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Abstract 
 

In Wireless Sensor Networks (WSNs), routing data towards the sink leads to unbalanced energy consumption among 

intermediate nodes resulting in high data loss rate.  The use of multiple Mobile Data Collectors (MDCs) has been proposed in 

the literature to mitigate such problems. MDCs help to achieve uniform energy-consumption across the network, fill coverage 

gaps, and reduce end-to-end communication delays, amongst others.   However, mechanisms to support MDCs such as 

location advertisement and route maintenance introduce significant overhead in terms of energy consumption and packet 

delays.  In this paper, we propose a self-organizing and adaptive Dynamic Clustering (DCMDC) solution to maintain MDC- 

relay networks.  This solution is based on dividing the network into well-delimited clusters called Service Zones (SZs). 

Localizing mobility management traffic to a SZ reduces signaling overhead, route setup delay and bandwidth utilization. 

Network clustering also helps to achieve scalability and load balancing. Smaller network clusters make buffer overflows and 

energy depletion less of a problem. These performance gains are expected to support achieving higher information 

completeness and availability as well as maximizing the network lifetime. Moreover, maintaining continuous connectivity 

between the MDC and sensor nodes increases information availability and validity.  Performance experiments show that 

DCMDC outperforms its rival in the literature.  Besides the improved quality of information, the proposed approach improves 

the packet delivery ratio by up to 10%, end-to-end delay by up to 15%, energy consumption by up to 53%, energy balancing 

by up to 51%, and prolongs the network lifetime by up to 53%. 

 
Keywords: Wireless sensor network routing; Clustering protocol; Mobile data collectors; Dynamic network clustering; Mobility management; 

Self-organisation. 
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1. Introduction 

 
In the last two decades, Wireless Sensor Networks 

(WSNs) have significantly changed the way we interact 

with our environment. WSNs appear in several scientific, 

commercial, health, surveillance, and military applications. 

Unattended sensor nodes offer maintenance-free operation 

and can detect, characterize and disseminate situational 

awareness continuously. After years of research on the 

opportunities provided by WSNs and their potential value, 

many of those looking to operate in the WSN market are 

starting to consider the potential practical problems, 

including  data  management.  Once  a  WSN  is  up  and 

running at full scale, it will generate large quantities of data 

that need to be processed and analyzed in real time. 

The success of WSN applications is dependent on 

knowing that information is available, the type of 

information, its quality, its scope of applicability, limits of 

use, duration of applicability, likely return, cost to obtain 

and a host of other essential details. To aid in data 

collection, the use of mobile nodes has been widely 

suggested in the literature. Node movement can be 

controlled and optimized to improve data collection and 

analysis. For instance, mobile nodes can be used to bridge 

disconnected parts of the network. Furthermore, node 

mobility can optimize the energy consumption and lifetime 

of a WSN. For example, moving the sink to data sources or 

moving the sensor nodes towards the sink is one way to 

avoid the communication bottlenecks. However, the 

deployment of mobile nodes instigates frequent topological 

changes that need to be resolved before data collection can 

be resumed. 

In this paper, we propose a holistic self-organizing 

mechanism that is adapted from [1]. The proposed 

mechanism is based on clustering the network in 

cooperating zones. This is achieved by abstracting the 

network to a three-tier pyramid model as shown in Fig. 1. 

Each tier contains a different class of sensor nodes. The 

bottom tier hosts static nodes, which form the majority of 

the network population. Sensor nodes at this tier perform 

sensing and communication tasks. The middle tier hosts a 

small number of resource-rich mobile nodes, called Mobile 

Data Collectors (for short, MDCs). MDCs have long-range 

radio and are considered power rich devices. The top tier of 

the hierarchy hosts the fixed data sink(s).   At this tier, 

information received from different sources is processed 

and presented to end users. 

It is desirable to design a distributed and self-organizing 

strategy featuring adaptability to network topology changes 

to reduce the cost of topology updates. Higher energy 

efficiency can be achieved by reducing the frequency of 

connectivity disconnections. Fewer and shorter 

disconnections results in reduced signaling overhead and 

lower packet loss. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. A Three-tier network structure. 
 

The mobility management protocol proposed in this 

paper assumes that nodes have knowledge of their physical 

location. Nodes can determine their location in several 

ways. The Global Positioning System (GPS) is the simplest 

localization method. GPS modules are known for their high 

energy consumption. They also increase the total cost of 

each sensor nodes. Currently, the CRIUS MultiWii MWC 

I2C-GPS module costs less than $5. GPS-based solutions 

can become very expensive in large-scale WSN 

deployments.  Therefore,  several  localization  algorithms 

that do not relay on GPS modules have been introduced in 

the literature, e.g., [2, 3].   Localization algorithms use 

various information available from the network in order to 

calculate the correct position of each sensor node. There 

are several localization techniques for indoor and outdoor 

environments described in the literature [4-6]. The use of 

localization  algorithms  introduces  additional  challenges 

that need to be addressed, including: (1) Localization 

latency:  the  localization algorithm should  take  minimal 

time to cope with mobility speed; (2) Increased control 

messaging: managing nodes location information requires 

communications and transmission of control packets. In 

mobile WSN where nodes change their location frequently, 

the localization control overhead will increase significantly 

causing network congestion and leading to higher energy 

consumption. In the proposed system, we assume that all 

MDCs and a small percentage of nodes are equipped with 

GPS modules. Other nodes in the network can estimate 

their location by using a centroid formula, where anchor 

nodes transmit their location to the blind nodes. This 

method keeps the system cost low, while maintaining low 

localization overhead [2, 3, 5]. 

The remainder of this paper is organized as follows: 

Section 2 examines background and related work in the 

area of MDCs in WSNs. Section 3 briefly introduce each 

phase of the proposed   dynamic clustering technique, 

DCMDC. Section 4 presents the details DCMDC processes 

and  phases.  Section 5  discusses  how  DCMDC  handles 

orphaned nodes. Section 6 presents the evaluation results 

of DCMDC and compares them against two of its best 

rivals in the literature. Section 7 concludes the paper. 
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2. Related Work 

 
Network clustering has been widely investigated by the 

WSN research community in the past two decades. In such 

clustering schemes, sensor nodes are divided into multiple 

logical groups according to some rules. These rules may be 

relate to a node’s deployment, capabilities or other network 

dynamics [7]. The literature is very rich with effective 

clustering approaches designed for WSNs. The work in [8] 

focused on preserving complete coverage of the monitored 

area  over  long  periods.  The  authors  in  [9]  proposed  a 

cluster based algorithm for tracking a mobile target to 

achieve  high  tracking  accuracy  and  energy  efficiency. 

Other propositions exist in the literature devoted to study 

mobility estimation and mobility supporting protocols in 

WSNs; a recent schedule-based MAC protocol for static 

and mobile nodes is investigated in [10]. 

Several hierarchical architectures have been considered 

for various applications of mobile WSNs [7, 11-15]. In 

some approaches, cluster heads are used as MDCs besides 

their sensing duties. MDCs are used to carry information 

from the sensing field and deliver it to a fixed sink. In these 

approaches, sensor nodes send data over short-range 

communication, from a sensor to the MDC, which requires 

less transmission power due to the reduced bridging 

distance between data sources and the sink. MDCs also 

avoid the effect of bottlenecks, especially in areas around 

the sink, such as packet loss, increased end-to-end delay 

and energy depletion. The existence of multiple data 

collectors reduces the breakdown of interconnections; 

meaning that if one data collector fails, data can be 

transmitted through another data collector. 

Although   using   MDCs   is   desirable   due   to   their 

simplicity and efficiency, they introduce major challenges. 

Managing MDC location information requires 

communication and transmission of control packets. When 

the   location   changes   frequently,   the   control   packet 

overhead will increase, which leads to higher energy 

consumption. This may possibly dissipate the energy gains 

achieved by the MDCs. Moreover, the movement of MDCs 

may introduce significant data delivery delay caused by 

link establishment time, velocity control, etc. Finally, the 

MDC travel trajectory calculation is a complex problem. 

There are several approaches devoted to the study of 

hierarchical mobile WSNs. Energy efficient routing 

protocols for multiple MDCs are investigated in [16, 17]. 

The placement and relocation of multiple MDCs is 

investigated in [18]. Data collection approach to support 

mobility with multiple MDCs is presented in [19]. Secure 

cluster head election, where the cluster head is not a 

malicious node, is presented in [20].   However, there is 

only  a  handful  set  of  papers  directly  addressing  the 

problem of relay nodes mobility management. 

In [21], the author proposed an Energy-efficient Cluster- 

based Data Gathering Algorithm (ECDGA) for mobile 

WSNs. The network model of ECDGA consists of 

heterogeneous sensor nodes. Static nodes are deployed in a 

grid to manage dynamic changes in the topology and relay 

sensed data from nearby cluster heads to a slow-moving 

sink. The cluster head selection is based on the residual 

energy and location of the mobile nodes. The authors show 

that  ECDGA  effectively  prolongs  the  network  lifetime. 

Nonetheless, ECDGA algorithm does not consider mobility 

parameters  such  as  mobility  speed  and  direction  when 

allocating mobile nodes to clusters. 

In [22], the authors proposed a self-organization method 

for mobile devices in cluster-based ad-hoc networks. This 

method is  implemented through a  multi-role agent 

approach. Each agent could be a leader, gateway or 

member; the roles assignment is based on the remaining 

energy  in  the  node  and  its  neighborhood.  When  the 

network is deployed, a role assignment process takes place. 

When the remaining energy in the leader agent reaches a 

certain threshold, it reduces its transmission range to 

and when it reaches a lower threshold, the leader election 

procedure is executed. However, the strategy establishes 

too many leaders in the network, which causes bandwidth 

wastage, and a large number of collisions. Furthermore, the 

sensor node weight function considers only the residual 

battery and the number of neighbors. It does not consider 

the node position, mobility speed and direction. 

In [23], a hybrid multipath routing algorithm with an 

efficient clustering technique is proposed. The algorithm 

uses an energy-aware selection mechanism to choose the 

fusion nodes to route the data to a data sink. A node is 

chosen to play the role of a fusion node if it has high level 

of energy, high transmission range and lower mobility. The 

network is divided into multiple square zones, each square 

is considered a cluster that is managed by a selected fusion 

node. The square zones allow the union of zones without 

holes, and simplify the design of clustering algorithm. 

However, the mobility metric is calculated as the measure 

of relative motion of nodes. The mobility measure is 

normalized by the number of nodes and the continuous 

functions of time that represents the quantitative measures 

of relative motion between nodes. 

Recently, Battery-Level Aware Clustering (BLAC) was 

presented in [24]. BLAC considers the battery-level 

combined with another metric to elect the cluster head. It 

comes in four variants: BLAC-bg combines battery level 

and node degree, BLAC-bs uses the battery level and node 

density, BLAC-rg and BLAC-rs. The last two variants run 

in two steps. They first apply graph reduction followed by 

network clustering. Each of these variants presents specific 

features that make them more suitable than others under 

different conditions. If nodes are mobile, BLAC-bs is the 

best choice, as it offers a better stability against mobility. 

More recently, the anthers of [25] proposed Efficient 

Routing Protocol for Multiple Mobile Sink Based Data 

Gathering (ERMMSDG). This protocol uses a biased 

random walk method to estimate the next position of the 

MDC. To determine the optimal data transmission path, a 

rendezvous point selection with splitting tree technique is 

used. Whenever the sink passes through the rendezvous 
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point, it receives the collected data. Alternatively, a relay 

node from its neighbors relays packets from rendezvous 

point to the sink. The protocol reduces the signal overhead 

and improves the triangular routing problem. However, the 

relay node selection mechanism does not consider the 

mobility angle and speed of the mobile collector; it only 

considers the distance to the mobile collector. This could 

lead to routing the data through a longer path, introducing 

considerable delays on data delivery and bandwidth 

wastage. Furthermore, the relay node selection mechanism 

does not consider the residual energy of the relay node, 

which may lead to network segmentation, and unbalanced 

energy in the network. 

Similar to ERMMSDG, MDC/PEQ  [26] is an approach 

that uses mobile data collectors to achieve low-latency and 

reliable mobile data gathering in delay-sensitive 

applications. In MDC/PEQ, MDCs broadcast configuration 

beacons periodically. Initially, when a sensor node receives 

a beacon, it joins the MDC’s cluster and updates its routing 

information accordingly. For connection reconfigurations 

(handoffs), sensor nodes use the signal strength of the 

beacon as well as the number of hops to reach the MDC. 

Each node holds two communication paths, one is a multi- 

hop direct link to the sink, and the other is to an MDC. 

When a node has data to be transmitted, it uses the shorter 

path, i.e., the path with the smaller number of hops. If the 

both paths have the same number of hops or the node is not 

associated with an MDC, the node relays its data through 

the direct path to the sink. If an intermediate node has a 

route to an MDC, it forwards the data to that MDC. This 

approach achieves good timeliness as nodes do not wait for 

an MDC to move nearby. However, MDC/PEQ produces 

high   MDC   advertisement  overhead  that   need   to   be 

received, processed and forwarded. Furthermore, it uses the 

path with the smaller number of hops, which is not 

necessarily the most reliable or energy efficient. Finally, 

sensor nodes that do not belong to any cluster use the direct 

route to the sink to transfer their data. This leads to 

conveying data through several hops, thereby contributing 

to an increase of packet collisions and losses. 

There is a wide body of literature on clustering 

algorithms designed for WSNs. We refer interested readers 

to [27, 28], recent surveys that provide a comprehensive 

review to data collection approaches designed for static and 

mobile  WSNs.  Most  of  the  reviewed  approaches  are 

proved effective and efficient. However, there are few 

attempts to address the problem of relay node mobility 

management [29-31]. These attempt to deal with mobility 

as the need arises and do not deal with the fundamental 

challenges and variations introduced by mobility on the 

WSNs. We believe that there is a need for a holistic self- 

organizing strategy that organizes MDCs in such a way 

that signaling overhead is reduced, while keeping energy 

consumption and resource usage to the minimum. 

Additionally, such a strategy should take into consideration 

MDC mobility parameters such as mobility direction and 

speed. 

3. Dynamic Clustering for Mobility Management 

 
In this section, we introduce a self-organizing and 

adaptive Dynamic Clustering (DCMDC) solution to 

effectively manage topological updates and maintain 

communication routes in mobile WSNs.    Aiming at 

reducing mobility-triggered signaling overhead, we design 

and implement a dynamic self-organizing protocol that 

partitions the network to a set of well-delimited logical 

network clusters called Service Zones (SZs). The dynamic 

clustering of the network into SZs is based on the convex 

hulls algorithmic problem. Organizing the network in SZs 

offers several advantages. Firstly, it reduces signaling 

overhead,  consequently  bandwidth  utilization,  by 

localizing mobility management traffic. It is well 

established in the literature that less congestion reduces 

queuing delays. Secondly, network clustering is a well- 

tested solution to achieve scalability and load balancing. 

Grouping nodes into smaller logical sets makes buffer 

overflows and energy depletion less of a problem. Finally, 

maintaining continuous connectivity with the MDC when it 

is in the communication range of sensor nodes increases 

the system availability. 

In dynamic network clustering, the frequent boundary 

updates  presents  a   significant  challenge.      Collection 

Zones (CZs) are introduced to tackle this challenge. CZs 

are designed such that their maintenance is quick and 

efficient. CZ maintenance cost is reduced by performing 

efficient  neighbor  discovery  and  localized  computation. 

The CZ of an MDC is defined by the set of nodes directly 

connected to that MDC.  The movement of an MDC within 

its defined CZ does not require connectivity or 

neighborhood update.  This enables nodes within a CZ to 

view their MDC as a virtually static node for a certain 

period.   Depending on its speed, sensor nodes can easily 

predict the connectivity period with their present MDC. 

The result of the network clustering process is based on 

the number of MDCs, their positions and their movements. 

For each MDC, a convex group of nodes that will form the 

MDC's SZ is defined. The construction of convex groups 

does  not   exhibit  high  computational  complexity [32]. 

While an MDC is moving inside its SZ, it performs several 

operations to keep the network topology up to date. These 

operations  include,  updating  its  SZ  members  list, 

connecting  new  nodes  or  disconnecting  existing  nodes 

from its SZ. These operations ensure that sensor nodes can 

be allocated to the best MDC that can forward its data to 

the sink more effectively. Simultaneously, sensor nodes 

should be allocated to MDCs to load balance their 

workload. 

Fig. 2 shows the conceptual relationship between the SZ 

and the CZ. A SZ is a designated geographical zone around 

an MDC, containing a set of nearby sensor nodes. The SZ 

forms a convex group of nodes constructed by the MDC. 

The MDC is responsible for all communication in that SZ. 

MDCs  exchange  control  messages  with  each  other  and 

only with sensor nodes that belong to their SZ. In this way, 
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every sensor node receives control messages only from the 

MDC that it belongs to. As a result, flooding problems 

from  MDCs  to  sensor  nodes  in  the  bottom  layer  are 

avoided. 

 

 
 

 
Fig. 2 - The logical structures defined around an MDC 

 
A CZ of an MDC is a circular area around an MDC with 

radius equal to half of the radio range of sensor nodes. In 

Cartesian coordinates, the center of the CZ is the physical 

position of the corresponding MDC before it moves. An 

MDC communicates directly with nodes that are inside its 

CZ. An MDC can move inside its CZ and stay directly 

connected to the same set of nodes. This design exploits 

the fact that the active radio coverage of MDCs is wider 

than their CZs.  Therefore, sensor nodes can consider the 

MDC static until it moves out of its CZ. Hence, it does not 

need to issue any neighbor discovery or update messages 

during this period. SZs are assumed larger than the CZs. 

The SZ and the CZ change dynamically depending on the 

MDCs  speed  and  direction  information.  The  position, 

speed and direction of the nodes can be obtained by a GPS 

device providing latitude, longitude, altitude, speed and 

travel track. 

Initially, directly after network deployment, DCMDC 

runs through three phases: neighborhood discovery, CZ 

creation and network formation. Fig. 3 illustrates the 

various phases of the network setup process. During the 

neighborhood  discovery  phase,  MDCs  create  binding 

tables for storing nodes' information. MDCs proactively 

advertise their presence to neighboring sensor nodes who 

choose the optimal MDC to join. During the CZ creation 

phase, each MDC constructs its CZ boundaries and 

determines which sensor nodes are located inside it. These 

sensor nodes will have direct communication with the 

MDC. During the network formation phase, reconciliation 

of the overlapped CZs occur and SZs are formed. 

The next section goes through the detailed DCMDC 

processes of setting up the network to prepare it for 

operation. The details of each setup phase are presented 

and discussed. 
 
 
 
 

Table 1   Binding table entry example 

 
 

Fig. 3 - Network setup procedure. 
 

 
4. DCMDC Protocol Details 

 
4.1. Neighborhood Discovery Phase 

 
In the literature, neighborhood discovery can be 

classified into  the  following  main categories: proactive, 

e.g., [33], reactive, e.g., [34] and hybrid, e.g., [35, 36]. In 

the proactive approach, the data collector periodically 

broadcasts an advertisement message. When the message is 

received by a sensor node, that node creates a route to the 

data collector and relays the advertisement message to its 

neighbors. This results in many duplicated messages 

consuming valuable bandwidth and energy. In contrast, in 

the reactive approach, discovery messages to initialize or 

update  connections  are  initiated  by  sensor  nodes.  The 

sensor node broadcasts a connection request message in the 

network. When a data collector receives the message, it 

unicasts   a   reply   message   containing  its   details   (for 

example, its location and available resources or services). 

This approach saves bandwidth and energy as it sends 

requests only when information is needed. However, the 

main drawback of this approach is the high latency in data 

collector discovery and bottlenecks around the data 

collectors. The hybrid approach uses a combination of the 

two above approaches by considering the disadvantages of 

both of them. 

Sensor nodes in DCMDC use a hybrid MDC discovery 

approach to adapt to various network conditions. Before 

joining  a  SZ,  a  sensor  node  uses  a  proactive  MDC 

discovery approach to identify the optimal MDC to 

associate themselves with. After the construction of SZs, 

orphaned nodes use a reactive MDC discovery approach to 

participate in the network. The details of how DCMDC 

deals with orphaned nodes are given in Subsection 5. Every 

MDC maintains a binding table to store information about 

its CZ membership. Table 1 shows the content of the 

binding table with example values. The binding table is 

used to store information about sensor nodes that are 

connected to the MDC. 

Node ID X position Y position Track Battery level Last update time 
 

1 
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(1) 
 
 

As   illustrated  in   Fig.   4,   every   MDC   proactively 

discovers its neighbors. It broadcasts advertisement 

messages  containing  its  location  information.  When  a 

sensor node receives a packet, it sends it to all neighbors, 

which results in significant redundancy, collisions and 

contention.  To reduce the impact of such consequences, 

MDCs broadcast advertisement messages to all nodes that 

are closer than the maximum distance, d, over which an 

advertisement message can be transmitted. On receiving 

the                message, each sensor node makes a decision 

about the optimal MDC with which to associate itself.  The 

decision  is  based  on  the  Optimal  Sink  Selection 

algorithm (OMSS) published in [37]. OMSS is based on a 

parameter called the Connection Expiration Time (CET). 

In the following, a brief explanation of the OMSS decision 

algorithm is provided. 

 

 
 

 
Fig. 4 - Neighborhood discovery messages diagram. 

 
Let be  a  sensor  node  that  received  an 

message from an MDC. The MDC moves in the    direction 

in two-dimensional space with respect to the positive X- 

axis.     Let                be  the  location  of  a  sensor  node 

and                     be the location of the MDC.  Suppose that 

the MDC travels at the speed of          .  The velocity of the 

MDC on the     and    axis can be calculated using the 

equations (2) and (3), respectively. 
(2) 
(3) 

To calculate the CET, we use equation (1) that factors 

the location of the MDC, its movement speed and direction 

from a sensor node, link reliability and available resources. 

In equation (1),      is a constant of proportionality for the 

workload adjustment.     is the maximum distance that the 

MDC forward advertisement message over. 

The  link  reliability       is  measured  in  terms  of  the 

weighted average of the probability    of successful packet 

reception by an MDC     from node . Because these 

communication  links  are  bidirectional,  we  consider  the 

weighted  average  of  probabilities  of  both  transmission 

directions. is defined as: 

(4)

 
Algorithm 1  presents the steps followed by a  sensor 

node to determine the optimal MDC. maxConnection is 

defined as the remaining connectivity time to the current 

MDC. When a sensor node is not connected to an MDC, it 

waits for a short period to allow for advertisement from all 

MDCs in its vicinity to arrive.  Then, it joins the MDC that 

offers the highest CET value.   If a sensor node, which is 

currently associated to an MDC, receives an advertisement 

message with a better CET value, then it leaves the current 

MDC and joins the new one. If the node is within the 

vicinity of multiple MDCs with similar CET value, then 

the node joins the MDC with the lowest workload level. 

 
Algorithm 1: OMSS  Algorithm 

Input: MDC details, sensor node location
 

Begin
 

MDC_ID = MDC_1; maxConnection = 0
 

for every MDC MDCi do
 

if CETMDCi > maxConnection then
 

maxConnection = CETMDCi;
 

MDC_ID = MDCi ;
 

else
 

if CETMDCi = maxConnection then
 

if MembersNoMDCi < MDC_ID.MembersNo then
 

MDC_ID = MDCi ;
 

endif
 

endif
 

endif
 

endfor
 

return MDC_ID;
 

End
 

Output: ID of the selected optimal MDC

 
After making the decision, each sensor node replies with 

a                   message to the chosen MDC. Finally, MDCs 

receive replies from different nodes and add them to its 

binding table. 

 
4.2. Collection Zones Creation Phase 

 
One solution to minimize neighborhood updates is to 

predict when a node is expected to leave the SZ. The basic 

and simple way for neighborhood maintenance is by using 

periodic  discovery  messages.  However,  the  most 

significant drawback for this method is choosing the rate at 

which the               messages are sent. A high beacon rate 

results in increased bandwidth usage and communication 

cost. In contrast, a low beacon rate may possibly miss 

important topology changes or events where critical 

reconfigurations take place. 
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pair . Let the function return a 

set of nodes  that encloses the nodes in set , i.e., 

border  nodes.  is  the  smallest  convex  region  that 

 

 

 

 
 

Fig. 5 - MDC coverage zone and collection zone. 

 
In dynamic clustering of the network to convex hulls, 

updating   convex   envelope   using                    messages 

consumes high bandwidth and energy. To determine when 

a convex hull update is necessary, we propose and define 

a CZ.  CZs  allow  nodes  to  determine  when  to  issue  a 

neighbor discovery message and reconfigure their local 

connections. 

Let                                     be  the  set  of  sensor  nodes 

within the MDC active communication range. Then, the 

CZ is defined as: 

(5)

 
where is the distance between the sensor node and the 
MDC  and is  the  active  communication range  of  the 

MDC. 

An MDC can move inside its CZ and stay directly 

connected to the same set of nodes. As long as the MDC is 

inside its CZ, it does not need to issue any neighbor update 

messages. In Fig. 5, the MDC defines the CZ as a smaller 

inner circle of radius    in its active communication range. 

Initially, when an MDC creates its CZ, it will be located in 

the centre of the created CZ, Fig. 5-A. The MDC checks its 

binding table and determines which sensor nodes belong to 

its CZ (i.e.,                     ) using Equation 6. 

In Fig. 5-B, although the MDC has moved, no update is 

required as long as the MDC is inside its CZ perimeter. 

When an MDC leaves its CZ, the collection zone will be 

updated and discovery messages will be exchanged to 

reconfigure the network changes. The update process 

includes adding some nodes located inside its active 

communication range to the updated CZ, and removing 

nodes that belong to the original CZ. Some nodes that are 

already in the original CZ remain inside the updated one, 

i.e., the intersection area between the two collection zones 

in (see Fig. 5-B). The MDC does not exchange 

configuration messages with these nodes. 

 
4.3. SZ Formation Phase 

 
The SZs formation phase commences when MDCs have 

their CZs created. Throughout this paper, the terms convex 

hull  and  SZ  are  interchangeable.  In  mathematics,  the 

convex hull of a set     of points in the Euclidean plane is 

defined as the intersection of all convex sets containing 

or as the set of all convex combinations of points in    . A 

set is said to be convex if for every pair of points within the 

set, every point on the line segment that joins the pair of 

points is also within the set. 

Let                                      be  a  set  of  sensor  nodes, 

where              is the minimum number of nodes to create a 

valid  convex  hull.  Each  node       is  represented  as  a 
 

 
 
 
contains    and is called the convex hull of the nodes set    . 

If        is the number of nodes in    , then                   .  The 

set     stores the list of vertices of the convex hull in counter 

clockwise order. 

MDCs use local information stored in their binding 

tables to construct their SZs.  The vertices of the SZs will 

be the farthest connected nodes from the MDC. However, 

to maintain load balancing among various SZs, the SZs 

formation phase is composed of two steps: CZ 

reconciliation and SZ construction. The former step is only 

performed by MDCs that have overlapping in their CZs. 

The latter step is performed by all MDCs in the network. 

(6) 

 
 

4.3.1. Collection Zone Reconciliation 

 
At the end of the CZ creation phase, a situation may 

arise where two or more MDCs have overlapping CZs. 

This situation can also occur after the SZ construction step 

if an MDC updates its SZ after moving to the vicinity of 

another  MDC.  These  situations  can  result  in  creating 

small SZs that contain MDCs close to the perimeter of their 

corresponding SZ. 

Consider the scenario in Fig. 6, where there are three 

MDCs that are physically close to each other and have 
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overlapped CZs. In this case, each MDC constructs 

relatively small SZs.  The MDCs will be located close to 

the perimeter of their SZs. Such situation is far from ideal 

for the following reasons: (1) It is possible that the MDC 

will very soon move outside its SZ. This results in a major 

SZs re-configuration at minor intervals, during which 

information delivery is interrupted. (2) Spatial events 

become more difficult to capture in a smaller SZ without 

high-level  coordination.  (3)   Mobility  management, 

because the update procedure runs within each SZ 

independently. To  overcome the  problem of  over- 

clustering the network, we propose a CZ reconciliation 

algorithm, designed for choosing the appropriate MDC to 

serve the sensor nodes connected to the other MDCs. 

 

 
 

Fig. 6 - MDC merging situation. 

 
Fig. 7 shows the steps MDCs follow to discover an 

overlap. MDCs check for CZs overlapping when it directly 

receives an advertisement message from another MDC. If 

the distance separating two MDCs is less than the length of 

their CZ diameter, then an overlap is detected. Upon CZ 

overlap     detection,     the     discovering     MDC     sends 

an                         to  the  advertising  MDC.  Then,  both 

MDCs execute the CZ reconciliation algorithm described 

below. 
 

 

 
 

Fig. 7 - MDCs overlapping messages diagram. 

Fig. 8 illustrates the CZs reconciliation algorithm. 

Candidate MDCs start by finding the MDC that has more 

members in its binding table. This MDC, called primary 

MDC, is chosen to form the new SZ. The members of other 

SZs will be transferred to the new MDC. The MDC with 

the greater number of members is retained to avoid the 

higher cost to transfer them to a different SZ.  When two 

candidate MDCs have equal number of members, the MDC 

with the higher latitude is retained. 

Fig. 9 is a  step-by-step illustration of the messages 

exchanged during this process. The primary MDC sends a 

message  to  other  involved  MDCs.  The 

receiving MDCs send messages to 

their members. Each member sends  message to 

join the primary MDC. Upon receiving the message by the 

primary MDC, it creates an entry for the new members to 

its   binding   table.   Finally,   the   primary   MDC   sends 

messages  to  the  other  MDCs, 

which then update their binding tables. 

 
4.3.2. Constructing the Service Zones 

 
This subsection presents the details of the convex hull 

construction algorithm. Convex hulls are constructed to 

determine the sensor nodes on the boundary of SZs and 

form groups. The convex hull construction is based on the 

Graham scan algorithm [38]. The algorithm first explicitly 

sorts the nodes in                      and then applies a linear- 

time scanning algorithm to finish building the hull. To 

compute the convex hull    , the function CH() performs the 

following three phases. 

Phase  I.  Select  an  anchor  point  (base  node)        in    , 

normally this is the node with the minimum y-coordinate. 

In case of a tie, the leftmost node (minimum x-coordinate) 

in the set is selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 - Collection zones reconciliation. 
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of the convex hull of in counter clockwise order. Fig. 

11 presents a convex hull after performing Phase III. 

 
 

Fig. 9 - CZs reconciliation algorithm messages diagram. 

 
Phase II. Sort the remaining nodes of    , i.e.,                  , 

lexicographically by polar angle, measured in radians. 

Interior nodes on the ray can not be convex hull points and 

are excluded during sorting. Once the nodes are sorted, 

they are connected in counter clockwise order with respect 

to the anchor node     . The result is a simple polygon as 

shown in Fig. 10. Note that the algorithm performs no 

explicit computation of angles. 

 
 
Fig. 11 - phase III of Graham's scan algorithm. 

 
Let  the  vector               represent  the  line  segment 

between the last two nodes in the stack      . To demine that 

a new node    is on the left of the line segment            , the 

MDC applies the right hand-rule, by checking the 

orientation of the cross product                           , which is 

equivalent to equation (7). 

Then, the node    is left of the line segment               if the 

result of equation is positive             . The pseudo-code in 

Algorithm   2   provides   the   details   of   Graham   Scan 

Algorithm for constructing convex hulls. 

 
Algorithm 2: Graham Scan Algorithm 

Input: a  set of points S = {P = (P.x,P.y)} Begin Select the rightmost lowest point P0 in S Sort S radially (ccw) about P0 as a center { Use isLeft() comparisons 
For ties, discard the closer points 

 

 
 
 
 
 
 

Fig. 10 - Sorting phase of Graham's scan algorithm. 

 
Phase  III.  After  pushing the  anchor  node        onto  the 

stack     , nodes are scanned in counter clockwise order, 

maintaining at each step a stack        containing a convex 

chain surrounding the nodes scanned so far. At each node 

the following test is performed: 

a. If       forms a left turn with the last two points in the 

stack      , or if        contains fewer than two points, then 

push     onto the stack     . 

b. Otherwise, pop the last point from the stack        and 

repeat the test for    . 

The process halts when the algorithm returns to the 

anchor point     , at which point stack       stores the vertices 

}
 

Let P[N] be the sorted array of points with P[0]=P0
 

Push P[0] and P[1] onto a stack Ω
 

while i < N do
 

Let PT1 = the top point on Ω
 

If (PT1 == P[0]) then
 

Push P[i] onto Ω
 

i++
 

endif
 

Let PT2 = the second top point on Ω
 

If (P[i] is strictly left of the line  PT2 to PT1) then
 

Push P[i] onto Ω
 

i++
 

else
 

Pop the top point PT1 off the stack
 

endif
 

endwhile
 

END
 

Output: Ω = the convex hull of S

 

(7)
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4.4. Network Clusters Maintenance 

 
The logical CZ and SZ membership requires regular 

updates. This section provides a complete picture of how 

network clustering is maintained. For handling changes in 

network topology due to frequent MDC mobility, the 

proposed update mechanism is triggered periodically by 

MDCs. The update mechanism provides a continuous 

process to keep track of changes in the network. 

To reduce the delay in implementing performance-critical 

logical zone updates, the update mechanism provides local 

checks and calculations performed by MDCs; sensor nodes 

only participate in the process when the MDCs detect a 

change. This mechanism is energy efficient since updates 

are limited in scope; only the transferring MDCs and 

interconnected neighboring nodes are aware of the 

handover. 

When an MDC is moving out of its CZ, a new CZ is 

created and nodes belonging to the corresponding SZ are 

reconfigured. When an updated CZ crosses its defined SZ 

boundary, the previously constructed SZ is destroyed and a 

new SZ will be constructed. An SZ update may remove 

nodes that are no longer in an MDC vicinity, or add nodes 

disconnected from another SZ. Fig. 12 shows an MDC 

moving in a southerly direction and out of its SZ. 

The MDC starts by scanning its binding table to 

determine all nodes that are further than    from it (where 

is the maximum distance of a node to the MDC). These 

nodes are disconnected by a  message. Next, the 

MDC  sends  advertisement messages to  the  new  sensor 

nodes that are  within a  distance .  Upon receiving the 

advertisement,  unconnected  sensor  nodes  respond  by  a 

message.  The  previous  procedure  excludes 

nodes that are already connected to the original service 

area; these nodes only forward the advertisements. Fig. 13 

shows the details of the cluster local update mechanism. 

The cluster update mechanism is periodically performed 

by the MDCs. An MDC checks whether it is inside its CZ 

by comparing the distance between its location and the 

center of its CZ with the CZ radius. If that distance is 

greater than the radius of its CZ, then the MDC is not 

inside its CZ and the CZ will be updated. It is important to 

point out that the updated CZ could overlap an existing CZ. 

In this case, the CZ reconciliation algorithm is executed, 

and hence one SZ would be constructed for both MDCs. 

After a CZ update, the MDCs calculate the estimated 

remaining distance and time in their current SZs. This 

information is used by the MDC to determine when to 

update its SZ. Intuitively, the MDC will intersect one of the 

SZ  edges  after   some  certain  time.  To   calculate  an 

estimation for  this  time  and  remaining distance  for  the 

MDC inside its SZ, the intersection point of the MDC and 

the SZ edge must be predicted. 

Let    be the line segment between endpoints,      and    , 

the MDC current position and its new location after it 

crosses the SZ, respectively. The extended line through 

and     is given by the parametric equation (8): 
 

 
 
 

Fig. 12 - Service zone update. 

(8)
 

with the  line  direction  vector.  Then  the 
segment contains those points with . 

Let a convex hull  be given  by 

vertices      going  counter  clockwise  around 

the hull, and let   . Also let  be the edge (line 

segment)   for   ;  and 

be the edge vector. Then, an outward-pointing 

normal vector for     is given by                                           , 

where        is the 2D perpendicular operator. 

To determine the hull edge that will intersect with the 

line segment        , we scan the hull edges checking if the 

vector from       to       points to the outside of the edge. 

When                            , there is no intersection with the 

edge, so ignore this edge, and continue processing the other 

edges. 

As indicated in Fig. 14, intersection occurs when 

.   =0,  since  any  vector  parallel  to  the  edge is
 

perpendicular to the edge normal vector. Substituting for 
and solving for  , we get: 

(9) 

 
 
 

Fig. 13 - SZ updating mechanism 

at the intersection point ,   is plugged back into 

the first equation 
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Fig. 14 - MDC and SZ intersection 

(10)

 

Disconnecting  nodes  during  updating  service  areas 

can result in 'orphaned nodes'. An orphaned node is a node 

that is not connected to any MDC. Such a node loses its 

connectivity to neighboring nodes or is unable to obtain an 

advertisement message from  any of  the  MDCs as  it  is 

located outside the MDCs radio range. An orphaned node 

may keep attempting to connect to its previous parent. 

Orphaned nodes lead to segmentation problems, where 

the network is divided into many unconnected segments. 

This situation could also occur when MDCs are located 

distant from each other, and there are unconnected nodes 

between the SZs. Such a situation may lead to 

disconnections and loss of data from orphaned nodes and 

other parts of the network. To resolve the orphaned node 

problem,  we  opted  to  extend  the  SZs  to  the  whole 

monitored area by using the following steps: 

1.  If a node does not receive an advertisement from an 

MDC or a gets disconnected, it waits for a back-off 

interval. 

2.  If the node still did not receive an advertisement, it uses 

a reactive discovery approach by sending out an MDC 
The pseudo-code in Algorithm 3 provides the details of 

SZ update prediction algorithm. 
solicitation message to its neighbors to obtain MDC 

information. 

   3.  Neighbors forward the message to the MDC and wait 
   Algorithm 3: MDC and SZ intersection   

Input: a 2D segment S from point to point
 

a 2D convex polygon CH with    vertices

 
Begin

 
if then    is a single point, so then

 
test for point inclusion of in CH; and

 
return the test result (TRUE or FALSE);

 
endif

 
Initialize:

 
for the min intersecting segment  parameter;

 
is the segment direction vector;

 
for every do

 
Let an outward normal of the edge    ;

 
N = - dot product of (P0-Vi) and ni;

 
D = dot product of dS and ni;

 
if (D == 0) then

 
S is parallel to the edge ei

 
if (N < 0) then

 
P0 is outside the edge ei

 
return FALSE since S cannot intersect CH;

 
else S cannot leave CH across edge ei then

 
ignore edge ei and

 
continue to process the next edge;

 
endif

 
endif

 
Put t = N / D

 
endfor

 
End

 
Output:  P(t) = P0 + t * dS

 

5. Handling Orphaned Nodes in DCMDC 

 
This section discusses the orphaned nodes problem and 

how the DCMDC protocol handles and maintains their 

connectivity. 

for reply. In case of the neighbor is also orphaned, the 

node enters another back off interval to allow their 

neighbor to obtain the MDC information. 

4.  The MDC sends its information to the forwarding node. 

5. The forwarding node receives the MDC information 

message and forwards it to the orphaned node. 

6. Upon receiving information about the surrounding 

MDCs, the orphaned node executes the optimal MDC 

selection  algorithm.  Choosing  the  optimal  MDC  is 

based on the connection expiration time (CET). In [37], 

we presented our MDC selection algorithm. 

7.  Orphaned node chooses the optimal MDC and sends to 

it a                  message. 

8.  The chosen MDC waits for a backoff interval waiting 

for  other                     messages  from  other  orphaned 

nodes. 

9.  The chosen MDC updates its convex hull to join the 

orphaned nodes. 

Unlike the exhausted (or dead) nodes, the orphaned 

nodes can still receive and transmit messages; thus it is 

possible to restore them to the network. Handling and 

minimizing the number of orphaned nodes preserves their 

energy and reduces signaling overhead, which assists in 

balancing   energy   consumption.   Connecting   orphaned 

nodes and alleviates network segmentation and energy 

depletion. Orphaned node join the optimal MDC that keeps 

them connected for the longest period. 

 
6. Performance Evaluation 

 
The performance of DCMDC was evaluated extensively 

under diverse conditions and compared against two of its 

best rivals in the literature, namely, ERMMSDG [25] and 

MDC/PEQ  [26].   These   protocols  are   similar   to   the 
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DCMDC in spirit, but different in approach. Both 

ERMMSDG and MDC/PEQ are mobility management 

protocols designed for three-tire WSN systems. They use 

multiple mobile data collectors to collect data from sensor 

nodes. Furthermore, both protocol use real-life simulation 

parameters, which resembles the specifications of many 

existing networks and hardware platforms. Their 

publications   give   their   full   specifications,   making   it 

possible for researchers to implement and reproduce the 

published results. Finally, they achieve best results 

compared to their contenders in the literature. In this 

section, we present the simulation parameters, results and 

analysis. 

The simulation scenario consists of  nodes randomly 

placed in the area of     . Sensor nodes have 

wireless  radio  range  of    .   The  transmission  and 

reception power of a sensor node is set to  . Four 

data sources were chosen randomly to generate 

throughout the simulation. The packet size is    for 

all control messages. Whereas, the size of data packets is 

set to   .   Each node is given    of initial 

energy, which is equivalent to energy of two AA batteries. 

The  number  of  MDCs  is  set  to  of  the  total  node 

population.   MDCs   were   deployed   randomly.   Their 

mobility  speed  reaches  up  to     and  they  move 

according   to   the   random   waypoint   mobility   model 

described in [39, 40]. This travel speed mimics the speed of 

moving objects in real-life applications, such as wildlife 

monitoring  or  battlefield  surveillance,  where  the  travel 

speed of an   animal or an armored vehicle   is 

approximately  .  MDCs  wireless  radio  range  can 

reach up to    . The sink node is located at the center of 

the simulation area and has wireless radio range of   . 

A   summary  of   the   simulation  parameters  and   their 

respective  values  is  shown  in  Table  2.  The  chosen 

simulation parameters for the experiments are based on the 

iMote2 [41] hardware platform specifications. 

 
Table 2: DCMDC simulation parameters 

 

Parameter Value 

Number of nodes 

Simulation area 

Wireless radio range (SN) 

Wireless radio range (MDC) 

Source nodes data rate 

Number of MDCs 

MDC velocity 

Data packet size 

TX power dissipation 

RX power dissipation 

Mobility Model Random waypoint 

 
To evaluate the performance of DCMDC, we compare it 

against the ERMMSDG and the MDC/PEQ protocols 

through  simulation  using  the  NS3  simulator [42].  Their 

performance is evaluated according to several metrics 

including: end-to-end delay, packet delivery ratio, packet 

drop, average energy consumption per node, and network 

lifetime. 

 
6.1.  End-to-End Delay (E2Ed) 

 
E2Ed includes the queuing, transmission, propagation 

and processing delays. The average delay of all    nodes is 

given by the following equation: 

(11)

 

where     is the time a packet is generated,     is the time a 

packet arrives at its final destination and    is the number of 

data packets generated at sensor nodes and received by the 

sink. 

Fig. 15 shows that DCMDC reduces the average end-to- 

end delay by          and          compared to ERRMSDG and 

MDC/PEQ respectively. There are several factors 

accounting for this outcome. First, the DCMDC algorithm 

minimizes the packet transmission interruption times and 

maintains high network connectivity by responding rapidly 

to any topological changes. On the other hand, MDC/PEQ 

and ERRMSDG incur larger signaling traffic as a 

consequence of routing packets through longer paths. 

Second,   nodes   in   ERRMSDG   and   MDC/PEQ   only 

consider the signal strength in selecting the serving MDC, 

while nodes in DCMDC consider the direction, distance 

and speed of potential MDCs. Thus, DCMDC results in 

well-delimited dynamic groups of nodes that has less 

frequent route updates and topology reconfigurations; 

therefore, reducing potential packet delivery delays. Third, 

DCMDC predicts the future disconnection time; and hence, 

nodes use short paths to MDCs that last for longer time. 

This significantly shortens the propagation and queuing 

delay. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 – Average E2Ed vs simulation time. 
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6.2. Packet Delivery Ratio (PDR) 

 
PDR is the ratio of packets that are successfully 

delivered to a destination compared to the number of 

packets that have been sent by the sender(s). PDR is given 

as: 

(12)

 

Fig. 16 plots the PDR of the three studied protocols 

against the simulation time. DCMDC outperforms the 

ERRMSDG  and   MDC/PEQ  by   grouping  nodes   into 

smaller SZs and localizing mobility management traffic. 

The  lower  mobility  management  overhead  results  in 

smaller number of collisions and reduced data loss due to 

network  congestion.  It  can  be  observed  that  the 

performance of DCMDC in term of PDR has a frequent 

fluctuation. It achieves high PDR when the network is 

stable, i.e., between SZs reconfigurations. At other 

instances, DCMDC PDR drops below          when sensor 

nodes execute the CZs reconciliation procedure; whereby, 

the bandwidth utilization increases dramatically due to the 

heavy exchange of reconfiguration messages. Another 

reason  behind  DCMDC’s  high  PDR  is  the  use  of  the 

optimal MDC selection scheme, which helps nodes stay 

connected for a longer time; therefore, increasing the 

network availability and reducing the dropped packet rate. 

In ERRMSDG and MDC/PEQ, orphan nodes use direct 

route to the sink to transfer their data. This leads to 

conveying data through multiple hops, thereby contributing 

to an increase of packet collisions and losses. It is also 

observed that the packet drop increases steadily, when the 

transmission distances approaches        , due to weak signal 

strength and the travel speed of MDCs. 
 

 
Fig. 16 - PDR vs simulation time. 

 
Fig. 17 shows the PDR of the three studied protocols 

when varying the number of data sources. DCMDC’s PDR 

drops gradually when increasing the number of data 

sources, demonstrating DCMDC’s ability to handle higher 

volumes of traffic from different sources. In ERMMSDG, 

the PDR reaches for the tested scenario. This low 

delivery ratio is due to the selection of the nearest node to 

be the relay node, which leads to load-imbalancing. This, 

combined  with  the  connectivity  disconnections  due  to 

MDC movement, leads to high packet loss. Furthermore, in 

situations where an MDC is gathering data from two or 

more  rendezvous  zones,  the  same  relay  node  will  be 

selected for forwarding the traffic. This causes bottlenecks 

on nodes close to the relay node; consequently, consuming 

higher  bandwidth,  and  therefore,  causing  higher  packet 

drop rates. In MDC/PEQ, the PDR reaches for the 

tested scenario. The high beacon transmission rate as well 

as  relaying  data  directly  to  the  sink  lead  to  higher 

bandwidth consumption, and thus higher packet loss, as 

shown in Fig. 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17 - PDR vs number of sources. 

 

 
 

Fig. 18 - Packet drop vs number of sources. 

 
As observed in Fig. 19, the PDR decreases when 

increasing the speed of the MDCs. As the travel speed of 

MDCs increases, the probability of errors in data 

transmission  increases.  This  is  because  increasing  the 

travel  speed  of   MDCs  instigate  frequent  topological 

changes that need to be resolved before data collection can 

be resumed. Consequently, a higher number of packets will 
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be dropped or will arrive late due to buffer overflows and 

congestion. Yet, DCMDC performed better than 

ERRMSDG and MDC/PEQ as it isolates the topological 

updates and limits them to the SZ boundary. In case of 

DCMDC, the speed of travel is already factored for during 

the selection of the optimal MDC and nodes are always 

connected to the MDC with the highest CET. 

 

 
Fig. 19 - PDR vs MDCs velocity. 

 
6.3. Average Energy Consumption per Node 

 
Since radio communication is the most power-hungry 

operation [43], the energy consumption of DCMDC is 

measured as the cost of mobility management added to the 

cost of data collection. The average energy consumption of 

a sensor node is directly related to the operational lifetime 

of the network. 

optimal number of partitions in the network is estimated at 

about        of the total number of nodes in the network). 

DCMDC performs better than ERMMSDG and MDC/PEQ 

in terms of energy consumption in all cases. It is capable of 

reducing  energy  consumption  by           and           when 

compared to ERMMSDG and MDC/PEQ respectively. 

These gains in energy consumption are due to DCMDC’s 

capability of reducing the mobility management overhead 

and delivering data packets over the shortest route to the 

MDC, while maintaining load balancing. MDC/PEQ 

generates high number beacon packets and uses the path to 

an MDC with the smaller number of hops, which is not 

always the optimal path in terms of energy consumption. 

For instance, due to packet loss, MDC/PEQ has to 

retransmit  packets,  thus,  increasing  the  energy 

consumption. 

 

 
 
Fig. 20 - Energy consumption vs the number of mobile collectors. 

(13)

 

where             is the initial amount of energy of any sensor 

node,               is the residual energy of the sensor node at 

the end of the simulation and     is the number of sensor 

nodes in the network. 

As shown in Fig. 20, a single MDC network consumes 

high energy as it causes a signaling ripple effect and results 

in bottlenecks in areas around itself. The energy 

consumption decreases gradually when increasing the 

number of MDCs from    to   . This is due to distributing 

the load among the MDCs and the intermediate nodes used 

to reach them. Furthermore, multiple MDCs can reduce the 

number of hops that data packets have to traverse. When 

increasing  the  number  of  MDCs  to  more  than 6,  the 

average energy consumption per node starts to increase 

moderately. This is because when having more MDCs in 

the network, the number and frequency of SZs updates 

increase. This results in a gradual rise in the signaling 

overhead, which dissipates energy gains. 

The above findings are on the optimal number of MDC 

are  consistent  with  the  empirical  results  of [44]  (the 

 
6.4. Network Lifetime 

 
Network  lifetime  is  measured  as  the  time  duration 

before the energy level of          of the total node population 

becomes zero.   Fig. 21 shows that DCMDC substantially 

prolongs the network lifetime by           and           over 

ERMMSDG and MDC/PEQ respectively. This energy 

saving is mainly due to nodes joining the MDC offering the 

longest  CET,  thus,  avoiding  frequent  handoffs  and  the 

costs associated with reestablishing a path to the MDC. In 

ERMMSDG, relay nodes consume their energy faster than 

other nodes due to forwarding the data packets from the 

rendezvous point.  Whereas, some MDC/PEQ sensor nodes 

consume more energy in receiving, processing and 

forwarding beacons. 

Fig. 21 also gives insights into energy balancing in the 

three studied protocols. When the time interval between the 

First Node to Die (FND) and the Last Node to Die (LND) 

decrease, this indicates a more balanced energy 

consumption among sensor nodes in the network. The time 

interval between the FND and the LND in DCMDC, 

ERMMSDG  and   MDC/PEQ  is         ,              and 
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ID Type Location MembersNo Distance HopCount TimStamp 

 

respectively. Thus, DCMDC’s energy consumption is 

and           more load balanced compared to ERMMSDG 

and MDC/PEQ respectively. This is primarily because 

DCMDC constructs communication links within the SZ 

with the communication cost as a primary factor. Whereas, 

MDC/PEQ only relies on the number of hops without 

considering the link load, quality or reliability. 

Appendix A. Control Messages of DCMDC Protocol 

 
This appendix presents the control messages format of 

the proposed DCMDC protocol. In the following, we list 

the control messages and provide details of their structure: 

 

 
 

Fig. 21 – Number of alive nodes vs simulation time. 

 
7. Conclusion 

 
This paper addressed the issue of efficient mobility 

management. Motivated by keeping the data latency and 

energy consumption to the minimum, a dynamic network 

clustering  technique,  called  DCMDC,  is  proposed. 

Network clustering is a well-tested solution to achieve 

scalability and load balancing. Grouping nodes into smaller 

logical sets makes buffer overflows and energy depletion 

less of a problem. DCMDC manages MDCs mobility and 

results in a set of well-delimited network clusters of sensor 

nodes that are updated dynamically. Experimental 

evaluation showed that DCMDC reduces mobility 

management cost, end-to-end delay, and energy 

consumption while increasing the network lifetime and the 

packet delivery ratio. 

There are a number of interesting directions for future 

work. First, the CZs have the potential to be utilized by 

data collection approaches that are based on logical 

grouping of nodes to deliver their intended functionality, 

e.g.,  for  query scoping  or  dissemination. Second,  more 

work needs to be done to further reduce the handover 

interruption time, i.e., the time between disconnecting from 

the current SZ and connecting to a new one. This can be 

achieved by developing a precise time prediction algorithm 

to predict when the SZ needs update. Informing nodes that 

will be affected with the update process before the time of 

the update is due gives nodes time to proactively execute 

the optimal MDC selection algorithm. Consequently, 

handoffs would be performed more rapidly. 

 
ID: is the MDC identifier. 

Type: is the message type. 

Location: is the MDC location information (X position, Y 

position, track). 

MembersNO: is the number of sensor nodes connected to 

the MDC. 

Distance: is the maximum distance that the advertisement 

message can be forwarded over. 

HopCount: is the number of hops that the advMsg has 

traversed over. 

TimeStamp: is the time when the message has been sent. 
 
 
 

ID Type Location Energy TimeStamp 

ID: is the MDC identifier. 

Type: is the message type. 

Location: is the sensor node location information(X 

position , Y position, track). 

Energy: is the residual every of the sensor node. 

TimeStamp: is the time when the message has been sent. 
 
 
 

ID Type Location Energy TimeStamp 

ID: is the MDC identifier. 

Type: is the message type. 

Location: is the MDC location information(X position, Y 

position, track). 

MembersNo: is the number of sensor nodes connected to 

the MDC. 

TimeStamp: is the time when the message has been sent. 
 

 
 
 

ID Type TimeStamp 

ID: is the primary MDC identifier. 

Type: is the message type. 

TimeStamp: is the time when the message has been sent. 
 
 
 

ID Type nMDC_ID nMDC_Location TimeStamp 

ID: is the old MDC identifier. 

Type: is the message type. 

nMDC_ID: is the new MDC identifier. 

nMDC_Location:is the new MDC location information(X 

position, Y position, track). 

TimeStamp: is the time when the message has been sent. 
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ID Type tMembersNo TimeStamp 

ID: is the MDC identifier. 

Type: is the message type. 

tMembersNo: is the number of the transferred sensor 

nodes. 

TimeStamp: is the time when the message has been sent. 
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