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Abstract 10 

 11 

The nonlinear dynamic responses of a fully submerged payload hanging from a fixed crane vessel are investigated numerically. 12 

A three dimensional fully nonlinear time domain model based on the boundary element method is implemented to perform the 13 

analysis. Both the payload and fixed crane vessel are considered to be periodically excited by regular waves inside the numerical 14 

tank. The motion of the payload is found to exhibit various nonlinear phenomena (for example, sub-harmonic motion, period 15 

doubling behavior) due to the presence of fixed crane vessel. Analysis tools such as the phase trajectory, bifurcation diagram and 16 

Poincaré map are used to investigate the motion characteristics of this submerged payload which is undergoing constrained 17 

pendulum motions in various scenarios. Parametric studies are also performed by varying several design parameters in order to 18 

evaluate the sensitivity of the nonlinear phenomena. Different orientations of the crane vessel and submerged payload are also 19 

considered and the results obtained reveal several important conclusions concerning the dynamic behavior of the submerged 20 

payload of offshore crane vessel during operations. It is found that change of wave motion frequency coupled with various 21 

orientations of the floating barge and submerged payload significantly alters the payload motion behavior and introduces various 22 

nonlinear phenomena. The present study can be further extended to identify the limits of the operating conditions of floating cranes 23 

and to devise techniques to control or damp the unexpected motions of the submerged payload. 24 
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 28 

1. Introduction 29 

 30 

Floating cranes are applied for a variety of tasks in offshore areas including transportation, assembling of 31 

costly structures and salvage operations. Efficient and safe operations of crane vessels at offshore are thus 32 

becoming increasingly important due to the increase in offshore activities particularly in deep water region and 33 

with a demand for higher lift capacity. Practical problems arise during crane vessel operations due to the 34 

difficulties in positioning accurately the payload being handled, which could result in collisions. Even small 35 

disturbances in the state of the system, for example caused by waves of a ship passing by, can entail the danger 36 

of collisions of the load with the ship or other objects. Besides, the amplitude of the motion of the hull has to 37 

stay small as well, in order to achieve the required positioning accuracy. 38 

There exists considerable amount of literature devoted to the analysis and control of undesired motions of the 39 

crane payload hanging in air for example, Patel et al. (1987), McCormick and Witz (1993) ,Witz (1995), 40 

Balachandran et al. (1999), Cha et al. (2010). Linearized mathematicl models to describe the dynamics of crane 41 

vessel in a wide range of operations are also reported in several papers such as Clauss and Riekert (1989, 1990 42 

and 1992), Clauss and Vannahme (1999). Among these, Clauss and Vannahme (1999) showed that the coupled 43 

system of floating crane and swinging load in air shows distinctly nonlinear phenomena and parametric 44 

osciallations can occur. They also conculded that under such conditions linear methods can not predict a heavy 45 

lift operation as those methods underestimate the occuring loads and motions. Another study performed by Liaw 46 

et al. (1992) found that one of the frequently encountered nonlinear behavior, namely sub-harmonic oscialltions 47 

of many offshore structures can be attributed to the wave force-structure interaciton. This fact was investigated 48 

by them both analytically and experimentally using an articulated tower model. 49 

Ellermann and Kreuzer (1999, 2003) and Ellermann et al. (2002) on the other hand, studied the nonlinear 50 

dynamics of floating cranes from more practical point of view. They applied the potential theory to evaluate the 51 

dynamic responses of moored crane vessels in regular waves and compared the results with physical experiments. 52 
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In the experimental part of their work, moored models of two different crane vessels were excited by regular 53 

waves in a wave tank (Ellermann et al. 2002). The hydrodynamic properties (added mass and radiation damping 54 

matrices) as well as hydrodynamic exciting forces on both vessels were computed using the software package 55 

WAMIT. The theoretical part of the work concerned a multi-degree-of-freedom mathematical modeling of the 56 

floating crane vessel where the hull and the payload were represented by rigid bodies. The mathematical 57 

description of the moored crane vessel was mainly based on the work of Jiang (1991) which involved the 58 

transformation of the frequency-dependent hydrodynamic radiation forces into the time domain by introducing 59 

additional state variables. In addition, in this model both the wave-vessel interaction and the hydrodynamic fluid 60 

loading on the hull were assumed to be linear so that superposition was applied.  61 

Different mathematical tools have also been used in literature to investigate resonances and sub-harmonic 62 

motions, for example in Liaw (1988), Raghthama and Narayanan (2000), Ellermann (2005). The multiple-scale 63 

method is used for the analysis in frequency domain and the path following algorithms are applied for a 64 

numerical bifurcation analysis  (Jiang 1991). In general, periodically forced systems are found to exhibit different 65 

nonlinear phenomena ranging from periodic, sub-harmonic or quasi-periodic motion to chaotic behavior. 66 

Qualitative changes in the dynamics of the system also arise as parameters are varied. Some of these changes 67 

can be considered as critical with respect to the vessel safety and operating limits. Even if not all of these 68 

phenomena exist for a specific technical system, they can often be observed for some sets of parameters. With 69 

mathematical models of crane vessels including nonlinearities, it is possible to show that period doubling and 70 

chaotic behavior occur in the motion of the investigated systems. 71 

As can be seen, all these previous studies so far only considered the behavior of the payload suspended in air. 72 

Most of these studies mainly focused on the analysis of crane vessels and ignored the motion of submerged 73 

payload in waves, as well as the influence of crane vessel on submerged payload motions. However, 74 

understanding of the dynamics of the fully submerged payload under nonlinear wave-structure interactions is 75 

quite important in order to ensure safe installation, especially when the payload is quite heavy compared to the 76 

vessel displacement. Furthermore, the installation process is a time varying problem and involves the wave 77 

interaction with a constantly moving payload. The use of traditional frequency domain analysis to solve this 78 

problem, therefore, might not be appropriate to obtain accurate results, because the Taylor series expansion 79 
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adopted in the frequency domain analysis that expresses the boundary condition on the mean body surface is not 80 

applicable.  81 

Therefore, a fully nonlinear time-domain numerical model was adopted in Hannan and Bai (2015) to simulate 82 

a submerged moving payload of a crane barge in water waves. The present study is a continuation to the same 83 

authors’ previous work, but attempts to shed further light on the nonlinear dynamics of the payload. In Hannan 84 

and Bai (2015), the general hydrodynamic information, including forces and motions of the submerged payload 85 

were reported for different arrangements and scenarios. Whereas, in this work emphasis is given towards the 86 

insightful analysis of the nonlinear dynamics of payload motion behavior. Dynamic analysis tools such as the 87 

phase trajectory and the Poincaré map are used here to identify the motion characteristics of the suspended heavy 88 

submerged payload as it moves laterally or down towards the sea bed while influenced by the nonlinear waves 89 

and a fixed crane barge near to it, which is not available in literature till date. 90 

Generally, the phase trajectory and the Poincaré map are widely used to explain the nonlinearity of various 91 

engineering systems. Applications of these tools in offshore engineering problems can also be found in literature. 92 

For example, Witz et al. (1989) used the Poincaré mapping to identify the region of chaotic motions in response 93 

of a semisubmersible to harmonic excitations. Yim and Lin (1991) investigated the rocking behavior and 94 

overturning stability of free standing offshore equipment due to support excitations using these techniques, while 95 

Lin and Yim (1995) studied the chaotic roll motion and capsize of ships under periodic excitations including 96 

random noises. Among more recent studies, Chen et al. (2014) applied the techniques of impact maps, Poincaré 97 

maps and phase portraits to explain the motion characteristics of the barge-deck system undergoing vertical 98 

impacts with the substructure. Their emphasis was on the modeling of float over installations of offshore 99 

structures. Gavassoni et al. (2015) on the other hand, studied nonlinear vibration modes of offshore articulated 100 

tower and applied the Poincaré mapping to detect the multiplicity of corresponding stable and unstable modes.  101 

 102 

2. Mathematical formulation  103 

 104 

A numerical wave tank defined in Fig.1 is considered to simulate the above mentioned wave structure 105 

interaction problem. This numerical wave tank involves a wave maker (paddle to generate the wave) at the left 106 
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end and a damping layer placed on the water surface to avoid the wave reflection from the far right end of the 107 

wave tank. The floating barge and its fully submerged cylindrical payload are placed near the middle of the tank. 108 

The cylindrical payload, hanging from the crane here is attached to a cable from the top to have constrained 109 

motions and subjected to the following nonlinear equation of motion (Bai et al. 2014): 110 

2
2 5

5 5 2
( cos sin )x z

d
f f L mL

dt


    .  (1) 111 

Here, m is the mass of the cylindrical body concentrated at its center of mass, and L is the distance between the 112 

rigid cable origin and the center of mass of the cylindrical payload. ξ5 is the angular displacement of the vertical 113 

cylinder at the cable origin with respect to the vertical plane, fx and fz are the horizontal and vertical dynamic 114 

forces on the submerged cylinder respectively. 115 

Two right handed Cartesian coordinate systems are defined. One is a space fixed coordinate system Oxyz 116 

having the Oxy plane on the mean free surface and the origin O usually at the center of the crane barge on the 117 

Oxy plane. In this case the z axis is positive upwards. The other is a body fixed coordinate system Oxyz with 118 

its origin O placed at the center of mass of the submerged moving body. When the body is in an upright position, 119 

these two sets of coordinate systems are parallel and the center of mass of the submerged body is located at Xg 120 

= (xg, yg, zg) in the space fixed coordinate system.  121 

 122 

Fig. 1. Sketch of definition for the numerical model 123 

 124 

  Based on the assumption that the fluid is incompressible and inviscid, and the flow is irrotational within the 125 

fluid domain, potential flow theory can be used to describe this wave–body interaction problem, where a velocity 126 

potential (x, y, z, t) satisfies Laplace’s equation within the fluid domain Ω, 127 

2 2 2
2

2 2 2
0

x y z

  


  
    

  
,                             (2) 128 

and is subject to various boundary conditions on all surfaces of the fluid domain. 129 

    On the free water surface SF, the kinematic and dynamic wave conditions in the Lagrangian description are 130 
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Here, D/Dt is the usual material derivative, X denotes the position of points on the free surface, and g is the 133 

acceleration due to gravity. The kinematic condition on the instantaneous wetted body surface SB is 134 

n





nV ,   (5) 135 

where Vn is the velocity of the body in the normal direction. If small angular motions are assumed, the motions 136 

of a three dimensional rigid body about its centre of mass can be described in terms of six components, 137 

   n gV = χ -α (X - X ) n ,   (6)138 

  139 

where n is the normal unit vector pointing out of the fluid domain, χ = (ξ1, ξ2, ξ3) is a translatory vector denoting 140 

the displacements of surge, sway and heave and α = (ξ4, ξ5, ξ6) is a rotational vector indicating the angles of roll, 141 

pitch and yaw respectively, about Oxyz and measured in the anticlockwise direction. However, it should be noted 142 

that in this study the cylinder is only allowed to have angular motion with respect to the cable origin point. In 143 

addition, if a fixed body is considered, the boundary condition on the body surface SB will become the same as 144 

that on the side wall Sw and the horizontal seabed SD, which is known as the impermeability condition, 145 

0
n





,        (7) 146 

 and the boundary condition on the wave maker can be given as  147 

( )U t
x





,             (8) 148 

where U(t) = asin(t) is the velocity of the wave maker, a and  are the corresponding motion amplitude and 149 

frequency of the wave maker and this boundary condition is imposed at its instantaneous position. Furthermore, 150 

the initial conditions are taken as 151 

0,   0z   when, 0t  .                   (9) 152 
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The higher-order boundary element method is employed to solve this mixed boundary value problem at each 153 

time step, where the surface over which the integral is performed is at first, divided into several patches and each 154 

of these patches is discretized by quadratic isoparametric elements. In the present method, structured 8-node 155 

quadrilateral meshes are distributed on the vertical solid surfaces including the body surface SB, wave maker SWM 156 

and tank walls SW. On the free surface SF and the bottom of the body, unstructured 6-node triangular meshes are 157 

generated by using the Delaunay triangulation method. 158 

The mesh is generated for four main configurations of coupled barge and payload system, which are: 159 

 Cylinder Only: a single submerged cylinder subjected to pendulum motions inside the numerical tank and 160 

there is no barge nearby. 161 

 Head Sea: barge in head sea (facing the incoming waves in the lengthwise direction) with the submerged 162 

cylindrical payload under constrained motions near to it. 163 

 Beam Sea (Up): barge in beam sea (facing the incoming waves in the widthwise direction) with the 164 

submerged cylinder under constrained motions near the upstream side of the barge (the wave passes the 165 

payload before hitting the barge). 166 

 Beam Sea (Dn): barge in beam sea with the submerged payload under pendulum motions near the 167 

downstream side of the barge. 168 

Fig. 2 shows the snapshots of the free surface and body meshes for these 4 main configurations. The waves 169 

are coming from the left hand side in these figures and the cylindrical payload here has a radius r = 0.16d and 170 

length l = 0.2d, where d is the depth of the numerical tank. All other length parameters in this study are 171 

normalized by d, including wave amplitude. The initial lateral gap between the surface of the barge and 172 

submerged cylinder is taken as 0.19d.  During the simulation, the minimum gap is found to be 0.07d which 173 

occurs for the case with cable length 0.8d and wave amplitude 0.015d. Thus, it can be said that the safety margin 174 

for a possible collision between the two bodies under the present study condition is around 36% of the initial 175 

gap between them. More details regarding the dimensions of numerical tank and floating barge, as well as 176 

meshing particulars can be found in Hannan and Bai (2015). 177 

 178 

Fig. 2. Mesh generated for various configurations: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 179 
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 180 

The detailed mathematical formulation and numerical implementation of the present problem is also omitted 181 

here as these can be found in Bai et al. (2014) as well as in Bai and Eatock Taylor (2006). Several validation 182 

studies for simple geometries related to the current study are also presented in those papers. 183 

In the next few sections, this fully nonlinear numerical model is applied to investigate the motion 184 

characteristics of the submerged cylindrical payload. The payload is assumed to be connected with the crane tip 185 

(point C as marked in Fig. 1) by a rigid cable and is allowed to have pendulum motion about that point only. 186 

Parametric studies are performed considering several control parameters namely, motion amplitude and 187 

frequency of the wave, length of the cable and moving speed of the payload. In all the studies, the water depth 188 

d, gravitational acceleration g and fluid density ρ are taken to be unity to non-dimensionalize other parameters. 189 

The density of cylindrical payload is taken as 1.2ρ in order to make it heavier than water, thus ensuring enough 190 

tension in the cable to justify the rigid cable assumption. 191 

A number of simulation cases are designed to perform the intended investigation and list of all these cases is 192 

provided in Table 1. Test cases modelled for each section are tabulated under the section heading for the ease of 193 

reading. For example, under the Cyl only geometric configuration, 11 simulation cases are run (each case for a 194 

single frequency, ranging from ω = 1.5 to 2.5 with an increment of 0.1) to study the influence of wave frequency. 195 

Here, ω is the wave frequency (rad/s), a is the wave amplitude, Lc is the length of the cable, D represents the 196 

vertical distance between the undisturbed free surface level and the cylinder top surface and Vd is the downward 197 

moving speed of the payload.  198 

 199 

Table 1. List of test cases 200 

 201 

3. Nonlinear dynamics of submerged payload under various wave frequencies 202 

 203 

The frequency of the incoming waves plays an important role in determining the operating scenario of offshore 204 

crane vessel. The response of the submerged payload varies significantly with the change of incoming wave 205 

frequency as well as with the change of cylinder positioning along the crane barge. To investigate these issues, 206 



9 

several simulations are performed in this section considering different frequencies of the wave maker motion for 207 

each of the geometric configurations defined in Fig. 2. All other variables are kept constant during this process. 208 

 209 

3.1 Analysis using time histories, phase trajectories and Poincaré map 210 

Among the results obtained, the time histories of pendulum motion of the payload for the Cylinder Only 211 

scenario are shown in Fig. 3. These time histories are drawn for three different frequencies and over a selected 212 

range of wave periods. As depicted, the motion amplitude decreases with the increase of frequency and a 213 

significant influence of low frequency response arises at the same time. These low frequency components are 214 

found to arise mainly due to the low frequency wave drift force (Sarkar and Eatock Taylor 1998), the nonlinear 215 

interaction between the waves and structures (Hassan et al. 2010), as well as due to the influence of natural 216 

frequency of the structure. For submerged payload under pendulum motions, the influence of natural frequency 217 

is found to be most prominent as explained in details by Hannan and Bai (2015).  218 

 219 

Fig. 3. Time histories of cylinder motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Cylinder Only]: 220 

(a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 221 

 222 

In this study, however, the phase trajectories and Poincaré map will be extensively used to investigate the 223 

dynamic behavior of the submerged payload. A phase trajectory is a geometric representation of the trajectories 224 

of a dynamical system in the phase plane. In other words, the phase trajectory plots the displacement versus the 225 

velocity of a system for a certain duration of time considered. For periodic solutions, a closed trajectory will be 226 

generated in the phase plane and for harmonic motions this closed trajectory will be exactly repeated after each 227 

period and will exactly overlapped the previous trajectory loop. Moreover, linear motions will create a circular 228 

closed trajectory while the nonlinearity will distort the trajectory shape. The Poincaré map, on the other hand, is 229 

a standard technique in dealing with the three dimensional phase space ( , , )x x t of a periodically driven system 230 

and is used to inspect the projections ( , )x x   whenever t is a multiple of T = 2π/ω. Here, T is the periodic time 231 

of the forcing.  It projects a two dimensional space ( , )x x onto a plane at a particular phase ϕ = ψ, where ψ is a 232 
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constant within [0, T]. Thus, the Poincaré map is a point set determined by the displacement x    and velocity 233 

x   in a section corresponding to a given constant phase ϕ = ψ. It should be mentioned that for the analysis 234 

presented in this paper the Poincaré map is generated at the phase ϕ = 0.7T in all cases. For a harmonic motion 235 

(defined as Period 1 motion), the Poincaré map will contain a single point, whereas, for a sub-harmonic motion 236 

of order n (defined as Period n motion) there will be n number of points in the Poincaré map. In the case of 237 

chaotic motion, the map has a complex fractal structure. More information regarding these analysis tools can be 238 

found in Thompson and Stewart (2002). 239 

 240 

Fig. 4. Phase trajectories of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d 241 

[Cylinder Only]: (a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 242 

 243 

Fig. 5. Poincaré map of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d 244 

[Cylinder Only]: (a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 245 

 246 

Now, Fig. 4 and Fig. 5 show the resulting phase trajectories and Poincaré map for the Cylinder Only scenario 247 

under various frequencies of wave maker motion. As noticed, a stable sub-harmonic motion of order 5 can be 248 

identified for all the three frequencies considered. The existence of sub-harmonic motion can be visualized from 249 

the phase trajectories as well. A single trajectory loop is supposed to exist if no sub-harmonic motion is present. 250 

However, in this case it can be seen that the trajectories for various time periods are not exactly overlapping to 251 

create a single loop, but intersecting each other; and with the increase of wave frequency the intersection gaps 252 

are increasing, indicating that higher wave frequencies lead to stronger nonlinear motions. 253 

 254 

Fig. 6. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Beam 255 

Sea Up]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 256 

 257 

Following the similar approach, the Poincaré map and phase trajectories for rest of the three orientations 258 

(Beam Sea Up, Beam Sea Dn and Head Sea) are plotted and shown in Fig. 6 to Fig. 8. The most significant 259 
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impact generated by the presence of the barge in these three orientations, compared to the previous ‘Cylinder 260 

Only’ case, is the introduction of frequency doubling, period doubling and possible chaotic behavior in the 261 

responses of submerged payload. For example, Fig. 6 illustrates that for the Beam Sea Up case, a period-20 262 

motion is observed at ω = 1.5 and a period-10 motion is observed at ω = 2. That means a frequency doubling 263 

phenomenon must exist between frequencies of 1.5 to 2.0. As the frequency increases a period-25 motion is 264 

observed at ω = 2.5, leading towards the possible chaotic behavior of the payload. The phase trajectories also 265 

confirm that increase of frequency is leading towards stronger nonlinearity in payload motions, thus producing 266 

more complex overlapping in the phase plane.  267 

 268 

Fig. 7. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Beam 269 

Sea Dn]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 270 

 271 

Fig. 8. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Head 272 

Sea]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 273 

 274 

For the Beam Sea Dn scenario, on the other hand, the amplitude of payload motion seems to reduce 275 

significantly, which is reasonable (Fig. 7), because in this orientation the payload is shielded by the presence of 276 

the crane barge in the upstream side. Therefore the payload is not receiving the direct impact of the generated 277 

waves. However, a period doubling in payload motions occurs between the frequencies of 1.5 to 2.0. Also, the 278 

phase trajectories of the payload are found to differ significantly for the frequencies of 2.0 and above compared 279 

to all other scenarios. The payload at these frequencies appears to undergo considerable transient motions before 280 

reaching the periodic form.  281 

Finally, Fig. 8 represents the results for the Head Sea scenario which is the closest case to the Cylinder Only 282 

scenario, from the geometric orientation point of view. However, unlike the cylinder only case (Fig. 5) the 283 

payload here faces a period doubling between ω = 1.5 to 2.0. Also, with the increase of wave frequency the 284 

influence of low frequency components in the payload motion appears to be stronger compared to those plotted 285 

in Fig. 3 for Cylinder Only. The phase trajectory for these two scenarios starts to differ considerably as the 286 
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frequency rises. Especially, at ω = 2.5 the payload at the Head Sea orientation observes a transient motion while 287 

such motion cannot be found for the Cylinder Only case. 288 

 289 

3.2 Bifurcation and spectral analysis 290 

 In a dynamical systems (similar to the problem considered in this study), a bifurcation occurs when a small 291 

change made to the parameter values (the bifurcation parameters) of a system causes a sudden qualitative or 292 

topological change in its behavior. Bifurcation analysis is therefore, widely applied to to investigate the stability 293 

of system behavior, using point sets in a Poincaré map, as the control parameter is changed. The corresponding 294 

Bifurcation diagram illustrates how the equilibrium state (point set in Poincaré map or impact map) changes 295 

while a control parameter is gradually increased (Lee 2005). Fig. 9 shows such Bifurcation diagrams for the 296 

various geometric configuration considered in this study. Here, the wave frequency is set as the control parameter 297 

and the displacements of all the points in the Poincaré map are plotted against the corresponding frequencies 298 

(for ω = 1.5 to 2.5, at an interval of 0.1).  299 

 300 

Fig. 9. Bifurcation diagram for varying wave frequencies at a = 0.01 and Lc = 0.5d: (a) Cylinder Only; (b) Head Sea; (c) Beam 301 

Sea Up; and (d) Beam Sea Dn 302 

 303 

As depicted, the period doubling phenomena in Head Sea and Beam Sea Dn are clearly distinguishable (the 304 

number of points for ω = 1.6 becomes double compared to that of ω = 1.5). Whereas, in Beam Sea Up the motion 305 

experiences frequency doubling, leading towards quasi-periodic motion and then followed by period doubling 306 

as the frequency rises. Also, the range for point sets in the Poincaré map varies quite noticeably for all the cases, 307 

especially for those where the floating barge is placed near the submerged payload, suggesting the influence of 308 

high nonlinearity. For the cylinder only scenarios, a consistent period-5 motion is observed irrespective of the 309 

change of frequency. After the period doubling occurs (at ω = 1.6), the Head Sea orientation also exhibits a stable 310 

sub-harmonic motion afterwards as the frequency continues to increase. Nevertheless, the motions appear to 311 

spread over a broader band at higher frequencies, indicating the presence of transient motions. 312 

The Beam Sea Up and Beam Sea Dn on the other hand, are found to exhibit possible quasi-periodic response 313 
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at ω = 1.8 and ω = 2.3 respectively. Quasi-periodicity is the property of a system that displays irregular 314 

periodicity. Periodic behavior is defined as recurring at regular intervals, whereas, quasi-periodic behavior is a 315 

pattern of recurrence with a component of unpredictability that makes the motion recurring at irregular intervals. 316 

To further investigate the possible reason behind these quasi-periodic motions, frequency spectra for these two 317 

scenarios are examined in Fig. 10 in order to identify the influence of forcing, natural frequency and harmonic 318 

on nonlinear interactions. The amplitudes are plotted both in linear and log scales for clear depiction of the 319 

nonlinearity in the responses. 320 

 321 

Fig. 10. Frequency spectra for the motion of the cylinder at a = 0.01 and Lc = 0.5d: Beam Sea Up (ω=1.8) [(a) Linear scale; (b) 322 

Logarithmic scale]; and Beam Sea Dn (ω=2.3) [(c) Linear scale; (d) Logarithmic scale] 323 

 324 

As can be seen, the peak at 1ω is the response at the forcing frequency and a small 2nd harmonic is also 325 

observed (other higher harmonics are negligible, therefore not shown here). Careful observation of log scale 326 

plots also reveal a broad band of small peaks covering many frequencies (especially between 0 to 1.5 ranges), 327 

instead of usual one or two sharp peaks. This is an indication of the existence of quasi-periodic motion. However, 328 

the most interesting behavior is the presence of low frequency peaks near 0.1ω and 0.2ω for Beam Sea Up and 329 

near 0.2ω for Beam Sea Dn. According to Hannan and Bai (2015), the natural frequency of the submerged 330 

payload for the particular cable length studied here is 0.384; which after normalizing becomes: ω0 /ωwave = 331 

0.384/2.0 = 0.192 0.20. Therefore, it can be said that the quasi-periodic motion of the payload here is highly 332 

influenced by its natural frequency. The low frequency components are mostly excited due to the effect of 333 

nonlinearities from shielding, as well as due to the effect of the natural frequency. 334 

At this point, it might also be worthwhile to investigate quantitatively that how the effect of nonlinearity is 335 

changing over the range of frequency changes for the rest of the scenarios. In order to do so, the various 336 

components of payload motion (mean, low frequency harmonics, linear 1st order as well as higher harmonics) 337 

obtained from the FFT analysis are plotted in Fig. 11 with respect to the normalized wave frequency kr, where k 338 

= 2 /  , is the wave number. Here, all the components are plotted as a percentage of total motion amplitude of 339 

the payload. The ‘mean’ is the mean zero frequency component of the motion amplitude. ‘Low freq’ is the 340 
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summation of first two low frequency harmonics. The low frequency harmonics are found to appear as harmonics 341 

of 0.1ω (Hannan and Bai 2015) and mostly the 0.1ω and 0.2ωth  components contributes significantly towards 342 

the total response. ‘1st Order’ represents the forcing frequency component. The rest of the components (including 343 

higher order harmonics) are summed up and considered inside the term ‘others’ as shown in the figure.  344 

 345 

Fig. 11. Pendulum motion amplitude of the payload as percentages of various components with the variation of wave frequency 346 

at a = 0.01 and Lc = 0.5d: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 347 

 348 

    Now, as can be seen in Fig. 11, around 70-95% of payload motion amplitudes at lower wave motion frequency 349 

come from linear response. Because, the wave length at this lower frequency range of wave maker is quite large 350 

compare to the size of the barge and payload. Thus, not much shielding or nonlinear effects are involved. 351 

However, as the wave frequency increases the percentage of nonlinear low frequency components and ‘mean’ 352 

start to rise significantly for all the various geometric configurations presented in this study. For the beam sea 353 

upstream case, the mean appears to reach as much as 55%. The beam sea downstream cases on the other hand, 354 

are found to experience fairly ‘low frequency component’ dominated motion which is around 70% of total 355 

motion amplitude for kr values above 0.6. 356 

    Therefore, it can be concluded that change of wave frequency coupled with various orientations of the floating 357 

barge and submerged payload significantly alters the payload motion behaviour and introduces various nonlinear 358 

phenomena. For different orientations, the effects of changing wave frequencies seem to follow different trends. 359 

 360 

4. Variation in payload pendulum motion dynamics for different cable lengths  361 

 362 

Initial length of the cable from which the submerged payload is hanging is one of the most important 363 

controlling parameters for the operation of offshore crane barge. This section studies the variation of payload 364 

response with respect to the change of this cable length. In order to change the length of cable, the rotation point 365 

of the cable (crane tip) is shifted accordingly instead of moving the cylinder under water. This means the initial 366 

under water position of the cylinder remains unchanged, which is 0.2d below the undisturbed free surface. 367 
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Moreover, the motion amplitude and frequency of the wave are also kept constant. Fig. 12 helps to clarify this 368 

scenario.  369 

 370 

Fig. 12. Sketch representing the change of cable length scenarios 371 

 372 

In reality, shifting the crane tip might not be a consistent option. However, the reason behind such selection 373 

here is that: during the installation process, one of the major challenges is to lower the payload through the 374 

‘splash zone’ as most of the severe wave interactions will happen in this region. Hence, the payload here is kept 375 

near this free surface zone and investigation is performed to understand whether an initial long or short length 376 

of the cable is better to start the installation process. In addition, maintaining the same underwater position of 377 

the payload for various cases will help to make comparison among the cases in a much meaningful way.  378 

 379 

Fig. 13. Phase trajectories of payload motion for various cable lengths at a = 0.015 and  = 2.0: row 1: Cylinder Only; row 2: 380 

Head Sea; row 3: Beam Sea Up; and row 4: Beam Sea Dn 381 

 382 

Fig. 13 presents the comparison of phase trajectories among the four different geometric orientations of the 383 

payload and crane barge under the influence of three different cable lengths. Here, the horizontal component of 384 

the pendulum motion of the payload is plotted instead of the angular motion in order to ensure a proper non-385 

dimensionalized comparison. As can be seen, for the cylinder only case, the change of cable length does not 386 

produce any significant impacts. The similar conclusion can be drawn for the other three scenarios as well, except 387 

slight increases in the displacement with the increase of cable length. Besides, as already discussed in the 388 

previous section, the phase trajectories for the Beam Sea Dn case are easily distinguishable from the rest of the 389 

scenarios indicating the influence of significant shielding effect generated by the presence of floating barge in 390 

the upstream side of the flow. In fact, the nonlinearities in phase trajectories due to the shielding effect can be 391 

visualized in the Head Sea and Beam Sea Up cases as well, compared to the phase trajectories of Cylinder Only 392 

case, although the influences are not quite prominent as the Beam Sea Up case.  393 

 394 
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Fig. 14. Influence of cable length on dynamics of phase motions at a = 0.015 and  = 2.0: (a) Cylinder Only; (b) Head Sea; (c) 395 

Beam Sea Up; and (d) Beam Sea Dn 396 

 397 

  Fig. 14 plots the changes in the point set of the Poincaré map as the cable length is gradually increased.  As 398 

noticed and already concluded, change of cable length only produces limited additional nonlinear impact on 399 

payload motions. Points in the Poincaré map appear to spread over similar ranges for all the cable lengths under 400 

a certain orientation, except the Beam Sea Up case. At this particular frequency of 2.0, the hydrodynamic 401 

properties of the floating barge in the Beam Sea Up orientation are found to significantly influence the 402 

underwater motion of the payload (Hannan and Bai 2015) as the length of the crane barge in this situation nearly 403 

coincides with the incoming wave length; consequently, resulting a large mean drift motion of the payload. This 404 

large mean drift force keeps increasing with the increase of cable length as seen in Fig. 14(c). 405 

 406 

Fig. 15. Pendulum motion amplitude of the payload as percentages of various components with the variation of cable length at a 407 

= 0.015 and  = 2.0: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 408 

 409 

    Fig. 15 will help to visualize these effects of nonlinearity in a more concise way.  Here, the various components 410 

of payload’s motion obtained via FFT are plotted as a percentage of total motion amplitude. As can be seen in 411 

this figure and already mentioned for Fig. 14, the percentage of mean drift in total motion amplitude increases 412 

with the increase of cable length for the beam sea upstream cases. Whereas for the single cylinder and head sea 413 

cases, the contribution from low frequency harmonics seems to increase more noticeably compared to the mean 414 

drift and for head sea cases the contribution exceeds 60 % at largest cable length considered. The beam sea 415 

downstream cases on the other hand, always governed by the low frequency harmonic responses.  Though, the 416 

influence of mean drift motion also becomes noticeable with the increase of cable length.  417 

 418 

Fig. 16. Ranges (maximum to minimum) of mean and low frequency components of payload motions for cable length changes 419 

under various geometric configurations at a = 0.015 and  = 2.0. 420 

 421 

    Finally, Fig. 16 of this subsection illustrates the actual nondimensionalized ranges over which the mean drift 422 



17 

motion and low frequency components of the payload motion varies with the change of cable length. The range 423 

for mean drift motion of beam sea up cases is between 5.63 to 6.77 which is fairly big compared to the ranges 424 

of other scenarios. Thus, it is not shown in this figure for better comparability of mean drift motion of other 425 

scenarios. Now, as depicted, the ranges for both the mean and low frequency components varies quite 426 

significantly in terms of span as well as position, for various geometric orientation of the barge and payload. 427 

These variations cannot be captured from the earlier Fig. 15. As seen, the mean drift motion for head sea cases 428 

varies over a long range for the various cable lengths considered, compared to the cylinder only and beam sea 429 

Dn scenarios. Similarly, the low frequency contributions for the beam sea Dn cases varies over the longest range 430 

among all the four scenarios, although, in percentage wise the contribution for all the cases looks similar as 431 

shown in Fig. 15. The least influence of lower harmonics is found for the cylinder only cases, which is reasonable 432 

as there is no shielding effect here. Therefore, it can be said that the global impact of nonlinearity in payload’s 433 

motion with the change of cable length is less prominent compared to its influence with the change of wave 434 

motion frequency. However, change of cable length can still generate noticeable variations among the responses 435 

of the payload under different geometric orientation. 436 

 437 

5. Nonlinear dynamics of payload moving downwards 438 

 439 

The previous sections investigated the nonlinear dynamics involved in pendulum motions of the payload 440 

under various scenarios while no vertical motion of the crane tip is allowed. This section considers a more 441 

practical approach; besides the constrained pendulum motion, the payload here is allowed to have a constant 442 

downward motion as if the crane vessel is lowering it down towards the sea bed. The payload in this case 443 

therefore, subjected to the coupled influence of wave action and downward motion of the rigid cable to which it 444 

is attached. Among the four different arrangements considered in the previous sections, the Cylinder Only and 445 

Head Sea configurations are investigated here. A comparatively longer cable length (Lc = 0.8d) is chosen to study 446 

the present situation, and the cylinder in this case is initially placed at 0.15d below the undisturbed free surface. 447 

The downward motion of the payload is denoted by Vd in this study and its unit is set as distance travelled per 448 

wave period instead of distance travelled per second. Also, at the beginning of the simulation, 5.5 wave periods 449 
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are allowed as an initial build up time to ensure that the fully generated wave reaches the submerged payload 450 

and floating barge arrangement. The cylinder is allowed to move downward after this initial period is over.  451 

 452 

5.1 Variation of wave frequencies 453 

 454 

At first the behaviour of the payload moving towards the sea bed is investigated under different frequencies 455 

of the wave motion while the motion amplitude of the wave maker and downward moving speed of the cylinder 456 

are kept constant at 0.015 and 0.02 respectively. Fig. 17 shows the corresponding phase trajectories and Poincaré 457 

map for the Head Sea case plotted for the 10-20 time periods. 458 

 459 

Fig. 17. Influence of wave frequency variation on the dynamics of moving downward payload at Vd = 0.02d, a = 0.015 [Head 460 

Sea]: row 1: phase trajectories; and row 2: Poincaré map 461 

 462 

As can be seen from the phase trajectories, more complex overlaps occur in the phase plane as the wave 463 

frequency rises, indicating that the nonlinearity increases in the payload motion at the same time. This increase 464 

in nonlinearity can be related to the low frequency components inside the payload motion.  However, unlike 465 

Section 3 where the period doubling and frequency doubling phenomena were observed with the increase of 466 

frequency, a stable period-10 motion is only identified here in the payload motion irrespective of various 467 

frequencies.  This can be explained as follows: in Section 3, the payload is not allowed to have any downward 468 

motion thus exposing it to all sorts of near surface nonlinear phenomena for the entire simulation period. Whereas 469 

in this case, the payload is constantly going towards the sea bed, thus the influence of strong nonlinearities is 470 

decreasing as it is moving away from the free surface zone. 471 

     472 

5.2 Influence of moving downward speed 473 

 474 

Several cases have been simulated in this subsection for both the Cylinder Only and Head Sea configurations 475 

considering different downward speeds of the payload motion, keeping the wave maker motion amplitude 476 
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constant at 0.015. Fig. 18 illustrates the phase trajectories for four different Vd in the Head Sea condition. All 477 

these trajectories appear to be in similar shapes except that the range of payload motion decreases with the 478 

increase of Vd. This is reasonable in the physical sense, because the increase of Vd means the payload is moving 479 

towards the sea bed at a faster speed, therefore, getting lesser attention of the free surface wave and other 480 

associated disturbance and resulting the smaller motion amplitude of the payload. The similar shapes for the 481 

trajectories, on the other hand, indicate that variation of Vd does not create significant additional nonlinearities 482 

other than what already exists in the payload motion. 483 

 484 

Fig. 18. Variation in the phase trajectories of the payloads due to various moving downwards speeds at Lc = 0.8d, ω = 2.0, a = 485 

0.015 [Head Sea]: (a) Vd = 0.005; (b) Vd = 0.01; (c) Vd = 0.015; and (d) Vd = 0.02 486 

 487 

Fig. 19 compares the Poincaré maps between the Cylinder Only and Head Sea scenarios under the influence 488 

of various Vd. As can be seen, all the cases undergo a period-10 motion and the point sets in the Poincaré map 489 

for all the cases appear to follow a similar pattern irrespective of Vd, thus confirming the conclusion of Fig. 18. 490 

However, the range for the point sets of the Head Sea case appears to be much longer than that of the Cylinder 491 

Only case. The presence of floating barge in the Head Sea case produces stronger nonlinear effects in the payload 492 

motion, even when the payload is moving towards the sea bed.  493 

 494 

Fig. 19. Comparison of Poincaré map between the Cylinder only and Head Sea orientations of the moving downwards payload 495 

under various moving downwards speeds with Lc = 0.8d, ω = 2.0, a = 0.015: (a) Vd = 0.005; (b) Vd = 0.01; (c) Vd = 0.015; and (d) 496 

Vd = 0.02 497 

 498 

5.3 Payload moving downwards under various motion amplitudes of wave 499 

 500 

The final subsection of this paper investigates the influence of the motion amplitude of the wave on the 501 

dynamic response of the payload while it moves with a constant downward velocity of Vd = 0.02d. Fig. 20 depicts 502 

the corresponding phase trajectories and Poincaré map obtained for the Head Sea case with various motion 503 

amplitudes of the wave maker. 504 
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 505 

Fig. 20. Influence of various motion amplitudes of wave maker on dynamic behavior of payload moving downwards with Lc = 506 

0.8d, ω = 2.0 [Head Sea]: column 1: phase trajectories; column 2: Poincaré map; row 1: a = 0.005; row 2: a = 0.01; row 3: a = 507 

0.015; and row 4: a = 0.02 508 

 509 

Irrespective of the increase of wave maker motion amplitude, the payload appears to face a period-10 motion. 510 

The phase trajectories show that the amplitude of motion increases as the wave maker motion amplitude 511 

increases. From the increasingly complex overlapping of the phase loops it can also be said that the nonlinearity 512 

in payload motion increases at the same time. Besides, with the increase of wave maker motion amplitude, the 513 

presence of low frequency component with transient motion can be found as well, especially at a = 0.02. 514 

Overall, it is identified that the change of moving downward speed of the payload does not produce any 515 

significant influence towards the nonlinear motion of the payload after the payload reaches a certain depth from 516 

the free surface, whereas, the increase of incoming waves amplitude or frequency still may noticeably increase 517 

the nonlinearity of payload motion. 518 

 519 

Fig. 21. Wave profile snapshots at t =9.5T with a = 0.02, ω = 2.0:  (a) Head sea; (b) Beam Sea Up; and (c) Beam Sea Dn 520 

 521 

Finally to provide a visual impression of the simulation output, three snapshots of free surface profiles 522 

captured at a particular time instant of the simulation period are presented in Fig.21. The snapshots are captured 523 

after the simulation reaches a fully developed state. The waves here are propagating from the left end of the tank 524 

and the damping layer is situated at the far right end side. The effectiveness of the damping layer is quite evident 525 

from these pictures as the wave elevation is almost zero at the layer zone.  It is also noticed that the presence of 526 

submerged cylinder near the barge in the Head Sea creates noticeable disturbance on free surface compared to 527 

the other side of the barge (Fig. 21(a)). Moreover, the interactions between the incoming wave from the wave 528 

maker and diffracted wave from the barge wall in both the Beam Sea cases are also visible in Fig. 21(b) and Fig. 529 

21(c). These two figures also clearly reveal the influence of submerged cylinder on wave profile as well as on 530 

barge run-up when the cylinder is in the upstream side (Fig. 21(c)). 531 
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 532 

6. Conclusions 533 

 534 

The nonlinear dynamics of fully submerged payload of offshore crane barge is investigated numerically. An 535 

established fully nonlinear time domain model is applied to solve the problem. The computation is carried out 536 

for the coupled system of a fixed crane barge and a fully submerged payload subjected to constrained pendulum 537 

motions. Analysis tools such as the Poincaré map, bifurcation diagram, and phase trajectories are used to analyse 538 

the results. The periodicity of the nonlinear motion is being traced effectively using the Poincaré map. The effects 539 

of changing wave frequency on the motion characteristics have been well demonstrated and it is found that 540 

nonlinearities have a significant influence on the dynamics of the submerged payload movement, especially at a 541 

certain range of wave frequencies. Besides, the existences of various nonlinear phenomena, for example the sub-542 

harmonic motions of Period-5, Period-10 and Period-20 and period doublings are captured. The results also 543 

indicate that different orientations of the floating barge and submerged payload system are responsible for the 544 

different dynamic behaviour of the payload. The presence of nearby floating barge, even when the payload is 545 

moving downwards, introduces noticeable nonlinearity in payload motion.  546 

It should be recalled, however, that further research is needed to extend the present model in order to achieve 547 

improved understanding of this problem. The effect of the motion of floating barge along with mooring lines 548 

will be considered in the future study, which is known as another source of significant nonlinear behaviour.  549 

 550 
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Fig. 1. Sketch of definition for the numerical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Mesh generated for various configurations: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 
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Figure - 2 
 

 

 

 

 

 

 
Fig. 3. Time histories of cylinder motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Cylinder Only]: 

(a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 

 

 

 

 

 

 

 

Fig. 4. Phase trajectories of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d 

[Cylinder Only]: (a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 

 

 

 

 

 

 

 

 
Fig. 5. Poincaré map of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d 

[Cylinder Only]: (a) ω =1.5; (b) ω =2.0; and (c) ω =2.5 
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Fig. 6. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Beam 

Sea Up]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 
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Fig. 7. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Beam 

Sea Dn]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 
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Fig. 8. Comparisons of payload pendulum motion for different wave maker motion frequencies at a = 0.01 and Lc = 0.5d [Head 

Sea]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincaré map 
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Fig. 9. Bifurcation diagram for varying wave frequencies at a = 0.01 and Lc = 0.5d: (a) Cylinder Only; (b) Head Sea; (c) Beam 

Sea Up; and (d) Beam Sea Dn 
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Fig. 10. Frequency spectra for the motion of the cylinder at a = 0.01 and Lc = 0.5d: Beam Sea Up (ω=1.8) [(a) Linear scale; (b) 

Logarithmic scale]; and Beam Sea Dn (ω=2.3) [(c) Linear scale; (d) Logarithmic scale] 
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Fig. 11. Pendulum motion amplitude of the payload as percentages of various components with the variation of wave frequency 

at a = 0.01 and Lc = 0.5d: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 

 

 

 

 

 

 

 

Fig. 12. Sketch representing the change of cable length scenarios 
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Fig. 13. Phase trajectories of payload motion for various cable lengths at a = 0.015 and  = 2.0: row 1: Cylinder Only; row 2: 

Head Sea; row 3: Beam Sea Up; and row 4: Beam Sea Dn 
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Fig. 14. Influence of cable length on dynamics of phase motions at a = 0.015 and  = 2.0: (a) Cylinder Only; (b) Head Sea; (c) 

Beam Sea Up; and (d) Beam Sea Dn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Pendulum motion amplitude of the payload as percentages of various components with the variation of cable length at a 

= 0.015 and  = 2.0: (a) Cylinder Only; (b) Head Sea; (c) Beam Sea Up; and (d) Beam Sea Dn 
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Fig. 16. Ranges (maximum to minimum) of mean and low frequency components of payload motions for cable length changes 

under various geometric configurations at a = 0.015 and  = 2.0. 
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Fig. 17. Influence of wave frequency variation on the dynamics of moving downward payload at Vd = 0.02d, a = 0.015 [Head 

Sea]: row 1: phase trajectories; and row 2: Poincaré map 
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Fig. 18. Variation in the phase trajectories of the payloads due to various moving downwards speeds at Lc = 0.8d, ω = 2.0, a = 

0.015 [Head Sea]: (a) Vd = 0.005; (b) Vd = 0.01; (c) Vd = 0.015; and (d) Vd = 0.02 
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Fig. 19. Comparison of Poincaré map between the Cylinder only and Head Sea orientations of the moving downwards payload 

under various moving downwards speeds with Lc = 0.8d, ω = 2.0, a = 0.015: (a) Vd = 0.005; (b) Vd = 0.01; (c) Vd = 0.015; and (d) 

Vd = 0.02 
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Fig. 20. Influence of various motion amplitudes of wave maker on dynamic behavior of payload moving downwards with Lc = 

0.8d, ω = 2.0 [Head Sea]: column 1: phase trajectories; column 2: Poincaré map; row 1: a = 0.005; row 2: a = 0.01; row 3: a = 

0.015; and row 4: a = 0.02 
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Fig. 21. Wave profile snapshots at t =9.5T with a = 0.02, ω = 2.0:  (a) Head sea; (b) Beam Sea Up; and (c) Beam Sea Dn 
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Table 1. List of test cases 

 

Total 

number   

of 

simulations 

Lc /d a ω D/d Vd /d 
Geometric 

Configuration 

Nonlinear dynamics of submerged payload under various wave frequencies 

11 0.5 0.01 
1.50 to 2.50, at 

interval of 0.1 
0.2 N.A. Cyl only 

11 0.5 0.01 
1.50 to 2.50, at 

interval of 0.1 
0.2 N.A. Head Sea 

11 0.5 0.01 
1.50 to 2.50, at 

interval of 0.1 
0.2 N.A. Beam Sea Up 

11 0.5 0.01 
1.50 to 2.50, at 

interval of 0.1 
0.2 N.A. Beam Sea Dn 

Variation in payload pendulum motion dynamics for different cable lengths 

3 0.4, 0.6, 0.8 0.015 2.0 0.2 N.A. Cyl only 

3 0.4, 0.6, 0.8 0.015 2.0 0.2 N.A. Head Sea 

3 0.4, 0.6, 0.8 0.015 2.0 0.2 N.A. Beam Sea Up 

3 0.4, 0.6, 0.8 0.015 2.0 0.2 N.A. Beam Sea Dn 

Nonlinear dynamics of payload moving downwards at a constant speed 

     Variation of wave frequencies 

3 0.8 0.015 1.50, 2.00, 2.50 0.15 0.02 Head Sea 

     Influence of moving downward speed 

4 0.8 0.015 2.0 0.15 0.005 to 0.02 Head Sea 

4 0.8 0.015 2.0 0.15 0.005 to 0.02 Cyl only 

     Payload moving downwards under various motion amplitudes of wave 

4 0.8 0.005 to 0.02 2.0 0.15 0.02 Head Sea 

 

 


