
Identification and recovery of video fragments for
forensics file carving

Khawla Alghafli
Department of Electrical and

Computer Engineering,
Khalifa University, Abu Dhabi, UAE

khawla.alghafli@kustar.ac.ae

Thomas Martin
Department of Computing and

Mathematics,
Manchester Metropolitan University,

T.Martin@mmu.ac.uk

Abstract—In digital forensics, file carving of video files is
an important process in the recovery of video evidence needed
for many criminal cases. Traditional carving techniques recover
video files based on their file structure. However, these techniques
fail in cases where the file is split into several fragments, especially
if some of the fragments were overwritten. In this paper, we
present a method for identification and recovery process of video
fragments if the video Codec specifications were overwritten.
It consists of two parts which are detector and validators.
The detector looks for sequences of bytes that could be video
fragments in forensics image. The validator decides to accept
or reject that a given fragment is a part of a video file. Based
on the proposed method we implement a prototype which is
called VidCarve. We have conducted several experiments to
evaluate the proposed method with current video carving tools.
Experimental results show that the discussed method can identify
video fragments with high rates of precision and recall. The
overall performance rate can produce forensically sound evidence
and play a vital role in the process of recovery of digital evidence
in many criminal cases.

Keywords—Digital forensics, data recovery, file carving, frag-
mented video files, fragment identification.

I. INTRODUCTION

Over the last few decades, the number of digital devices in
use has increased. These devices are involved in most aspects
of peoples’ daily lives, many crimes have adapted to take
advantage of these devices. These crimes include child abuse,
counterfeiting, domestic violence, identity theft and economic
fraud [1]. Digital forensics is the process of preservation,
acquisition, examination, analysis and presentation of digital
evidence from any digital device [2]. The aim of digital
forensics is to find the evidence of computer crimes that can
be accepted in court.

Data recovery is a primary element of digital forensics.
There are cases where digital forensics researchers and prac-
titioners need to recover files from a system which has a
corrupted, overwritten or an unknown file system. File carving
is a data recovery technique that recovers files from storage
media based on the file content and structure without using
file system metadata [3].

File carving is a powerful technique in digital forensic
cases because it offers the flexibility of being able to recover
information stored on digital media independent of the type of
the underlying file system. Video content available in digital

storage media of digital devices is widespread and growing
exponentially. These devices include mobile phones, cameras,
and surveillance systems. Many criminal cases include the
recovery of deleted or corrupted video files. The aim of
this research is to recover video files from unallocated disk
space. We will make the use of the file content and structure
rather than relying on the file system metadata to identify and
reassemble a video file’s blocks.

Operating systems allow users of the digital devices to
create, modify, access and delete files. The important tasks of
the file system management module in the operating system
are storing of the files in the system and locating them we they
are in need. The storing of the file can be done in two ways
depending on the available free space. They can be stored
either in contiguous memory locations or non-contiguous
memory locations (the latter being called a fragmented file).
There are many techniques available that can recover files that
were stored in contiguous memory locations, but it is still
a challenging problem in the area of file carving to recover
fragmented files. In this research we will focus on solving the
problem of recovering video file fragments without making
use of file system metadata.

II. PREVIOUS WORK

The primary concept of file carving is that it recovers files
without using the file system metadata. Many different file
types have fixed patterns that always occur at the start and/or
end of the file: so called headers and footers. The first carver
which was published in the literature was Scalpel [4]. This
carver requires a database of headers and footers for specific
file types. The carver then retrieves files by searching for the
pattern of a header and marks it as the starting point of a file. It
then searches for the pattern of the corresponding footer. The
entire sequence of bytes between the header and the footer
is carved as a file. In the cases where some file types do not
contain a footer, it uses the file size to determine the end of file.
In the specific case of video files, if the file is not fragmented
then Scalpel will likely be able to carve it as most video files
have known headers. However, the main issue with the Scalpel
is that it assumes that the file is not fragmented i.e. the bytes
of the file exist in sequential order between the header and
the footer. Whereas in practice, the actual file may not exist

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in contiguous, sequential order. If that is the case, the carved
file will not be completely correct.

Most file systems try to store files in contiguous clusters.
However, fragmentation is inevitable as files are created,
modified and deleted in storage media. The literature includes
several attempts to recover image files. One of the approaches
that can be used to recover fragmented image files is the
Bifragment Gap Carver [3]. This approach works on the
scenario where the files are fragmented on two fragment and
the file has a known header and footer. To carve a file in this
scenario, the carver must be able to identify the additional data
between the first and second fragments. All combinations of
the gap between the first and second fragment are tested until
the validation test of a file pass. This approach can be applied
to recover fragmented video files by testing all combinations
of the gap between first and second fragment to the video
decoder. If the decoder decodes the data successfully, it means
we set the correct gap. However, this approach has a limitation
is that it cannot carve nonlinear fragmentation. It assumes the
sequence of the fragments is the same in the original file.
Another limitation is that it will not carve files that are split
into more than two fragments.

Pal and Memon proposed a general framework that can
perform recovery of fragmented files without restrictions in the
number of the fragments per file [5]. This framework consists
of three main stages: preprocessing, collation and reassembly.
The framework can be applied to the carving of video files
where methods and algorithms for each phase are need to be
proposed to handle video fragments.

Also, Na et al. proposed a frame-based technique to recover
video fragments (a frame being the smallest meaningful unit
of a video file) [6]. Their technique consists of two main
steps: identification and connection of video frames. The
video frames were identified based on the start code, such
as 0x00000001 for H.264 bitstreams. Then, the identified
frame is validated by decoding it using the corresponding
decoder and decoding header. The process of connecting valid
frames relies on the information on frame length that is stored
in a STSZ box of the video container. In the cases where
the STSZ box was corrupted or overwritten, they proposed
a method to connect two set of frames according to the
cluster size. If the two connected sets were not verified by
the decoder, they again expand the end of the first set or
start of the second set according to the cluster size until the
new set is verified by the decoder. They prevented unlimited
expansion by using a threshold. The main limitation of their
approach was that in the case of STSZ box was corrupted or
overwritten, they cannot connect all the video fragments. Their
proposed method only connects two fragments. As a result,
it will return a considerable number of playable fragments.
These fragments need more efficient reassembling techniques
to produce playable video files rather than playable fragments.

Park and Lee proposed a procedure for DVR fragment
forensics [7]. The procedure consists of five main steps:
preprocessing, classification, reassembly, extraction and post-
processing. The classification step consists of snipping the

decoding information and the video frames in the same manner
that were proposed by Na et al. [6]. The video files are
constructed based on metadata stored in the video frames, such
as timestamp, GPS location, Camera number or speed. They
present a way to sort the extracted video frames based on the
above properties. These frames will be converted to images
and these images will be used to construct a playable video
file. The metadata of the video frames that were proposed to
be used to construct video files are not always available in
the the video frames. Also, these metadata could be identical
between hundreds of video frames.

Lewis developed a defragmentation algorithm and tool for
H.264/AVC bitstreams that takes as input the forensics image
and user specified bitstream syntax description [8]. The syntax
description is used to generate a syntax checking parser.
The role of the parser is to determine if vectors of data in
the image are part of the bitstream, through the use of the
decoder parameters. Finally, they used a special depth-first
search to reassemble validated H.264 bitstream fragments in
the correct sequence. This will produce a complete and error
free video file with the knowledge of initial and final block
index in the bit streams. They chose the permutation that
maximizes the number of the bitstreams that can be decoded
without error. The disadvantage of their approach is that the
time cost is high. The algorithm has to parse many disk
blocks when searching for a sequence of blocks that yield
a valid bitstream. Their objective is to construct one chain
that produces an error free video file. Their approach decoded
many permutations of recovered bitstreams that yielded an
error free chain. This needed a high number of decoding
trials. Moreover, in real cases, if there are any overwritten
or missing parts the chain cannot be constructed. Also, the
forensics image may contain multiple video bitstreams, so the
objective should be to produce multiple chains of the available
video bitstreams.

Beside these, Casey and Zoun explained several practical
lessons that were learned from extensive working experience
with the problem of file carving of fragmented video files
[9]. They provided recommendations for several trade-offs that
can be considered in the development of new video carving
tools. They mentioned that there is no single approach that
has ability to carve fragmented video files for all cases. The
forensic analyst should choose the most effective approach for
a given case.

III. BACKGROUND OF VIDEO FILE STRUCTURE

Nowadays, video files are stored in multimedia file con-
tainers. This is because a multimedia file container can hold
different data types and define how these data types can co-
exist. The simple structure of a container can hold interleaved
audio and video streams along with their codec specification
parameters. More advanced multimedia file container structure
can hold more information such as multiple video or audio
streams, subtitles and tags. An example of a multimedia file
container is the ISO Based Media File Format (ISO BMFF)
[10]. The basic structure of a video file is shown in Fig.1.

Figure. 1. The structure of video file

MP4 and 3GPP video files are the most common file
formats used to save recorded video in smartphone devices
and personal cameras to record video. These two file formats
are contained in ISO BMFF, which makes this container a
popular multimedia container. ISO BMFF can be defined as
the structure that can hold timed media information in a
flexible and extensible format that can be easily interchanged,
managed and edited [11]. The structure of an ISO BMFF file
is object oriented. This means that the file can be broken down
into several objects, or boxes as they are called in this standard.
The structure of each object can be known from its type. All
data in the media file are contained in boxes. No other data
stored in a media file are self-contained. The detailed structure
of all boxes that ISO BMFF container can contain is illustrated
in ISO/IEC 14496-12 standard [11].

All boxes start with a header which contains the size and
the type of the box. The size reflects the total size of the box
which includes the header, fields, and all contained sub boxes.
This simplifies the job of parsing the file. Some of the ISO
BMFF boxes are optional and others are mandatory. There
are two main mandatory boxes which are file type (ftyp) and
movie (moov) boxes. The ftyp box holds header information
such as file type, compatible brands and versions. The moov
box includes the metadata information of a media file plus
codec initialization parameters such as resolution and frame
rate.

The media data (mdat) box is not a mandatory box in the
ISO BMFF structure. However, it is a very important box
because it holds all video and audio streams. The video data
is stored in this box as interleaved video and audio chunks of
data. Each chunk consists of a number of video/audio samples.
According to the ISO BMFF standard [10], a sample is defined
as the data that is associated with a single time stamp. Thus,
the sample in a video chunk of ISO BMFF corresponds to a
Network Abstraction Layer (NAL) unit of H.264. In the H.264
standard, the video frame is stored in a NAL unit.

ISO BMFF specifies how video/audio data can be stored
within the mdat box. However, it does not define how data is
encoded and how to decode it. To parse the content of this box,
we have to know the type of codec and codec parameters that
can be used to decode video or audio streams. This information

Detector

Validator

Forensic image

Video fragments

Figure. 2. The process of the identification and Recovery of video fragments

can be found in the moov box.

IV. IDENTIFICATION AND RECOVERY OF VIDEO
FRAGMENTS WITHOUT USING VIDEO CODEC

SPECIFICATIONS

Identification is the first step in the process of carving
video files. When fragmentation occurs, the data related to one
file are stored in different non-contiguous memory locations.
Header-footer or header-maximum file size carving techniques
cannot be applied in this case, nor can file structure based
techniques. We propose an identification and recovery process
of video fragments illustrated in Fig. 2 . This process is divided
into two stages, namely the detector stage and the validator
stage. The detector searches the forensic image for sequences
of bytes that could be video fragments. The validator makes
the decision to accept or reject that a given fragment is a part
of a video file.

Sections IV-A and IV-B will discuss the detector and
validator respectively in more detail.

A. Detector

Compressed video bitstreams are difficult to detected based
on the content alone without using the meta-data from the file
system or codec specifications. This is because compressed
video bitstreams are generated by algorithms that remove
redundancy. This raises a problem since it means that the data
in the fragment is difficult to distinguish from random noise.

Our detector will identify video fragments without using
the codec specifications. This method applies in the cases
where codec specifications are overwritten. In other words,
in this case there will be no meta-data box to figure out the
samples sizes which are usually used to identify the header
length. We are going to use the redundancy that is added
by the syntax description. Moreover, we are going to recover
video fragments based on the format of video NAL unit. This
approach assumes that each video fragment consists of two
or more video NAL units. Our approach will search for the
header of the video NAL unit rather than the header length or
NAL unit start code prefix of H.264 bitstream.

The NAL unit header consist of 8 bits which include one
bit for forbidden zero bit, two bits for nal ref idc and 5
bits nal unit type. Fig. 3 shows the basic structure of the

NAL Unit

Header
RBSP RBSP RBSP

NAL length or

Start code

prefix

Emulation_prevention_three_byte

nal_ref_idc nal_unit_type
forbidden

_zero_bit

Figure. 3. The structure of H.264/AVC NAL unit

TABLE I
NAL UNITS TYPES OF H.264 DATA STREAM

Content
of NAL unit

forbidden zero
bit

(1 bit)

nal ref idc
(2 bits)

nal unit
type

(5 bits)

NAL unit
header

(8 bits)
Coded slice
of a non-IDR
picture

0 b 01 b 00001 b 00010101 b
0 b 10 b 00001 b 00101001 b
0 b 11 b 00001 b 00111101 b

Coded slice
of an IDR
picture

0 b 01 b 00101 b 00011001 b
0 b 10 b 00101 b 00101101 b
0 b 11 b 00101 b 01000001 b

H.264/AVC NAL unit. Algorithm 1 presents the Acquisition
process of the NAL unit of H.264/AVC. This algorithm is
based on NAL unit syntax of H.264 [12]. Table I illustrates
the NAL unit types of H.264 stream [12].

Algorithm 1 Acquisition of the NAL unit of H.264/AVC
1: if (forbidden zero bit || nal ref idc || nal unit type) =

found) then
2: Set NumBytesInRBSP = 0
3: for i = 0, i < NumBytesInNALunit, i++ do
4: if i + 2 < NumBytesInNALunit AND

next bits(24) == 0x000003 then
5: Get rbsp byte[NumBytesInRBSP ++]
6: Get rbsp byte[NumBytesInRBSP ++]
7: i+ = 2
8: Get emulation prevention three byte
9: else

10: Get rbsp byte[NumBytesInRBSP ++]
11: end if
12: end for
13: end if

The detector will search for the NAL unit header identifier
from the first to the last location in the forensic image in one
sequential pass. The search step is one byte since the length
of NAL unit header is one byte.

B. Validator

In order to recover fragments from a forensic image, it is
important to have a process to validate the recovered bytes.
The job of validator is to determine whether a sequence of
bytes is part of a video file or not.

Once the detector finds a suspected NAL unit header identi-
fier, it will get the NAL unit size by shifting back four bytes.

Then, it will jump to the end of this sample plus four. At
this position, there should be the NAL unit header identifier
of another video NAL unit. If no such header is found, the
conclusion would be that the sequence of bytes was not a
video NAL unit as it is rare to a find fragment of only one NAL
unit. The validator would reject this NAL unit and the detector
would continue the searching process after the location of the
rejected NAL header. If a NAL Unit header was found, the
validator accepts these two NAL units and we will continue
jumping to the next NAL units according to each of the NAL
unit lengths. Algorithm 2 describes this process in detail.

Algorithm 2 Identification and recovery of video fragments
of H.264/AVC data bitstreams

1: Set curr loc =0
2: while (curr loc < img length) do
3: Set NAL count = 0
4: Set start loc=-1
5: Set end loc=-1
6: Search NAL Unit header
7: if (NAL Unit header = found) then
8: Shift back 4 bytes
9: Get NAL length

10: Go to curr loc + length + 8
11: while (NAL Unit header = found and

curr loc < img length) do
12: Shift back 4 bytes
13: Get NAL length
14: if (NAL count == 0) then
15: NAL count=2;
16: start loc = curr loc - NAL length - 8
17: else
18: NAL count++
19: end loc = curr loc + length + 4
20: end if
21: Go to curr loc + length + 8
22: end while
23: if NAL count>=2 then
24: Carve fragment from start loc to end loc
25: end if
26: end if
27: end while

V. EXPERIMENTS AND RESULTS

This section presents experimental results with discussion
of the results.

A. Datasets

Existing datasets in the area of digital forensic investigation
are usually in the form of a forensic image of a target device.
For instance, a bit by bit copy of hard disk or SD memory. The
process of evaluating the identification and recovery of video
fragments depends on the detailed knowledge of memory
locations that are occupied by each file. We need to run the
experiment on an image where we know exactly where all the

fragments of all the video files are in advance , but the tool
is executed without this information. This is essential in order
to calculate how well the tool performed recovery of video
fragments.

To evaluate the performance of the identification and re-
covery of video fragments, there are a total of five datasets
that were used in the testing process of software applications
with file carving capabilities by NIST [13]. NIST is in the
process of developing Computer Forensic Reference Data Sets
(CFReDS) for testing and examining forensics tools such as
video file carving tools. The objective of constructing these
datasets and making them available to the public is to increase
confidence in the capability of available tools. However, none
of these 5 datasets have a video file based on the H.264
bitstream with the codec specification part overwritten. These
datasets have only one MP4 file based on the H.264 bitstream,
fragmented into two or three fragments with the codec spec-
ification intact. This is the reason why these datasets are not
suitable for our experiments.

Due to the lack of availability of public datasets with heavily
fragmented and partially overwritten video files, datasets were
specially constructed. We created 5 disk images with 256 MB
each. These images had no file system meta data. The video
files were captured using different digital devices and saved
in different file types. The files were fragmented into between
2 and 274 pieces. Each disk image contained 10 video files
and 10 other non-video files. The other files included jpg,
pdf, doc and ppt. The meta-data box of each video file in the
datasets was overwritten. The details of each of these datasets
is illustrated in Table II.

B. Video file carving tools

We implemented a prototype of our proposed method,
called VidCarve, written in the C++ programming language.
VidCarve and other video carving tools were tested using the
datasets described in Section V-A.

There are several video file carving tools that can be used
to identify and recover video fragments. Three video carving
tools were selected to be included in this evaluation process.
The selection criteria of these tools were tool availability,
support for the recovery of video files based on the H.264
Codec, ability to carve fragmented video files, ability to carve
partially overwritten video files based on the H.264 Codec.
Table III list the tools that were included in the evaluation
process.

C. Result

In this section, we will present the results of our experiment.
The datasets had a known layout, seeing as we generated
them. The video carving tools were tested using these datasets.
The resulting outputs of the testing were classified according
to the numbers of true positives, false positives and false
negatives. From these, the recall, precision and Fmeasure rates
were calculated.

The basic way to check if the identified fragment is positive
result is to check if there is exact match between its hash value

0.8000

0.8500

0.9000

0.9500

1.0000

15 25 35 45 55 65 75 85

P
re

ci
si

o
n

Fragmentation rate of video files per dataset

VidCarve Defraser Photorec Scalpel

Figure. 4. Fragmentation Rate VS Precision of video carving tools

against one of the hash values of the fragments that exist in this
dataset. As the video carving tools recover the video fragments
with missing bytes at the beginning or end of video fragments,
there will be no match between the identified fragment and its
corresponding fragment in the dataset. Although the content of
the identified fragment and its corresponding fragment in the
dataset are more than 90% similar, using hash function will
indicate it as a false result. Thus, the identified fragment will
be split into smaller pieces to Fmeasure performance. We choose
to count true positive, false positive and false negative based
on small unit of video fragments which is the NAL unit. Thus,
we are going to check the hash value of each NAL unit in the
recovered fragment against the hash values of NAL units that
exist in the dataset.

Fig. 4 illustrates the relation between the fragmentation rate
of video files in the five datasets verses the precision of the
carving tools that were included in this experiment. All the
tools had a high precision ratio, which was always more than
0.94. The values of the precision of all the tools were relatively
stable, ranging from 0.999 to 0.940.

Fig. 5 shows the relation between different fragmentation
rate of video files in the five datasets verses the recall of the
carving tools. As can be seen from the graph, the recall of
Defraser was relatively stable as the fragmentation rate varied.
VidCarve shows mostly the same performance as Defraser,
except when testing done using dataset 2. The recall rate of
VidCarve was always above 0.85 except for dataset 2, where
it was 0.48. Photorec and Scalpel have a lower recall for all
the different fragmentation rates, scoring less than 0.5 in all
cases.

Fig. 6 summarizes the overall experimental results of evalu-
ating the identification and recovery of video fragments using
different video carving tools. All the tools that were included
in this experiment show approximately similar precision, with
Defraser getting the highest. There are noticeable differences
between the recall of each of the carving tools. Defraser was
the highest, followed by our Vidcarve prototype. The recall
of both Photorec and Scalpel were less than 0.50. According
to Fmeasure value we can rank the tools that were included in
this experiment from highest to lowest as follows: Defraser,

TABLE II
DATASETS DETAILS OF FRAGMENTED AND PARTIALLY OVERWRITTEN VIDEO FILES

ID Total No.
of files

No. of
video files

Avg file
size

Avg video
file size

Total no. of
fragments

Total no. of
video fragments

Avg fragment
per file

Avg fragments
per video file

1 20 10 5,853 11,350 199 158 9.95 15.8
2 20 10 9,130.56 16,805.70 420 206 21 22.4
3 20 10 12,111 23,657 406 318 20.3 30.4
4 20 10 9,676 18,921 519 409 25.95 40
5 20 10 12,158 23,886 728 610 36.4 82.9

TABLE III
VIDEO FILE RECOVERY TOOLS DETAILS

Name Version Licensee Operating system
Defraser 1.4.2 Proprietary Windows
Scalpel 1.60 Open source Linux, Windows, Mac OS X
Photorec 7.0 Open source Linux, Windows, Mac OS X

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

R
e

ca
ll

Fragmentation rate of video file per dataset

VidCarve Defraser Photorec Scalpel

Figure. 5. Fragmentation Rate VS Recall of video carving tools

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

precision recall Fmeasure

VidCarve Defraser Photorec Scalpel

Figure. 6. Experimental results of evaluation recovery process of video
carving tools

VidCarve, Scalpel and Photorec. The average Fmeasure values
of Defraser, VidCarve, Scalpel and Photorec were 0.9804,
0.9186, 0.3752 and 0.4237 respectively.

From the above results, all the tools obtained a high
precision rate. This means that they are capable of avoiding
false positive results. However, the recalls were less, which
means that they missed identifying some of the available NAL
units in the forensics image. Although Defraser obtained the

highest Fmeasure, precision and recall with a difference around
7% in the Fmeasure, VidCarve is an open source algorithm. It is
available for researchers for enhancement and improvement,
whereas Defraser is closed source tool.

VI. CONCLUSION

File carving is an essential part of forensic data recovery
in any cases involving deleted data, corrupted file systems,
reformatted file systems or unknown file systems. The problem
with existing carving techniques is that they do not work well
with fragmented files. From the literature, the recovery of
video fragments depends on the availability of video Codec
specifications. If this part of video file were overwritten, ex-
isting techniques cannot recover video fragments. The amount
of digital video content is increasing exponentially. There is a
need for methods that can carve fragmented video content.

We conducted several experiments to evaluate our proposed
algorithm against other video carving tools using 5 datasets.
Our experiments have shown that the precision of our proto-
type and video carving tools were high. However, the recall
values were not. Thus, more research is needed to reduce
number of false negative results.

REFERENCES

[1] N. I. of Justice, U. D. Justice, and O. o. J. Programs, “Electronic Crime
Scene Investigation: An On-the-Scene Reference for First Responders,”
2009.

[2] W. Jansen and R. Ayers, “Guidelines on cell phone forensics,” NIST
Special Publication, vol. 800, p. 101, 2007.

[3] S. L. Garfinkel, “Carving contiguous and fragmented files with fast
object validation,” digital investigation, vol. 4, pp. 2–12, 2007.

[4] G. G. Richard III and V. Roussev, “Scalpel: A frugal, high performance
file carver.,” in DFRWS, 2005.

[5] A. Pal and N. Memon, “The evolution of file carving,” Signal Processing
Magazine, IEEE, vol. 26, no. 2, pp. 59–71, 2009.

[6] J. Lee, G. Na, K. Shim, K. Moon, S. Kong, and E. Kim, “Frame-based
recovery of corrupted video files using video codec specifications,” 2014.

[7] J. Park and S. Lee, “Data fragment forensics for embedded dvr systems,”
Digital Investigation, vol. 11, no. 3, pp. 187–200, 2014.

[8] A. B. Lewis, Reconstructing compressed photo and video data. PhD
thesis, University of Cambridge, 2012.

[9] E. Casey and R. Zoun, “Design tradeoffs for developing fragmented
video carving tools,” Digital Investigation, vol. 11, pp. S30–S39, 2014.

[10] “ISO/IEC 14496-12 Information technology – Coding of audio-visual
objects – Part 12: ISO base media file format,” 2012.

[11] “ISO/IEC 14496-15 Information technology – Coding of audio-visual
objects – Part 15: Advanced Video Coding (AVC) file format,” 2010.

[12] “ ISO/IEC 14496-10 Information technology – Coding of audio-visual
objects – Part 10: Advanced Video Coding,” 2012.

[13] J. R. Lyle, D. R. White, and R. P. Ayers, “Digital forensics at the national
institute of standards and technology,” National Institute of Standards
and Technology, Interagency Report (NISTIR), vol. 7490, 2008.

