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Abstract 17 

FAU-type zeolite was prepared using Irish shale rock and tested as a catalyst in the liquid-18 

phase esterification of oleic acid (a model test reaction for biodiesel production). A systematic 19 

study was conducted (over the stated preparation ranges) by varying the water:shale ratio (4:1 20 

to 15:1 by mass), and mixing (1-24 h), aging (6-48 h) and hydrothermal treatment times (6-72 21 

h) to determine the optimal parameters. XRD confirmed that the product purity was highly 22 

dependent on the experimental conditions used. The BET surface area of the calcined FAU-23 

type zeolite was 571 m2g-1 and its crystal purity was comparable to that of a commercial zeolite 24 

Y. The prepared zeolite was catalytically active in the esterification of oleic acid with ethanol 25 

reaching a maximum of 78% conversion after 90 mins, which is practically identical to that 26 

recorded for commercial zeolite Y. 27 

 28 
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 30 

1. Introduction 31 

The need for a reliable supply of fuel is increasing due to growing human population and 32 

expanding economies in both developing and developed countries. One innovation that 33 

addresses this requirement is fracking, which allows previously unattainable oil and gas 34 
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reserves to be extracted from deep beneath the Earth’s surface [1]. This typically occurs in 35 

shale rock, which is a sedimentary rock composed of a mixture of clay minerals formed by 36 

deposition of particulates and organic matter. Shale can be removed at shallower levels by open 37 

pit mining and, thereafter, the oil is separated from the shale by pyrolysis at high temperature. 38 

The vast majority of what remains is oil shale ash, which may be used for soil treatment and 39 

cement production, but millions of tonnes are added to landfill annually with associated costs. 40 

Efforts have been made, therefore, to use shale as a cheap and widely available starting material 41 

to generate value-added products. Shale is also found in areas without containing fossil fuels. 42 

Collectively, these regions contain huge reserves of shale rock that lie at/immediately below 43 

the surface and are, therefore, easily accessible and an (almost) limitless supply of starting 44 

materials for further synthesis. 45 

 46 

Zeolite are high surface area materials that have been widely used in areas such as water 47 

treatment and purification, humidity control, and heterogeneous catalysis [2]. To date, the 48 

majority of established syntheses have used artificial reagents by heating a solution of some 49 

form of silica, alumina and alkylammounium salts in water, which over time forms a solid 50 

precipitated aluminosilicate zeolite [3]. Zeolites may also be prepared from naturally occurring 51 

reagents. Clays, rocks and ash residues from combustion of solid fuels contain large amounts 52 

of oxygen, silicon and aluminium that have similar chemical compositions to those of some 53 

aluminosilicate zeolites. Fly-ash, for example, is produced in coal-fired power plants and has 54 

been used to prepare zeolites, albeit initially with low crystal purity [4-10]; the purity was 55 

improved by employing the alkali fusion method [11-14]. Kaolin, a naturally occurring 56 

mineral, has been well studied as a starting material for zeolite synthesis and, to date, a wide 57 

range of different zeolite types have been prepared [15-25]. In a recent paper, fly ash-kaolinite 58 

mixtures were used to synthesise zeolites at low temperature [26]. We recently reported the 59 

successful preparation of zeolite Y from kaolin; the prepared material demonstrated structural 60 

characteristics comparable to those of a commercial zeolite and was a highly active catalyst in 61 

the esterification of oleic acid [27]. The (trans)esterification of natural oils to produce biodiesel 62 

is well known, and a number of reviews have been published on the use of zeolite catalysts in 63 

biodiesel production [28-33 and references therein]. Oil shale ash has been used to prepare 64 

zeolite types in impure form; A, which was used to remove heavy metals from aqueous solution 65 

[34,35], PI [36,37], hydroxysodalite [38] and a composite structure containing types A, X and 66 

hydroxysodalite [39]. 67 

 68 
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Here, we show that surface shale rock from Ireland is an excellent reagent to prepare faujasite 69 

(FAU-type zeolite). The zeolite characteristics are found to be very dependent on the choice of 70 

experimental conditions. The method developed here gives FAU-type zeolite in pure form, 71 

which is an improvement on the mixed phase materials and high quantities of quartz impurity 72 

previously reported [34-39]. The prepared zeolite is an active catalyst in the esterification of 73 

oleic acid, an important model reaction for biodiesel production, with near identical catalytic 74 

properties to those of a commercial zeolite Y. 75 

 76 

2. Experimental 77 

2.1 Materials 78 

The following is a list of the materials’ source/supplier and purity; shale rock was collected 79 

from the surface of a recently tilled field on a working farm in county Wexford, Ireland, washed 80 

with water to remove all soil residue and dried at 120 °C for three hours; sodium hydroxide 81 

(NaOH) pellets, extra pure, Scharlau; sodium silicate (Na4SiO4), 99% purity, BDH Chemicals 82 

Ltd.; ammonium chloride (NH4Cl), Sigma Aldrich; absolute ethanol (C2H5OH) Sigma Aldrich; 83 

phenolphthalein, 2% in ethanol, Sigma-Aldrich. Commercial zeolite Y was purchased from 84 

Qingdao Wish Chemicals Co. Ltd. 85 

 86 

2.2 Zeolite preparation and optimisation 87 

The clean shale was crushed in a ball mill apparatus, sieved to <90 µm and calcined in air at 88 

800 °C for 4 h to remove organic matter. 10 g of calcined shale was then refluxed with 40 cm3 89 

of 5 M HCl at 85 °C for 4 h (to remove Fe) and the product recovered by filtration. 1 part (by 90 

mass) of calcined shale was mixed with 1.5 parts (by mass) of 40 wt % aqueous NaOH solution 91 

and the mixture was heated at 850 °C in air for 3 h in a furnace to get fused shale. The fused 92 

shale was then crushed to powder form. Thereafter, varying amounts of fused shale and sodium 93 

silicate were added to distilled water in polypropylene bottles, mixed (stirred) at room 94 

temperature for 1 h, aged under static conditions at room temperature for 24 h, hydrothermally 95 

treated at 100 °C for 24 h and the product recovered by filtration. Unless where stated 96 

otherwise, this procedure was used to conduct a study to determine the influences of (in the 97 

following order): (a) water content: 2 g fused shale and 1 g sodium silicate were added to 8, 98 

12, 16, 20 and 30 g distilled water to give water:fused shale ratios of 4:1, 6:1, 8:1, 10:1, 12:1 99 

and 15:1; (b) mixing time: 1 g fused shale and 0.5 g sodium silicate were added to 8 cm3 of 100 

distilled water and mixed for 1, 3, 6, 12, 18 and 24 hrs; (c) aging time (under static conditions): 101 
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1 g fused shale and 0.5 g sodium silicate were added to 8 cm3 of distilled water, mixed for 3 102 

hrs and aged for 6, 12, 18, 24 and 48 hrs; (d) hydrothermal treatment time: 1 g fused shale and 103 

0.5 g sodium silicate were added to 8 cm3 of distilled water, mixed for 3 h, aged for 18 h and 104 

hydrothermally treated at 100 °C for 6, 12, 18, 24, 48 and 72 h. 105 

 106 

To convert the prepared zeolite from Na+ to NH4
+ form, 90 g of zeolite were added to 250 cm3 107 

of 2 N ammonium chloride and stirred in a round bottom flask at room temperature for 2 h. 108 

The solid was recovered by filtration, washed with distilled water and the ion-exchange 109 

procedure was repeated a further two times using 60 g and 30 g, respectively. The solid was 110 

again recovered by filtration, washed with distilled water, dried for 12 hrs at 120 °C and 111 

calcined in air at 500 ºC for 4 h. 112 

 113 

2.3 Characterization 114 

X-Ray diffraction (XRD) was conducted in ambient conditions using a Panalytical X’Pert 115 

Powder diffractometer with Cu Kα radiation (λ = 1.5406 Å). All powder diffraction patterns 116 

were recorded from 4 to 50° 2Θ with step size 0.026 and step time 50 s, using an X-ray tube 117 

operated at 40 kV and 30 mA with fixed 1/4° anti-scatter slit. Nitrogen adsorption/desorption 118 

measurements were carried out using a Micromeritics ASAP 2020 Surface Analyser at -196 119 

°C. Samples were degassed under vacuum (p < 10-5 mbar) for 12 h at 350 °C prior to analysis. 120 

BET-surface areas of the samples were calculated in the relative pressure range 0.05-0.30. 121 

Microscopic images were recorded using a JEOL JSM-5600LV scanning electron microscope 122 

(SEM). Semi-quantitative chemical analysis was performed by energy-dispersive X-ray 123 

spectroscopy (EDAX) using a detector from Oxford Instruments. 124 

 125 

2.4 Catalyst testing 126 

The esterification reaction of oleic acid with ethanol was performed by reflux in a 500 ml batch 127 

reactor placed in a thermostatic oil bath under stirring. The desired amount of catalyst was 128 

dried before reaction at 130 °C for 2 h. The reactor was loaded with 50 ml (44.75 g) of oleic 129 

acid and the desired amount of pre-heated ethanol was then added to give an ethanol to oleic 130 

acid molar ratio of 6. Esterification was carried out at reaction temperatures 40, 50, 60 and 70 131 

°C. 5 ml samples were withdrawn from the reaction mixture at 15 minute intervals, and 132 

centrifuged for 10 min at 3000 rpm to separate the solid zeolite from the liquid phase. The 133 

supernatant layer was analysed by titration with 0.1 N KOH, using phenolphthalein indicator, 134 

to evaluate the acid value (AV) as shown in the following equation; 135 
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                                          AV =  
ml of KOH ×N ×56

Weight of Sample
                                       (1) 136 

From the acid value, the conversion of oleic acid can be calculated for each amount of the 137 

catalyst as shown in the following equation; 138 

                                        conversion% =
AVt0−AVt

AVt0
 x100%                                          (2) 139 

where: 140 

 AVto (acid value of the reaction product at time 0) 141 

 AVt (acid value of the reaction product at time t) 142 

 143 

3. Results and Discussion 144 

3.1 Removal of Fe and alkaline fusion 145 

The XRD patterns showing the effects of calcination, acid leaching and alkaline fusion are 146 

shown in Fig. 1. The untreated shale (dried at 120 °C) is composed primarily of chlorite, 147 

laumontite and quartz [34-39]. Calcination in air at 800 °C removes chlorite completely and 148 

causes partial decomposition of laumontite. Quartz remained after calcination and its 149 

diffraction peaks actually increased in intensity. Acid leaching was done to eliminate Fe from 150 

the shale as it competes with Al in the zeolite framework. The reduction in the orange-brown 151 

colour and Fe signal in EDAX, Fig. 2, confirm the removal of iron. Acid leaching also removed 152 

the remaining laumontite and caused a reduction in the peak intensity for quartz. The XRD 153 

pattern for NaOH fused shale confirms that quartz was removed completely by alkaline fusion 154 

and that sodium silicate and sodium aluminosilicate were the predominant phases remaining. 155 

These species are soluble in alkaline solution and provide the nutrients for the formation and 156 

eventual growth of zeolite crystals [3]. It is not possible to compare our findings directly with 157 

previous reports on the phases formed with shale (as opposed to kaolinite or fly-ash) after 158 

alkaline fusion, as no such results are reported [34-39]. However, it is well known that sodium 159 

silicate and sodium aluminosilicate are formed by the alkaline fusion of kaolinite, e.g. Belviso 160 

and Fiore have published widely on such preparations [15]. This finding, therefore, supports 161 

the formation of sodium silicate and sodium aluminosilicate in the present study, considering 162 

that kaolinite and shale have somewhat similar chemical compositions. 163 

 164 

3.2 Optimisation of zeolite preparation 165 
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The next part of the study was to vary the experimental conditions in a systematic manner to 166 

find the parameters that give the highest quality zeolite (as measured by most intense XRD 167 

signal) from each experiment. The influence of water content was first determined, and its 168 

optimal value was then used in all further preparation methods. Next the stirring time was 169 

varied and its optimal value determined and used thereafter, and so on for aging time and 170 

hydrothermal treatment times at 100 °C in that order. The XRD patterns in Fig 3 show that the 171 

content of water has a profound effect on the degree of crystallinity. The zeolite was 172 

progressively favoured up to water:fused shale ratios of 8:1 and thereafter decreased sharply 173 

with only quartz present using a 15:1 ratio. For the sample prepared using ratio 8:1, the most 174 

intense diffraction peaks confirm the presence of faujasite (FAU) zeolite according to the 175 

International Zeolite Association (IZA) [40,41]. It makes sense that there is an optimum water 176 

to shale ratio, as the water content alters both the amount and alkalinity of solution that can 177 

dissolve reagents for nuclei formation and zeolite growth. To our knowledge, there are no 178 

reports showing the influence of the water to shale ratio in the preparation of zeolite. Hu et al. 179 

found that the ratio of water to sodium hydroxide had a profound effect on the crystals phases 180 

prepared from shale; the framework type of the product changed from cancrinite to 181 

hydroxysodalite sodalite when the water to Na2O ratio was decreased from 25:1 to 5:1 [38]. In 182 

the preparation of FAU-type zeolite from fly ash, the quantities of a dense sodium aluminium 183 

silicate phase and quartz were reduced when the water to alkaline fused fly ash ratio was 184 

increased from 4:1 to 10:1 [14].  185 

 186 

Both the mixing and aging time (Figs. 4 and 5) experiments showed FAU zeolite was formed 187 

over the full range of chosen conditions showing that FAU- zeolite forms readily from shale 188 

but with large variations in crystal quality; the best conditions were 3 h mixing and 18 h aging 189 

time. Mixing/aging the suspension at RT allows the formation of nuclei that increase the 190 

eventual yield of zeolite. Fig 6 shows XRD patterns as a function of hydrothermal time; again 191 

there was variation over the chosen range, with the highest FAU purity formed after 24 hours. 192 

This finding matches well with Hu et al. who reported that the purity of hydroxysodalite 193 

prepared from shale increased with hydrothermal treatment time with the best zeolite formed 194 

after 24 hours (although longer times were not reported) [38]. Our findings also agree with that 195 

reported by Fernandes Machado et al. which showed that zeolite X peaked over the range 12-196 

48 h at 100 °C and decreased substantially at longer times [39]. In the same synthesis, zeolites 197 

A and hydroysodalite peaked after 72 h and 96 h, respectively. The results suggest that there is 198 

an evolution of crystal phases over time as follows: zeolite X → zeolite A→ hydroxysodalite. 199 
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Similar phase changes to progressively more stable structures were observed for mesoporous 200 

materials [42]. 201 

 202 

The results of water:shale ratio and mixing, aging and hydrothermal treatment times are 203 

quantified in Fig. 7 by plotting the d111 peak intensities. All four variables have a major 204 

influence on the FAU purity evidenced by the variation of peak intensity with changes in any 205 

given variable. The maximum peak intensities for each experiment confirm that the FAU 206 

zeolite with the highest intensity prepared by us (after optimising water:shale ratio and mixing, 207 

aging and hydrothermal treatment times) has comparable intensity to that of a commercial HY 208 

zeolite (dashed line). Overall, the results show that FAU zeolite can be prepared in pure form 209 

from shale rock using the method described here. This is a significant improvement on the 210 

procedure used by Fernandes Machado et al., which results in composite materials containing 211 

zeolites A, X and hydroxysodalite, all of which are contaminated by quartz [39]. Because of 212 

the large number of experimental variables (time, temperature, reagents) it is difficult to assign 213 

with certainty the exact cause(s) of the different results observed. While the general conditions 214 

of both syntheses are somewhat similar, the procedure used by Fernandes Machado et al. 215 

incorporated alumina and conducted alkaline fusion at 350 °C, while our method uses sodium 216 

silicate with alkaline fusion at 850 °C [39]. Unfortunately, no XRD results were provided to 217 

show the effect of alkaline fusion on the crystal phases present in shale, so based on the 218 

presence of quartz in all the final materials it is possible that quartz was not completely removed 219 

during the alkaline fusion step [39]. The variation may arise from the different minerals present: 220 

the shale contained illite, labradorite, quartz and chlorite, while our shale contains laumontite, 221 

quartz and chlorite. It is also interesting to note that the XRD patterns for the shale ash used in 222 

the syntheses of zeolites A [34,35] PI[37] and hydroxysodalite [38] showed that the relative 223 

amounts of quartz differed; for example the shale used to produce PI was reported to contain 224 

mainly feldspar while quartz was predominantly found in the shales used to prepare zeolite A 225 

and hydroxysodalite. 226 

 227 

The total pore volume of the shale zeolite is 0.73 cm3 g-1 and BET surface area is 571 m2g-1, 228 

which is 8.6% lower than that for commercial zeolite Y, 625 m2g-1. This high surface area 229 

provides further proof that the FAU zeolite prepared here is of high purity. SEM images, Fig 230 

8, confirm the characteristic particle shape of FAU and agglomeration between particles in a 231 

similar manner to that of commercial zeolite Y. Fig. 8 also shows that the particle size for both 232 



8 
 

samples was approximately 2 μm. The Si/Al ratio of the shale zeolite was estimated to be 1.98 233 

based on EDAX, Fig. 8, which is in the range for zeolite Y. 234 

 235 

3.3 Esterification reactions 236 

The esterification of oleic acid with ethanol is used as a test reaction to assess the catalytic 237 

activity of the shale zeolite. This is a reversible reaction so an excess quantity of ethanol, 6:1 238 

ethanol/oleic acid molar ratio, is used to enhance conversion. The fractional conversions of 239 

oleic acid, Fig 9, increase, as expected, with reaction time at all temperatures but decreases 240 

slightly after 90 mins at 70 °C. The conversion of oleic acid is highly dependent on reaction 241 

temperature where the maximum conversion increases from 45% at 40 °C to 78% at 70 °C. 242 

This conversion compares well to that found in our previous study, which showed maximum 243 

oleic acid conversion of 85% for identical reaction conditions at 70 °C [27]. Fig. 10 shows that 244 

zeolite prepared from shale has almost identical conversions as that for the commercially 245 

sourced zeolite Y, which strongly suggests that the shale zeolite has Bronsted acidity and 246 

catalytic properties practically identical to that of commercial zeolite Y. 247 

As with any esterification reaction, the formation of water prevents complete conversion of 248 

oleic acid by promoting the reverse reaction (hydrolysis) and driving the equilibrium to the left. 249 

Oleic acid conversions between 60 and >99% were achieved for different montmorillonite-250 

based clay catalysts by running the reaction at 150 °C for six hours, which removed the water 251 

produced during reaction by evaporation [43]. In another report, >99% oleic acid conversion 252 

was found after 100 mins at 110 °C using sulfuric acid as catalyst whereby the water was 253 

removed using a zeolite A adsorption column [44]. However, the temperatures used in these 254 

methods also removes the ethanol required for esterification so is not ideal for real applications. 255 

There are relatively few reports showing zeolite catalysed oleic acid esterification reactions, 256 

and the majority use methanol where the following maximum conversion rates (of oleic acid) 257 

were recorded; 86% for zeolite beta [45,46]; 81% for mordenite, 80% for ZSM-5, and 78% for 258 

FAU-type zeolite [47]; and 83% for ZSM-5 modified with citric acid [48]. For oleic acid 259 

esterification using ethanol, the maximum conversion over zeolite NaY was 27% [49]; the high 260 

purity FAU-type zeolite prepared in this paper using shale shows significantly greater activity 261 

(78%). 262 

 263 

4. Conclusions 264 

FAU-type zeolite was prepared from shale rock using a combination of acid leaching, alkaline 265 

fusion and hydrothermal treatment. The quality of the FAU was progressively improved 266 
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through rigorous testing of the effects of preparation conditions on crystal purity. The FAU-267 

type zeolite with the highest purity was active in the catalysed esterification of oleic acid, a 268 

model test reaction for biodiesel production, with conversions comparable to those of a 269 

commercially sourced zeolite Y. 270 
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