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Abstract

We investigated whether stimulating the cerebellum and primary motor cortex (M1) using

transcranial direct current stimulation (tDCS) could affect postural control in young and older

adults. tDCS was employed using a double-blind, sham-controlled design, in which young

(aged 18–35) and older adults (aged 65+) were assessed over three sessions, one for each

stimulatory condition–M1, cerebellar and sham. The effect of tDCS on postural control was

assessed using a sway-referencing paradigm, which induced platform rotations in propor-

tion to the participant’s body sway, thus assessing sensory reweighting processes. Task dif-

ficulty was manipulated so that young adults experienced a support surface that was twice

as compliant as that of older adults, in order to minimise baseline age differences in postural

sway. Effects of tDCS on postural control were assessed during, immediately after and 30

minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was mea-

sured by evaluating motor evoked potentials using transcranial magnetic stimulation imme-

diately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were

found in the eyes open condition only, and this was dependent on the measure assessed

and age group. For young adults, stimulation had only offline effects, as cerebellar stimula-

tion showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For

older adults, both stimulation conditions delayed the increase in sway amplitude witnessed

between blocks one and two until stimulation was no longer active. In conclusion, despite

tDCS’ growing popularity, we would caution researchers to consider carefully the type of

measures assessed and the groups targeted in tDCS studies of postural control.

PLOS ONE | DOI:10.1371/journal.pone.0170331 January 18, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Craig CE, Doumas M (2017) Anodal

Transcranial Direct Current Stimulation Shows

Minimal, Measure-Specific Effects on Dynamic

Postural Control in Young and Older Adults: A

Double Blind, Sham-Controlled Study. PLoS ONE

12(1): e0170331. doi:10.1371/journal.

pone.0170331

Editor: Andrea Antal, University Medical Center

Goettingen, GERMANY

Received: August 11, 2016

Accepted: January 3, 2017

Published: January 18, 2017

Copyright: © 2017 Craig, Doumas. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by a

Department of Employment and Learning PhD

studentship to C. Craig and a British Academy/

Leverhulme Small Research Grant R1067PSY to

M. Doumas. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170331&domain=pdf&date_stamp=2017-01-18
http://creativecommons.org/licenses/by/4.0/


Introduction

Postural control is an adaptive sensorimotor process involving constant integration of sensory

information from three channels; visual, somatosensory (proprioceptive) and vestibular. Infor-

mation from these channels is integrated using a sensory reweighting process [1], under which

the weight of each channel is determined by the channel’s relative reliability, in order to obtain

the most accurate percept of the current postural state. Previous experimental evidence sug-

gests that sensory reweighting is slower in older adults [2–4]. For example, older adults are

more likely to fall if they experience a conflict in any channel (visual or proprioceptive) of sen-

sory information compared to young adults [2], especially within the first trial. Although sen-

sory reweighting mechanisms have been highlighted as a contributor to the high prevalence of

falls in older adults [5,6], the literature on this issue is limited, especially in terms of the neural

mechanisms underlying this process. The present study aimed to investigate the role of the cer-

ebellum and the primary motor cortex in sensory reweighting in young and older adults’ pos-

tural control and whether brain stimulation over these areas could affect this process.

The cerebellum (particularly its anterior lobe) is considered critical for postural coordina-

tion [7] because it is one of the main brain regions associated with sensorimotor integration

[8] and it receives substantial input from the three sensory channels involved in postural

control. A recent study by Pijnenburg et al. [9] supported the role of cerebellum in sensory

reweighting, specifically in proprioceptive reweighting. The study found that degraded white

matter integrity in the superior cerebellar peduncle was associated with diminished proprio-

ceptive reweighting abilities in patients with lower back pain. Similarly, a study using galvanic

vestibular stimulation [10] showed that over a 7–8 week period, the postural response to bilat-

eral bipolar galvanic vestibular stimulation successfully returned to baseline, however, the ves-

tibular-ocular and spinal reflexes did not change. This suggests that the vestibular input did

not adapt but rather the weighting of this channel must have been modified, which the authors

postulate may occur within the cerebellum. Similarly, Guo and Raymond [11] implicated the

cerebellum in sensory reweighting using a cerebellum-dependent learning paradigm in which

monkeys reduced the variability of their smooth eye movements to compound visual-vestibu-

lar stimuli. This was attributed to up-weighting of the vestibular channel which was less vari-

able than the visual channel in this paradigm.

Although the cerebellum has been associated with sensory reweighting using brain imaging

[9] and cerebellum-dependent learning paradigms [11], a technique that could elucidate

whether cerebellar activity plays a causal role in sensory reweighting and is not merely a by-

product of activity in another region, is brain stimulation. Brain stimulation has been used

extensively as a tool to establish the functional relevance of brain regions to motor behaviour

and to facilitate activity in specific regions in order to improve motor outcomes [12–14]. tDCS

is a low-cost neurostimulation technique that has received growing attention over the past

decade, after it was demonstrated that tDCS over M1 affects motor evoked potentials (MEPs;

[15]). tDCS uses a weak direct current (DC; ~1-3mA) applied to the scalp, typically for 15–20

minutes using two or more surface electrodes, to modulate cortical excitability in the underly-

ing regions in a polarity-specific manner [16]. Even though the mechanisms of action of this

technique are yet to be fully elucidated [17,18], its advantage is the ability to stimulate during

task performance (online) and alter behaviour, thus clarifying whether the brain regions under

stimulation are involved in a particular task.

The literature on the effects of tDCS on motor behaviour initially focused on the role of the

primary motor cortex (M1), with anodal tDCS over M1 demonstrating enhanced corticospinal

excitability up to 90 minutes after stimulation [15]. In terms of behavioural effects, this has

been associated with enduring motor adaptation [19], which suggests that anodal M1 tDCS is
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associated with neurophysiological long-term potentiation and alters brain plasticity [20]. Fol-

lowing this, Jayaram et al. [21] investigated the role of the cerebellum in motor adaptation

using anodal cerebellar tDCS on a locomotor adaptation task, namely split-belt treadmill walk-

ing. During this task, anodal cerebellar tDCS resulted in a faster rate of adaptation. This in

contrast to the study by Kaski et al. (32), which found that anodal M1 tDCS resulted in longer-

lasting locomotor adaptation. This evidence suggests that the M1 and cerebellum may have

dissociated roles in motor adaptation. Galea and colleagues [22] examined this using anodal

cerebellar and M1 tDCS during a visuomotor adaptation task and showed that cerebellar tDCS

affects the rate of acquisition of locomotor adaptation tasks, whereas M1 tDCS affects the reten-
tion of locomotor adaptation aftereffects. Dutta, Paulus and Nitsche [23] reported contradic-

tory findings to Galea et al. [22] in their study on the effects of online anodal tDCS on tracking

performance in an EMG biofeedback visual pursuit task. They found that cerebellar tDCS

instead slowed the rate of motor learning. However, the between-subjects design of this study

led to a small sample size of only four participants per group. In light of these findings into the

dissociated roles of the cerebellum and M1 in sensorimotor adaptation, the current study

aimed to examine effects of cerebellar and M1 tDCS on postural control.

M1 is relevant to postural control, as it is included in the frontal cortico-basal ganglia net-

work, which is thought to be involved in the control of gait and balance [24]. A study by Dutta

& Chugh [25] showed that online anodal M1 tDCS for a duration of 10 minutes could improve

postural stability during eyes closed quiet stance in young adults. This was accompanied by an

increase in MEP-assessed corticospinal excitability. However, it is yet to be demonstrated

whether tDCS could be used similarly to improve postural control in older adults. Most tDCS

studies typically assess young participants [12,19], however, tDCS interventions may be partic-

ularly relevant to the ageing population, especially interventions involving tasks critical for

daily life and independence, like postural control. Neural plasticity changes with age, contrib-

uting to reduced motor learning [26] and tDCS could provide a novel tool to preserve motor

function in this age group [13,20,27,28]. For example, a recent study has shown that online

anodal M1 tDCS (1mA for 20 minutes) can significantly improve the acquisition of a novel fin-

ger tapping sequence in older adults, with enhanced retention up to 24 hours later [27]. This

was not witnessed in younger adults, who showed better baseline acquisition, however, this

may be a ceiling effect. It has been suggested that future studies should modify task difficulty

for different ages, in order to remove age effects at baseline [29]. This restoration of motor

learning in older adults in response to online tDCS can also be witnessed in a study that dem-

onstrated that visuomotor tracking error could be decreased by 12–22%, immediately after

and 30 minutes after unilateral or bilateral M1 tDCS (1mA for 15 minutes; [20]). This effect

was associated with increased motor evoked potentials (MEPs) and reduced short-interval

intracortical inhibition [20]. More importantly, there is mounting evidence that tDCS can

improve lower limb function and gait. This has been shown in locomotor adaptation in healthy

young participants [19,21,22] and in motor/balance outcomes for patient groups, such as, after

stroke [30], hemicerebellectomy [31], Parkinson’s disease [32,33], leukoaraiosis [34] and in

children with cerebral palsy [35]. However, little is known about whether tDCS stimulation

can alter sensory reweighting in healthy older adults’ postural control.

The aim of the present study was to examine the effect of anodal transcranial direct current

stimulation (tDCS) over the cerebellum and primary motor cortex (M1) on postural responses

during a sensory reweighting paradigm. This was achieved using a double-blinded, sham-

controlled design in which young and older adults’ postural responses were evaluated over

three separate sessions, one for each tDCS condition–M1, cerebellar and sham–which were

counterbalanced. Postural control was assessed using a sway-referencing paradigm, in which

the support surface tilted in proportion to the participant’s body sway, requiring the use of

tDCS and Postural Control

PLOS ONE | DOI:10.1371/journal.pone.0170331 January 18, 2017 3 / 21



appropriate sensory reweighting [36,37]. Additionally, in line with Vallence and Gold-

sworhty’s [29] suggestion that task difficulty should be manipulated to prevent baseline age dif-

ferences, the level of compliance of the support surface was higher for young adults. Postural

control was assessed before, during, immediately after and 30 minutes after tDCS. Effects on

corticospinal excitability were also measured prior to, immediately after and 30 minutes after

tDCS. We hypothesised that anodal tDCS over either the M1 or the cerebellum would alter

postural performance compared to sham tDCS.

Methods

Participants

Twenty-two young adults and twenty older adults volunteered to participate in the study. Two

older adults withdrew from the study, one of whom experienced motion sickness and the other

dizziness. Participants were excluded based on any medical conditions or medication use that

could lead to postural impairment or an adverse reaction to TMS/tDCS. Screening included

the use of two TMS pre-screening questionnaires based on Rossi et al.’s [38] guidelines (this

includes, but is not limited to, items related to history of seizures, brain injury, metal implants

and use of anti-depressants) and a medical questionnaire specific to the postural control task

(which includes, but is not limited to, items related to fall history, hip/knee replacement and use

of tranquilisers) in accordance with the School of Psychology’s Standard Operating Procedures

for TMS. This screening also ensured suitability for tDCS use, as TMS screening and safety

guidelines are stricter and better established [39]. Six young adults and two older adults were

excluded from analysis as outliers, resulting in a sample of 16 in each age group. The demo-

graphic information from this sample is listed in Table 1. All older adults scored 25+ on the

Mini-Mental State Examination (MMSE; [40]) and showed no impairment in daily function, as

assessed by the Katz Basic Activities of Daily Living test [41] and the Instrumental Activities of
Daily Living Scale [42]. Cognitive function was assessed using two subtests from the Wechsler

Adult Intelligence Scale (WAIS; [43]), digit symbol substitution and forward/backward digit

span. Lower scores in older adults in the digit symbol substitution task reflect normal age-

related decline in processing speed. All participants gave written informed consent and the

study was approved by the School of Psychology’s Ethics Committee. The three volunteers pic-

tured in Figs 1–3 also gave informed consent for publication of these photographs.

Apparatus

Postural control task. Postural control was assessed under sway-referenced conditions

using a Smart Balance Master (NeuroCom International, Inc., Clackamas, OR, USA), which

Table 1. Sample means and standard deviations (in parentheses).

Young Adults Older Adults

Age 20.81 (2.07) 72.44 (4.03)

Sex (male, female) 6,10 4, 12

Height (cm) 171.38 (10.01) 164.25 (9.51)*

DSS 66.63(9.80) 42.12 (8.58)*

Digit span 18.06 (2.98) 18.56 (2.66)

MMSE N/A 28.06 (1.39)

Note

* p< .05. DSS: Digit Symbol Substitution, MMSE: Mini Mental State Examination.

doi:10.1371/journal.pone.0170331.t001
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comprises an 18”x18” dual ATMI forceplate and movable three-sided surround (Fig 1A). The

system recorded Centre of Pressure (COP) trajectories over time, in both medio-lateral

(COP-X) and antero-posterior (COP-Y) directions, at a sampling frequency of 100Hz. The

Fig 1. Image of Balance Master System, alongside a pictorial representation of the sway referencing

technique. (A) Image of Balance Master Clinical Research System (NeuroCom International, Inc.,

Clackamas, OR, USA). (B)During sway referencing, the support surface rotates about the ankle axis in

proportion to AP sway, making the main proprioceptive signal used in postural control inaccurate.

doi:10.1371/journal.pone.0170331.g001

Fig 2. Image of the angled double cone coil and foot support. (A) Angled double cone coil (Magstim,

Whitland, United Kingdom). (B) Foot support used for active dorsiflexion during TMS.

doi:10.1371/journal.pone.0170331.g002
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platform was sway-referenced during each trial via a servo-controlled motor, which intro-

duced platform tilt in the sagittal plane about the ankle joint axis, in proportion to the partici-

pant’s expected centre of mass (COM) sway angle [36]. COM was estimated from the current

COP-Y trajectory using a proprietary second-order Butterworth low-pass filter with a cut-off

frequency of 0.85 Hz (3,55). Electro-mechanical delays of the system or due to the filter [44]

are negligible, approximately 31ms. The mechanical compliance of the support surface to pos-

tural sway was determined by the pre-selected gain factor of the test. A typical gain factor of 1.0

results in exact coupling between COP-Y movement and the degree of platform tilt (Fig 1B).

This prevents any change in ankle joint angle, thus near-eliminating one of the main proprio-

ceptive signals used in postural control [37]. Gain factors larger than 1.0 result in a more com-

pliant support surface, resulting in greater surface rotations and thus greater sway. In the

present study, the gain factor was set to 1.0 for older adults and 2.0 for young adults, in order

to produce comparable levels of sway in both age groups. Participants wore a safety harness at

all times, which doesn’t restrict movements but ensures safety in the event of a loss of stability.

In the case of a loss of stability, an extra trial was re-run at the end of the experimental block.

Two cases of loss of stability were recorded in the young adult group and six in the older adult

group.

Transcranial magnetic stimulation. Motor evoked potentials (MEPs) were recorded

using single-pulse TMS to examine whether tDCS induced excitability changes in the leg area

of the primary motor cortex (M1). TMS was delivered using a Magstim Rapid stimulator

attached to an angled double cone coil (Fig 2A; Magstim, Whitland, United Kingdom). Surface

electromyography (EMG) signals were recorded from the left and right tibalis anterior muscles

using disposable Ag-AgCl electrodes (Cleartrace, CONMED, Utica, NY, USA), with an inter-

electrode distance of 3cm and a reference electrode placed on the left lateral malleolus. In

order to standardise muscle activity, each participant’s EMG amplitude during maximum vol-

untary contraction (MVC) was obtained at the beginning of the experiment and they were

asked to maintain this contraction at ~20% during each TMS stimulation block [19]. In order

to achieve this level of contraction, a foot support with a strap placed dorsally over the foot

was used, against which participants were asked to dorsiflex (see Fig 2B). An average of the

maximum flexion was taken from the EMG signal and a horizontal cursor marking 20% of

this value was placed on the axis on a screen (located ~65cm from the participant), to allow

Fig 3. Electrode positions for M1 and cerebellar tDCS. (A) During M1 stimulation, the anode was placed

on the leg area motor hotspot, as identified during single-pulse TMS, and reference was placed on the inion.

(B) During cerebellar stimulation, the anode was placed on the median line 2cm below the inion and reference

was placed on the right buccinator muscle.

doi:10.1371/journal.pone.0170331.g003
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participants to control their flexion using visual biofeedback. TMS during active flexion per-

mits the use of lower TMS output intensities, which promotes compliance during testing with

a double cone coil [19].

The motor hotspot corresponding to the tibalis anterior was identified using TMS com-

mencing at the vertex at an intensity of 35% of maximum stimulator output (MSO). This area

was gradually explored in steps of 0.5cm and the intensity increased in steps of 1%, until the

scalp region exhibiting reliable MEP amplitudes was identified. The position was marked on

the scalp with a red dot and the coordinates recorded. The ‘active motor threshold’, defined as

the percentage of MSO required to induce an MEP during 50% of TMS pulses [45], was then

identified by adjusting the intensity (MSO) in steps of 1% above the motor hotspot. Once iden-

tified, MEP recruitment curves (RCs) were recorded, by measuring the peak-to-peak ampli-

tudes of MEPs as a function of stimulus intensity, ranging, in steps of 5, from 90–130% of the

active motor threshold. Stimulus intensities were presented randomly, with seven pulses at

each intensity.

Transcranial direct current stimulation. tDCS was delivered through two sponge elec-

trodes (anode surface area (SA): 50cm2, reference SA: 25cm2) soaked in saline solution, at-

tached to a Chattanooga Iontophoresis Dual Channel Delivery Device (Chattanooga Group,

Hixson, TN, USA). For both anodal stimulatory conditions, tDCS was set to 2mA for 20 min-

utes for all participants, resulting in an applied current density of 0.04mA/cm2, which is within

the safety threshold [46]. This tDCS protocol was motivated from Kaski et al.’s [19] work,

which was one of the first papers to demonstrate an effect of tDCS on a lower limb adaptation

task. The current was initially ramped up in 0.1mA increments over a 30s period, with an

equivalent descending ‘ramping down’ at the end of stimulation. During primary motor cortex

stimulation (Fig 3A), the anodal electrode was placed on the leg area motor hotspot, as identi-

fied during single-pulse TMS, and the reference electrode was placed on the inion [19]. During

cerebellar stimulation (Fig 3B), the anodal electrode was placed on the median line 2cm below

the inion [47] and the reference electrode was placed on the right buccinator muscle [22].

Sham stimulation was identical to this but current was only present for the initial 30s ramping

up phase and final 30s ramping down phase. This is a standardised sham technique, as the lit-

erature reports that naïve participants cannot distinguish between real and sham tDCS [48], as

the ‘tingling’ sensation experienced during tDCS typically fades after 10-20s [19]. Half of the

participants experienced sham stimulation with the M1 montage and the other half on the cer-

ebellar montage. Participants were asked to report if at any point during testing tDCS became

too uncomfortable, in which case the participant would have been withdrawn from the study.

However, all participants demonstrated good tolerance to tDCS within the current study.

Procedure

Testing was carried out over three sessions, one for each of the three types of stimulation;

sham, cerebellar and primary motor cortex (M1). The study employed a double-blind,

repeated-measures design, in which session order was counterbalanced across participants

and sessions were separated by 3–7 days. Participants were told that they would experience a

different type of stimulation during each session but the details of each stimulation type were

not disclosed until debriefing in the end of the final session. Two experimenters were involved

in all sessions. The first session lasted approximately 2.5 hours and the other two sessions

lasted 2 hours. Each session commenced with a practice block of the postural control task (Fig

4). This block was identical to the five following experimental blocks and familiarised the par-

ticipants with the sway-referenced platform. Each block consisted of 6 1-minute posture trials;

the first 3 trials took place with eyes open, during which participants were asked to fixate on a

tDCS and Postural Control
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3x3cm cross, placed at eye-level ~60cm from them, and the last 3 trials were performed with-

out vision, with participants asked to maintain the same head position to that in the eyes open

condition. Trials were performed consecutively, with each trial starting approximately 15s

after the previous. During the postural control task, participants were instructed to stand

upright on the platform and keep as stable as possible, with their arms by their sides. Partici-

pants were not informed about how the platform rotations were generated until debriefing

after the final session. After the first experimental block (pre), participants were seated and

single-pulse TMS was used to find their motor hotspot and their ‘active motor threshold’.

MEP recruitment curves (RCs) were then recorded to assess current corticospinal excitability.

This was followed by another two postural control task blocks (DC1 & 2) during which a

20-minute tDCS condition was performed. tDCS was initiated as the postural control task

commenced and the two blocks (DC1 & 2) were performed consecutively, with no break

offered in between. The primary experimenter left the room before the two blocks commenced

and another experimenter entered in order to apply the tDCS stimulation. Thus, the primary

experimenter was not aware of the order of tDCS conditions until all participants were tested

and the data was analysed. MEP recruitment curves and postural control were assessed again,

immediately after tDCS (post0) and 30 minutes after tDCS (post30). Participants were given a

seated refreshment break between the post0 and post30 testing blocks.

Data analysis

Preliminary data pre-processing and analysis was carried out using custom-written Matlab

software (The Mathworks, Natick, MA). COP data from each 1-minute trial was low-pass

filtered at 4 Hz, using a fourth-order dual-pass Butterworth filter. From this data, our main

postural measure, anteroposterior (AP) path length (PL), was calculated. AP PL was deter-

mined as the overall distance the COP moved in the AP direction throughout a trial. This is

indicative of the overall amount of sway in the AP direction, with a greater value reflecting

more postural sway. Peak-to-peak sway amplitude along the AP axis was also examined, as

well as the mean power frequency (MPF) of AP sway. Peak-to-peak sway amplitude was calcu-

lated as the difference between the maximum and minimum amplitudes of the COP in the AP

direction. An increase in this value reflects body sway moving closer to the limits of stability

and an increased possibility of a loss of balance. MPF is a measure of the average sway fre-

quency calculated from the spectral power of the COP data. An increase in sway frequency

reflects increased production of corrective torque around the ankle joint [37], with higher val-

ues indicative of greater joint stiffness and possibly muscle co-contraction [49,50] whereas a

decrease in sway frequency reflects reduced production of corrective torque around the ankle

joint [37]. MPF was calculated from the Power Spectral Density of each 30s window of the

AP COP data using Welch’s overlapped segment averaging estimator function (‘pwelch’ in

Matlab). For all measures, data from the two blocks (2 and 3) performed during stimulation

were averaged. Statistical analyses were carried out using SPSS 21 (IBM Corporation, Armonk,

NY). 4-way mixed ANOVAs were calculated for both PL and sway amplitude, with stimulation

Fig 4. Session schematic. Schematic representation of how the postural control task blocks are separated

during each session.

doi:10.1371/journal.pone.0170331.g004
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(sham, M1, cerebellum), block (pre, during stimulation (DC), post0, post30) and visual condi-

tion (eyes open/closed) as within-subject factors, and age group as the between-subject factor.

The MPF analysis also examined the difference in power frequency within the first 30s of a

block compared to the final 30s, thus two 4-way mixed ANOVAs were calculated separately

for the eyes open and eyes closed conditions for MPF, with stimulation (sham, M1, cerebel-

lum), block (pre, during stimulation (DC), post0, post30) and time (first 30s vs final 30s) as

within-subject factors, and age group as the between-subject factor. Planned contrasts were

used to examine significant effects, in order to specifically investigate the differences between

anodal stimulation and sham and the differences between pre-stimulation performance and

each block following.

The average peak-to-peak amplitude of MEPs for each stimulus intensity were calculated in

Matlab and recruitment curves were plotted. From this, the area under the recruitment curve

(AURC) was calculated separately for each block in each session using the trapezoidal rule, in

line with Carson et al. [51]. A 3x3 mixed ANOVA was computed for within-subject factors,

stimulation and block, and the between-subjects factor of age group.

Results

Anterior-posterior (AP) path length

Fig 5 depicts the mean AP path length data for each age group for eyes open and closed

across each type of stimulation (sham/M1/cerebellum) and testing block (pre, DC, post0 and

post30). A 4-way mixed-design ANOVA indicated no significant effects of stimulation condi-

tion, F(2,60) = .142, p = .87, or interactions with stimulation in contrast to our main hypothe-

sis. This suggests that our tDCS manipulation had no effect on AP path length. Participants

showed an overall practice effect as shown by a main effect of testing block, Fð1:87; 56:07Þ ¼

39:34; p < :001; Z2
p ¼ :57. Further exploration using simple planned contrasts, with an alpha

Fig 5. AP path length. AP path length across each testing block and each stimulatory condition for young (A

& B) and older adults (C & D) during eyes open and eyes closed respectively. Note the different scale in B and

D due to greater sway in Eyes Closed conditions.

doi:10.1371/journal.pone.0170331.g005

tDCS and Postural Control
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value corrected for multiple comparisons to 0.013, revealed a significant difference in path

length between pre-test and every other block–DC Fð1; 30Þ ¼ 21:49; p < :001; Z2
p ¼ :42,

post0 Fð1; 30Þ ¼ 43:14; p < :001; Z2
p ¼ :59, and post30 Fð1; 30Þ ¼ 57:35; p < :001; Z2

p ¼ :66.

Overall, no age differences in path length were shown and no interactions involving age, sug-

gesting that our matching of AP sway path length was successful. As expected, there was a

large difference between eyes open and eyes closed conditions, Fð1; 30Þ ¼ 710:59; p < :001;

Z2
p ¼ :96 and a block by vision interaction, Fð1:76; 52:67Þ ¼ 15:41; p < :001; Z2

p ¼ :34, which

permitted further simple effects analysis.

Separate analyses for each visual condition revealed that there was a larger effect of block in

the eyes closed condition, Fð1:83; 54:95Þ ¼ 37:99; p < :001; Z2
p ¼ :56, compared to the eyes

open condition, Fð1:83; 54:75Þ ¼ 12:81; p < :001; Z2
p ¼ :30. Planned contrasts, with an alpha

value corrected for multiple comparisons to 0.013, revealed that in both visual conditions, a

significant decrease in path length from pre-stimulation was found across each block (p =

.007–.001). Additionally, simple effects analysis of each block showed a significant effect of

visual condition across every block (p< .001).

Peak-to-peak sway amplitude

Similarly to the path length data, there were no significant age differences in sway amplitude

(Fig 6) overall (p = .31), however, there was a significant visual condition by age group interac-

tion, Fð1; 30Þ ¼ 10:33; p ¼ :003; Z2
p ¼ :26, with a significant difference between age groups in

the eyes open condition, Fð1; 30Þ ¼ 5:52; p ¼ :026; Z2
p ¼ :16. This suggests that for certain pos-

tural measures, creating equivalent levels of sway in both age groups is only possible if visual

information is withdrawn. Again, we found no significant effects of stimulation condition,

Fig 6. AP peak-to-peak sway amplitude. AP peak-to-peak sway amplitude for young (A & B) and older

adults (C & D) during both visual conditions respectively as a function of stimulation condition (sham,

cerebellar, M1) and testing block (pre-stimulation, during (DC), after (post0) and 30 minutes after (post30)).

doi:10.1371/journal.pone.0170331.g006
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F(2,60) = .231, p = .79, however, in this case there was a trend towards an interaction between

stimulation and block, F(6,180) = 2.10, p = .055. Additionally, there were two further interac-

tions between age group and block, Fð3; 90Þ ¼ 4:66; p ¼ :004; Z2
p ¼ :14, and block and visual

condition, Fð2; 90Þ ¼ 13:50; p < :001; Z2
p ¼ :31, Due to these significant interactions, simple

effects analyses were carried out separately for each age group during each visual condition to

examine the different responses across blocks.

During eyes open (Fig 6A and 6C), only older adults, Fð3; 45Þ ¼ 6:29; p ¼ :001; Z2
p ¼ :30,

showed a main effect of block. Planned contrasts, with an alpha value corrected for multiple

comparisons to 0.013, revealed a significant difference between the pre-test block and post0,

Fð1; 15Þ ¼ 14:05; p ¼ :002; Z2
p ¼ :48. Neither group showed a main effect of stimulation.

As indicated in Fig 6A, young adults showed similar sway amplitude across blocks, whereas

older adults (Fig 6C) showed an increase in sway amplitude until post0. Interestingly, older

adults also showed a significant block by stimulation interaction between pre-test and DC for

sham compared to cerebellum, Fð1; 15Þ ¼ 5:21; p ¼ :037; Z2
p ¼ :26, and sham compared to

M1, Fð1; 15Þ ¼ 4:64; p ¼ :048; Z2
p ¼ :24. During sham stimulation, older adults showed an

increase in sway amplitude from pre-stimulation (M = 2.68) to DC (M = 3.10), however, this is

not seen in the anodal tDCS conditions until post0 (Mcere = 3.18; MM1 = 3.24). This suggests

that anodal tDCS may delay this increase in sway amplitude in older adults (Fig 6C).

During eyes closed, young adults (Fig 6B) showed a significant main effect of block,

Fð3; 45Þ ¼ 7:94; p < :001; Z2
p ¼ :35, which planned contrasts, with an alpha value corrected

for multiple comparisons to 0.013, revealed was due to a decrease in sway amplitude from pre-

test to post0, F(1,15) = 15.61, p = .001, Z2
p = .51, and pre-test to post30, Fð1; 15Þ ¼ 25:40; p <

:001; Z2
p ¼ :63, however, older adults showed no significant differences across blocks. Both age

groups showed no effect of stimulation condition and no stimulation by block interaction.

Mean power frequency (MPF)

MPF was analysed separately for eyes open and eyes closed visual conditions (Fig 7). In

line with AP path length, neither visual condition showed a main effect of age group (EO p =

.19; EC p = .84). During the eyes open condition, there was an overall main effect of block,

Fð3; 90Þ ¼ 5:89; p ¼ :001; Z2
p ¼ :16, which planned contrasts, with an alpha value corrected

for multiple comparisons to 0.013, revealed was due to a significant decrease in MPF from pre-

stimulation to post30, Fð1; 30Þ ¼ 14:19; p ¼ :001; Z2
p ¼ :32. However, further analysis follow-

ing a block by age group interaction, Fð3; 90Þ ¼ 2:82; p ¼ :044; Z2
p ¼ :09, revealed that this

effect of block was only significant in older adults (p = .008). A significant difference between

the first and final 30s of each block was also shown for both age groups, Fð1; 30Þ ¼ 28:51;

p < :001; Z2
p ¼ :49. Interestingly, there was also a significant effect of stimulation on MPF,

Fð1:56; 46:8Þ ¼ 5:82; p ¼ :005; Z2
p ¼ :16, which planned contrasts, with an alpha value cor-

rected for multiple comparisons to 0.025, revealed was due to a significant difference between

sham and the cerebellar condition, Fð1; 30Þ ¼ 8:40; p ¼ :007; Z2
p ¼ :22. This effect was depen-

dent on block and whether it was within the first or final 30s of the block, as indicated by a

significant 3-way interaction, Fð4:38; 131:31Þ ¼ 2:48; p ¼ :042; Z2
p ¼ :08. Separate analyses

for the first and final 30s, with an alpha value corrected for multiple comparisons to 0.025,

revealed that the effect of stimulation was only significant in the first 30s of each block ðp ¼
:005; Z2

p ¼ :24Þ. Following this, simple effect analyses examining the difference between sham

and cerebellar stimulation for each block during only the first 30s (corrected alpha value =

0.013), revealed that this effect of stimulation during the initial blocks was due to a significant
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baseline difference between the sham and cerebellar conditions ðp ¼ :011; Z2
p ¼ :19Þ, whereby

mean MPF was higher in the cerebellar condition at baseline compared to the sham condi-

tions. This difference was no longer significant in the stimulation (DC) block and immediately

following stimulation (post0) but then returned 30 minutes (post30) after stimulation ðp ¼
:006; Z2

p ¼ :23Þ. This suggests that there may be an actual effect of stimulatory condition dur-

ing this final block, whereby MPF is greater in the cerebellar condition compared to sham.

This interaction between stimulation condition and block was explored further using sim-

ple effects analyses to examine the effect of block within the sham and cerebellar condition sep-

arately (corrected alpha value = 0.025). In the sham condition, there was a block by age group

interaction, Fð1:96; ; 58:93Þ ¼ 6:64; p ¼ :003; Z2
p ¼ :18. Whilst both groups showed an effect

of block (Young: p = .012, Z2
p ¼ :28; Older : p ¼ :021; Z2

p ¼ :26), follow-up Bonferroni post-

hoc comparisons revealed that for young adults MPF declines from post0 to post30 (p = .011),

whereas there were no differences between any blocks for older adults. In the cerebellar condi-

tion, there was no effect of block (p = .050) when corrected for multiple comparisons (cor-

rected alpha value = 0.025) and no block by age group interaction (p = .42). This suggests that

for older adults, the effect of cerebellar stimulation on MPF values is caused by a baseline dif-

ference between the sham and cerebellar conditions, as there is no difference between blocks

in both of these conditions. However, in young adults, during sham there is typically a decline

in MPF from post0 to post30, which does not occur following cerebellar stimulation. This sug-

gests that cerebellar stimulation may disrupt the reduction of sway frequency typically wit-

nessed in the final block in young adults and thus prolong postural instability.

During the eyes closed condition there was also a main effect of block, Fð3; 90Þ ¼ 6:10; p ¼
:001; Z2

p ¼ :17, however, in this case, planned contrasts with an alpha value corrected for mul-

tiple comparisons to 0.013, revealed it was due to a significant increase in MPF from pre-

Fig 7. Mean power frequency (MPF). MPF for young (A & B) and older adults (C & D) during each visual

condition respectively as a function of stimulation condition (sham, cerebellar, M1), testing block (pre, DC,

post0 and post30) and first and last 30s of each testing block.

doi:10.1371/journal.pone.0170331.g007
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stimulation to DC, Fð1; 30Þ ¼ 11:37; p ¼ :002; Z2
p ¼ :28, and post0, Fð1; 30Þ ¼ 10:61; p ¼

:003; Z2
p ¼ :26. There were no significant interactions between block and any other variable.

Interestingly, during eyes closed, there was no difference between the first and last 30s of each

block (p = .32). There was no overall effect of stimulation (p = .12), however, there was a signif-

icant stimulation by age group interaction, Fð2; 60Þ ¼ 3:40; p ¼ :040; Z2
p ¼ :10. Planned con-

trasts, with an alpha value corrected for multiple comparisons to 0.025, revealed that this

interaction was specific to the sham vs cerebellar conditions, Fð1; 30Þ ¼ 8:44; p ¼ :007; Z2
p ¼

:22. However, simple effects analyses for each age group, with an alpha value corrected for

multiple comparisons to 0.025, failed to demonstrate a difference between the cerebellar and

sham condition for both age groups (Young: p = .047; Older: p = .21).

MEP area under the curve

As there was no significant difference in the corticospinal excitability measured from each leg,

statistical analysis was carried out on the averaged data from both legs. A significant effect of

age group was found, Fð1; 30Þ ¼ 30:24; p < :001; Z2
p ¼ :50, in which the area under the re-

cruitment curve (AURC) was consistently higher in young adults (MAURC = 43.37) in compari-

son to older adults (MAURC = 17.13), suggesting significantly higher corticospinal excitability

in the young group (Fig 8). However, there was no significant effect of stimulation condition

(p = .19) or testing block (p = .35) and there were no significant interactions between any of

the factors.

Discussion

The aim of the current study was to assess whether anodal tDCS of the cerebellum or M1

could affect postural stability in young or older adults. This was tested in a double-blind,

sham-controlled design in which postural stability was assessed using a sway-referencing para-

digm, which aimed to minimise baseline age differences in postural sway. Effects of stimula-

tion on postural control were minimal and varied greatly between the postural measures, age

groups and visual conditions, and there was no effect of stimulation on corticospinal excitabil-

ity. The minimal effects of stimulation on postural measures were only observed in the eyes

open visual condition. For older adults, this was manifested in the sway amplitude measure, as

both stimulation conditions (cerebellar and M1) delayed the increase in sway amplitude wit-

nessed between baseline and during ‘stimulation’ (DC) in the sham condition, until the post0

Fig 8. MEP area under the recruitment curve (AURC). AURC averaged across both legs for (A) young and

(B) older adults as a function of stimulation condition and testing block.

doi:10.1371/journal.pone.0170331.g008
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block. This suggests that online anodal stimulation over the cerebellum or M1 prevented the

increase in sway amplitude witnessed between the first and second block in older adults, delay-

ing this response until stimulation was no longer active. In contrast, in young adults, minimal

effects of stimulation were shown only in the MPF measure, once stimulation was no longer

active (off-line), as young adults showed significantly higher MPF in the post30 block in the

cerebellar stimulation condition compared to the sham condition. This suggests that cerebellar

stimulation deters the typical decline in sway frequency witnessed between post0 and post30

in young adults, thus interrupting the postural practice effect witnessed in these final blocks.

Together, these results suggest that anodal tDCS over the cerebellum or M1 may affect pos-

tural control. However, the effects are dependent on the postural measure assessed, the age

group, the availability of visual information (eyes open vs closed) and whether the stimulation

is currently active or not. Furthermore, it is unclear from our results whether the few effects of

stimulation have a positive or negative impact on postural stability. For example, the offline

effects of cerebellar stimulation on sway frequency in young adults are likely to be disruptive to

postural stability, as this condition impedes the reduction in sway frequency typically witnessed

between the final two blocks. However, the delayed increase in sway amplitude witnessed dur-

ing active anodal stimulation over either the cerebellum or M1 in older adults during eyes open

could indicate a positive effect whereby online stimulation causes decreased sway amplitude,

which then disappears after stimulation is withdrawn. Alternatively, this could also mean that

stimulation interrupts the natural response to introducing a sensory transition, which may later

have a negative impact on postural responses. The differences between young and older adults

are useful, as they suggest that stimulation had only offline effects on young adults and online

effects on older adults. Furthermore, the fact that stimulatory effects were only witnessed in

eyes open trials, where postural sway was considerably less, could suggest that the effects of

tDCS on postural control were too weak to affect postural responses to more destabilising con-

ditions, such as those during eyes closed conditions. Despite the small effect sizes, post hoc

power analyses using G�Power software [52] indicated strong statistical power (Power = .91-

.99) for each of the significant stimulatory effects, suggesting that these effects are reliable.

Our main postural control measure, AP path length, showed that both age groups demon-

strated a clear practice effect across both visual conditions, in which AP path length decreased

across subsequent testing blocks. This is in accordance with previous research from Doumas

and Krampe [3], who also showed path length reduction over successive sway-referenced tri-

als. However, the effect of testing block becomes more complex within the other postural mea-

sures, which differ between age group and stimulation condition. For example, during eyes

open conditions, young adults showed no overall difference in sway amplitude or MPF across

testing blocks, whereas, older adults showed an increase in sway amplitude until post0 and a

decrease in MPF across blocks. This increase in sway amplitude and decrease in MPF could

suggest that older adults switch to an increasing reliance on a hip strategy [53] throughout the

blocks. Unfortunately, kinematic measures were not assessed in the present study to clarify

this strategy. This difference in strategies is also implied during the eyes closed condition, in

which young adults consistently decreased their sway amplitude across blocks, whereas older

adults maintained similar amplitude across blocks. However, it is worth noting that in this

case young adults started at slightly higher sway amplitude at baseline, which suggests that

young adults appear to be more affected by the withdrawal of visual information initially.

These complex interactions, which show that the postural response across each testing block is

dependent on the measure used to assess posture and the age group it is being assessed in, may

explain why we found complex interactions for the tDCS conditions also.

Overall, the complex interactions with tDCS condition may not be surprising considering

the multifaceted nature of postural control. tDCS could affect multiple aspects of postural
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control, including incoming sensory information, the integration of sensory signals (sensory

reweighting) or the selected motor outcomes. Furthermore, the lack of effect on corticospinal

excitability may not be unexpected, as a recent review of the neurophysiological literature on

tDCS [54] showed that studies which have reported an effect on MEPs often found large inter-

and intra-subject variability in MEP amplitude, which can result in problems with replication.

Further problems of replication occur in tDCS studies due to the lack of knowledge of the loca-

lisation of current transfer, which results in difficulties predicting the functional outcomes

of tDCS delivered over a specific area [18]. For example, since designing the present study,

modelling evidence has emerged that suggests that the previously accepted electrode montages

for the M1 are sub-optimal, with the maximum electric field strength occurring in between the

two electrode sites rather than directly beneath the anode as originally thought [55]. If we were

to replicate this study, we would utilise the new montage that Rampersad et al. [55] suggest, in

which the anode is placed 5cm posterior to the motor cortex site whilst the cathode is placed

5cm anterior. Additionally, open-source software has become available that enables users to

model the electric field induced by specific electrode montages, such as SimNIBS (http://

simnibs.de/version2/start). Improved accessibility of such models will promote the replicabil-

ity of future studies.

Our current study protocol was motivated by previous research by Kaski et al. [19], how-

ever, there are several modifications we would make to future protocols. Firstly, we would ask

participants to self-report their sensation of the stimulation during each session, in order to

monitor the success of the blinding procedure. Secondly, if using a standard bipolar montage,

we would reduce the electrode size in order to improve focality and increase current density

[56,57]. Specifically, we would reduce the size of the anodal electrode to ~3.5cm2 and increase

the size of the reference electrode to 35 cm2 [57]. Alternatively, a more recent technique,

namely multifocal tDCS, would further optimise the electric field [58]. This technique utilises

multiple small electrodes configured around a site to achieve greater focality. Furthermore,

this technique can also be used to stimulate multiple cortical sites simultaneously, thus poten-

tially enabling the modulation of specific brain networks [58]. Consequently, such techniques

would be highly relevant to postural control and/or sensory reweighting, both of which are

hypothesised to involve distributed networks within the brain. For example, future research

could investigate whether combined stimulation of the primary motor cortex alongside the

sensorimotor cortex could further improve sensory integration for postural control. Previous

research has shown that 20 minutes of 2mA tDCS over the left sensorimotor cortex could

increase neural responsiveness to foot pressure stimuli in healthy young adults [59]. Decline in

proprioceptive [60,61] and cutaneous sensitivity [62,63] has been associated with reduced pos-

tural control in older adults. Consequently, stimulation of somatosensory regions alongside

motor regions could improve postural outcomes in older adults.

Another interpretation of our minimal effects of tDCS could be that this type of continuous

posturography measure may be too variable to see distinct effects of tDCS. Previous studies

which have reported significant effects of anodal motor/premotor tDCS on postural outcomes

have employed more discrete measures, such as the response to a specific perturbation [33,34].

Additionally, the current study was limited in that it only assessed postural measures in the AP

direction. Previous research has indicated that mediolateral (ML) sway may be particularly

relevant in differentiating older adults at risk of falls [63]. Therefore, future studies could com-

pare the effect of tDCS on AP and ML sway in older adults in response to a perturbation.

Duarte and colleagues [35] reported significant improvement in stabilometric measures after

anodal primary motor tDCS and treadmill training in children with cerebral palsy. However,

they employed multiple tDCS sessions, during which children underwent 20 minutes of tread-

mill training whilst receiving 1mA anodal tDCS, five times a week for 2 weeks. Additionally,
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each of these previous studies assessed postural outcomes in clinical populations, so it is possi-

ble that the healthy older adults who participated in our study were performing too well at

baseline to see similar benefits of tDCS.

On the other hand, dual-task scenarios present additional postural challenge in older adults

[64–67], which could lead to more demonstrable effects on postural outcomes. This has been

shown by Manor and colleagues [68], who reported that anodal 2mA tDCS over the prefrontal

cortex (PFC) led to significantly lower dual-task costs when concurrently performing a serial-

subtraction task during standing or walking in healthy older adults. However, in this case, last-

ing effects of tDCS were not assessed, thus it is unclear whether this intervention could have

long-term implications on older adults’ postural control during dual-task scenarios. Further-

more, it is important to note that tDCS did not alter single task performance. The authors pos-

tulate the neural effects of tDCS may have led to increased ‘cognitive reserve’, resulting in

improved ability to perform both tasks concurrently. Similar results were reported by Zhou

et al. [69] for anodal 1.5mA tDCS applied for 20 min over the left dorsolateral PFC in healthy

young adults. This may be important for real-life postural control, which often requires indi-

viduals to complete multiple other tasks whilst maintaining stable upright stance. The effect of

dual-task conditions on the postural response to sway-referencing has been assessed previously

by Doumas and colleagues [70,71], however, future studies could investigate how these re-

sponses are affected by tDCS. Additionally, future studies could examine the effect of tDCS on

an alternative postural task, other than sway-referencing, in order to clarify whether the mini-

mal effects witnessed were due to a modulation of sensory reweighting or another postural

mechanism. Also, a larger sample of older adults could have enabled a comparison between

the effects of tDCS on a ‘younger’ older adult (aged 60–70) and an ‘older’ older adult (aged 70

+) population. Previous authors [72] have noted that stimulation effects may not be present in

patient groups due to neurological changes. Similarly, tDCS may affect an older population

(over 75) differently due to age-related neurological changes.

In conclusion, the present study suggests that anodal tDCS over the cerebellum or primary

motor cortex has minimal effects on postural control which are dependent on the postural

measures assessed and have complex interactions with the age group and visual condition

(eyes open/closed). Furthermore, it is unclear from the current findings whether these stimula-

tion effects will have a positive or negative impact on postural stability overall. Other research

has shown that anodal stimulation over prefrontal areas can have a positive impact on dual-

tasks costs during quiet stance in older adults [68], however, this research focuses more on the

cognitive resources required for postural control and multitasking, rather than sensory integra-

tion, which was the focus of this study. It is possible that tDCS cannot target sensory integration

processes, as these may be lower level processes, utilising subcortical networks. Previous tDCS

studies have shown success with clinical groups, using discrete measures and/or utilising multi-

ple tDCS sessions [30,32–35]. It may be that the effects of tDCS are too discrete to witness

clearly in a complex, dynamic response, such as that of posturography measures.
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