) to optimize

algorithm parameters, and the analysis was repeated using the

same parameters for the remaining 25 embryos (of which 18

developed blastocysts). The latter is referred to as the test set.

Software Implementation

Series of stacks of HMC images with a gray scale ranging

from 0 to 255 provided the raw material for this study. In

HMC microscopy, changes in optical path length are optically

converted to light and dark gradients on an even gray back-

ground, resulting in an image where edges are the most prom-

inent structures. As the number of edges in the image

increases, the two dimensional distribution of image intensity

changes. Objects in embryo development expected to result in

an increased number of edges are visible nuclei and pronuclei

as well as an increased number of blastomeres. Conversely,

compaction and loss of focus are expected to increase image

smoothness, following a loss of edge structures. Image var-

iance is a measure of the distribution of gray levels within a

specified region of the image and will increase with an

increased number of edge structures. It is the hypothesis of

this study that variance as a measure of edge structures can be

used as an indirect method to identify the timing of embryo

developmental stages.

To detect fluctuations in variance with sufficient sensitivity

to distinguish changes caused by, for example, the appearance
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of a nucleus, two prefiltering steps were necessary. The first

step, which was used for every image series, selected one focal

level in the stack as containing the optimal focus. This resulted

in a sequence of single captures (Fig. 1a). The process is

described further in the Supporting Information (Appendix A).

The second step, performed on each remaining capture, auto-

matically detected the outline of the embryo using a circular

Hough Transform. From the outline, the internal region of the

embryo was selected as a circular ROI at half the embryo

radius, as described in (26). The localized variance in image

intensity was then calculated for the selected ROI of each

image. Figure 2 shows an example of the breakdown of pronu-

clei and its effect on image variance. For the duration of the

cleavage stage, it was assumed that no entire blastomere would

Figure 1. (a) Illustration of computational pipeline of the captured image series of an embryo. The optimal focal plane from the image

stack was selected. A ROI was selected within each individual image, and one value of the variance in image intensity was computed for

each ROI. This process was repeated for each capture in the image series, resulting in a function v(t) describing the variance as a function

of time. v(t) was then further analyzed for the occurrence of detectable key events, profiling the embryo development. Finally, the profile

for embryos forming blastocysts and not forming blastocysts were compared. (b) Image intensity variance of an embryo during the

course of 280 frame captures, normalized to the first image in the series. Divisions during the cleavage stage are detectable as sudden

increases in image variance, due to the number of increased edges in the image, as blastomeres undergo mitosis. At the onset of compac-

tion, individual blastomere membranes are no longer distinguishable, and the variance drops and remains at a low level during the mor-

ula stage. The variance increases once more as blastocoel expansion sets in, and may fluctuate strongly during the blastocyst stage, if the

embryo displays several cycles of collapse and re-expansion. The growth of the embryo has been considered in five stages: (A) Initial divi-

sions from fertilization to onset of compaction. (B) Onset to completion of compaction. (C) Morula. (D) Cavitation. (E) Blastocyst. The

mean and change in variance has been calculated for each section. Dashed trend lines have been added for illustrative purpose. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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appear completely outside the ROI. For the blastocyst stage, the

choice of region proved useful as the formation of the trophec-

toderm removed infocus blastomeres from the embryo interior

to the outline of the blastocyst (outside the ROI), making the

finished blastocyst appear with a characteristic drop in image

variance, once the cavity was formed. Figure 1b shows an exam-

ple of an embryo growing in vitro, as viewed with the image

intensity variance of the embryo interior.

Next, images were examined visually for key occurrences

in embryo development, and the same events were evaluated

using the image variance, constructing two characteristic pro-

files of a growing embryo, one obtained by manual observa-

tion, and one by mathematical inspection. The accuracy of the

hypothesis is defined by the correlation between the two pro-

files. The following details were included in the profile: the

timing of the pronuclear breakdown (PNB) preceding syng-

amy, the timing of the first mitotic divisions up to eight-cell

stage, and the transitions between a chosen set of main devel-

opmental stages. The details of the profiling are explained fur-

ther in Supporting Information (Appendices B–D). A brief

summary is given below.

Detection of Syngamy

For automatic detection of the PNB, a single threshold

was optimized using the 14 training embryos. The timing of

the PNB was computed for a number of thresholds, and the

Figure 2. Calculation of variance in image intensity using pronuclei as an example. Images (a) and (b) were captured 20 min apart. The

frequency of image gray scale values (0-255) within a selected ROI (white circle) at half embryo radius has been plotted as histograms,

and the mean and variance calculated. (c) Difference in image variance before (blue) and after (red) PNB. Standard deviation calculated as

mean over the training set of 14 embryos (P< 0.0001). (d) Detection accuracy of the training (14 embryos) and test (25 embryos) sets,

respectively. The computation is governed by a single threshold (gradient of decreasing variance over time). PNB is defined as gradients

larger than some threshold, yielding an increase in TP accuracy as the threshold decreases. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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minimum value giving 10% true positive (TP) detection

(when comparing to visual inspection of the images of the

training embryos) was selected and used for the testing

embryos.

Cleavage Divisions

Mitotic divisions were also detected using a single

threshold.

Compaction and Blastocyst Formation

Five stages were selected as being of interest: cleavage

(A), compaction (B), morula (C), cavitation (D), and blasto-

cyst (E) (Fig. 1b). The timing of transition between stages was

defined as:

AB: main local maxima in variance, located before the

main negative gradient.

BC: main negative gradient in variance.

CD: main positive gradient in variance, located after the

main negative gradient.

DE: main local maxima in variance, located after the

main negative gradient.

The computationally obtained stages and the transitions

between stages were given letters to distinguish them from the

visually defined embryo stages. For instance, the stage “B” is

defined mathematically as the main negative gradient in var-

iance, and it is part of the hypothesis that this relates to the

formation of the compaction stage of the embryo. Finally, six

traits for the developmental stages were combined and used

simply to detect the presence or absence of a blastocoel. The

six characteristics used were:

– The width (duration) of the negative gradient at com-

paction (B).

– The height of the maximum variance detected at the

end of the cleavage stage (AB).

– The height of the maximum variance detected at cavita-

tion (DE).

– The timing of compaction (B).

– The timing of the maximum at the end of the cleavage

stage (AB).

– The total number of variance gradients during the

entire development (a sign of strong fluctuating behav-

ior, indicating poor quality).

The six traits were combined into four parameter sets,

and the threshold for each one varied, while measuring the

number of detected blastocyst formations.

Expert Validation and Statistical Analysis

Last, a total of 15 time-lapse image series from four dif-

ferent patients were used for validation. The timing of cell

divisions and embryo stages was validated against the opinion

of five expert clinical embryologists, each with at least 6 years

of clinical embryology experience. The rest of the image series

were annotated by the experimenters to the best ability using

the same criteria as the embryologists. One image series was

evaluated by all five experts, to allow direct comparison of

their assessments. The annotation of timing in images was

consistently within 1–3 time frames up to an eight-cell stage,

and the overall quality of the embryo in 100% agreement

(Fig. 3). P values equal or inferior to 0.05 was used for statisti-

cal significance. Intervals in graphs and for values are given as

means 6 SD unless otherwise stated.

RESULTS

For embryos where developmental stages were visible in

images, they were also reflected in the variance profile (Fig. 4).

Both by manual observation and as measured by variance,

large differences were apparent between individual embryos.

Figure 3. Standard deviation in manual annotation for the evalu-

ation embryo in terms of (a) timings of mitotic divisions up to

eight cells and (b) detection of the beginning of developmental

stages: (1) Compaction, (2) Morula, (3) Cavitation, and (4) Blasto-

cyst. Bars represent lower to upper quartile, whiskers minimum

and maximum values. (c) The deviation from expert determined

location of division in terms of timeframes for the divisions that

were detected, plotted versus the number of cells preceding the

division. Bars represent lower to upper quartile, whiskers mini-

mum and maximum values.
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Detection of Syngamy

In Figure 4b, the PNB is visible in the plot of variance

versus image capture time as a sudden negative gradient over

the course of 1–2 frames. Twenty images per embryo for the

training set of 14 embryos were selected before and after PNB

and used to profile the change of state. The difference in var-

iance before and after the breakdown was large enough to be

detectable, despite individual variation between images (Fig.

2c). The breakdown usually took less than one or two cap-

tures, giving an uncertainty of the timing of detection of at

most 40 min at the current capture frequency. Requiring a

100% TP detection of the PNB for all 14 training embryos,

the best overall result was 88% accuracy for the training

embryos, and the inaccuracy being caused by false-positive

Figure 4. Profile of three representative embryos showing decreasing quality (a–c). Variance was calculated from the image intensity at a

circular region encompassing the center of the embryo. A few example images are shown at points where characteristic changes are visi-

ble in the variance profile. For a good quality embryo (a), mitotic divisions are visible as successive increases in image variance, and the

morula stage as a period of lowered variance. (b) illustrates a clearly expressed PNB, but experiences fragmentation during the cleavage

stage, even though a blastocyst is eventually formed. In (c), the PNB is also apparent, but the embryo develops early fragments, never

reaching a blastocyst stage.
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detection. Using the same settings for the 25 test embryos, an

overall detection accuracy of 90% was achieved, with 91% TP

detection (Fig. 2d).

Cleavage Divisions

In total, 37 of 39 image series had sufficient quality to

detect the first five mitotic divisions. Two embryos were

excluded because of heavy optical interference. For most time

series, it was possible to use the first automatically detected

cell divisions, but manual adjustments were made in a few

cases where both the division between 2 and 3 cells and

between 3 and 4 cells appeared within the 20-min gap between

captures. Computational detection was compared to manual

detection for divisions of up to the four- and eight-cell stages,

as shown in Figure 5. For embryos at the 1–8-cell stage, there

was a clear bias toward divisions being under detected when

using the automated procedure. For embryos at 1–4 cells, no

more than two false positives (detection of divisions that were

not present) or false negatives (failure to detect divisions)

occurred per time series. From Figure 3c, it is apparent that

the uncertainty in the exact location of division increases with

the number of blastomeres. From the total image set of 37

embryos, 100% of divisions from 1 to 2 cells were detected,

73% from 2 to 3 (or 4) cells, 30% from 3 to 4 cells, and 59%

from 4 to 5 (or 6) cells. The three and five-cell stages were not

always distinguishable using a image capture frequency of 20

min. Of all divisions between 1 and 6 cells, 62% of divisions

were located at the same captured frame index using both

computer and manual detection, and 76% of divisions were

located within one captured frame index from the manually

noted position. The same values for the manual detection, as

compared to the mean of the expert annotation, were 35%

exact location and 74% within one time frame. For the 28

embryos which eventually formed a blastocyst, a measurement

was also made of the time elapsed between the automatically

detected cell divisions from 2 to 3 cells and from 3 to 4 cells

on the total set of 39 image series, resulting in 10.27 6 2.66 h

(2–3 cells), and 1.11 6 1.34 h (3–4 cells), respectively.

Compaction and Blastocyst Formation

Manual annotation by experts showed less agreement on

timing of transitions between developmental stages (Fig. 4b),

compared to detection of division. For automatic detection,

the mean and gradient of the variance for each of the Stages

A–E was computed for each embryo. The results are shown in

Figure 5. The change in variance per unit time during the

compaction and the cavitation stage was one order of magni-

tude higher than that for the entire cleavage stage, typically

0.3 h21. All values showed a high degree of variation (com-

monly with standard deviations in the range of 60–80%)

between embryos. Interestingly, there was a distinct difference

between embryos from different patients, when the duration

of the four stages A–D was measured (Fig. 6). The duration of

the morula stage showed high variability among embryos

from the same patient, whereas the duration of the cleavage

stage and the cavitation stage had a higher interpatient than

intrapatient variability. The compaction stage, morula stage,

and cavitation stage had approximately the same duration,

about 1/7 that of the cleavage stage. However, the duration of

the cleavage stage was only approximately determined since

the exact time of fertilization was unknown for the series ana-

lyzed. Finally, the detected transitions and relative height of

variance local maxima and gradients were combined and used

to classify each embryo in two groups, those forming blasto-

cysts and those failing to do so. The results were evaluated by

visual inspection of the captured image series. The best overall

result was correct detection of a blastocyst being formed in

71.8% of cases but at a cost of 28.2% false-positive detection

(computational indication of a blastocyst without actual blas-

tocyst formation), with little sensitivity to parameter setting

(Fig. 7).

DISCUSSION

The method of locating the timing of mitotic divisions

shows a larger span between maximum and minimum devia-

tion from the true position compared to manual detection,

Figure 5. (a) Average variance for 14 training embryos before and after mitotic splitting. P values are P< 0.05 for first and second splitting,

P> 0.1 for splitting 3–7. The negative variance before the first splitting is due to the drop in variance during syngamy. (b) Gradient of

image variance for embryo developmental stages for the 14 training embryos. P< 0.001 for adjacent stages. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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but on average, our method performed better. 62% of clea-

vages identified by automatic detection were located at the

exact same capture frame as manually identified by experts.

The same agreement for manual detection between different

experts was only 35%, showing the potential of automated

image analysis to increase objectivity and consistency of

embryo analysis. If instead, we define a correct detection to be

within one captured frame of the control (corresponding to a

timing inaccuracy of 20 min); the manual and computed

accuracy were both approximately 75%. The results of the

automatic method improved if only the 1–4-cell stages were

considered, compared to all 1–8-cell stages. The results

depend heavily on the frequency of image capture—20 min

for this study—which was long enough for most cell divisions

to take place over the course of several captured frames, but

we experienced difficulty in distinguishing the three, five, and

seven blastomere stages at this capture frequency. With more

images captured and analyzed per unit time, it is possible that

the uncertainty in location in terms of image index may

increase, while at the same time decrease if computed for

clock time. In measuring the timing of the first few mitotic

divisions, the results overlap but have higher standard devia-

tions than a previously reported study (27). However, the

results for (27) were obtained with visual counting of mitotic

divisions, whereas the timing of divisions in this study were

automatically computed.

In detecting embryonic developmental stages, there were

large variations between individual embryos, as expected from

clinical experience. In spite of this, a clear trend in the var-

iance profile was apparent, and we have shown that it was

possible to identify the formation of a blastocyst by auto-

mated image analysis in >70% of cases. It was also apparent

that the definition of stages and transitions using the localized

variance was different from that of manual detection, indicat-

ing that this way of visualizing blastocyst development may

serve best as a complement to inspection of images by eye.

The parameters for the detection of blastocyst formation

depend on the frequency of image capture and the hardware

settings, adding a requirement for a calibration stage before

analysis. For future work, a comparison between different

Figure 6. Duration in hours, automatically measured, of four stages of embryo development for seven patients (total 28 embryos). (a)

Cleavage (the time from first frame to onset of compaction). (b) Compaction (time from onset until completed). (c) Duration of morula

stage. (d) Duration of cavitation stage (time from onset of cavitation to blastocyst). Patients 6 and 7 had only one embryo each completing

all four stages. Bars represent lower to upper quartile, whiskers minimum and maximum values.
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image capture frequencies would be desirable. It is also evi-

dent that the exact appearance of the variance function v(t)

depended on the choice of the ROI. In this study, selecting a

circular region of four different radii were investigated. Also,

parameters for this study (Appendix D) were chosen as the

most feasible using our current knowledge of embryo devel-

opment. The implication of any choice of parameters should

be further evaluated before taking on a larger scale study, as it

is possible that new technical tools to study embryo will also

require new methods to define embryo health. Furthermore,

there is a trade- off between minimizing false-negative and

false-positive detection. For our purpose of automating anno-

tation, it was decided that false negatives were undesirable,

whereas false positives could be acceptable and handled in a

future manual or automatic filtering step. This decision may

change depending on the intended purpose of detection. Also,

to improve the accuracy, this framework could be expanded

using more extractable image cues. For example, local image

texture or measurements based on direct recognition of blas-

tomere outlines could be used. Last, the use of an automatic

image analysis is dependent on initial image quality, and for

larger studies it will be necessary to establish robustness under

clinical conditions.

There are reasons for caution in evaluating embryo qual-

ity as all studies of embryos before implantation will per defi-

nition only be able to assess embryo quality, not taking into

account the uterine component of implantation. In IVF treat-

ment, one or more embryos are normally selected for transfer

to the uterus on Days 2–3 or 5–6 of development, when those

developing in a normal and timely manner are usually at the

four-cell, eight-cell or blastocyst stages, respectively. However,

many embryos harbor abnormalities that render them incapa-

ble of prolonged development, and some of these abnormal-

ities become manifest during preimplantation development as

abnormal, delayed, or arrested growth. Thus, embryos trans-

ferred at the blastocyst stage are more likely to result in preg-

nancy than those transferred at earlier stages. Blastocyst

transfer is, therefore, associated with a higher chance of

Figure 7. Example of the results in blastocoel detection using four different parameter sets. The parameters were: A: q1 5 20, q2 5 50,

q3 5 0.65, q4 5 5, B: q1 5 20, q2 5 10, q3 5 0.65, q4 5 5, C: q1 5 20, q2 5 50, q3 5 0.65, q4 5 1, and D: q1 5 20, q2 5 50, q3 5 0.65, q4 5 10,

where q1 is relative location of first main gradient, q2 is width of main gradient, q3 is height of the main maxima, and q4 is maximum

number of gradients. Weights were w1 5 0.15, w2 5 0.15, w3 5 0.3, and w4 5 0.4 for all cases.
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pregnancy and is the latest stage at which preimplantation

selection can be carried out. Recent results (15) show that

time-lapse studies of earlier embryonic stages can predict blas-

tocyst development, but that the formation of a blastocyst is

not necessarily an indication of a live birth outcome. In this

study, we defined blastocyst formation to be evidence of a

good quality embryo, but for future work we shall extend this

study to clinical data where success in terms of initiating preg-

nancy and resulting in a live birth is known. Still, there is a

need for prediction of blastocyst formation (28), and the abil-

ity for negative prediction, that is, deselection of unsuitable

embryos, has the potential to save resources and allow for a

more robust selection of single successful embryos for transfer.

This could be achieved using automated analysis of previously

identified parameters, such as immediate cleavage.

In conclusion, it is shown here that key events in preim-

plantation embryo development can be detected using a sim-

ple automated approach to embryo time-lapse image analysis,

offering the potential of semiautomated annotation of clinical

images on a large scale. The skills of the embryologist may

then be better focused on checking and correcting a reduced

number of uncertain computations, rather than performing

routine manual annotation of the complete image set.
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Abstract 
Novel technique for imaging human embryo growth continuously during IVF treatment, has brought 
on the possibility to monitor dynamic traits during in vitro culture. The timing of mitotic divisions is 
one such trait with importance for embryo health, the understanding of individual cell development, 
cell tracking and cell lineage computation. One way to detect timing of divisions is to classify images 
in each image sequence according to number of cells. A challenging computational task, especially 
when the sequences used are captured using non‐invasive imaging techniques. Difficulties include 
variable light conditions, sample contamination, high sample variability, lack of contrast enhancing 
agents and sometimes overlapping objects in the sample. We pose a method for feature extraction 
using spatial filtering which allows us to use only 12 basic features for classification, yet with retained 
classification accuracy of 89.4% up to the 4 cell stage and 74.9% up to the 8 cell stage. We also 
introduce a variant of a multiclass SVM, giving classification performance comparable to the best 
compared alternative method, but significantly faster, by up to 73% for higher class spaces. 
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Introduction 

Human  embryos  are  hard  to  study  because  of 
ethical  and  technical  constraints.  Especially  the 
early  stages  of  development  are  of  high  interest 
both  clinically  and  for  basic  research  [1,2,3,4,5]. 
Several  laboratory  set‐ups  exist  and  are  routinely 
used  in  IVF  clinics,  which  allows  non‐destructive 
time‐lapse imaging of embryos in the early stages of 
growth. As a consequence, large amounts of image 
data  is being gathered  in clinics around the world, 
providing  potentially  new  research  material,  but 
also an analytical challenge. Manual evaluation of 
images is time consuming and prone to errors and 
observer  variability  [6,7].  Automated  computer 
aided image analysis has the potential to overcome 
both  the  workload  bottleneck  and  to  provide  a 
standardized method of evaluation, but the images 
are of highly varying quality and captured under a 
multitude of conditions. On top of this, the sample 
material  itself  consists of  living  tissue with  a high 
degree of morphological variation and  the  lack of 
fluorescent  markers  or  any  kind  of  contrast 
enhancing  agents  makes  the  task  even  more 
difficult.  

An  important  endpoint  for  embryo  studies  is  the 
timing of mitotic events, which has been shown to 
correlate  to  embryo  health  [8,3,9,10].  Embryo 
classification has been previously attempted using a 
variety of techniques. These can roughly be divided 
in  segmentation based  (requiring an  identification 
of embryonic cell outlines) and segmentation  free 
[11,12,13,14],  or  a  combination  of  those  [15]. 
Usually,  a  correctly  performed  segmentation 
[16,13,17,18]  provides  the  most  detailed 
information on cell position, shape and outline, but 
the  segmentation  process  can  itself  be  prone  to 
errors,  especially  when  used  under  clinical 
circumstances  where  complete  and  accurate 
segmentation may not always be possible. Here we 
propose  a  method  for  supervised  learning  and 
compare  the  performance  of  four  different 
methods on a set of embryos  imaged by Hoffman 
Modulation Contrast (HMC) imaging [19]. For each 
of  these  four  methods  we  compare  different 
methods  to extract  feature data  from  the  images, 
using  features  from  two  different  layers  of  the 
embryo;  the  complete  embryo  and  the  inner 
section, and finally we combine features from both 

regions.  We  have  previously  illustrated  this 
technique in [20] where a single feature was used as 
a cue to embryo development, but not enough for 
complete classification.  

The  purpose  of  this  paper  is  two‐fold.  First  we 
describe a process  for  image  filtering and  feature 
extraction, tailored to this specific kind of embryo 
images.  Second we  evaluate  a  set  of  simple  and 
robust supervised machine learning techniques for 
the  purpose  of  segmentation‐free  embryo 
classification. We  test  the  results  on  a  set  of  18 
embryos,  and  propose  a  tailored  variant  of  a 
Support Vector Machine (SVM) as being superior in 
this context. Our method utilizes  the  fact  that  for 
the case of embryos, we have prior knowledge of 
the  hierarchy  of  the  classification  problem.  This 
method  is not restricted to embryo  images, but  is 
applicable to any classification scheme where this is 
true. 

Materials and Methods 

Training and test set 

Time  lapse  image  series  of  human  embryos 
fertilized  in  vitro  were  acquired  as  anonymized 
sequences  donated  to  research  with  ethical 
approval from Coventry Research Ethics Committee 
(04/Q2802/26)  and  the  Human  Fertilisation  and 
Embryology  Authority  (R0155).  Embryos  were 
cultured in 25µl culture media (Origio, Redhill, UK) 
under mineral oil for up to 6 days, incubated at 37°C 
in an atmosphere of 5%CO2, 5%O2 and 90%N2. The 

images  were  captured  using  the  Embryoscope® 
system  (Unisense  Fertilitech,  Copenhagen, 
Denmark), with up  to 7  focal depth planes, 15‐25 
µm apart, recorded at 20 minute  intervals using a 
HMC optical set up  [19] and a 635nm LED as  light 
source. Fresh medium was supplied at intervals, but 
embryos  were  otherwise  undisturbed  during 
imaging.  The  total  dataset  consisted  of  620  8‐bit 
grey scale  images  in series of 18 embryos.  Images 
from the test embryos where manually classified in 
groups of 1‐8 cells for comparison. Table 1 provides 
an overview of images for each class. A training set 
was  constructed  using  10%  and  20%  of  the  total 
image set, respectively. The rest of the images (the 
test set) was used for validation. 



 

Table 1: Total number of images from each class in the test set. 

Testset  1 cell  2 cell 3 cell 4 cell 5 cell 6 cell 7 cell  8 cell 

Nbr of images  130  131 44 89 56 86 14 70 

 

Figure 1: Example of test images with a) 1, b) 2 and c) 4 cells per embryo. All images are from separate embryos, 
illustrating differences in lighting conditions. d‐f) Illustration of image feature extraction of the example images 
a‐c). Region A: Excluded information, region B: Outer layer, region C: Inner embryo. 

Feature extraction 

12  features were  used  for  classification.  All were 
standard grey  level  image  traits; grey  level mean, 
variance, maximum, minimum,  root mean square, 
kurtosis,  skewness,  energy,  entropy,  contrast, 
correlation  and  homogeneity.  A  mathematical 
definition of all features is provided in Appendix A. 
All features were extracted for two separate regions 
of  interest  (ROI)  and  combined  to  a  complete 
feature vector comprising 24  features. To select a 
ROI, and to spatially filter out irrelevant image data, 
the  embryo  region  was  automatically  detected 
using a Hough Transform [21]. The removal of the 
background (Figure 1d‐f: Region A) was necessary to 
get  enough  sensitivity  in  extracted  grey  scale 
features,  and  also  to  help  eliminate  noise  from 

sample contamination. Feature extraction was then 
performed  on  the  entire  embryo  (Figure  1d‐f: 
Region  B)  and  on  the  inner  embryo  (Figure  1d‐f: 
Region C only). The perimeter for region C is at half 
the radius of region B. Intuitively, from Figure 1d it 
is clear that this spatial  filtering will have a strong 
effect  on  features  since  all  cell  membranes  are 
eliminated  for  region  C.  The  optimal  choice  for 
region selection was investigated previously in [21].  

Classification methods 

A  supervised  machine  learning  classification  is  a 
computer  algorithm  which  learns  by  example  to 
assign labels to objects. For example it can learn to 
recognize handwritten digits by examining 



a  large collection of scanned  images of digits, and 
has also been successfully applied to a wide variety 
of biological applications. In this report we used two 
standard  supervised machine  learning approaches 
for  comparison,  and  also  a  simple  Naïve  Bayes 
classifier with a Gaussian kernel [22], where a prior 
probability  was  estimated  from  the  relative 
frequencies of  the  classes  in  the  training  set. We 
also used  a  random  forest with  a binary decision 
tree where the optimization criterion was given by 
Gini’s  diversity  index  [23].  Last, we  implemented 
two variations of an SVM [24]. An SVM is a general 
term for the method of separating two clusters of 
data by means of a plane, placed to maximize the 
gap between the members of each cluster closest to 
the  border  (the  support  vectors).  Originally,  the 
SVM was designed to handle only 2‐class problems, 
but a number of extensions to multiple classes exist. 
One  of  the  most  common  is  the  one‐versus‐all 
approach, where N classifiers are used to separate 
the same sample set, the final choice of class being 
the one with a highest confidence score. In our case, 
this method has a number of disadvantages. Each 
classifier  must  produce  a  real‐valued  confidence 
score,  and  its  scale may  vary  between  classifiers. 
Also,  each  classifier  will  see  an  imbalanced 
distribution,  since  the  group  of  positives  will  be 
smaller than the group of negatives (consisting of all 
other  classes).  In  the  case of mitotic division,  this 
problem  is emphasized,  since  the distribution  can 
be expected to be skewed in the entire sample set 
– the more cells in the embryo, the shorter the time 
between mitotic divisions, leading to less images to 
use  as  samples.  Another  approach  is  to  perform 
N(N‐1)/2 classifications and by vote deciding on the 
class  identified  by  the majority  of  classifiers.  This 
method  has  the  disadvantage  that  the  same 
number  of  votes may  be  cast  for  several  classes, 
leading  to  decision  ambiguity.  In  this  study  we 
implement  the  Directional  Acyclic  Graph  SVM 
(DAGSVM)  [25].  The DAGSVM  improves  on  these 
simple multiple class SVMs in several ways, such as 
not having to report confidence scores for each one‐
versus‐one  classification,  and  avoiding  the 
ambiguity which may arise with a  voting  scheme. 
The  algorithm  can  be  intuitively  understood  as  a 
stepwise  exclusion,  where  the  entire  test  set  is 
successively divided into N classes by performing a 
pair‐wise one‐versus‐one classification using a total 
of  N(N‐1)/2  classifiers.  Classification  progresses 

step‐wise until only one class remains. For example, 
consider a 4‐class problem, with classes A,B,C and 
D. For the first classification class A versus class B, 
we conclude that all samples classified as belonging 
to class B, does not necessarily belong to class B, but 
we can  in any case be sure they do not belong to 
class A. For the sake of argument, call this sample 
cluster  “not‐A”.  In  the  next  step,  “not‐A”  then 
compares class B with class C. If classified as C, we 
conclude that this sample cluster is not necessarily 
C, but in any case, does not belong to B, so we may 
call  this  new  cluster  “not‐A‐nor‐B”.  In  a  last  one‐
versus‐one  classification  we  can  then  separate  C 
from D.  

Successive Slicing SVM 

One disadvantage of DAGSVM  is  the performance 
reduction for higher number of N. In our case we are 
looking  for  a  quick  and  efficient  classification 
method, where we are prepared to trade accuracy 
for speed. The computational performance may be 
increased,  if we  can  assume we  have  some  prior 
knowledge of which sample clusters are more easily 
separated. If that is the case, we may pairwise slice 
the  entire  sample  set  by  first  removing  the most 
obvious  classes.  We  refer  to  this  method  as  a 
successive  slicing  SVM  (SS‐SVM).  The  SS‐SVM 
performs  a  set of  a  cascading one‐versus‐all  SVM 
classification, similar to what has been described in 
[26,27]. Here the test set  is successively divided  in 
smaller  and  smaller  sets,  until  only  one  class 
remains  for  each  sample.  The  choice  of  classifier 
and thus order of classification is decided by some 
general  clustering method.  In  our  case we  know 
that  the  optimal  order  of  classification  is  from 
lowest number of cells to highest cell number, so we 
can  further  improve  on  performance  by  avoiding 
the  clustering  step.  Simply  put,  the  difference 
between an image containing one and two cells will 
be  larger  than  the  difference  between  an  image 
containing  three  and  four  cells,  so  the  cluster 
distance  can  be  expected  to  decrease  for  higher 
number of cells in the image. Using this method, we 
need only N classifiers of  type one‐versus‐all, one 
for  each  class,  as  opposed  to  N(N‐1)/2  for  the 
DAGSVM. We then iterate through the test set, first 
separating all samples with one cell from the rest. 
These samples are then removed from the test set, 
and  the  classification  is  progressed  by  separating 



the samples with two cells from the remaining test 
set,  until  we  reach  the  class  with  the maximum 
number of cells. 

Statistics and metrics of results 

Results are given as the mean value of ten repeated 
identical experiments, with the training set selected 
randomly from the complete  image set each time. 
95% confidence intervals are given, calculated using 
a 2‐tailed Student’s t‐test, unless otherwise stated 
[28].  Experiments  were  performed  in  three  sets, 
with  image  sets  containing 1‐4, 1‐6  and 1‐8  cells, 
respectively.  We  repeated  each  classification  10 
times and compare the accuracy, given by 
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where Cnm  is the (n,m)th element  in the confusion 
matrix  of  size  NxN,  with  columns  representing 
prediction,  and  rows  representing  manually 
classified  values.  The  predictive  performance was 
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(where  1‐specificity  is  referred  to  as  the  fallout), 
positive predictive value 
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and negative predictive value 
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Results 

Accuracy 

The  accuracy  for  the  SS‐SVM  was  slightly  higher 
than  that of  the DAGSVM, with 89.4%  for  the 1‐4 
cell case, 80.8% for the 1‐6 cell case, and 74.9% for 
the 1‐8 cell case (Figure 2). The complete result set 
is  given  by  Table  B.1‐3  in  Appendix  B.  For  some 
values,  the  DAGSVM  outperformed  the  SS‐SVM, 
and  for  a  few  isolated  values,  they  were  both 
outperformed  by  the  Random  Forest,  but  overall 
the  predictive  performance  of  the  SS‐SVM  was 
comparable to the DAGSVM.  

 

Figure  2:  Accuracy  as  a  function  of  maximum 
number  of  cells  in  the  classification  for  all  four 
classification methods. Mean values and confidence 
intervals are calculated from 10 classifications. The 
Bayes classifier failed to classify in the 1‐8 cell case. 

The best case positive predictive power of the SS‐
SVM is given in Table 2. The values for the classes 3, 
5 and 7 cells were significantly lower than the rest, 
reflecting the scarcity of images in the test set from 
these  classes.  Figure  3‐4  illustrates  the  predictive 
performance of the SS‐SVM alone. In Figure 3, the 
feature  set was  split  in  two groups, one  set  from 
each ROI.  The  accuracy of  each  classification was 
compared  to  the classification when both ROI are 
combined. The result was improved by up to 45% by 



combining  features  from  both  ROI,  compared  to 
using  features  from one ROI only.  In Figure 4,  the 
Receiver  Operator  Characteristic  (ROC)  is  plotted 
for each class (representing a cell number) and for 
each classification of image series comprising 1‐4, 1‐
6 and 1‐8  cells,  respectively. The mean  sensitivity 
for the classes in the 1‐4 cell set was 82.2%, slightly 

higher than the mean sensitivity of 80.0% for the 1‐
6 cell set and 79.9%  for the 1‐8 cell set.  It  is clear 
from Figure 4, that the spread of values was larger 
for  the  1‐8  cell  set.  The mean  of  the  fallout was 
4.75%  for  the 1‐4 cell case, 4.43%  for  the 1‐6 cell 
case and 5.34% for the 1‐8 cell case.

 

Table 2: Positive predictive value (PPV) and negative predictive value (NPV) for each class of cells in 
classifications comprising images with 1‐4, 1‐6 and 1‐8 cells, respectively. 

  1‐4 cells  1‐6 cells 1‐8 cells

Nbr of cells:  1  2  3  4  1  2 3 4 5 6 1 2 3 4 5  6  7  8 

PPV  89  91  72  81  86 92 55 72 79 83 82 86 46 65 80  77  56  76

NPV  96  95  96  95  99 96 96 95 96 95 98 97 98 95 96  94  98  95

 

 

Figure  3:  Accuracy  as  a  function  of  number  of 
features for the SS‐SVM. The total feature set was 
24 features, a combination of 12 features from the 
inner  embryo  and  12  features  from  the  entire 
embryo  (referred  to  as  “outer”).  Calculation  was 
performed  twice, with  the  training  set  selected as 
10% and 20% of  the  total  image  set,  respectively. 
The classification was performed for 1‐4 cells. Mean 
values and confidence intervals are calculated from 
10 classifications. 

 

Figure 4: ROC of SS‐SVM. Each data point represents 
one class in the image sets 1‐4 cells (diamond), 1‐6 
cells (triangle down) and 1‐8 cells (triangle up). 

Performance 

The performance was evaluated using a standard 4 
core PC with 8 GB RAM, with the code implemented 
in Matlab® 7.12.0.635 (R2011a). Figure 5 illustrates 
performance results. The computation time for one 
classification (including the separation of the image 
set  in  training  and  test  set)  is  plotted  for  each 
calculation  comprising  1‐4,  1‐6  and  1‐8  cells, 
respectively.  For  a  small  class  set  (1‐4  cells)  the 
DAGSVM was comparable to the SS‐SVM, but for an 
increased  number  of  classes,  the  SS‐SVM 
outperformed the DAGSVM by 63% (1‐6 cells) and 



73%  (1‐8 cells). The overall best performance was 
for the Naïve Bayes classifier, outperforming the SS‐
SVM by 86% (1‐4 cells) and 88% (1‐6 cells). For the 
1‐8  cell  case,  no  results  for  the  Naïve  Bayes  are 
shown,  because  the  Gaussian  kernel  failed  to 
estimate the parameters. 

 

Figure 5: Calculation time as a function of maximum 
number of cells  for classification of  the entire  test 
set. Methods used were SS‐SVM (square), DAGSVM 
(diamond),  Bayes  (triangle  down)  and  Random 
Forest (triangle up). 

Discussion 

We  have  demonstrated  the  usefulness  of  spatial 
image  filtering  in  embryo  image  classification, 
showing an  improvement  in classification accuracy 
of  up  to  45%  by  combining  features  from  two 
embryo  regions.  We  further  describe  the 
implementation  of  a  new  supervised  learning 
method,  a  successive  slicing  SVM,  for  fast  and 
reliable  embryo  classification  from  a non‐invasive 
imaging  technique  with  no  need  for  image 
segmentation. Using this method, we demonstrate 
a successful classification of embryo  images up  to 
the 4 cell stage with an accuracy of 89.4% and up to 
the 8 cell stage with an accuracy of 74.9%. To our 
knowledge,  this  is  the  highest  cell  number  in 
embryos  ever  reported  to  be  classified  in  the 
literature. Our method  is shown  to be  faster  than 
the  fastest  and  most  accurate  method  of 
comparison for classification of 8 classes by 73%.  

For the purpose of this study it has been enough to 
illustrate this method using a  limited  image range, 
but the test set for this study has been too small to 
evaluate how well this method would perform with 
a more diverse sample set from a variety of clinics 
with different  conditions  for  imaging  and embryo 
growth. For future work, we intend to expand this 
study to a larger data set. 
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Supervised classification of etoposide-treated in vitro adherent cells

based on non-invasive imaging growth characteristics
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Abstract. Single cell studies using non-invasive imaging is a challenging, yet appealing way to study cellular char-

acteristics over extended periods of time. In some cases, e. g. transplantation culturing, real-time cellular monitoring,

stem cell studies, in vivo studies and embryo growth studies, it is also crucial to keep the sample intact and invasive

imaging using fluorophores or dyes is not an option. From the perspective of digital image analysis, non-invasive

imaging poses several challenges, such as low contrast, high noise levels and weak image gradients, often impeding

the outcome of the computer analysis.

In this study, adherent cell cultures of DU-145 were treated with low concentration etoposide and imaged during

three days. Single cells were identified by image segmentation and subsequently classified on morphological image

features, extracted for each cell. In parallel with image analysis, an MTS assay was performed to allow comparison

between metabolic activity and morphological changes after long term drug response.

Results show a decrease in proliferation rate for low concentration etoposide, accompanied with changes in cell

morphology, primarily leading to an increase in cell area and textural changes. It is shown that changes detected by

image analysis are visible already day 1 for 0.25 micromolar etoposide, whereas effects on MTS are detected only

day 3 for higher etoposide concentrations, leading to the conclusion that the morphological changes observed are not

directly connected to reduction in cell metabolic activity or viability. Three classifiers are compared and we report a

best case positive predictive power of 97.3 per cent for classification of cells as treated/untreated.

Keywords: single cell studies, non-invasive microscopy, low-concentration etoposide, digital image cytometry.
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Fig 1 Algorithmic overview of the classification of cells exposed to a treatment, based on their imaged morphological

characteristics. Images are segmented and filtered, features extracted and used to train a supervised classifier.

1 Introduction

Etoposide is a cytotoxic chemotherapy drug, commonly used as an anti-cancer agent, causing DNA

damage and eventually triggering cell death by apoptosis at high concentrations. The process at

sub-apoptotic concentrations and during long term exposure is poorly understood, but reports of

effects include drug resistance and risk of secondary leukemia. To study the effects of long term

low level exposure, it is necessary to use an imaging set up where the same cells can be monitored

over time.

When treating an organism with a substance in vivo, cells will typically be exposed to a variety

of concentrations, depending on their location within the tissue and the body. Cells will also react

differently when exposed to the same concentration depending on their cell type, tissue type, and

sometimes stage in the cell cycle. Most assays in use today study the average characteristics of

large groups of cells, but under some conditions, individual cell studies as well as bulk studies

could be beneficial.

Single cells can be studied using time-lapse imaging, with or without fluorescent markers or

dyes or using non-imaging marker-based techniques such as flow cytometry. The use of markers

in cell imaging has several disadvantages. It is indirect, invasive, and also makes the cells un-

usable for further tests. In some cases this is not preferable, such as in studies of tissue or cells

for transplantation, the study of embryonic cells and stem cells, or when the sample needs to be

kept in continuous viable condition for a longer study. Also, when performing time-lapse studies

over several days, the need to adjust focus and supervise the imaging equipment requires a time

consuming surveillance by laboratory personnel.

This study was motivated by the desire to be able to detect the treatment concentration of a

toxin by means of non-destructive image analysis of adherent cells in situ for long periods of

time, on a cell-by-cell basis by means of morphological cues (Fig. 1). We use a combination of

Digital Holographic Microscopy (DHM) and image analysis to profile morphological changes in a

common in vitro cell type, which we induce by exposure to low concentration (LC) etoposide, and

model them as a set of feature parameters. Principal component analysis (PCA) and clustering is

used to determine the most prominent set of features. We then use the model to classify the cells
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to the known treatment concentrations and in the end we compare the result to that of a standard

bulk assay, the MTS, for reference. An essential step of the analysis is segmentation of the images

into sub-regions, each describing a single cell. The result of segmentation is in turn affected by

a threshold describing the cell border. We modify a state-of-the-art segmentation procedure by a

spatial filtering using two thresholds, and compare the effect on the resulting classification.

The classification is made on a cell-by-cell basis with cells from cultures exposed to different

concentrations of etoposide. Cells are also combined culture-by-culture in order to make it possible

to compare the results with an established technique (MTS assay), where the evaluation is made

on a culture-by-culture basis. One application for such a method is the study and classification of

cells continuously on a cell-by-cell basis, even within the same culture. This possibility opens up

a whole new perspective on cellular research, where cells are viewed not as a uniform mass, but

rather as a broad spectrum of individual bodies, all contributing in its own way to the characteristics

of the tissue.

1.1 Cell culture and treatment

In our investigation, we used prepared DU-145 cells from cultures.1, 2 When cells are dying, re-

gardless of mechanism, their morphology changes.3, 4 Etoposide has a long history as an anti-

cancer agent5 and has been reported to cause cell cycle arrest, which has been tested previously

using DHM.6, 7 It functions by interaction with the enzyme Topoisomerase II, causing breaks in the

DNA-strand, ultimately leading to apoptosis8, 9 and is usually administered intravenously or orally

in capsule form. It is one of the most widely used chemotherapeutic agents for several types of

cancer,10–12 but its effect is limited by toxicity.10 It is shown13 that both the α and β type of Topoi-

somerase II is targeted by etoposide, but only at concentrations above or equal to 1 µM, although

some growth inhibition was observed at lower concentrations. Bleibel et. al.14 reported half maxi-

mal inhibitory concentrations (IC 50) slightly below 1 µM, suggesting that effects are present also

at low concentrations of etoposide. These conclusions are confirmed by Liu et. al.,15 who also

found that a lower limit for etoposide induced proliferation and viability reduction occurs at ap-

proximately 0.02 µM, and also shows effects on the cell cycle at concentrations ≤ 1 µM (although

for different cell lines). Even lower concentrations were reported to cause changes in phenotype,

and potentially also cause drug resistance or cause secondary leukemia.16

1.2 Digital Holography

Dennis Gabor was first to invent a way to encode the phase of the light in a single recording, i.e. the

hologram.17 The technique was later used as base for the development of digital holography.18–21

Some years later, the first DHM images showing living cells were published.22

Digital holography is a full-field imaging technique where pixel values are directly related to

cellular dry mass, and since the images from a mathematical point of view are similar to those

from a standard epifluorescence microscope, the same image analyzing algorithms can often be

used. In cellular biology, DHM has been used for a number of applications, including in vivo stud-

ies,23 sub-cellular motion within living tissue,24 migration studies25–28 and studies of morphologi-

cal changes,29–32 proliferation33 and apoptosis.34 Fig.2 shows an example of typical morphological

changes in DU-145 cells treated with etoposide, compared to control.
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Fig 2 Example of DU-145, a) control and b) 72h after treatment with 0.5 µM etoposide, imaged with digital hologra-

phy. Image intensity is related to an optical phase shift, which is in turn related to cellular dry mass.

2 Materials & Methods

2.1 Cell culture

DU-145 cells (ATCC R©HTB-81, ATCC LGC Standards, Teddington, UK) were grown in 75 cm2

flasks in Dulbeccos Modified Eagle Medium (DMEM, Invitrogen, Carlsbad, CA, USA) cell culture

media with an added 10% fetal calf serum. Cells were sub-cultivated twice per week to keep the

culture non-confluent.

2.1.1 DHM image capture

For DHM tests, 2·104 cells per well were seeded in 6 well plates (day -1). After 24 h incubation

to allow the cells to attach, fresh media with the desired concentration etoposide (Sigma-Aldrich

Co., St. Louis, USA), solved in DMSO (Sigma-Aldrich) was added (day 0). Images of cells

were captured day 1-3. The experiment was repeated for etoposide concentrations 0.25 µM, 0.5

µM, 1 µM and 5 µM. Since DMSO was used to dissolve etoposide, two controls were used;

untreated cells and cells in only DMSO. DHM images were captured using Holomonitor M4 (Phase

Holographic Imaging AB, Lund), using a 635 nm 0.2 mW/cm2 laser as light source. The 6 well

plate was taken out of the incubator, the lid removed and 15 images were captured of each well,

after which the lid was replaced and the plate was returned to the incubator. All DHM images are

1024x1024 pixels, at a scale of 0.51 µm/pixel.

2.1.2 MTS Assay

Cells were seeded day -1 into a 96-well plate at a density of 5·103 cells per well in 100 µl of cell

culture medium. Six wells per test condition were used. All unused wells were filled with media

including a blank column. After incubating for 24 h to allow the cells to attach, the media was

substituted for new media, with the desired test concentration (day 0). After 24, 48, and 72 h the

plate was then analyzed using the MTS assay. Etoposide was tested at 0.25 µM, 0.5 µM, 1 µM
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Fig 3 Cell filtering using double thresholding. The same image (control day 1) segmented using a) Otsu thresholding,

b) Minimum error thresholding and c) The result of Minimum error thresholding, filtered using the Otsu thresholding

to identify cells.

and 5 µM. As the etoposide was solved in DMSO, a column with only DMSO equal to the amount

in the wells with the most DMSO (i. e. the wells with the highest concentration of etoposide) was

used as secondary control. Twenty micro-liters of MTS (Promega Corporation, Madison, USA)

was added to each well and carefully mixed by tapping the side of the plate. After incubating for 1

and then again after 2 hours, the plate was read by using BIO-TEK micro plate reader at 490 nm.

2.2 Image analysis

To identify single cells as regions of interest (ROI), images were segmented with the microscope

software HoloStudioTM (Phase Holographic Imaging AB, Lund, Sweden), using a seeded water-

shed segmentation.35 Segmented objects smaller than 20 pixels were considered noise and dis-

carded. A crucial step of the segmentation is the threshold calculation defining cell borders. Otsu

thresholding (OT)36 yielded a higher cut-off than Minimum Error Thresholding (MET),37 resulting

in a more accurate pin-pointing of cells as out-of-focus debris in the growth medium was not se-

lected. On the other hand, MET gave a more accurate cell outline (Fig.3). In order to maintain the

accuracy of the border segmentation given in MET, while at the same time restrict the selection to

actual cells (and not sample contamination or image artifacts), we also introduced a pre-processing

step, where we use both segmentations in combination. The location of cells given by the segmen-

tation using OT was used to filter the non-cellular bodies from the segmentation using MET, thus

gaining the advantages of both methods.

We then proceeded to extract a set of grey level image features to use as input for a random

forest classification. The purpose of this was to reduce the information in the image (given as

pixel by pixel), to only relevant variables, v = [v1, v2, , vm, ..., vM−1, vM ], where M is the number

of relevant variables gathered. Here, the term ”relevant variable” is a matter of choice depend-

ing on the experiment. We first collected a set of 22 standard grey scale variables, which we then

characterized using several unsupervised learning techniques (hierarchic clustering, principal com-

ponent analysis) and cross correlated them with the known result. The variables which showed no

morphological change under treatment were excluded from the supervised classification in order

to reduce the risk of over-fitting. A mathematical definition of the selected variables is given in

Section 2.3.
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2.3 Image features

Define the original image F (x, y), with dimensions X and Y respectively, as a 2-dimensional ma-

trix of gray levels i, to a maximum gray level I . Let ψ be the subset of F belonging to the ROI of

one cell selected in the segmentation (i.e. the area), with perimeter ρ.

Define the Gray Level Co-Occurence Matrix (GLCM) P of F as the number of times gray level i

is oriented with respect to gray level j such that where F (x, y) = i and F (y) = j then y = x+ 1,

where i, j ∈ [0, G], and G < I is the number of gray level used in the GLCM. In our case, G = 8.

The result is an intermediate matrix, whose values indicate how often one pixel-value in F (x, y)

tend to be similar to its adjacent values. We normalize the GLCM so that:

G∑

i=1

G∑

j=1

[P (i, j)] = 1, (1)

in this way, each value in P (i, j) will denote the probability of a range of gray levels to appear

in each others proximity. We assume the cells to be randomly oriented, so we satisfy ourselves

with computing only one GLCM along the horizontal (x) direction.

Further define µx, µy, σx, σy as the mean and standard deviations on image F (x, y) in x- and

y-direction, respectively.

µx =

G∑

i=1

i

G∑

j=1

P (i, j), (2a)

µy =

G∑

i=1

G∑

j=1

jP (i, j), (2b)

σx
2 =

G∑

i=1

[i− µx]
2

G∑

j=1

P (i, j), (2c)

σy
2 =

G∑

i=1

[j − µy]
2

G∑

j=1

P (i, j), (2d)

For calculation of the roughness distribution R(x, y), for each ψ we compute:

R = F (x, y)− Ω[F (x, y)], (3)

where Ω is a Gaussian smoothing filter, and (x, y) ∈ ψ.

The following features are used for classification:

Cell area:

A =
∑

x

∑

y

1, (x, y) ∈ ψ, (4a)
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Perimeter length:

P =
∑

x

∑

y

1, (x, y) ∈ ρ, (4b)

Phaseshift integral:

Φtot =
∑

x

∑

y

F (x, y), (4c)

Roughness kurtosis:

Rk =
1

A

∑
x

∑
y

R(x, y)−Rav
4

σ4
, (4d)

Roughness skewness:

Rk =
1

A

∑
x

∑
y

R(x, y)−Rav
3

σ3
, (4e)

Texture energy:

Senergy =

G∑

i=1

G∑

j=1

[P (i, j)]2, (4f)

Texture entropy:

Sentropy = −
G∑

i=1

G∑

j=1

P (i, j) · log[P (i, j)], (4g)

Texture contrast:

Scon =

G∑

i=1

G∑

j=1

|(i− j)|2P (i, j), (4h)

Texture correlation:

Scorr =

G∑

i=1

G∑

j=1

P (i, j)
(i− µx)(j − µy)

σxσy
, (4i)

Texture homogeneity:

Shom =

G∑

i=1

G∑

j=1

P (i, j)

1− |(i− j)|2
, (4j)

2.4 Data analysis

2.4.1 Principal Component Analysis and Clustering

Initially, an analysis of principal components was performed and a continuous modeling using

Partial Least Squares on the 10 most prominent variables.38 The PCA indicate that not all variables

were significant for the classification, so v was cross-correlated with the known result and the

correlation of each component vm of variables was evaluated. The variables for the segmented

cells which showed differences from control with a confidence of 95%, P ≤ 0.05, were then used

to construct a decision tree.
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Fig 4 Proliferation curves for DU-145 under the effect of etoposide 0 µM (dashed), 0.25 µM (diamond), 0.5 µM

(square), 0.1 µM (circle and , 5 µM (cross). Measurements were done at the same time and values for x-axis have

been displaced slightly to display confidence intervals.

2.4.2 Classification

In order to classify single cells as treated or control, we used three different classifiers; a multiclass

Support Vector Machine implementing the Directional Acyclic Graph,40 a Naı̈ve Bayes classifier

and a classification tree using random forests, implementing the CART algorithm.39 The optimiza-

tion criterion was minimization of node impurity as defined by Gini’s diversity index. In order to

reduce tree complexity and avoid over-fitting, we request that the tree produced (for 5 bin classifi-

cation) should have maximum 20, and minimum 9 nodes. The model cells (rows of v(n)) used to

construct the tree were selected randomly as 10% of the total number of available N cells for that

sample (the training set). The rest of the cells (the validation set) were used to test the accuracy

of the result by cross correlation. The process of training and testing was repeated ten times, and

the results averaged. The performance was evaluated using a standard 4 core PC with 8 GB RAM,

with the code implemented in Matlab R© 7.12.0.635 (R2011a).

2.5 Statistics

Errors are given as 95% confidence intervals, unless otherwise stated. To compute the P-values, a

two-tailed t-test was performed. Experiment were repeated three times for concentration 0.25 µM,

four times for 0.5 µM, twice for 1 µM and once for 5 µM. In 90 samples, a total of 66495 cells

were imaged, averaging 738 cells per sample.

3 Results

3.0.1 MTS Correlation and Proliferation

From the daily segmentation of images, we obtain a count of cell proliferation (Fig.4). The cell

growth for the control was close to exponential, and a reduction in cell growth rate was detectable

for etoposide concentrations less than 5 µM, consistent with the MTS results (Fig.5). It is notable

that the morphological changes were detectable already day 1 with DHM for all examined con-

centrations of etoposide, whereas changes in MTS absorbance are only detectable for the highest

concentration of etoposide (5 µM) on day 3.
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Fig 5 MTS absorbance as % of control day 2 and 3, as a function of etoposide concentration, after 2 hours of MTS

incubation.

Fig 6 Variable values compared to control, calculated from sample-wise mean. Day 1 (solid), 2 (dashed) and 3

(dotted) after treatment. x-axis represents etoposide concentration; 0.25 µM (diamond), 0.5 µM (square) and 1 µM

(circle), respectively. Error bars represent standard deviation, and for clarity, each series has been slightly offset in

x-direction.
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Fig 7 Positive predictive power for classification of cells exposed to a concentration or higher (x-axis). Classifications

used are SVM (Black), Naı̈ve Bayes (Grey) and Random Forest (White). Three methods for outline detection were

used in segmentation; Otsu, Minimum Error (Min.Err.) and Minimum Error filtered with Otsu (Filtered). Results have

been grouped according to day of measurement taken.

Fig 8 Trade-off between negative and positive predictive power for filtered segmentation for the case of sorting cells

as being treated with more than x µM etoposide.

3.0.2 Principal Component Analysis and Clustering

PCA showed that the first principal component in almost all cases could account for more than 90%

of sample variability. This was a linear combination of primarily (in decreasing order of strength)

Area, Phaseshift integral and Perimeter length. Physically, these components are all related to the

cell size. This is consistent with these variables showing the highest correlation also when studying

cell average. An initial Partial Least Squares fit revealed the same thing, but the predictive power

of the model was low (results not shown). For a subsequent discrete analysis, we filtered out the

most useful components of the feature vector. After combining all cells from one sample, we could

compare the variables for the sample means for control cells to the variable means for the control.

Most prominent were the differences for area, perimeter length and the integral of the phase shift.

We measured P ≤ 0.05 from day 2 after treatment for 10 of the variables (Fig.6), and use these for

the rest of the analysis, while the others are deemed not significant. A mathematical description of

these entities is given in Section 2.3.
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Fig 9 Typical appearance of DU-145 imaged by Digital Holography after several days exposure to LC-etoposide

treatment.

Fig 10 Performance (computation time in seconds for three classifiers; SVM, Naı̈ve Bayes and Random Forest (RF)

as a function of number of cells classified.
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3.0.3 Cell Classification

With the 5 separate concentrations of etoposide, we had 5 bins available for sorting, but in a real

life situation, we do not expect to know the concentration of the sample. In these cases, it is of more

interest to ask whether a sample is exposed to some concentration c higher than some minimum

value, c ≥ cmin. In this case, the task is reduced to the binary problem of classifying cells as being

treated (c ≥ cmin) or not treated (c ≤ cmin). We use the positive predictive power

PPV =
P (c ≥ cmin) ∪R(c ≥ cmin)

P (c ≥ cmin)
(5)

of treated cells as the comparative metric for the classification. Here, P (c) is the set of cells

being classified as concentration c and R(c) is the set of cells actually exposed to concentration c.

There was a tendency for concentrations to be underestimated, leading to high values of positive

prediction (Fig 7). There was also a lower probability of separating control and 0.25 µM, as well as

of separating higher concentrations from each other. We show a best case positive predictive rate in

separating control from treated (etoposide ≤ 0.25 µM) at 97.3%±1.24 on Day 3, but at a negative

predictive rate of 36.3%±0.01. Results are similar Day 1-2 (results not shown). The best overall

classification was obtained for separating etoposide concentrations above and below 0.5 µM, and

a theoretical trade-off between negative and positive prediction occurs at 3.3 µM (Fig 8). When

comparing the positive and negative predictive power we note a more rapid change from 0.25 µM

to 0.5 µM, reflecting the fact that cell morphology changes more rapidly at these concentrations.

Fig. 7 shows a comparison of classification based on the two original segmentations, compared

to the version with spatial filtering of cells for all three days and methods of classification. The

data on 5 µM was very scarce due to very low number of cells in each image (typically ≤ 10 cells),

giving high standard deviations and low predictive power in results. The accuracy of prediction is

increased throughout Day 1-3 for all classifiers, reflecting the fact that cell morphology becomes

more and more distinct (Fig. 9). In most cases, the multiclass SVM is the best classifier. It is

closely matched by a random forest, but the errors for the random forest are higher, especially

when cell morphology differs strongly. Day 1 there is only marginal difference between the three

segmentation methods, but for Day 2-3 the Otsu thresholding gives the most reliable classification.

The computational performance of the Naı̈ve Bayes classifier is an order of magnitude better

than that of the SVM (Fig. 10), while the RF rank between the two.

4 Discussion

We have demonstrated a method for image analysis, single-cell segmentation and cell classifica-

tion for the analysis of drug response of adherent in vitro cells over long periods of time. The key

elements are a non-destructive optical set-up and a robust image analysis, segmentation and classi-

fication. We chose a seeded watershed segmentation because of its simplicity and availability, but

other segmentations may have worked equally well. However, a common trait for all is the correct

location of cell border, which had a large impact on classification performance. In our case, this

was influenced by the fact that one of the most prominent effects of LC-etoposide exposure was

the increase in cell area. For Day 2-3 the Otsu thresholding gives the most reliable classification.

This can be due to the fact that cell area is larger for treated cells, but that a thresholding includ-

ing the cell perimeter does not contribute significantly to cell classification. Given the low overall

probability to pinpoint the exposure concentration of a single cell, the SVM seems to be the best
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option, despite its longer computational time. For future studies, we will investigate other options

to optimize the classifier, and expand the set of chosen morphological features.

The classification of concentrations ≥ 0.25 µM and control was the most reliable. For future

experiments, we would like to further examine this interval, studying a range of lower concentra-

tions. In our investigation, we focused on lower concentrations of etoposide where cell growth is

inhibited, but cell number not severely reduced and this is reflected in the low cell number available

for analysis of the higher concentrations etoposide (≥ 1 µM). The predictive power of higher con-

centrations etoposide could be readily increased by obtaining more images per cell culture vessel,

at the cost of longer capture time.

The most significant biological finding of this study is the characterization of morphological

changes at low concentrations in the 0.25-1 µM range of etoposide, where no effects are detectable

by MTS absorbance. Using a combination of computer vision techniques for image registration,

followed by standard pattern recognition and a supervised classification, we are able to detect

treated cells at a positive predictive value of 97.3%±1.24, but at a negative predictive rate less than

40%. The best trade-off we obtained between positive and negative predictive value occurred for

etoposide concentrations above 0.5 µM. The cell area is the most dominating morphological effect

of long term LC-etoposide exposure, but textural changes are also prominent. The reasons for these

changes have yet to be examined, but may be connected to cell cycle arrest, since they are accom-

panied by a reduction in proliferation rate. It is shown here, that changes are not directly related

to reduction in viability or metabolism, as detected by MTS. For the three lowest concentrations,

no reduction in viability was detected for the three days examined. For all concentrations, a reduc-

tion in proliferation rate accompanies that of morphological changes. For a future investigation, it

would be of interest to let the incubation proceed to investigate if viability changes would occur

in time. Also, by interrupting the exposure to etoposide, it would be possible to examine if the

effects of etoposide are reversible or not. Most importantly we have demonstrated the usefulness

of non-invasive image analysis when examining long term processes. In this case, there was no

need to set up parallel experiments and any analysis could be done on the same sample container.
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Three dimensional visualisation of microscope

imaging to improve understanding of human

embryo development

Anna Mölder, Sarah Drury, Nicholas Costen, Geraldine Hartshorne

and Silvester Czanner

1 Introduction

Microscopic methodologies can roughly be divided into destructive or non-destructive

techniques. Non-destructive techniques are preferable in many cases, where there is

a need to keep interference with the sample at a minimum. In in vitro fertilisation

(IVF), the embryo under observation cannot normally be manipulated or disturbed

in any way, but must be observed "as is", if it is to be used for implantation. For re-

search purposes, destructive techniques can sometimes be necessary in order to per-

form a particular measurement. Two destructive techniques commonly used in the

study of embryos are fluorescence microscopy [19] and confocal microscopy [20].

Microscopic techniques which can be counted as non-destructive include bright-

and dark-field microscopy, phase-contrast microscopy (PC) [5], Hoffman Modula-

tion Contrast (HMC) microscopy [13], Differential Interference Contrast (DIC) [22]

microscopy and Digital Holography (DH) [2]. Of these, bright- and dark-field mi-

croscopy produce an image of the amplitude of the transmitted (or reflected) light.

However, cellular material is usually highly transparent, and for such objects, a bet-

ter sample-to-background contrast can be obtained by recording the phase of light

instead of the amplitude. PC microscopy and HMC imaging are techniques where

the phase information of diffracted light is optically converted to amplitude infor-

mation. Techniques such as these are very good for visualisation, but the image grey

scale cannot be directly translated to quantitative data. DIC and DH are techniques

where the sample phase-shift is imaged directly, yielding information on sample

thickness and refractive index.

An increasing amount of image material available due to lower cost of hard-

ware and increased ease of data storage has made it more and more cumbersome to

perform image analysis manually. An increasing amount of work has been done in

both open source and commercial projects, developing computational solutions for
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bioimaging problems. Generalised software, with a large number of tools as well

as plugins for specific tasks include ImageJ [1], Icy [4], BioImage XD [17], Cell-

Profiler [18] and Fiji [27]. Each imaging modality often requires its own computa-

tional approach, demanding high technical skills from the user, in order to choose

the correct algorithm for the analytical problem at hand. In addition to the multi-

purpose solutions, there exists a variety of software solutions, particularly designed

for a narrower purpose [26, 33]. A majority of the available computational tools

for microscopic imaging focus on fluorescent microscopy imaging - a reflection of

its common use in research. However, for stem cell research, when working with

tissues intended for transplantation or in IVF, non-destructive imaging modalities

are the only option. Interesting work has been done in modelling fixed embryos

[3, 12, 31], but little has been done so far on modelling and analysing growing em-

bryos in the early stages after fertilisation using non-destructive imaging.

1.1 The Embryo Selection process

When selecting an embryo suitable for implantation, the embryologist may look at

a number of criteria, such as pronuclear appearance and orientation [6, 29], num-

ber, size, shape of blastomeres, degree of fragmentation [10], degree of blastocoelic

expansion, cellular composition and compactness of the inner cell mass and tro-

phectoderm [28]. Discussions concerning the relevance of embryo morphology in

quality assessment exist [11], but it is likely that such evaluations will continue to

play a large part in IVF embryo evaluation also in the future. Traditionally, em-

bryos have been studied using a microscope (commonly HMC) only at certain time

points during the course of their development. It has been shown in time-lapse stud-

ies that the timing of key occurrences can vary greatly between individual embryos

with similar morphologic appearance at the conclusion of the recording period, and

correlation has been shown between the timing of key developmental events and

embryo quality [23]. Such indications, in combination with new possibilities for

time-lapse imaging of human embryos for an extended period of time with fewer

negative effects to their health, make it likely that the use of time-lapse recordings

will continue to increase in the future.

1.2 Embryo Imaging using Hoffman Modulation Contrast

HMC imaging is a popular optical set-up for non-destructive microscopic imaging,

routinely used in embryology. Here, light is passed through a pair of off-axis slits,

converting gradients in sample optical path to bands of light and dark appearance,

depending on the spatial sample direction (Fig. 1). This effect is most apparent when

performing any kind of non-symmetrical image operations. Compare for instance

the output of a derivative of the raw image taken along the horizontal and vertical



3D-visualisation of human embryo development 3

Fig. 1 a) Layout of Hoffman Modulation Contrast optical set-up. Undiffracted light falls on the

grey portion of the modulator (c), and the background of the image appears light grey. Refractive

index gradients in the sample result in deflection of the light to either the black (b) or the white

(d) section of the modulator, so that variations are imaged darker on one side, and brighter on the

other, producing a pseudo three dimensional shadowing effect.

Fig. 2 Gradient of Hoffman Modulation Contrast image in X-direction (a) and Y-direction (b),

respectively, and the direction invariant Canny Edge transformation (c). Note that the contrast of

these images have been reversed for display purposes.

axis, respectively (Fig. 2). In computer vision, a common approach is the application

of an edge finding filter. Here too, the anti-symmetry of the HMC must be taken into

account, because the angle of incident light produces a shift in edges in the upper

half of the image compared to the lower half. In Fig. 2c), a Canny edge detection

filter has been applied to the raw image. It is clear that the filter may find edges on

both sides of the lighter and darker bands, resulting in an uncertainty when trying

to determine the location of the border of the embryo, or of a single blastomere.

However, since the direction of light depends on the azimuthal angle between splits

and sample, this effect can be reduced by rotating the sample around a vertical axis,

and combining information from several images along the rotation.
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Long-term imaging of sensitive material requires the process of capture to be

non-destructive, but also requires that the sample can be kept undisturbed in a

favourable atmosphere for an extended period of time. Novel construction of in-

cubators and cultivation chambers has recently made it possible to monitor embryos

over the course of several days, without any known consequences to their health.

However, there are difficulties other than the purely technical when combining au-

tomatic long term time-lapse imaging and microscopy. When examining embryos

under the microscope, the three dimensional structure is very much of interest. In a

traditional, manually handled microscope, much information can be gained by mak-

ing proper use of the microscope controls: moving the sample around, scanning the

focus, adjusting strength of illumination or making use of various filters and aper-

tures in order to scan the three dimensional object in real time. In an automated

time-lapse set-up, the possibility to manipulate optics is reduced when the optical

set-up must incorporate a climate chamber to accommodate the living cellular ma-

terial. If the microscope is instead meant to sit inside an incubator or other external

chamber, the possibility of manipulating the optics is equally reduced, either be-

cause its operation requires the doors of the chamber to be opened, or because the

optics are shielded to protect them from the high humidity of the chamber. In many

time-lapse set-ups, the possibility of adjusting image quality in real time has van-

ished, and the user is now limited to studying the images some time after they are

captured. This calls for new techniques to visualise this previously captured data in

creative ways, possibly of regaining some of the interactivity lost to the user.

2 Materials and Methods

The anonymised embryos used in these studies were donated by consenting pa-

tients and the study of them was approved by Coventry Research Ethics Committee

(04/Q2802/26) and the Human Fertilisation and Embryology Authority (R0155).

Fresh embryos unsuitable for transfer or cryopreservation and frozen stored em-

bryos no longer required for treatment were cultured using Medicult media (Origio,

Redhill, UK) for up to 7 days and incubated in 37°C CO2 in air. Embryos were oth-

erwise untreated or undisturbed during culture, while some were fixed and stained

at the end of culture in preparation for the imaging process.

For confocal imaging, embryo nuclei were marked with DAPI, fixed on micro-

scope slides and images were captured using the LSM510 confocal system (Zeiss,

Hertfordshire, UK), using 400× magnification, with 1µm between scans. Confocal

images were segmented using a combination of region growing segmentation fil-

ters (Neighbourhood Connected Thresholding and Confidence Connected Thresh-

olding) and Watershed segmentation [25]. A Delauney triangulation was used to

compute the surfaces from the segmented outlines, and the body of each nucleus

was then put together in a three dimensional representation of the complete embryo.

For HMC imaging, time-lapse series were captured using the Embryoscope®

system (Fertilitech, Copenhagen, Denmark), with a 20 minute interval between
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Fig. 3 EmbryoSegmenter for annotation, selection of focus level and blastomere outlines.

Fig. 4 The H-maxima transform extracts peaks higher than h. a) Original image I, subtracted

by a scalar h. b) Greyscale reconstruction of I using I-h as marker. c) Subtraction of grey scale

reconstruction from original image.

images. The embryos were mounted in wells in an EmbryoSlide® (Fertilitech,

Copenhagen, Denmark), one embryo per well, and the imaging used a 635nm LED,

and a Hoffman Modulation Contrast Microscope. Up to seven focal planes, 20µm

apart, were captured simultaneously, resulting in an image stack, where the image

in optimal focus was selected for each embryo using a variation of contrast de-

tection adapted to Hoffman Modulation Contrast microscopy. Blastomere outlines

were carefully selected manually using the software EmbryoSegmenter, as shown in

Fig. 3, and then further processed using Python scripting, where a spherical model

was adjusted to the segmentation outline as described in [8], assuming the segmenta-

tion to be at the waist, i. e. on the widest part of the blastomere. The spherical shape

represents a first order simplification of the true blastomere shape, and can readily

be extended to a more complex model, if information from several focal planes is

considered. However, due to the longer field of view in HMC imaging, compared

to confocal microscopy, in combination with a short depth of field, there is often

bleed-through from objects out-of-focus and a higher uncertainty in the extension

of objects in the focal (z) direction, compared to the xy-direction.
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The image at each focal distance can be described by the two dimensional func-

tion I(x,y). Prior to handling, captured images were filtered with a Gaussian filter to

remove speckle noise. To detect image sharpness, i. e. the focus, a Laplace filter L(I)

was used,

L(I) =
∇

2I

4
=

1

4
· (

d2I

dx2
+

d2I

dy2
), (1)

where the Laplacian has been applied to a 4-connected neighbourhood,

li, j =
1

4
(Ii+1, j + Ii−1, j+ Ii, j+1+ Ii, j−1)− Ii, j. (2)

Note that due to the asymmetrical nature of Hoffman Modulation Contrast Imaging

(Fig. 2), the symmetrical Laplace was chosen, rather than the direction-dependent

gradient.

To detect areas of high sharpness, an H-maxima transform, H, was applied to the

result L(I), using an 8-connected neighbourhood. The H-maxima transform consists

of a morphological grey-scale reconstruction of a marker image using the origi-

nal image as mask, followed by a subtraction of the result from the original image

(Fig. 4). The marker image is obtained from the original image, subtracted with a

constant value h. The result is a set of regional maximas lower than h. For this study,

h = 15% of the image max was chosen. The detected maxima were extended using

a Close transform with a 7 pixel diameter circular structure element, and the result-

ing image was thresholded at 99% of maximum image amplitude and converted to

a binary mask. Holes were removed from the mask using a filling function, and the

mask was then used to extract the corresponding region from the original image, I.

3 Modelling using Confocal Microscopy

The short field of view of a confocal microscope makes it possible to section a sam-

ple volume into image slices and several scans may be used to compile a complete

three dimensional visualisation of embryo structure. In Fig. 5, semi-automatically

segmented outlines of nuclei from several slices have been combined to show the

complete nucelar shape. Fig. 6 shows the three dimensional layout of a human blas-

tocyst, consisting of 121 blastomere nuclei. The nuclei along the perimeter form

the trophectoderm. A denser pack of nuclei to the right of the top view image form

the inner cell mass. A flattening effect due to the mounting of the embryo between

microslides is clearly visible in the side view image. The accuracy of the 3D model

depends on the amount of available data, the xy-resolution and the number of scans

in the z-direction. Confocal microscopy has been chosen here because the low depth

of field allows us to separate the signal between images in the stack, thus obtain-

ing cleaner data. Optical sectioning is to some extent also possible in some non-

destructive techniques, in particular in HMC, which has a relatively low depth of

field compared to other types of light microscopy.
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Fig. 5 Confocal image of blastocyst stage human embryo. Nuclei stained with DAPI have been

segmented. Line plot of eleven segmented outlines, forming the body of a single blastomere nu-

cleus; top view.

Fig. 6 Nuclei of blastocyst stage embryo, modelled after confocal microscope image scans. Front

view and side view, respectively. A flattening effect is visible, where the embryo has been deformed

between the microscope slide and cover slip [21].

4 Three dimensional modelling of Hoffman Modulation Contrast

images

When images are unsuited for automatic segmentation, or when the clinical nature

of the material calls for manual methods to be applied, creative visualisation can

still add value to the analysis. Fig. 7 shows a basic spherical model of a 4-cell stage

embryo, using 4 selected outlines, and a more detailed model, including the zona

pellucida, and internal structures of the embryo. Blastomeres may be located at dif-

ferent positions along the focal axis and the selection of the correct position must be

performed separately for each individual blastomere ( Fig.8). The crucial step in the

modelling is the selection of the appropriate focal plane from the stack of available

images.
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Fig. 7 a) Segmentation outlines at blastomere waist are used to guide spherical cell models. b) All

structures present in the original image can be visualised. Here showing nuclei and nucleoli, as

well as a large fragment (visible to the right of image centre). The different structures have been

artificially coloured for clarity.

4.1 Focal selection

The most critical property of quality for an image is its focus. Without good sharp-

ness, the image will be meaningless for both human eyes and for computerised

analysis. As the use of camera recordings increases around us, both in our daily life,

for the purpose of documentation, communication, surveillance or for recreational

purposes, so it also increases in the laboratory. More and more often, images are

captured as part of the scientific process, as a method of documentation or as a part

of the analytical process itself. The number and complexity of available algorithms

for image segmentation, computer vision or pattern recognition continues to grow

and is likely to play a large role in how we handle data in the future. When we hand

over more of medical surveillance and diagnostic tasks to automation, it is crucial

that we can rely on the accuracy of these automatic procedures. One way to assure a

level of quality, and to make sure we do not waste time trying to analyse material of

poor standard, is to make sure that the images introduced to an analytical pipeline

are captured at an optimal focus.

Many algorithms for automatic focus rely on computation of the power spec-

trum [32]. In cameras with moving lenses, it is also possible to adjust the focus

based on the image contrast, a method referred to as contrast detection autofocus.

Several images are then captured in sequence, while searching for local maxima of

the image contrast or the gradient of the image contrast. This is usually not done

for the entire image but for a selected area of interest. Several autofocus algorithms

have also been evaluated for microscopy [7, 9, 24, 30]. In optical microscopy, where
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Fig. 8 6 cell stage embryo, with blastomeres modelled as spheres, rotated about its central axis.

Bounding box added for clarity. Connected regions between blastomeres differ depending on blas-

tomere size and location.

the depth of field is usually very short, the entire embryo is rarely in focus at one

optical setting.

Fig. 9 and Fig. 10 illustrates the extraction of regions in focus, based on the

contrast detection algorithm, from the image stack of a human embryo. The embryo

is at the blastocyst stage and has the shape of a hollow sphere with cells covering its

walls. Due to the varying distribution of cells, the spherical shell of the embryo may

vary in tissue content. The stack moves from slightly above the horizontal embryo

central plane and downwards until it reaches the embryo base, where also structures

on the bottom of the embryo container are encountered.

4.2 Calculation of blastomere connectivity

During the cleavage stage, as the blastomeres undergo mitosis, contact regions be-

tween them often increase, as cellular communications are initiated. At the onset

of the compaction stage and at the following cavitation, the blastomeres adhere to-

gether more closely and start to form a single interacting multicellular organism. In
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Fig. 9 Hoffman Modulation Contrast image of blastocyst stage embryo at 136.2h, showing one

original image (a) and seven images, captured at separate focal planes, with extracted regions in

optimal focus (b-h). Focal planes cover the embryo from slightly above the embryo waist (b),

down to bottom of the containing well (h). The inner cell mass is in focus on the first slide (b). The

original image corresponds to the 5th image in the series (f). Images (b)-(h) have reversed contrast

for display purposes.

this way, the developing embryo eventually transforms into a complete entity, rather

than a package of loosely aggregated cells.

In Fig. 11, six steps of development from one to seven blastomere stages of a

cleavage stage embryo have been modelled.

When modelling each blastomere as a sphere, it is possible to compute an esti-

mate of the blastomere connectivity, C. Let R1 and R2 be the radius of two intersect-

ing model spheres, located a distance d ≤ R1 + R2 from each other (Fig. 12). We

assume the two spheres follow the physics of a double bubble [16]. Let a be the dis-

tance from the centre of the sphere with radius R1 to the central point of intersection

between the two bodies. The intersection will take the shape of a circle, with radius

r, giving the contact area,

Acon = πr2
. (3)

The connectivity

C =
Acon

(Acon +Auncon)
(4)

where the part of the spherical surface outside the intersection, Auncon can be calcu-

lated numerically from the model;

Auncon = 4pπR2 (5)

where p is the part of the spherical surface of the model not contained within the

neighbouring sphere. The value p is given by integrating over the surface of the
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Fig. 10 7-image stack of Hoffman Modulation Contrast images of blastocyst stage embryo at

136.2h, and the extracted focused regions. The extracted regions have reversed contrast for display

purposes.

sphere across an angle ϕ and dividing with the total area of the sphere,

p =
1

4πr2
·

π∫

−π

ϕ∫

0

r2sin(θ)δθ ·δϕ, (6)

where

sin(ϕ) =
r

R1,2
. (7)

In Fig. 13, the blastomere volume and connectivity have been calculated for the

embryo in Fig.11.

5 Conclusion

We have shown how two dimensional image data can be used to construct a simple

three dimensional model, which in turn can be used to extract additional data from

embryological data sets and also how computer analysis may be used to supplement

two dimensional imaging. With a three dimensional display, it is possible to view

the sample from different directions, thus getting a clearer view of its spatial layout,



12 Anna Mölder et al.

Fig. 11 Cleavage stage embryo observed during development from 0 to 34 h, showing 1, 2, 4, 5, 6

and 7 cell embryos, respectively. The boundary of the zona pellucida is indicated in grey.

Fig. 12 The intersection plane between two spheres is described by a circle, definitions

and improving interaction with the sample. Using 3D plotting, not only can we get

a much more intuitive understanding of the embryo structure and the positioning

of blastomeres relative to each other, it is also possible to take measurements of

cellular or nuclear volume and blastomere connectivity, which are not possible with

a single scan.

When optically sectioning microscopy data, it is not always possible to rely on a

short illumination path along the focus axis, as is possible in confocal microscopy,
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Fig. 13 Blastomere volume and connectivity for the embryo in Fig.11. Blastomere volume has

been normalised to the volume of the zygote and to number of cells in the embryo. The connectivity

is displayed as percentage of surface area. Bars show both mean and standard deviation, calculated

for each number of blastomeres. Apart from the 4 cell stage, which differs in both volume and

connectivity, the total volume is constant, whereas the connectivity increases

and the image will always suffer bleed-through from out-of-focus areas. We illus-

trate here how this problem to some extent may be overcome using pattern recogni-

tion and image treatment. A reliable and robust algorithm for focus level detection

may be useful not only as a pre-processing step for image analysis, but also as a

method for automatic focus of microscope hardware, when the images are being

captured during long periods of time, when the capturing process is automatic, or

when the microscope is placed in a climate chamber, as is often the case in time-

lapse sequencing.

It is a challenging task for future developers, researchers and entrepreneurs to

emulate real life events and actions by visualisation tools used to carry out analyti-

cal medical tasks. Generally speaking, the more technical, detailed and descriptive

a function is, the longer, harder and more time consuming it is to replicate. Mi-

croscopic images are among the most detailed to be found, and the implications of

making wrong decisions in a clinical environment are potentially severe. Hence, any

software solution must be implemented with great care. However, it is not always

necessary to simulate every aspect of reality, and a healthy scepticism for technol-

ogy must not prevent us from embracing it in areas where it can increase knowledge

and help reduce human suffering. The task of designing a model which simulates all

the relevant features of a growing human embryo in a realistic manner will without

doubt require a high degree of future cooperation between software developers and

clinical scientists active in the field.
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