

1

Dynamic Clustering and Management of Mobile Wireless Sensor
Networks

Abdelrahman Abuarqoub
a,
*, Mohammad Hammoudeh

b
, Bamidele Adebisi

b
, Sohail

Jabbar
c
, Ahcène Bounceur

d
, Hashem Al-Bashar

a

aFaculty of Information Technology Middle East University, Airport Road Amman 11831, Jordan

bManchester Metropolitan University, Chester Street, Manchester M1 5GD, UK

cSchool of Computer Science and Engineering, Kyungpook National University, Korea

dComputer Science Department, University of Brest, Brest 29238, France

Elsevier use only: Received date here; revised date here; accepted date here

Abstract

In Wireless Sensor Networks (WSNs), routing data towards the sink leads to unbalanced energy consumption among

intermediate nodes resulting in high data loss rate. The use of multiple Mobile Data Collectors (MDCs) has been proposed in

the literature to mitigate such problems. MDCs help to achieve uniform energy-consumption across the network, fill coverage

gaps, and reduce end-to-end communication delays, amongst others. However, mechanisms to support MDCs such as

location advertisement and route maintenance introduce significant overhead in terms of energy consumption and packet

delays. In this paper, we propose a self-organizing and adaptive Dynamic Clustering (DCMDC) solution to maintain MDC-

relay networks. This solution is based on dividing the network into well-delimited clusters called Service Zones (SZs).

Localizing mobility management traffic to a SZ reduces signaling overhead, route setup delay and bandwidth utilization.

Network clustering also helps to achieve scalability and load balancing. Smaller network clusters make buffer overflows and

energy depletion less of a problem. These performance gains are expected to support achieving higher information

completeness and availability as well as maximizing the network lifetime. Moreover, maintaining continuous connectivity

between the MDC and sensor nodes increases information availability and validity. Performance experiments show that

DCMDC outperforms its rival in the literature. Besides the improved quality of information, the proposed approach improves

the packet delivery ratio by up to 10%, end-to-end delay by up to 15%, energy consumption by up to 53%, energy balancing

by up to 51%, and prolongs the network lifetime by up to 53%.

Keywords: Wireless sensor network routing; Clustering protocol; Mobile data collectors; Dynamic network clustering; Mobility management;

Self-organisation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction

In the last two decades, Wireless Sensor Networks

(WSNs) have significantly changed the way we interact

with our environment. WSNs appear in several scientific,

commercial, health, surveillance, and military applications.

Unattended sensor nodes offer maintenance-free operation

and can detect, characterize and disseminate situational

awareness continuously. After years of research on the

opportunities provided by WSNs and their potential value,

many of those looking to operate in the WSN market are

starting to consider the potential practical problems,

including data management. Once a WSN is up and

running at full scale, it will generate large quantities of data

that need to be processed and analyzed in real time.

The success of WSN applications is dependent on

knowing that information is available, the type of

information, its quality, its scope of applicability, limits of

use, duration of applicability, likely return, cost to obtain

and a host of other essential details. To aid in data

collection, the use of mobile nodes has been widely

suggested in the literature. Node movement can be

controlled and optimized to improve data collection and

analysis. For instance, mobile nodes can be used to bridge

disconnected parts of the network. Furthermore, node

mobility can optimize the energy consumption and lifetime

of a WSN. For example, moving the sink to data sources or

moving the sensor nodes towards the sink is one way to

avoid the communication bottlenecks. However, the

deployment of mobile nodes instigates frequent topological

changes that need to be resolved before data collection can

be resumed.

In this paper, we propose a holistic self-organizing

mechanism that is adapted from [1]. The proposed

mechanism is based on clustering the network in

cooperating zones. This is achieved by abstracting the

network to a three-tier pyramid model as shown in Fig. 1.

Each tier contains a different class of sensor nodes. The

bottom tier hosts static nodes, which form the majority of

the network population. Sensor nodes at this tier perform

sensing and communication tasks. The middle tier hosts a

small number of resource-rich mobile nodes, called Mobile

Data Collectors (for short, MDCs). MDCs have long-range

radio and are considered power rich devices. The top tier of

the hierarchy hosts the fixed data sink(s). At this tier,

information received from different sources is processed

and presented to end users.

It is desirable to design a distributed and self-organizing

strategy featuring adaptability to network topology changes

to reduce the cost of topology updates. Higher energy

efficiency can be achieved by reducing the frequency of

connectivity disconnections. Fewer and shorter

disconnections results in reduced signaling overhead and

lower packet loss.

Fig. 1. A Three-tier network structure.

The mobility management protocol proposed in this

paper assumes that nodes have knowledge of their physical

location. Nodes can determine their location in several

ways. The Global Positioning System (GPS) is the simplest

localization method. GPS modules are known for their high

energy consumption. They also increase the total cost of

each sensor nodes. Currently, the CRIUS MultiWii MWC

I2C-GPS module costs less than $5. GPS-based solutions

can become very expensive in large-scale WSN

deployments. Therefore, several localization algorithms

that do not relay on GPS modules have been introduced in

the literature, e.g., [2, 3]. Localization algorithms use

various information available from the network in order to

calculate the correct position of each sensor node. There

are several localization techniques for indoor and outdoor

environments described in the literature [4-6]. The use of

localization algorithms introduces additional challenges

that need to be addressed, including: (1) Localization

latency: the localization algorithm should take minimal

time to cope with mobility speed; (2) Increased control

messaging: managing nodes location information requires

communications and transmission of control packets. In

mobile WSN where nodes change their location frequently,

the localization control overhead will increase significantly

causing network congestion and leading to higher energy

consumption. In the proposed system, we assume that all

MDCs and a small percentage of nodes are equipped with

GPS modules. Other nodes in the network can estimate

their location by using a centroid formula, where anchor

nodes transmit their location to the blind nodes. This

method keeps the system cost low, while maintaining low

localization overhead [2, 3, 5].

The remainder of this paper is organized as follows:

Section 2 examines background and related work in the

area of MDCs in WSNs. Section 3 briefly introduce each

phase of the proposed dynamic clustering technique,

DCMDC. Section 4 presents the details DCMDC processes

and phases. Section 5 discusses how DCMDC handles

orphaned nodes. Section 6 presents the evaluation results

of DCMDC and compares them against two of its best

rivals in the literature. Section 7 concludes the paper.

3
2. Related Work

Network clustering has been widely investigated by the

WSN research community in the past two decades. In such

clustering schemes, sensor nodes are divided into multiple

logical groups according to some rules. These rules may be

relate to a node’s deployment, capabilities or other network

dynamics [7]. The literature is very rich with effective

clustering approaches designed for WSNs. The work in [8]

focused on preserving complete coverage of the monitored

area over long periods. The authors in [9] proposed a

cluster based algorithm for tracking a mobile target to

achieve high tracking accuracy and energy efficiency.

Other propositions exist in the literature devoted to study

mobility estimation and mobility supporting protocols in

WSNs; a recent schedule-based MAC protocol for static

and mobile nodes is investigated in [10].

Several hierarchical architectures have been considered

for various applications of mobile WSNs [7, 11-15]. In

some approaches, cluster heads are used as MDCs besides

their sensing duties. MDCs are used to carry information

from the sensing field and deliver it to a fixed sink. In these

approaches, sensor nodes send data over short-range

communication, from a sensor to the MDC, which requires

less transmission power due to the reduced bridging

distance between data sources and the sink. MDCs also

avoid the effect of bottlenecks, especially in areas around

the sink, such as packet loss, increased end-to-end delay

and energy depletion. The existence of multiple data

collectors reduces the breakdown of interconnections;

meaning that if one data collector fails, data can be

transmitted through another data collector.

Although using MDCs is desirable due to their

simplicity and efficiency, they introduce major challenges.

Managing MDC location information requires

communication and transmission of control packets. When

the location changes frequently, the control packet

overhead will increase, which leads to higher energy

consumption. This may possibly dissipate the energy gains

achieved by the MDCs. Moreover, the movement of MDCs

may introduce significant data delivery delay caused by

link establishment time, velocity control, etc. Finally, the

MDC travel trajectory calculation is a complex problem.

There are several approaches devoted to the study of

hierarchical mobile WSNs. Energy efficient routing

protocols for multiple MDCs are investigated in [16, 17].

The placement and relocation of multiple MDCs is

investigated in [18]. Data collection approach to support

mobility with multiple MDCs is presented in [19]. Secure

cluster head election, where the cluster head is not a

malicious node, is presented in [20]. However, there is

only a handful set of papers directly addressing the

problem of relay nodes mobility management.

In [21], the author proposed an Energy-efficient Cluster-

based Data Gathering Algorithm (ECDGA) for mobile

WSNs. The network model of ECDGA consists of

heterogeneous sensor nodes. Static nodes are deployed in a

grid to manage dynamic changes in the topology and relay

sensed data from nearby cluster heads to a slow-moving

sink. The cluster head selection is based on the residual

energy and location of the mobile nodes. The authors show

that ECDGA effectively prolongs the network lifetime.

Nonetheless, ECDGA algorithm does not consider mobility

parameters such as mobility speed and direction when

allocating mobile nodes to clusters.

In [22], the authors proposed a self-organization method

for mobile devices in cluster-based ad-hoc networks. This

method is implemented through a multi-role agent

approach. Each agent could be a leader, gateway or

member; the roles assignment is based on the remaining

energy in the node and its neighborhood. When the

network is deployed, a role assignment process takes place.

When the remaining energy in the leader agent reaches a

certain threshold, it reduces its transmission range to

and when it reaches a lower threshold, the leader election

procedure is executed. However, the strategy establishes

too many leaders in the network, which causes bandwidth

wastage, and a large number of collisions. Furthermore, the

sensor node weight function considers only the residual

battery and the number of neighbors. It does not consider

the node position, mobility speed and direction.

In [23], a hybrid multipath routing algorithm with an

efficient clustering technique is proposed. The algorithm

uses an energy-aware selection mechanism to choose the

fusion nodes to route the data to a data sink. A node is

chosen to play the role of a fusion node if it has high level

of energy, high transmission range and lower mobility. The

network is divided into multiple square zones, each square

is considered a cluster that is managed by a selected fusion

node. The square zones allow the union of zones without

holes, and simplify the design of clustering algorithm.

However, the mobility metric is calculated as the measure

of relative motion of nodes. The mobility measure is

normalized by the number of nodes and the continuous

functions of time that represents the quantitative measures

of relative motion between nodes.

Recently, Battery-Level Aware Clustering (BLAC) was

presented in [24]. BLAC considers the battery-level

combined with another metric to elect the cluster head. It

comes in four variants: BLAC-bg combines battery level

and node degree, BLAC-bs uses the battery level and node

density, BLAC-rg and BLAC-rs. The last two variants run

in two steps. They first apply graph reduction followed by

network clustering. Each of these variants presents specific

features that make them more suitable than others under

different conditions. If nodes are mobile, BLAC-bs is the

best choice, as it offers a better stability against mobility.

More recently, the anthers of [25] proposed Efficient

Routing Protocol for Multiple Mobile Sink Based Data

Gathering (ERMMSDG). This protocol uses a biased

random walk method to estimate the next position of the

MDC. To determine the optimal data transmission path, a

rendezvous point selection with splitting tree technique is

used. Whenever the sink passes through the rendezvous

4
point, it receives the collected data. Alternatively, a relay

node from its neighbors relays packets from rendezvous

point to the sink. The protocol reduces the signal overhead

and improves the triangular routing problem. However, the

relay node selection mechanism does not consider the

mobility angle and speed of the mobile collector; it only

considers the distance to the mobile collector. This could

lead to routing the data through a longer path, introducing

considerable delays on data delivery and bandwidth

wastage. Furthermore, the relay node selection mechanism

does not consider the residual energy of the relay node,

which may lead to network segmentation, and unbalanced

energy in the network.

Similar to ERMMSDG, MDC/PEQ [26] is an approach

that uses mobile data collectors to achieve low-latency and

reliable mobile data gathering in delay-sensitive

applications. In MDC/PEQ, MDCs broadcast configuration

beacons periodically. Initially, when a sensor node receives

a beacon, it joins the MDC’s cluster and updates its routing

information accordingly. For connection reconfigurations

(handoffs), sensor nodes use the signal strength of the

beacon as well as the number of hops to reach the MDC.

Each node holds two communication paths, one is a multi-

hop direct link to the sink, and the other is to an MDC.

When a node has data to be transmitted, it uses the shorter

path, i.e., the path with the smaller number of hops. If the

both paths have the same number of hops or the node is not

associated with an MDC, the node relays its data through

the direct path to the sink. If an intermediate node has a

route to an MDC, it forwards the data to that MDC. This

approach achieves good timeliness as nodes do not wait for

an MDC to move nearby. However, MDC/PEQ produces

high MDC advertisement overhead that need to be

received, processed and forwarded. Furthermore, it uses the

path with the smaller number of hops, which is not

necessarily the most reliable or energy efficient. Finally,

sensor nodes that do not belong to any cluster use the direct

route to the sink to transfer their data. This leads to

conveying data through several hops, thereby contributing

to an increase of packet collisions and losses.

There is a wide body of literature on clustering

algorithms designed for WSNs. We refer interested readers

to [27, 28], recent surveys that provide a comprehensive

review to data collection approaches designed for static and

mobile WSNs. Most of the reviewed approaches are

proved effective and efficient. However, there are few

attempts to address the problem of relay node mobility

management [29-31]. These attempt to deal with mobility

as the need arises and do not deal with the fundamental

challenges and variations introduced by mobility on the

WSNs. We believe that there is a need for a holistic self-

organizing strategy that organizes MDCs in such a way

that signaling overhead is reduced, while keeping energy

consumption and resource usage to the minimum.

Additionally, such a strategy should take into consideration

MDC mobility parameters such as mobility direction and

speed.

3. Dynamic Clustering for Mobility Management

In this section, we introduce a self-organizing and

adaptive Dynamic Clustering (DCMDC) solution to

effectively manage topological updates and maintain

communication routes in mobile WSNs. Aiming at

reducing mobility-triggered signaling overhead, we design

and implement a dynamic self-organizing protocol that

partitions the network to a set of well-delimited logical

network clusters called Service Zones (SZs). The dynamic

clustering of the network into SZs is based on the convex

hulls algorithmic problem. Organizing the network in SZs

offers several advantages. Firstly, it reduces signaling

overhead, consequently bandwidth utilization, by

localizing mobility management traffic. It is well

established in the literature that less congestion reduces

queuing delays. Secondly, network clustering is a well-

tested solution to achieve scalability and load balancing.

Grouping nodes into smaller logical sets makes buffer

overflows and energy depletion less of a problem. Finally,

maintaining continuous connectivity with the MDC when it

is in the communication range of sensor nodes increases

the system availability.

In dynamic network clustering, the frequent boundary

updates presents a significant challenge. Collection

Zones (CZs) are introduced to tackle this challenge. CZs

are designed such that their maintenance is quick and

efficient. CZ maintenance cost is reduced by performing

efficient neighbor discovery and localized computation.

The CZ of an MDC is defined by the set of nodes directly

connected to that MDC. The movement of an MDC within

its defined CZ does not require connectivity or

neighborhood update. This enables nodes within a CZ to

view their MDC as a virtually static node for a certain

period. Depending on its speed, sensor nodes can easily

predict the connectivity period with their present MDC.

The result of the network clustering process is based on

the number of MDCs, their positions and their movements.

For each MDC, a convex group of nodes that will form the

MDC's SZ is defined. The construction of convex groups

does not exhibit high computational complexity [32].

While an MDC is moving inside its SZ, it performs several

operations to keep the network topology up to date. These

operations include, updating its SZ members list,

connecting new nodes or disconnecting existing nodes

from its SZ. These operations ensure that sensor nodes can

be allocated to the best MDC that can forward its data to

the sink more effectively. Simultaneously, sensor nodes

should be allocated to MDCs to load balance their

workload.

Fig. 2 shows the conceptual relationship between the SZ

and the CZ. A SZ is a designated geographical zone around

an MDC, containing a set of nearby sensor nodes. The SZ

forms a convex group of nodes constructed by the MDC.

The MDC is responsible for all communication in that SZ.

MDCs exchange control messages with each other and

only with sensor nodes that belong to their SZ. In this way,

5
every sensor node receives control messages only from the

MDC that it belongs to. As a result, flooding problems

from MDCs to sensor nodes in the bottom layer are

avoided.

Fig. 2 - The logical structures defined around an MDC

A CZ of an MDC is a circular area around an MDC with

radius equal to half of the radio range of sensor nodes. In

Cartesian coordinates, the center of the CZ is the physical

position of the corresponding MDC before it moves. An

MDC communicates directly with nodes that are inside its

CZ. An MDC can move inside its CZ and stay directly

connected to the same set of nodes. This design exploits

the fact that the active radio coverage of MDCs is wider

than their CZs. Therefore, sensor nodes can consider the

MDC static until it moves out of its CZ. Hence, it does not

need to issue any neighbor discovery or update messages

during this period. SZs are assumed larger than the CZs.

The SZ and the CZ change dynamically depending on the

MDCs speed and direction information. The position,

speed and direction of the nodes can be obtained by a GPS

device providing latitude, longitude, altitude, speed and

travel track.

Initially, directly after network deployment, DCMDC

runs through three phases: neighborhood discovery, CZ

creation and network formation. Fig. 3 illustrates the

various phases of the network setup process. During the

neighborhood discovery phase, MDCs create binding

tables for storing nodes' information. MDCs proactively

advertise their presence to neighboring sensor nodes who

choose the optimal MDC to join. During the CZ creation

phase, each MDC constructs its CZ boundaries and

determines which sensor nodes are located inside it. These

sensor nodes will have direct communication with the

MDC. During the network formation phase, reconciliation

of the overlapped CZs occur and SZs are formed.

The next section goes through the detailed DCMDC

processes of setting up the network to prepare it for

operation. The details of each setup phase are presented

and discussed.

Table 1 Binding table entry example

Fig. 3 - Network setup procedure.

4. DCMDC Protocol Details

4.1. Neighborhood Discovery Phase

In the literature, neighborhood discovery can be

classified into the following main categories: proactive,

e.g., [33], reactive, e.g., [34] and hybrid, e.g., [35, 36]. In

the proactive approach, the data collector periodically

broadcasts an advertisement message. When the message is

received by a sensor node, that node creates a route to the

data collector and relays the advertisement message to its

neighbors. This results in many duplicated messages

consuming valuable bandwidth and energy. In contrast, in

the reactive approach, discovery messages to initialize or

update connections are initiated by sensor nodes. The

sensor node broadcasts a connection request message in the

network. When a data collector receives the message, it

unicasts a reply message containing its details (for

example, its location and available resources or services).

This approach saves bandwidth and energy as it sends

requests only when information is needed. However, the

main drawback of this approach is the high latency in data

collector discovery and bottlenecks around the data

collectors. The hybrid approach uses a combination of the

two above approaches by considering the disadvantages of

both of them.

Sensor nodes in DCMDC use a hybrid MDC discovery

approach to adapt to various network conditions. Before

joining a SZ, a sensor node uses a proactive MDC

discovery approach to identify the optimal MDC to

associate themselves with. After the construction of SZs,

orphaned nodes use a reactive MDC discovery approach to

participate in the network. The details of how DCMDC

deals with orphaned nodes are given in Subsection 5. Every

MDC maintains a binding table to store information about

its CZ membership. Table 1 shows the content of the

binding table with example values. The binding table is

used to store information about sensor nodes that are

connected to the MDC.

Node ID X position Y position Track Battery level Last update time

1

6

(1)

As illustrated in Fig. 4, every MDC proactively

discovers its neighbors. It broadcasts advertisement

messages containing its location information. When a

sensor node receives a packet, it sends it to all neighbors,

which results in significant redundancy, collisions and

contention. To reduce the impact of such consequences,

MDCs broadcast advertisement messages to all nodes that

are closer than the maximum distance, d, over which an

advertisement message can be transmitted. On receiving

the message, each sensor node makes a decision

about the optimal MDC with which to associate itself. The

decision is based on the Optimal Sink Selection

algorithm (OMSS) published in [37]. OMSS is based on a

parameter called the Connection Expiration Time (CET).

In the following, a brief explanation of the OMSS decision

algorithm is provided.

Fig. 4 - Neighborhood discovery messages diagram.

Let be a sensor node that received an

message from an MDC. The MDC moves in the direction

in two-dimensional space with respect to the positive X-

axis. Let be the location of a sensor node

and be the location of the MDC. Suppose that

the MDC travels at the speed of . The velocity of the

MDC on the and axis can be calculated using the

equations (2) and (3), respectively.
(2)
(3)

To calculate the CET, we use equation (1) that factors

the location of the MDC, its movement speed and direction

from a sensor node, link reliability and available resources.

In equation (1), is a constant of proportionality for the

workload adjustment. is the maximum distance that the

MDC forward advertisement message over.

The link reliability is measured in terms of the

weighted average of the probability of successful packet

reception by an MDC from node . Because these

communication links are bidirectional, we consider the

weighted average of probabilities of both transmission

directions. is defined as:

(4)

Algorithm 1 presents the steps followed by a sensor

node to determine the optimal MDC. maxConnection is

defined as the remaining connectivity time to the current

MDC. When a sensor node is not connected to an MDC, it

waits for a short period to allow for advertisement from all

MDCs in its vicinity to arrive. Then, it joins the MDC that

offers the highest CET value. If a sensor node, which is

currently associated to an MDC, receives an advertisement

message with a better CET value, then it leaves the current

MDC and joins the new one. If the node is within the

vicinity of multiple MDCs with similar CET value, then

the node joins the MDC with the lowest workload level.

Algorithm 1: OMSS Algorithm

Input: MDC details, sensor node location

Begin

MDC_ID = MDC_1; maxConnection = 0

for every MDC MDCi do

if CETMDCi > maxConnection then

maxConnection = CETMDCi;

MDC_ID = MDCi ;

else

if CETMDCi = maxConnection then

if MembersNoMDCi < MDC_ID.MembersNo then

MDC_ID = MDCi ;

endif

endif

endif

endfor

return MDC_ID;

End

Output: ID of the selected optimal MDC

After making the decision, each sensor node replies with

a message to the chosen MDC. Finally, MDCs

receive replies from different nodes and add them to its

binding table.

4.2. Collection Zones Creation Phase

One solution to minimize neighborhood updates is to

predict when a node is expected to leave the SZ. The basic

and simple way for neighborhood maintenance is by using

periodic discovery messages. However, the most

significant drawback for this method is choosing the rate at

which the messages are sent. A high beacon rate

results in increased bandwidth usage and communication

cost. In contrast, a low beacon rate may possibly miss

important topology changes or events where critical

reconfigurations take place.

7

pair . Let the function return a

set of nodes that encloses the nodes in set , i.e.,

border nodes. is the smallest convex region that

Fig. 5 - MDC coverage zone and collection zone.

In dynamic clustering of the network to convex hulls,

updating convex envelope using messages

consumes high bandwidth and energy. To determine when

a convex hull update is necessary, we propose and define

a CZ. CZs allow nodes to determine when to issue a

neighbor discovery message and reconfigure their local

connections.

Let be the set of sensor nodes

within the MDC active communication range. Then, the

CZ is defined as:

(5)

where is the distance between the sensor node and the
MDC and is the active communication range of the

MDC.

An MDC can move inside its CZ and stay directly

connected to the same set of nodes. As long as the MDC is

inside its CZ, it does not need to issue any neighbor update

messages. In Fig. 5, the MDC defines the CZ as a smaller

inner circle of radius in its active communication range.

Initially, when an MDC creates its CZ, it will be located in

the centre of the created CZ, Fig. 5-A. The MDC checks its

binding table and determines which sensor nodes belong to

its CZ (i.e.,) using Equation 6.

In Fig. 5-B, although the MDC has moved, no update is

required as long as the MDC is inside its CZ perimeter.

When an MDC leaves its CZ, the collection zone will be

updated and discovery messages will be exchanged to

reconfigure the network changes. The update process

includes adding some nodes located inside its active

communication range to the updated CZ, and removing

nodes that belong to the original CZ. Some nodes that are

already in the original CZ remain inside the updated one,

i.e., the intersection area between the two collection zones

in (see Fig. 5-B). The MDC does not exchange

configuration messages with these nodes.

4.3. SZ Formation Phase

The SZs formation phase commences when MDCs have

their CZs created. Throughout this paper, the terms convex

hull and SZ are interchangeable. In mathematics, the

convex hull of a set of points in the Euclidean plane is

defined as the intersection of all convex sets containing

or as the set of all convex combinations of points in . A

set is said to be convex if for every pair of points within the

set, every point on the line segment that joins the pair of

points is also within the set.

Let be a set of sensor nodes,

where is the minimum number of nodes to create a

valid convex hull. Each node is represented as a

contains and is called the convex hull of the nodes set .

If is the number of nodes in , then . The

set stores the list of vertices of the convex hull in counter

clockwise order.

MDCs use local information stored in their binding

tables to construct their SZs. The vertices of the SZs will

be the farthest connected nodes from the MDC. However,

to maintain load balancing among various SZs, the SZs

formation phase is composed of two steps: CZ

reconciliation and SZ construction. The former step is only

performed by MDCs that have overlapping in their CZs.

The latter step is performed by all MDCs in the network.

(6)

4.3.1. Collection Zone Reconciliation

At the end of the CZ creation phase, a situation may

arise where two or more MDCs have overlapping CZs.

This situation can also occur after the SZ construction step

if an MDC updates its SZ after moving to the vicinity of

another MDC. These situations can result in creating

small SZs that contain MDCs close to the perimeter of their

corresponding SZ.

Consider the scenario in Fig. 6, where there are three

MDCs that are physically close to each other and have

8
overlapped CZs. In this case, each MDC constructs

relatively small SZs. The MDCs will be located close to

the perimeter of their SZs. Such situation is far from ideal

for the following reasons: (1) It is possible that the MDC

will very soon move outside its SZ. This results in a major

SZs re-configuration at minor intervals, during which

information delivery is interrupted. (2) Spatial events

become more difficult to capture in a smaller SZ without

high-level coordination. (3) Mobility management,

because the update procedure runs within each SZ

independently. To overcome the problem of over-

clustering the network, we propose a CZ reconciliation

algorithm, designed for choosing the appropriate MDC to

serve the sensor nodes connected to the other MDCs.

Fig. 6 - MDC merging situation.

Fig. 7 shows the steps MDCs follow to discover an

overlap. MDCs check for CZs overlapping when it directly

receives an advertisement message from another MDC. If

the distance separating two MDCs is less than the length of

their CZ diameter, then an overlap is detected. Upon CZ

overlap detection, the discovering MDC sends

an to the advertising MDC. Then, both

MDCs execute the CZ reconciliation algorithm described

below.

Fig. 7 - MDCs overlapping messages diagram.

Fig. 8 illustrates the CZs reconciliation algorithm.

Candidate MDCs start by finding the MDC that has more

members in its binding table. This MDC, called primary

MDC, is chosen to form the new SZ. The members of other

SZs will be transferred to the new MDC. The MDC with

the greater number of members is retained to avoid the

higher cost to transfer them to a different SZ. When two

candidate MDCs have equal number of members, the MDC

with the higher latitude is retained.

Fig. 9 is a step-by-step illustration of the messages

exchanged during this process. The primary MDC sends a

message to other involved MDCs. The

receiving MDCs send messages to

their members. Each member sends message to

join the primary MDC. Upon receiving the message by the

primary MDC, it creates an entry for the new members to

its binding table. Finally, the primary MDC sends

messages to the other MDCs,

which then update their binding tables.

4.3.2. Constructing the Service Zones

This subsection presents the details of the convex hull

construction algorithm. Convex hulls are constructed to

determine the sensor nodes on the boundary of SZs and

form groups. The convex hull construction is based on the

Graham scan algorithm [38]. The algorithm first explicitly

sorts the nodes in and then applies a linear-

time scanning algorithm to finish building the hull. To

compute the convex hull , the function CH() performs the

following three phases.

Phase I. Select an anchor point (base node) in ,

normally this is the node with the minimum y-coordinate.

In case of a tie, the leftmost node (minimum x-coordinate)

in the set is selected.

Fig. 8 - Collection zones reconciliation.

9
of the convex hull of in counter clockwise order. Fig.

11 presents a convex hull after performing Phase III.

Fig. 9 - CZs reconciliation algorithm messages diagram.

Phase II. Sort the remaining nodes of , i.e., ,

lexicographically by polar angle, measured in radians.

Interior nodes on the ray can not be convex hull points and

are excluded during sorting. Once the nodes are sorted,

they are connected in counter clockwise order with respect

to the anchor node . The result is a simple polygon as

shown in Fig. 10. Note that the algorithm performs no

explicit computation of angles.

Fig. 11 - phase III of Graham's scan algorithm.

Let the vector represent the line segment

between the last two nodes in the stack . To demine that

a new node is on the left of the line segment , the

MDC applies the right hand-rule, by checking the

orientation of the cross product , which is

equivalent to equation (7).

Then, the node is left of the line segment if the

result of equation is positive . The pseudo-code in

Algorithm 2 provides the details of Graham Scan

Algorithm for constructing convex hulls.

Algorithm 2: Graham Scan Algorithm

Input: a set of points S = {P = (P.x,P.y)} Begin Select the rightmost lowest point P0 in S Sort S radially (ccw) about P0 as a center { Use isLeft() comparisons
For ties, discard the closer points

Fig. 10 - Sorting phase of Graham's scan algorithm.

Phase III. After pushing the anchor node onto the

stack , nodes are scanned in counter clockwise order,

maintaining at each step a stack containing a convex

chain surrounding the nodes scanned so far. At each node

the following test is performed:

a. If forms a left turn with the last two points in the

stack , or if contains fewer than two points, then

push onto the stack .

b. Otherwise, pop the last point from the stack and

repeat the test for .

The process halts when the algorithm returns to the

anchor point , at which point stack stores the vertices

}

Let P[N] be the sorted array of points with P[0]=P0

Push P[0] and P[1] onto a stack Ω

while i < N do

Let PT1 = the top point on Ω

If (PT1 == P[0]) then

Push P[i] onto Ω

i++

endif

Let PT2 = the second top point on Ω

If (P[i] is strictly left of the line PT2 to PT1) then

Push P[i] onto Ω

i++

else

Pop the top point PT1 off the stack

endif

endwhile

END

Output: Ω = the convex hull of S

(7)

10
4.4. Network Clusters Maintenance

The logical CZ and SZ membership requires regular

updates. This section provides a complete picture of how

network clustering is maintained. For handling changes in

network topology due to frequent MDC mobility, the

proposed update mechanism is triggered periodically by

MDCs. The update mechanism provides a continuous

process to keep track of changes in the network.

To reduce the delay in implementing performance-critical

logical zone updates, the update mechanism provides local

checks and calculations performed by MDCs; sensor nodes

only participate in the process when the MDCs detect a

change. This mechanism is energy efficient since updates

are limited in scope; only the transferring MDCs and

interconnected neighboring nodes are aware of the

handover.

When an MDC is moving out of its CZ, a new CZ is

created and nodes belonging to the corresponding SZ are

reconfigured. When an updated CZ crosses its defined SZ

boundary, the previously constructed SZ is destroyed and a

new SZ will be constructed. An SZ update may remove

nodes that are no longer in an MDC vicinity, or add nodes

disconnected from another SZ. Fig. 12 shows an MDC

moving in a southerly direction and out of its SZ.

The MDC starts by scanning its binding table to

determine all nodes that are further than from it (where

is the maximum distance of a node to the MDC). These

nodes are disconnected by a message. Next, the

MDC sends advertisement messages to the new sensor

nodes that are within a distance . Upon receiving the

advertisement, unconnected sensor nodes respond by a

message. The previous procedure excludes

nodes that are already connected to the original service

area; these nodes only forward the advertisements. Fig. 13

shows the details of the cluster local update mechanism.

The cluster update mechanism is periodically performed

by the MDCs. An MDC checks whether it is inside its CZ

by comparing the distance between its location and the

center of its CZ with the CZ radius. If that distance is

greater than the radius of its CZ, then the MDC is not

inside its CZ and the CZ will be updated. It is important to

point out that the updated CZ could overlap an existing CZ.

In this case, the CZ reconciliation algorithm is executed,

and hence one SZ would be constructed for both MDCs.

After a CZ update, the MDCs calculate the estimated

remaining distance and time in their current SZs. This

information is used by the MDC to determine when to

update its SZ. Intuitively, the MDC will intersect one of the

SZ edges after some certain time. To calculate an

estimation for this time and remaining distance for the

MDC inside its SZ, the intersection point of the MDC and

the SZ edge must be predicted.

Let be the line segment between endpoints, and ,

the MDC current position and its new location after it

crosses the SZ, respectively. The extended line through

and is given by the parametric equation (8):

Fig. 12 - Service zone update.

(8)

with the line direction vector. Then the
segment contains those points with .

Let a convex hull be given by

vertices going counter clockwise around

the hull, and let . Also let be the edge (line

segment) for ; and

be the edge vector. Then, an outward-pointing

normal vector for is given by ,

where is the 2D perpendicular operator.

To determine the hull edge that will intersect with the

line segment , we scan the hull edges checking if the

vector from to points to the outside of the edge.

When , there is no intersection with the

edge, so ignore this edge, and continue processing the other

edges.

As indicated in Fig. 14, intersection occurs when

. =0, since any vector parallel to the edge is

perpendicular to the edge normal vector. Substituting for
and solving for , we get:

(9)

Fig. 13 - SZ updating mechanism

at the intersection point , is plugged back into

the first equation

1
1

Fig. 14 - MDC and SZ intersection

(10)

Disconnecting nodes during updating service areas

can result in 'orphaned nodes'. An orphaned node is a node

that is not connected to any MDC. Such a node loses its

connectivity to neighboring nodes or is unable to obtain an

advertisement message from any of the MDCs as it is

located outside the MDCs radio range. An orphaned node

may keep attempting to connect to its previous parent.

Orphaned nodes lead to segmentation problems, where

the network is divided into many unconnected segments.

This situation could also occur when MDCs are located

distant from each other, and there are unconnected nodes

between the SZs. Such a situation may lead to

disconnections and loss of data from orphaned nodes and

other parts of the network. To resolve the orphaned node

problem, we opted to extend the SZs to the whole

monitored area by using the following steps:

1. If a node does not receive an advertisement from an

MDC or a gets disconnected, it waits for a back-off

interval.

2. If the node still did not receive an advertisement, it uses

a reactive discovery approach by sending out an MDC
The pseudo-code in Algorithm 3 provides the details of

SZ update prediction algorithm.
solicitation message to its neighbors to obtain MDC

information.

 3. Neighbors forward the message to the MDC and wait
 Algorithm 3: MDC and SZ intersection

Input: a 2D segment S from point to point

a 2D convex polygon CH with vertices

Begin

if then is a single point, so then

test for point inclusion of in CH; and

return the test result (TRUE or FALSE);

endif

Initialize:

for the min intersecting segment parameter;

is the segment direction vector;

for every do

Let an outward normal of the edge ;

N = - dot product of (P0-Vi) and ni;

D = dot product of dS and ni;

if (D == 0) then

S is parallel to the edge ei

if (N < 0) then

P0 is outside the edge ei

return FALSE since S cannot intersect CH;

else S cannot leave CH across edge ei then

ignore edge ei and

continue to process the next edge;

endif

endif

Put t = N / D

endfor

End

Output: P(t) = P0 + t * dS

5. Handling Orphaned Nodes in DCMDC

This section discusses the orphaned nodes problem and

how the DCMDC protocol handles and maintains their

connectivity.

for reply. In case of the neighbor is also orphaned, the

node enters another back off interval to allow their

neighbor to obtain the MDC information.

4. The MDC sends its information to the forwarding node.

5. The forwarding node receives the MDC information

message and forwards it to the orphaned node.

6. Upon receiving information about the surrounding

MDCs, the orphaned node executes the optimal MDC

selection algorithm. Choosing the optimal MDC is

based on the connection expiration time (CET). In [37],

we presented our MDC selection algorithm.

7. Orphaned node chooses the optimal MDC and sends to

it a message.

8. The chosen MDC waits for a backoff interval waiting

for other messages from other orphaned

nodes.

9. The chosen MDC updates its convex hull to join the

orphaned nodes.

Unlike the exhausted (or dead) nodes, the orphaned

nodes can still receive and transmit messages; thus it is

possible to restore them to the network. Handling and

minimizing the number of orphaned nodes preserves their

energy and reduces signaling overhead, which assists in

balancing energy consumption. Connecting orphaned

nodes and alleviates network segmentation and energy

depletion. Orphaned node join the optimal MDC that keeps

them connected for the longest period.

6. Performance Evaluation

The performance of DCMDC was evaluated extensively

under diverse conditions and compared against two of its

best rivals in the literature, namely, ERMMSDG [25] and

MDC/PEQ [26]. These protocols are similar to the

12
DCMDC in spirit, but different in approach. Both

ERMMSDG and MDC/PEQ are mobility management

protocols designed for three-tire WSN systems. They use

multiple mobile data collectors to collect data from sensor

nodes. Furthermore, both protocol use real-life simulation

parameters, which resembles the specifications of many

existing networks and hardware platforms. Their

publications give their full specifications, making it

possible for researchers to implement and reproduce the

published results. Finally, they achieve best results

compared to their contenders in the literature. In this

section, we present the simulation parameters, results and

analysis.

The simulation scenario consists of nodes randomly

placed in the area of . Sensor nodes have

wireless radio range of . The transmission and

reception power of a sensor node is set to . Four

data sources were chosen randomly to generate

throughout the simulation. The packet size is for

all control messages. Whereas, the size of data packets is

set to . Each node is given of initial

energy, which is equivalent to energy of two AA batteries.

The number of MDCs is set to of the total node

population. MDCs were deployed randomly. Their

mobility speed reaches up to and they move

according to the random waypoint mobility model

described in [39, 40]. This travel speed mimics the speed of

moving objects in real-life applications, such as wildlife

monitoring or battlefield surveillance, where the travel

speed of an animal or an armored vehicle is

approximately . MDCs wireless radio range can

reach up to . The sink node is located at the center of

the simulation area and has wireless radio range of .

A summary of the simulation parameters and their

respective values is shown in Table 2. The chosen

simulation parameters for the experiments are based on the

iMote2 [41] hardware platform specifications.

Table 2: DCMDC simulation parameters

Parameter Value

Number of nodes

Simulation area

Wireless radio range (SN)

Wireless radio range (MDC)

Source nodes data rate

Number of MDCs

MDC velocity

Data packet size

TX power dissipation

RX power dissipation

Mobility Model Random waypoint

To evaluate the performance of DCMDC, we compare it

against the ERMMSDG and the MDC/PEQ protocols

through simulation using the NS3 simulator [42]. Their

performance is evaluated according to several metrics

including: end-to-end delay, packet delivery ratio, packet

drop, average energy consumption per node, and network

lifetime.

6.1. End-to-End Delay (E2Ed)

E2Ed includes the queuing, transmission, propagation

and processing delays. The average delay of all nodes is

given by the following equation:

(11)

where is the time a packet is generated, is the time a

packet arrives at its final destination and is the number of

data packets generated at sensor nodes and received by the

sink.

Fig. 15 shows that DCMDC reduces the average end-to-

end delay by and compared to ERRMSDG and

MDC/PEQ respectively. There are several factors

accounting for this outcome. First, the DCMDC algorithm

minimizes the packet transmission interruption times and

maintains high network connectivity by responding rapidly

to any topological changes. On the other hand, MDC/PEQ

and ERRMSDG incur larger signaling traffic as a

consequence of routing packets through longer paths.

Second, nodes in ERRMSDG and MDC/PEQ only

consider the signal strength in selecting the serving MDC,

while nodes in DCMDC consider the direction, distance

and speed of potential MDCs. Thus, DCMDC results in

well-delimited dynamic groups of nodes that has less

frequent route updates and topology reconfigurations;

therefore, reducing potential packet delivery delays. Third,

DCMDC predicts the future disconnection time; and hence,

nodes use short paths to MDCs that last for longer time.

This significantly shortens the propagation and queuing

delay.

Fig. 15 – Average E2Ed vs simulation time.

1
3

6.2. Packet Delivery Ratio (PDR)

PDR is the ratio of packets that are successfully

delivered to a destination compared to the number of

packets that have been sent by the sender(s). PDR is given

as:

(12)

Fig. 16 plots the PDR of the three studied protocols

against the simulation time. DCMDC outperforms the

ERRMSDG and MDC/PEQ by grouping nodes into

smaller SZs and localizing mobility management traffic.

The lower mobility management overhead results in

smaller number of collisions and reduced data loss due to

network congestion. It can be observed that the

performance of DCMDC in term of PDR has a frequent

fluctuation. It achieves high PDR when the network is

stable, i.e., between SZs reconfigurations. At other

instances, DCMDC PDR drops below when sensor

nodes execute the CZs reconciliation procedure; whereby,

the bandwidth utilization increases dramatically due to the

heavy exchange of reconfiguration messages. Another

reason behind DCMDC’s high PDR is the use of the

optimal MDC selection scheme, which helps nodes stay

connected for a longer time; therefore, increasing the

network availability and reducing the dropped packet rate.

In ERRMSDG and MDC/PEQ, orphan nodes use direct

route to the sink to transfer their data. This leads to

conveying data through multiple hops, thereby contributing

to an increase of packet collisions and losses. It is also

observed that the packet drop increases steadily, when the

transmission distances approaches , due to weak signal

strength and the travel speed of MDCs.

Fig. 16 - PDR vs simulation time.

Fig. 17 shows the PDR of the three studied protocols

when varying the number of data sources. DCMDC’s PDR

drops gradually when increasing the number of data

sources, demonstrating DCMDC’s ability to handle higher

volumes of traffic from different sources. In ERMMSDG,

the PDR reaches for the tested scenario. This low

delivery ratio is due to the selection of the nearest node to

be the relay node, which leads to load-imbalancing. This,

combined with the connectivity disconnections due to

MDC movement, leads to high packet loss. Furthermore, in

situations where an MDC is gathering data from two or

more rendezvous zones, the same relay node will be

selected for forwarding the traffic. This causes bottlenecks

on nodes close to the relay node; consequently, consuming

higher bandwidth, and therefore, causing higher packet

drop rates. In MDC/PEQ, the PDR reaches for the

tested scenario. The high beacon transmission rate as well

as relaying data directly to the sink lead to higher

bandwidth consumption, and thus higher packet loss, as

shown in Fig. 18.

Fig. 17 - PDR vs number of sources.

Fig. 18 - Packet drop vs number of sources.

As observed in Fig. 19, the PDR decreases when

increasing the speed of the MDCs. As the travel speed of

MDCs increases, the probability of errors in data

transmission increases. This is because increasing the

travel speed of MDCs instigate frequent topological

changes that need to be resolved before data collection can

be resumed. Consequently, a higher number of packets will

14
be dropped or will arrive late due to buffer overflows and

congestion. Yet, DCMDC performed better than

ERRMSDG and MDC/PEQ as it isolates the topological

updates and limits them to the SZ boundary. In case of

DCMDC, the speed of travel is already factored for during

the selection of the optimal MDC and nodes are always

connected to the MDC with the highest CET.

Fig. 19 - PDR vs MDCs velocity.

6.3. Average Energy Consumption per Node

Since radio communication is the most power-hungry

operation [43], the energy consumption of DCMDC is

measured as the cost of mobility management added to the

cost of data collection. The average energy consumption of

a sensor node is directly related to the operational lifetime

of the network.

optimal number of partitions in the network is estimated at

about of the total number of nodes in the network).

DCMDC performs better than ERMMSDG and MDC/PEQ

in terms of energy consumption in all cases. It is capable of

reducing energy consumption by and when

compared to ERMMSDG and MDC/PEQ respectively.

These gains in energy consumption are due to DCMDC’s

capability of reducing the mobility management overhead

and delivering data packets over the shortest route to the

MDC, while maintaining load balancing. MDC/PEQ

generates high number beacon packets and uses the path to

an MDC with the smaller number of hops, which is not

always the optimal path in terms of energy consumption.

For instance, due to packet loss, MDC/PEQ has to

retransmit packets, thus, increasing the energy

consumption.

Fig. 20 - Energy consumption vs the number of mobile collectors.

(13)

where is the initial amount of energy of any sensor

node, is the residual energy of the sensor node at

the end of the simulation and is the number of sensor

nodes in the network.

As shown in Fig. 20, a single MDC network consumes

high energy as it causes a signaling ripple effect and results

in bottlenecks in areas around itself. The energy

consumption decreases gradually when increasing the

number of MDCs from to . This is due to distributing

the load among the MDCs and the intermediate nodes used

to reach them. Furthermore, multiple MDCs can reduce the

number of hops that data packets have to traverse. When

increasing the number of MDCs to more than 6, the

average energy consumption per node starts to increase

moderately. This is because when having more MDCs in

the network, the number and frequency of SZs updates

increase. This results in a gradual rise in the signaling

overhead, which dissipates energy gains.

The above findings are on the optimal number of MDC

are consistent with the empirical results of [44] (the

6.4. Network Lifetime

Network lifetime is measured as the time duration

before the energy level of of the total node population

becomes zero. Fig. 21 shows that DCMDC substantially

prolongs the network lifetime by and over

ERMMSDG and MDC/PEQ respectively. This energy

saving is mainly due to nodes joining the MDC offering the

longest CET, thus, avoiding frequent handoffs and the

costs associated with reestablishing a path to the MDC. In

ERMMSDG, relay nodes consume their energy faster than

other nodes due to forwarding the data packets from the

rendezvous point. Whereas, some MDC/PEQ sensor nodes

consume more energy in receiving, processing and

forwarding beacons.

Fig. 21 also gives insights into energy balancing in the

three studied protocols. When the time interval between the

First Node to Die (FND) and the Last Node to Die (LND)

decrease, this indicates a more balanced energy

consumption among sensor nodes in the network. The time

interval between the FND and the LND in DCMDC,

ERMMSDG and MDC/PEQ is , and

1
5

ID Type Location MembersNo Distance HopCount TimStamp

respectively. Thus, DCMDC’s energy consumption is

and more load balanced compared to ERMMSDG

and MDC/PEQ respectively. This is primarily because

DCMDC constructs communication links within the SZ

with the communication cost as a primary factor. Whereas,

MDC/PEQ only relies on the number of hops without

considering the link load, quality or reliability.

Appendix A. Control Messages of DCMDC Protocol

This appendix presents the control messages format of

the proposed DCMDC protocol. In the following, we list

the control messages and provide details of their structure:

Fig. 21 – Number of alive nodes vs simulation time.

7. Conclusion

This paper addressed the issue of efficient mobility

management. Motivated by keeping the data latency and

energy consumption to the minimum, a dynamic network

clustering technique, called DCMDC, is proposed.

Network clustering is a well-tested solution to achieve

scalability and load balancing. Grouping nodes into smaller

logical sets makes buffer overflows and energy depletion

less of a problem. DCMDC manages MDCs mobility and

results in a set of well-delimited network clusters of sensor

nodes that are updated dynamically. Experimental

evaluation showed that DCMDC reduces mobility

management cost, end-to-end delay, and energy

consumption while increasing the network lifetime and the

packet delivery ratio.

There are a number of interesting directions for future

work. First, the CZs have the potential to be utilized by

data collection approaches that are based on logical

grouping of nodes to deliver their intended functionality,

e.g., for query scoping or dissemination. Second, more

work needs to be done to further reduce the handover

interruption time, i.e., the time between disconnecting from

the current SZ and connecting to a new one. This can be

achieved by developing a precise time prediction algorithm

to predict when the SZ needs update. Informing nodes that

will be affected with the update process before the time of

the update is due gives nodes time to proactively execute

the optimal MDC selection algorithm. Consequently,

handoffs would be performed more rapidly.

ID: is the MDC identifier.

Type: is the message type.

Location: is the MDC location information (X position, Y

position, track).

MembersNO: is the number of sensor nodes connected to

the MDC.

Distance: is the maximum distance that the advertisement

message can be forwarded over.

HopCount: is the number of hops that the advMsg has

traversed over.

TimeStamp: is the time when the message has been sent.

ID Type Location Energy TimeStamp

ID: is the MDC identifier.

Type: is the message type.

Location: is the sensor node location information(X

position , Y position, track).

Energy: is the residual every of the sensor node.

TimeStamp: is the time when the message has been sent.

ID Type Location Energy TimeStamp

ID: is the MDC identifier.

Type: is the message type.

Location: is the MDC location information(X position, Y

position, track).

MembersNo: is the number of sensor nodes connected to

the MDC.

TimeStamp: is the time when the message has been sent.

ID Type TimeStamp

ID: is the primary MDC identifier.

Type: is the message type.

TimeStamp: is the time when the message has been sent.

ID Type nMDC_ID nMDC_Location TimeStamp

ID: is the old MDC identifier.

Type: is the message type.

nMDC_ID: is the new MDC identifier.

nMDC_Location:is the new MDC location information(X

position, Y position, track).

TimeStamp: is the time when the message has been sent.

16

ID Type tMembersNo TimeStamp

ID: is the MDC identifier.

Type: is the message type.

tMembersNo: is the number of the transferred sensor

nodes.

TimeStamp: is the time when the message has been sent.

References

[1] A. Abuarqoub, "Cooperative Mobility Maintenance Techniques for

Information Extraction from Mobile Wireless Sensor Networks,"

PhD, School of Computing, Mathematics and Digital Technology,

Manchester Metropolitan University, Manchester Metropolitan
University's Research Repository, 2014.

[2] G. Mao, et al., "Wireless sensor network localization techniques,"

Computer Networks, vol. 51, pp. 2529-2553, 2007.

[3] A. Savvides, et al., "Dynamic fine-grained localization in Ad-Hoc

networks of sensors," presented at the Proceedings of the 7th

annual international conference on Mobile computing and
networking, Rome, Italy, 2001.

[4] N. Bulusu, et al., "GPS-less low-cost outdoor localization for very
small devices," IEEE Personal Communications, vol. 7, pp. 28-34,
2000.

[5] H. Liu, et al., "Survey of Wireless Indoor Positioning Techniques

and Systems," IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 37, pp. 1067-

1080, 2007.
[6] M. Femminella and G. Reali, "Low Satellite Visibility Areas:

Extension of the GPS Capabilities to Deploy Location-Based

Services," IEEE Vehicular Technology Magazine, vol. 7, pp. 55-65,

2012.

[7] A. A. Abbasi and M. Younis, "A survey on clustering algorithms

for wireless sensor networks," Computer Communications, vol. 30,

pp. 2826-2841, 2007.
[8] S. Soro and W. B. Heinzelman, "Cluster head election techniques

for coverage preservation in wireless sensor networks," Ad Hoc

Netw., vol. 7, pp. 955-972, 2009.
[9] K. A. Darabkh, et al., "Performance evaluation of selective and

adaptive heads clustering algorithms over wireless sensor

networks," Journal of Network and Computer Applications, vol. 35,
pp. 2068-2080, 2012.

[10] Q. Dong and W. Dargie, "A Survey on Mobility and Mobility-

Aware MAC Protocols in Wireless Sensor Networks," IEEE
Communications Surveys & Tutorials, vol. 15, pp. 88-100, 2013.

[11] M. Hammoudeh, et al., "Map as a Service: A Framework for

Visualising and Maximising Information Return from Multi-
ModalWireless Sensor Networks," Sensors pp. 22970-23003, 2015.

[12] J. Y. Yu and P. H. J. Chong, "A survey of clustering schemes for

mobile ad hoc networks," IEEE Communications Surveys &
Tutorials, vol. 7, pp. 32-48, 2005.

[13] Y. Zhang, et al., RFID and Sensor Networks: Architectures,

Protocols, Security, and Integrations: CRC Press, Inc., 2009.
[14] N. Blefari-Melazzi, et al., "Autonomic control and personalization

of a wireless access network," Computer Networks, vol. 51, pp.

2645-2676, 2007.

[15] S. Jabbar, et al., "Multilayer cluster designing algorithm for

lifetime improvement of wireless sensor networks," J.

Supercomput., vol. 70, pp. 104-132, 2014.
[16] Ko, et al., "Controlled Sink Mobility Algorithms for Wireless

Sensor Networks," International Journal of Distributed Sensor
Networks, vol. 2014, p. 12, 2014.

[17] Y. Sheng, et al., "Routing protocols for wireless sensor networks
with mobile sinks: a survey," Communications Magazine, IEEE,

vol. 52, pp. 150-157, 2014.

[18] D. Das, et al., "Multiple-sink placement strategies in wireless

sensor networks," in Communication Systems and Networks
(COMSNETS), 2013 Fifth International Conference on, 2013, pp.
1-7.

[19] B.Sudhakar and K.Sangeetha, "Multi Sink based Data Collection

Scheme for Wireless Sensor Networks " International Journal of

Innovative Research in Computer and Communication Engineering

vol. Vol.2, pp. 1139-1146, March 2014 2014.
[20] D. Amine, et al., "Energy Efficient and Safe Weighted Clustering

Algorithm for Mobile Wireless Sensor Networks," Procedia

Computer Science, vol. 34, pp. 63-70, 2014/01/01 2014.
[21] L. Peng and J.-b. Xu, "ECDGA: An Energy-Efficient Cluster-

Based Data Gathering Algorithm for Mobile Wireless Sensor
Networks," in Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on, 2009,

pp. 1-4.

[22] J. G. Olascuaga-Cabrera, et al., "Self-organization of mobile
devices networks," in System of Systems Engineering, 2009. SoSE

2009. IEEE International Conference on, 2009, pp. 1-6.

[23] G. S. Sara, et al., "Energy Efficient Clustering and Routing in
Mobile Wireless Sensor Network," International Journal of
Wireless & Mobile Networks (IJWMN), vol. 2, pp. 106-114,

November 2010 2010.

[24] T. Ducrocq, et al., "Energy-based clustering for wireless sensor
network lifetime optimization," in 2013 IEEE Wireless

Communications and Networking Conference (WCNC), 2013, pp.

968-973.
[25] P. Madhumathy and D. Sivakumar, "Enabling energy efficient

sensory data collection using multiple mobile sink," China
Communications, vol. 11, pp. 29-37, 2014.

[26] R. W. N. Pazzi and A. Boukerche, "Mobile data collector strategy

for delay-sensitive applications over wireless sensor networks,"
Comput. Commun., vol. 31, pp. 1028-1039, 2008.

[27] T. Alsboui, et al., "Information Extraction from Wireless Sensor
Networks: System and Approaches," Sensors & Transducers

Journal, vol. 14-2, pp. 1-17, March 2012.
[28] M. Hammoudeh, et al., "An Approach to Data Extraction and

Visualisation for Wireless Sensor Networks," in Networks, 2009.
ICN '09. Eighth International Conference on, 2009, pp. 156-161.

[29] J. Liu and Y. Hu, "A balanced and energy-efficient clustering
algorithm for heterogeneous wireless sensor networks," in Wireless

Communications and Signal Processing (WCSP), 2014 Sixth

International Conference on, 2014, pp. 1-6.
[30] D. Xie, et al., "Multiple mobile sinks data dissemination

mechanism for large scale Wireless Sensor Network," China

Communications, vol. 11, pp. 1-8, 2014.
[31] M. Zhao, et al., "Mobile Data Gathering with Load Balanced

Clustering and Dual Data Uploading in Wireless Sensor Networks,"
IEEE Transactions on Mobile Computing, vol. 14, pp. 770-785,

2015.

[32] O. Saukh, et al., "Convex groups for self-organizing multi-sink

wireless sensor networks," in Industrial Electronics, 2009. IECON

'09. 35th Annual Conference of IEEE, 2009, pp. 2624-2629.
[33] A. Shahid, et al., "Proactive multipath data dissemination for

Multimedia Sensor Networks," in Multitopic Conference (INMIC),

2012 15th International, 2012, pp. 349-354.

[34] J. Niu, et al., "R3E: Reliable Reactive Routing Enhancement for

Wireless Sensor Networks," Industrial Informatics, IEEE
Transactions on, vol. 10, pp. 784-794, 2014.

[35] G. S. Sara, et al., "Energy Efficient Mobile Wireless Sensor
Network Routing Protocol," in Recent Trends in Networks and
Communications: International Conferences, NeCoM 2010,

WiMoN 2010, WeST 2010, Chennai, India, July 23-25, 2010.
Proceedings, N. Meghanathan, et al., Eds., ed Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 642-650.

[36] C. Hsung-Pin and H. Shun-Chih, "A hybrid intelligent protocol in

sink-oriented wireless sensor networks," in Information Security
and Intelligence Control (ISIC), 2012 International Conference on,
2012, pp. 57-60.

[37] Omar Aldabbas, et al., "Unmanned Ground Vehicle for Data
Collection in Wireless Sensor Networks: Mobility-aware Sink

Selection," The Open Automation and Control Systems Journal,
vol. 8, pp. 35-46, 2016.

[38] R. L. Graham, "An Efficient Algorithm for Determining the

Convex Hull of a Finite Planar Set," Information Processing
Letters, vol. 1, pp. 132-133, 1972.

[39] J. Broch, et al., "A performance comparison of multi-hop wireless
ad hoc network routing protocols," presented at the Proceedings of

the 4th annual ACM/IEEE international conference on Mobile
computing and networking, Dallas, Texas, USA, 1998.

1
7

[40] D. Johnson and D. Maltz, "Dynamic Source Routing in Ad Hoc

Wireless Networks," in Mobile Computing. vol. 353, T. Imielinski

and H. Korth, Eds., ed: Springer US, 1996, pp. 153-181.

[41] Intel, "Intel Mote 2," in Engineering Platform Data Sheet ed, 2006,

pp. 1-9.

[42] nsnam. (2011, Retrieved 18 April 2012). NS-3. Available: from
http://www.nsnam.org/

[43] G. J. Pottie and W. J. Kaiser, "Wireless integrated network
sensors," Commun. ACM, vol. 43, pp. 51-58, 2000.

[44] W. R. Heinzelman, et al., "Energy-Efficient Communication
Protocol for Wireless Microsensor Networks," presented at the
Proceedings of the 33rd Hawaii International Conference on

System Sciences-Volume 8 - Volume 8, 2000.

Abdelrahman Abuarqoub is an Assistant

Professor in Computer Science, Head of

Department of Computer Science, and

Vice Dean of the Faculty of Information

Technology at the Middle East University

of Jordan. He received his PhD in

Computer Science from the Manchester

Metropolitan University in 2014, his MSc

(Distinction) in Data Telecommunications

and Networks from the University of Salford in 2011, his

BSc in Computer Networks Systems from Applied Science

University/Jordan in 2009. His research focuses on

Wireless Sensor Networks, ubiquitous and mobile

computing, specifically in Internet of Things.

Mohammad Hammoudeh is a Senior

Lecturer in Computer Networks and

Security in the School of Computing,

Mathematics and Digital Technology at

the Manchester Metropolitan University.

He received his Ph.D. in Computer

Science from the University of

Wolverhampton in 2009, his MSc in

Advanced Distributed Systems from the University of

Leicester in 2007 and his BSc (Hons) in Computer

Communications from the Arts, Sciences & Technology

University in Lebanon in 2004. He is the co-founder and

member of the FUture Networks and Distributed Systems

research Group (FUNDS). He is the founder and head of

the MMU IoT Lab.

Bamidele Adebisi received his Master's

degree in advanced mobile

communication engineering and Ph.D. in

communication systems from Lancaster

University, UK. Before that, he obtained

a Bachelor's degree in electrical

engineering from Ahmadu Bello

University, Zaria, Nigeria. He was a

senior research associate in the School of Computing and

Communication, Lancaster University between 2005 and

2012. He joined Metropolitan University, Manchester in

2012 where he is currently a Reader in Electrical and

Electronic Engineering. He has worked on several

commercial and government projects focusing on various

aspects of wireline and wireless communications. He is a

member of IET and a senior member of IEEE.

Sohail Jabbar is a Post-Doctorate Researcher at Network

Lab, Kyungpook National University, Daegu, South Korea.

He has been Assistant Professor with the Department of

Computer Science, COMSATS Institute of Information

Technology (CIIT), Sahiwal and headed Networks and

Communication Research Group at CIIT, Sahiwal. He

received many awards and honors from Higher Education

Commission of Pakistan, Bahria University, CIIT, and the

Korean Government. He received the Research

Productivity Award from CIIT in 2014 and 2015. He has

been engaged in many National and International Level

Projects.

Ahcene Bounceur is an associate

professor of Computer Science at the

university of Brest (UBO). He is a

member of the Lab-STICC Laboratory

(MOCS Group). He received a Ph.D. in

Micro and nano-electronics at Grenoble

INP, France in 2007. He received the

M.S. degrees in Operations Research

from ENSIMAG, Grenoble, France in 2003. From April

2007 to August 2008, he was a postdoctoral fellow at

TIMA Laboratory. From September 2007 to August 2008,

he was with Grenoble INP, France where he was a

temporary professor. He has obtained the 3rd place of the

Annual IEEE Test Technology Technical Council (TTTC-

IEEE) Doctoral Thesis Contest, VLSI Test Symposium,

Berkeley, USA, May 2007. His current research activities

are focused on: Tools for physical simulation of Wireless

Sensor Networks (WSN), parallel models for accelerating

simulations and predicting parameters in WSN, sampling

methods for data mining, development of CAT (Computer

Aided Test) tools and statistical modeling of analog,

mixed-signal and RF circuits. He is the coordinator of the

project ANR PERSEPTEUR and a partner of the project

Suidia.

Hashem S. Al-Bashar is a Computer

Science student and a research associate

at the Middle East University of Jordan.

His current research interests lie in the

areas of wireless sensor networks, data

science, internet of things, big data,

networking, cloud computing,

programming and data warehousing.

http://www.nsnam.org/
http://www.nsnam.org/

