
1

Privacy-Preserving and Regular Language Search
over Encrypted Cloud Data

Kaitai Liang, Fuchun Guo, Xinyi Huang, and Joseph K. Liu

Abstract—Using cloud-based storage service, users can re-
motely store their data to clouds but also enjoy the high quality
data retrieval services, without the tedious and cumbersome local
data storage and maintenance. However, the sole storage service
cannot satisfy all desirable requirements of users. Over the last
decade, privacy-preserving search over encrypted cloud data has
been a meaningful and practical research topic for outsourced
data security. The fact of remote cloud storage service that users
cannot have full physical possession of their data makes the
privacy data search a formidable mission. A naive solution is
to delegate a trusted party to access the stored data and fulfill a
search task. This, nevertheless, does not scale well in practice as
the fully data access may easily yield harm for user privacy. To
securely introduce an effective solution, we should guarantee the
privacy of search contents, i.e. what a user wants to search, and
return results, i.e. what a server returns to the user. Furthermore,
we also need to guarantee privacy for the outsourced data, and
bring no additional local search burden to user. In this paper,
we design a novel privacy-preserving functional encryption based
search mechanism over encrypted cloud data. A major advantage
of our new primitive compared to the existing public key based
search systems is that it supports an extreme expressive search
mode, regular language search. Our security and performance
analysis show that the proposed system is provably secure and
more efficient than some public key searchable systems with high
expressiveness.

Keywords: Regular language, secure data search, cloud stor-
age.

I. INTRODUCTION

Much like the popularity of portable personal electronic
devices, cloud storage service has been booming over the last
decade. Its outstanding advantages, such as considerable stor-
age space, flexible accessibility and convenient data retrieval,
strongly catch the attention of Internet users. Accordingly, to
date not only individuals but also industries, research institutes
prefer to remotely store their data to cloud servers, such that
they can get rid of the burden of local data management and
maintenance. This makes cloud storage service share a great
piece of market cut in the field of data management even in
the ear of big data.

Remotely data storage delivers convenience to Internet users
and meanwhile, brings security concerns. The fact that users
cannot have full physical possession of their data immediately

K. Liang is with the Department of Computer Science, Aalto University,
Finland (e-mail: kaitai.liang@aalto.fi).

F. Guo is with School of Computer Science and Software Engineering, Uni-
versity of Wollongong, NSW 2522, Australia (e-mail: fuchun@uow.edu.au).

X. Huang is with the Fujian Provincial Key Laboratory of Network Security
and Cryptology, School of Mathematics and Computer Science, Fujian Normal
University, Fuzhou, China, 350108. (e-mail: xyhuang@fjnu.edu.cn).

J. K. Liu is with Monash University, Australia. (e-mail:
joseph.liu@monash.edu).

rises up two serious practical questions: how to guarantee the
confidentiality of the data, and how to retrieve the data. For
the first question, we usually tackle it by leveraging existing
encryption cryptographic mechanisms, such that all outsourced
data are encrypted and unaccessible to cloud servers. The
encryption technology, with no doubt, enables us to protect
the confidentiality of the data. However, it limits the flexibility
of data retrieve to some extent. The premise of encryption
technique is to prevent a ciphertext holder from gaining access
to the underlying knowledge of data. Without any knowledge
related to the data, it looks impossible for a cloud server to
fulfill any data retrieval task. A naive solution here for data
retrieval is to allow the server to fully access the data, allocate
the data and next return it to user. Nevertheless, this disgraces
the meaning of encryption.

To support data retrieval without loss of confidentiality,
Searchable Encryption (SE) mechanisms (e.g. [27], [9]) have
been proposed in the literature. SE has been studied and widely
employed in real-world applications where data search is out-
sourced to untrusted cloud servers. SE allows a server to search
in encrypted data on behalf of a data owner without accessing
the information of the data and search query contents. In an
SE, a user encrypts a file database and its search keywords,
and next uploads them to a cloud server. When retrieving a file,
the user delivers a token related to the keyword to the server
so that the server then locates the corresponding encrypted file
from the encrypted database. The flexibility and scalability of
a SE system mainly depend on how we design search token
as well as search keyword.

From practical point of view, a more expressive search query
yields a more precise data retrieval. We take an Electronic
Health Records (EHRs) search as an example. In an EHRs
system, a patient’s medical record is usually encrypted and
stored in a storage system. We suppose there is a patient
Alice’s encrypted record which is tagged with a keyword index
“Alice”. To search the medical record of Alice from its storage
system, a hospital needs to find a file matching the keyword
“Alice”. However, “Alice”, the search index, is quite common
in usual. There are probably 10,000 patients associated with
the same keyword. This definitely increases the workload of
the hospital to locate the real “Alice” file they need from the
rest of other encrypted records (with the same keyword).

To enhance the search expressiveness, one may replace a
single keyword index with access formula, such as (“Alice”
AND “1990” AND “CrystalLake”) or (“Alice” AND “Age <
20” AND “Student ∈ NYU”). Actually, the most powerful
expressive way to represent a search query is to leverage
regular language. Using regular language to describe a data to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

be encrypted is extremely common in daily life. For instance,
a secretary of department may archive all encrypted meet-
ing files by tagging respective descriptions, like “Monday’s
meeting about Project A with B team”. A Facebook user may
directly write down a description, e.g., “my birthday party
with best friends Bob and Kate”, for an uploaded photo.
Furthermore, suppose a tax form is encrypted and archived
in some tax authority. The authority may need to search one
of the tax forms based on an exact sentence or paragraph of
the tax form, such as “Alice have paid $ 8,000 tax in total in
2014”, in which the number is encrypted.

Some more recent applications for regular language search
are online genetic relatedness test and chemical compound
search. Suppose a language space only contains “A,G,C,T”,
a search querier may upload a masked search pattern “ACG-
GTTCT” to an encrypted genetic database to request the server
to return all possible matching encrypted DNA sequences.
Unfortunately, there is no SE supporting regular language
search in the literature. Designing flexible and scalable regular
language search without loss of data confidentiality and query
privacy that becomes the main motivation of our work.

Searchable Symmetric Encryption (SSE) and Public key
Encryption with Keyword Search (PEKS) are two types of
SE. SSE generally enjoys better search efficiency than that of
PEKS. It provides a limited level of expressiveness for search.
It is not difficult to see that the limitation of expressiveness
actually inherits from some original limitation design in sym-
metric encryption1, such that it is difficult for SSE to support
expressive search query (e.g. formula search, subset queries).
Therefore, we deal with the case of PEKS to achieve more
search expressiveness in this paper.

PEKS allows anyone to encrypt searchable contents but only
a defined user group can generate search trapdoor. Moreover,
it separates search contents from search keywords that offers
flexibility for search expressiveness. The notion of PEKS is
initially defined by Boneh et al. [5] in EUROCRYPT 2004. Af-
terwards, there are many PEKS systems have been proposed.
We mainly concentrate on the following two systems below. In
TCC 2007, Boneh and Waters [6] proposed a PEKS system
supporting conjunctive, subset, and range search queries. It
can be regarded as the most expressive PEKS scheme in the
literature. However, it does not guarantee the privacy of search
contents, i.e. a cloud server will know what a user wants to
search. We will further explain the design limitation of [6]
later. A latest research work for PEKS is proposed in IEEE
INFOCOM 2014 by Zheng, Xu and Ateniese [31]. In [31],
the authors explore PEKS into the context of Attribute-Based
Encryption (ABE). Although their systems (note that they
designed more than one system in [31]) achieve data and
search contents privacy, they only support single keyword
equality search that cannot fully achieve our goal, regular
language search.

1It is undeniable that symmetric key encryption focuses more on protecting
the confidentiality of the data but not the expressiveness of data share.

A. Our Contributions

We first define a new notion called searchable deterministic
finite automata-based functional encryption. The notion is a
general notion for PEKS. We next design a concrete con-
struction satisfying the notion. In our construction, any system
user can describe a data to be shared with regular language
in an encrypted form, where the language description can be
arbitrary length (e.g. an English sentence, or a paragraph). A
valid data receiver can generate and deliver a search token
represented as a Deterministic Finite Automata (DFA) to
a cloud server, such that the cloud server can locate the
corresponding ciphertexts and return them to the data receiver.
In the search phase, the server knows nothing about the
search contents and the underlying data. We further present
extensive evaluation for our system to show its security, and
the efficiency compared to two most related works [6], [31].

Supporting regular language search is a great advantage of
our system that makes the system be the first of its type, to the
best of our knowledge. It is undeniable that SSE (e.g. [12])
usually enjoys better efficiency in data searching compared
to the public key based searchable encryption. However,
our novel system can support any arbitrary alphabet/regular
language search, so that it is more human-friendly readable for
search keyword design. Besides, the system provides verifiable
(data integrity) check for system users (due to public-key based
feature). Moreover, our system does not need to require a data
owner to pick up some special keywords before constructing
keyword index structures, e.g., least frequent keyword [12], but
also it only leverages a DFA structure to embed flexible search
expressiveness, e.g., “AND, OR, NOT”, unlike that of [12]
only limited in “a keyword AND (formula)” expression.

B. Related Work

Song et al. [27] introduced the notion of SE, in which full
text search over encrypted data is allowable. Following the
notion, many SE systems have been proposed in the literature.
All existing systems can be categorized into two types: SSE
(e.g. [13], [14], [28], [7]) and PKES (e.g. [5]). Although
SSE generally enjoys better search efficiency than that of
PEKS, it provides limited expressiveness for search, e.g.,
single keyword match [16], [21], [22], conjunctive keyword
search [12], [18], [11], and fuzzy search [8], [25], [10]. To
achieve more expressiveness for search query, this paper deals
with the case of PKES. A more important reason for us
to start with public key technology is that the loose bind
between keyword index structure and (uploaded) data (in a
SSE system) does not support integrity check. This may give
malicious server a chance to completely change the whole
search index structure, such that the corresponding data owner
fails to correctly search its data.

Boneh et al. [5] introduced the notion of PKES, and de-
signed a concrete scheme an identity-based encryption (IBE).
Later on, Abdalla et al. [1] presented a generic construc-
tion from anonymous IBE to SE. After that, some variants
of PKES supporting single keyword search have been pro-
posed, such as [2], [3]. More practical and search expres-
sive PKES have been constructed, e.g., authorized keyword

3

search [19], verifiable keyword search [4], fuzzy (single)
keyword search [30], [19], [18] with conjunctive keyword
search, and [26] with range queries.

In TCC 2007, Boneh and Waters [6] designed the most
expressive PKES for not only conjunctive but also keyword
subset/range queries by leveraging hidden vector encryption
technique. But it is built in composite order group that
seriously affects its efficiency. We note that [20] introduces
a way to convert the system into prime order group. Most
importantly, the system cannot protect the privacy of search
contents. Recently, Zheng, Xu and Ateniese [31] introduced a
notion attribute-based keyword search, in which they explore
the keyword search into the ABE setting without loss of search
content privacy. Nevertheless, their research outcomes only
support single keyword search.

Below we compare our work with [6] and [31] in terms
of functionality and security in Table I. As to the efficiency
comparison, we leave it to Section V. To the best of our knowl-
edge, our scheme is the first to achieve privacy-preserving
regular language keyword search. We note that our system is
proved under the asymmetric l-Expanded BDHE (which will
be introduced later), while [6], [31] rely on composite 3-party
Diffie-Hellman assumption and the bilinear Diffie-Hellman
assumption, and decisional linear assumption, respectively.

TABLE I: Comparison with [6], [31]

Sch. Security Standard Pairings
Search Model Group

[6] Subset, range CPA ! composite order
conjunctive

[31] Single keyword CPA # symmetric
Ours Regular Language CPA ! asymmetric

II. PROBLEM STATEMENT

A. System Entities

We consider a cloud-based data store and search service
involving four different entities, as illustrated in Fig. 1.
• A data encryptor can mark a specified keyword descrip-

tion for a data, and upload the encrypted data to a cloud
server. It can be a data receiver as well (indicating a user
encrypts data for itself).

• A data receiver can download encrypted data from cloud
server, have fully decryption rights of the encrypted data,
but also to construct a search token with help of a fully
trusted authority.

• A fully trusted authority takes charge of generating the
public parameters for the system, initializing the system,
issuing a partial search token to a data receiver to help
the data receiver construct a keyword search token.

• A cloud server: given a search token associated with
a search policy2 and a ciphertext tagged with unknown
keyword description, it verifies whether the ciphertext and
the token match or not. If there is a match, output 1 and

2We note that we use a DFA to represent a search policy in this paper. We
will introduce the definition of DFA in Appendix A.

return the corresponding ciphertext; otherwise, output 0
and return ⊥.

B. System Algorithms

Definition 1: A Searchable DFA-Based Functional Encryp-
tion (S-DFA-FE) system consists of the following algorithms:

1) (mpk,msk) ← Setup(1n,
∑

): on input a security pa-
rameter 1n and the description of a finite alphabet

∑
,

output a master public key mpk and a master secret key
msk.

2) CT ← Enc(mpk,W = (w1, w2, ..., wl)): on input mpk
and an l-length string W used for keyword description,
output a ciphertext CT .

3) tk ← TokenGen(msk,M = (Q, T , q0, F)): on input a
msk and a DFA description M = (Q, T , q0, F), a fully
trusted authority interacts with a data receiver to generate
a search token tk. Specifically, the authority delivers a
partial search token ptk to the receiver, and next the
receiver constructs a fully search token tk. In this paper
we require that the communication channel between the
authority and the receiver must be secure, for example,
using SSL.

4) 1/0 ← Test(tk, CT): on input a search token tk, and
a ciphertext CT , output 1 if the DFA of the token
accepts the string W embedded into the ciphertext, and
0 otherwise.

Note. We note that the system does not provide a decryption
algorithm that uses a user’s secret key to decrypt a ciphertext
CT and outputs a message. This capability can be achieved
by leveraging a standard public key system. From the point
of view of encrypted search functionality, there is no need to
explicitly support this capability.

C. System Architecture

We depict how our system works in Fig. 1.
• A fully trusted authority runs the setup algorithm Setup

to generate the public parameter mpk for system users
and a cloud server, initialize the system and keep the
master secret key msk secret.

• A data encryptor runs the encryption algorithm Enc
to generate different ciphertexts (CTW1

, ..., CTWn
) for

the data receiver with “masked-and-unknown” keyword
description strings (W1, ..., Wn), and further uploads the
ciphertexts to the cloud.

• When needing the help of the trusted authority to con-
struct a search token for some specified keyword descrip-
tion, the data receiver first builds up a secure channel (e.g.
SSL) with the authority, and next sends a request with
the corresponding DFA search policy to the authority.
The authority then generates a “partial” search token and
replies the token to the data receiver via the same secure
channel. We note that we will improve the system later
such that there is no need to require the fully trusted
authority to participate into the generation of search
token.

• After receiving the partial token from the authority,
the data receiver generates a fully search token tkWi

,

4

Fig. 1: System Architecture

and forwards the token to the cloud server in a public
communication channel.

• The cloud server verifies whether there exists a CTWi

matching the search token tkWi
. If there is a match, the

server outputs 1 and returns the corresponding ciphertext
CTWi

. Otherwise, the server outputs 0 and returns ⊥.
Note. One might question that why we need a trusted authority
in the generation of search token. In a practical point of view, a
valid system user holding a secret key is capable of generating
a search token for his/her encrypted files. We state that our
system can be improved to achieve this requirement. We will
discuss this after the description of our construction.

D. Threat Model

The below defined adversary model is to see whether a PPT
adversary can tell a ciphertext is associated with a keyword
description string or not, in which all the characters of the
keyword string is from a public known finite alphabet. The
defined model is used to prevent the attacks that given a
ciphertext (resp. a search token), any invalid data receiver (i.e.
the one without any decryption rights) cannot compromise the
corresponding keyword description field.

Assumption. We assume that the cloud server and data
receiver are semi-honest (i.e. honest-but-curious), while the
authority is fully trusted. By semi-honest we mean that one
will honestly run a protocol by following the specification of
the protocol but curiously collecting some interesting infor-
mation during the period of protocol running.

Definition 2: An S-DFA-FE system achieves keyword pri-
vacy if the advantage AdvKPA (1n,

∑
) is negligible for any

PPT adversary A in the following experiment.

|Pr[b = b′ :(W ∗0 ,W
∗
1 , state1)← A(

∑
);

(mpk,msk)← Setup(1n,
∑

);

(state2)← AO(mpk, state1);

b ∈R {0, 1};CT ∗ ← Enc(mpk,W ∗b);

b′ ← AO(CT ∗, state2)]− 1

2
|,

where state1, state2 are the state information, W ∗0 , W ∗1 are
two distinct keyword strings, and O = {Otg,Otest}. For
Otest, the oracle intakes (M,CT), and outputs a bit of value 0
or 1. But the oracle will only return ⊥ for the query (M,CT),
where CT is the challenge ciphertext and meanwhile M
accepts CT ’s keyword string. For Otg , the oracle intakes M ,
and outputs a search token tk associated with M with an
exception that M cannot accept W ∗b , where b ∈ {0, 1}.

E. Design Goals

In this paper, our protocol design achieves the following
functionality and security guarantees.
• Publicly description ability: to allow every system user to

produce a ciphertext associated with some keyword string
for others.

• Search token generation ability: to allow any valid system
user obtaining the decryption rights of a data to generate a
search token for the corresponding encrypted data search.

• Test verifiability: to allow a cloud server to allocate one
(or more) matching ciphertext(s) by a given search token.

• Privacy-preserving ability: to guarantee the following
aspects of privacy.

1) Given a search token, a cloud server does not know
any knowledge of the keyword(s) embedded into the
DFA of the token3.

2) Given a ciphertext, a cloud server does not know any
information of the keyword string tagged with the
ciphertext.

III. PRELIMINARIES

A. Asymmetric Pairings

Let BSetup be an algorithm that on input the security
parameter n, outputs the parameters of a bilinear map as

3Note that we here only give the token to the server for guessing the
embedded keyword(s). Of course, the server can construct a ciphertext with a
keyword K to test whether a search token with another keyword K′ matches
the ciphertext or not. This is called offline keyword-guessing attack. We will
discuss this attack later.

5

(p, g, ĝ,G1,G2,GT , e), where G1, G2 and GT are multiplica-
tive cyclic groups of prime order p, where |p| = n, and g is
a random generator of G1, ĝ is a random generator of G2.
The mapping e : G1 × G2 → GT has three properties: (1)
Bilinearity: for all a, b ∈R Z∗p, e(ga, ĝb) = e(g, ĝ)ab; (2) Non-
degeneracy: e(g, ĝ) 6= 1GT , where 1GT is the unit of GT ; (3)
Computability: e can be efficiently computed. Note that G1

and G2 are not the same.

B. Complexity Assumptions

Definition 3: l-Expanded Bilinear Diffie-Hellman Expo-
nent (l-Expanded BDHE) Assumption [29]. We say that
an algorithm A has advantage Advl-BDHEA in solving the l-
Expanded BDHE problem in G if |Pr[A(X̂, e(g, g)a

l+1bs) =
0]−Pr[A(X̂, T) = 0]| ≥ ε, where the probability is over the
random choice of generators g ∈ G1, the random choice of
exponents a, b, c0, ..., cl+1, d ∈ Z∗p, T ∈R GT , the random bits
used by A, and X̂ is a set of the following elements:

g, ga, gb, gab/d, gb/d

∀i ∈ [0, 2l + 1], i 6= l + 1, j ∈ [0, l + 1] ga
is, ga

ibs/cj ,

∀i ∈ [0, l + 1] ga
ib/ci , gci , ga

id, gabci/d, gbci/d,

∀i ∈ [0, 2l + 1], j ∈ [0, l + 1] ga
ibd/cj ,

∀i, j ∈ [0, l + 1], i 6= j ga
ibcj/ci .

We say that the l-Expanded BDHE assumption holds in G1 if
no PPT algorithm has advantage ε in solving the l-Expanded
BDHE problem in G1.

Definition 4: (Asymmetric) l-Expanded BDHE Assump-
tion. We say that an algorithmA has advantage AdvA-l-BDHE

A
in solving the asymmetric l-Expanded BDHE problem in (G1,
G2) if |Pr[A(X̂, e(g, ĝ)a

l+1bs) = 0]−Pr[A(X̂, T) = 0]| ≥ ε,
where the probability is over the random choice of gener-
ators g ∈ G1, ĝ ∈ G2, the random choice of exponents
a, b, c0, ..., cl+1, d ∈ Z∗p, T ∈R GT , the random bits used by
A, and X̂ is a set of the following elements:

g, ĝ, ĝa, ga, ĝb, ĝab/d, gab/d, gb/d, ĝb/d

∀i ∈ [0, 2l + 1], i 6= l + 1, j ∈ [0, l + 1] ga
is, ga

ibs/cj ,

∀i ∈ [0, l + 1] ga
ib/ci , ĝa

ib/ci , ĝci , ĝa
id, ĝabci/d, ĝbci/d,

∀i ∈ [0, 2l + 1], j ∈ [0, l + 1] ĝa
ibd/cj ,

∀i, j ∈ [0, l + 1], i 6= j ĝa
ibcj/ci .

We say that the asymmetric l-Expanded BDHE assumption
holds in (G1, G2) if no PPT algorithm has advantage ε in
solving the asymmetric l-Expanded BDHE problem in (G1,
G2).

We can show that the above extended complexity assump-
tion still holds in the generic group model by employing the
same proof technology introduced in [29]. Specifically, we can
see from the set X̂ that there are five elements in G1 including
g, gb/d, ga, gab/d, ga

is, ga
ibs/cj and ga

ib/ci . Here, we show
that these elements cannot help an adversary to compute an
exponent value al+1bs. For the element g, it is easy to see
that there does not exist a ĝa

l+1bs in X̂ . Similarly, we need
the G2 elements ĝa

l+1ds, ĝa
lds, ĝa

lbs, ĝa
zb, ĝa

zcj and ĝa
zsci

for the G1 elements gb/d, ga, gab/d, ga
is, ga

ibs/cj and ga
ib/ci ,

respectively, where i+ z = l+ 1. It is not difficult to see that
the above G2 elements cannot be provided by the set X̂ .

C. Target Collision Resistant Hash Function.

Target Collision Resistant (TCR) hash function was intro-
duced in [15]. A TCR hash function H guarantees that given
a random element x which is from the valid domain of H , a
PPT adversary A cannot find y 6= x such that H(x) = H(y).
We let AdvTCRH,A = Pr[H(x) = H(y) ∧ x 6= y|x, y ∈ DH] be
the advantage of A in successfully finding collisions from a
TCR hash function H , where DH is the valid input domain
of H . If a hash function is chosen from a TCR hash function
family, AdvTCRH,A is negligible.

IV. AN EXPRESSIVE KEYWORD SEARCH MECHANISM

From a lemma stated in [5], we know that a keyword search
mechanism can be built on top of an anonymous identity-
based encryption system. Based on this valuable observa-
tion, we construct an expressive keyword search mechanism
from an anonymous attribute-based encryption scheme. The
anonymous attribute-based encryption can be regarded as a
combination of masked technique and an extension of Waters
functional encryption [29].

A. An Intuition for Our Basic Construction

We first take an expressive functional encryption sys-
tem [29] as a starting point. We treat [29] in a different
point of view, specifically in a searchable encryption view.
We regard the description string associated with a ciphertext
as a description for future search, and the secret key of a user
as a search token. If the token matches the ciphertext (namely
a successful decryption occurs in the functional encryption
point of view), a cloud server will return the ciphertext.

Nevertheless, we cannot simply turn [29] to be a searchable
encryption system. In [29], one (i.e. a data encryptor) needs
to regard a description string (for a ciphertext) as one of the
output of ciphertext, i.e. showing the string in a plain format.
In this case, the privacy of the string, however, cannot be pro-
tected. We thus extend the system into the asymmetric pairing
group such that we can guarantee the privacy of the search
description string associated with a given ciphertext. That is,
given a ciphertext tagged with some search description, a cloud
server does not know what the corresponding description is.
Furthermore, we also need to require the data encryptor to
publicly show “the length of the string”. Accordingly, we leak
the length of the string only but not the plain string itself. One
might doubt that the reason of this kind of information leak.
We will explain it later.

To achieve the privacy of a search query, we require a trap-
door generator (i.e. a data receiver) to “hide” each character
of a description string as well as each state information when
constructing a DFA. The search query now is represented as
the DFA, where DFA is much like a graph with direction
includes a unique initial node (resp. state), many edges and
ending nodes (resp. states). For each edge (with direction)

6

connecting two nodes (resp. states), there is a transaction,
(x, y, σ), where x is the origin node, y is the destination
one, and σ is the character of a string, say W . We note that
all the characters are from a finite alphabet

∑
. To hide the

information of the character and states, σ as well as x and
y should be masked by some way such that each transaction
only shows the direction. For the initial state and accept states,
the cloud server will not know the exact value of them, but
be notified that which ones are the initial state and accept
states, respectively. We will introduce a specific way to hide
the information of characters and states later.

We assume that a DFA (graph) has many different direction
paths, and each of them has the same initial state, i.e. the root
of the graph, and a unique accept state, i.e. the end note of
the path. We define the term “full path” below. If there exists
a path from an initial state to an accept state intaking a string
W as input, we state that this path is a full path with |W |
edges, where |W | is the length of the string W .

We state that the system construction technique of [29]
does deliver us the possibility of the above information hid-
den behavior. First of all [29] embeds each character of an
alphabet into individual public elements, and each character
for encryption is represented as a single ciphertext component
as well. Secondly, a successful decryption relies on a fact that
whether there exists a full path in a DFA (associated with
a secret key) matches a string (associated with a ciphertext).
After our anonymous conversion for the ciphertext, no one
will know a given single ciphertext component corresponds to
what character. Moreover, a masked DFA only delivers a graph
with unknown states and characters to a cloud server. The only
requirement for the cloud server (upon doing search matching)
is to find out the full path(s) in a DFA. For instance, a masked
DFA includes 2 full paths, one with length 3 and the other with
length 4. The cloud server will need to first find out the paths
as well as their respective length, and choose all ciphertexts
from its storage encrypted backend associated with unknown
description strings with length 3 and 4. The cloud server then
makes some specific computation by using the DFA search
token and the ciphertext so as to verify whether they match
or not. The construction technology of [29] guarantees that
only a length match pair of ciphertext and search token can
make a possible search match. Thus, the premise of our search
technique is that we need to let cloud server know the graph’s
direction and the corresponding full path(s) in a DFA search
token and the length of description string in a ciphertext.

B. Scheme Notations

We summarize the notations used in our system in Table II.

C. Details of Our Basic Construction

• Setup(1n,
∑

): The setup algorithm is run by a fully
trusted authority who will initialize the system, publish
the system public parameters, and store the master secret
key secretly.

1) Choose βf , βend, βstart, α, ξ ∈R Z∗p and for each σ in∑
choose βσ ∈R Z∗p. Choose a TCR hash function:

H : GT → G1.

TABLE II: Frequently Used Notations

1n security parameter∑
a finite alphabet

H(ψ) a TCR hash function with input ψ
a ∈R A a is randomly chosen from the field A

Z∗p a (non-zero) positive field of all integers
module a prime p

[1, l] all integers from 1 to l
M = (Q, T , q0, F) a DFA description including:

Q is a set of all states, a state is qi∈[1,|Q|]
T is a transaction function: Q×

∑
→ Q

a transaction denotes as ti = (qi−1, qi, wi) ∈ T
q0 ∈ Q is the start state
F ∈ Q is a set of accept states

∀i ∈ I for all indexes i belonging to the set I
mpk the master public key
msk the master secret key

W = (w1, ..., wl) a keyword string with length l, i.e. |W | = l
CT a ciphertext associated with a keyword string
tk a keyword search token

2) Choose g ∈ G1 and ĝ ∈ G2. Set hstart = gβstart ,
ĥstart = ĝβstart , hend = gβend , ĥend = ĝβend , f =
gβf , f̂ = ĝβf , z = gξ, ẑ = ĝξ, and set a pair of
elements corresponding to a σ in

∑
as hσ = gβσ and

ĥσ = ĝβσ .
3) Set the master secret key as msk = (ĝ−α, ẑ), and the

master public key as mpk = (e(g, ĝ)α, g, ĝ, z, f , f̂ ,
hstart, hend, ĥstart, ĥend, ∀σ ∈

∑
hσ , ĥσ).

• Enc(mpk,W = (w1,, wl)): the encryption algorithm
is run by a data encryptor who would like to send a data
with an arbitrary length string W .

1) Choose random elements s0,, sl ∈R Z∗p.
2) Set the ciphertext CT as:

C1 = H(e(g, ĝ)αsl), Cstart1 = C0,1 = gs0 , Cstart2 =
(hstart)

s0 ,
for i = 1 to l:
Ci,1 = gsi , Ci,2 = hsiwiz

si−1 , Ci,3 = fsi ,
finally Cend1 = Cl,1 = gsl , Cend2 = (hend)

sl .
3) Output CT = (l, C1, Cstart1, Cstart2, {Ci,1, Ci,2,

Ci,3}i=[1,l], Cend1, Cend2).
• TokenGen(msk,M = (Q, T , q0, F)):

1) the partial token generation algorithm is run by the
fully trusted authority.
The description of M includes a set Q of states
q0, ..., q|Q|−1 and a set of transitions T where each
transition t ∈ T is a triple (x, y, σ) ∈ Q × Q ×

∑
.

q0 is designated as a unique start state and F ⊆ Q
is the set of accept states. The algorithm chooses
D̂0, D̂1, ..., D̂|Q|−1 ∈R G2 (associating D̂i with qi),
for each t ∈ T it chooses rt ∈R Z∗p, ∀qx ∈ F it
chooses rendx ∈R Z∗p. The trusted authority constructs
the partial search token as follows. First it sets:

Kstart1 = D̂0 · (ĥstart)rstart ,Kstart2 = ĝrstart ,

For each transaction t = (x, y, σ) ∈ T , the algorithm
sets:

Kt,1 = D̂−1x · ẑrt ,Kt,2 = ĝrt ,

Kt,3 = D̂y · (ĥσ)rt ,

7

For each qx ∈ F it computes:

Kendx,1 = ĝ−α · D̂x · (ĥend)rendx ,Kendx,2 = ĝrendx .

Finally, set the partial search token as(
Kstart1,Kstart2,

∀t ∈ T (Kt,1,Kt,2,Kt,3),∀qx ∈ F (Kendx,1 ,Kendx,2)
)
.

We note that the partial search token is delivered to
the corresponding receiver via a secure communication
channel (such as SSL).

2) The data receiver then constructs the full search to-
ken as follows. It chooses new random elements
D̄0, D̄1, ..., D̄|Q|−1 ∈R G2, θ1, θ2 ∈R Z∗p, ∀qx ∈ F
it chooses θ3,x ∈R Z∗p. First it sets:

Kstart1 = D̂0 · (ĥstart)rstart · D̄ · (ĥstart)θ1 ,
Kstart2 = ĝrstart · ĝθ1 ,Kstart3 = ĝθ2 ,

For each transaction t = (x, y, σ) ∈ T , the algorithm
sets:

Kt,1 = D̂−1x · ẑrt · D̄−1x ,Kt,2 = ĝrt ,

Kt,3 = D̂y · (ĥσ)rt · D̄y · f̂θ2 ,

For each qx ∈ F it computes:

Kendx,1 = ĝ−α · D̂x · (ĥend)rendx · D̄x · (ĥend)θ3,x ,
Kendx,2 = ĝrendx · ĝθ3,x .

Finally, set the fully search token as

tk =
(
M∗,Kstart1,Kstart2,Kstart3,

∀t ∈ T (Kt,1,Kt,2,Kt,3),∀qx ∈ F (Kendx,1 ,Kendx,2)
)
,

where M∗ is identical to M except that each state and
string of the DFA turns to be a masked symbol ∗.

• Test(tk, CT): a cloud server proceeds the following test
to verify whether a given ciphertext CT matches a search
token tk or not. If yes, output 1 and output 0 otherwise.
In the view of the cloud server, CT is associated with
an unknown string ∗ = (∗1, ..., ∗l) and the search token
tk is associated with a search pattern represented by a
DFA M∗ = (Q, T , q0, F). The cloud server first checks
whether there exist a sequence of l+1 states ∗0, ∗1, ..., ∗l
and l transitions t1, ..., tl fitting an unknown string with
length l (note by fitting we mean they only match in
length), where ∗0 is a starting state and ∗l ∈ F , and for
i = 1, ..., l, we have ti = (∗i−1, ∗i, ∗i) ∈ T . If there does
not exist the corresponding sequence, the cloud server
outputs 0 indicating a mismatch. Otherwise, the server
proceeds.
First compute:

B0 = e(Cstart1,Kstart1) · e(Cstart2,Kstart2)−1

= e(g, D̂0 · D̄0)s0 .

For i = 1 to l, compute:

Bi = Bi−1 · e(C(i−1),1,Kti,1) · e(Ci,2,Kti,2)−1

·e(Ci,1,Kti,3)

= e(g, D̂ui · D̄ui)
si · e(g

∑i
v=1 sv , f̂θ2).

Since M accepts w, we have that ul = qx for some
qx ∈ F and Bl = e(g, D̂x · D̄x)sl · e(g

∑l
v=1 sv , f̂θ2).

Further compute

Bend = Bl · e(Cendx,1 ,Kendx,1)−1

·e(Cendx,2 ,Kendx,2) · e(Cendx,3 ,Kstart3)

= e(g, ĝ)α·sl · e(g
∑l
v=1 sv , f̂θ2).

If

C1 = H(Bend/e(

l∏
i=1

Ci,3,Kstart3))

= H(
e(g, ĝ)α·sle(g

∑l
v=1 sv , f̂θ2)

e(
∏l
i=1 f

si , ĝθ2)
)

= H(e(g, ĝ)α·sl),

output 1 (indicating a match); otherwise, output 0.

D. Improvement for Our Basic Construction

Hide DFA. In our basic construction, we require that
the description of the DFA associated with a given search
token should be masked with respect to the corresponding
keyword strings as well as the states information. To hide
these information, we may leverage an efficient and secure
way, i.e. using pseudorandom function technique [17]. For
each DFA, a data receiver can choose two random pseu-
dorandom keys, say key(1) and key(2), and further replace
each keyword character wi and each state qj with the values
ξ
(1)
i = PRF (key(1), wi, i) and ξ

(2)
j = PRF (key(2), qj , j),

where PRF is a pseudorandom function, i is the i-th position
of the string W , and j is the j-th position of a successful
path. Therefore, the DFA description M∗ includes a set of
masked states Q∗ = {ξ(2)j |j ∈ [1, |Q|]}, a set of transactions
T ∗ = {∀t = (ξ

(2)
i , ξ

(2)
i+1, ξ

(1)
i) ∈ T }, the start state ξ(2)0 and a

set of accept states F ∗ = {ξ(2)j |j ∈ [1, |F ∗|]}.
One might think that it is easy to employ our masked tech-

nique into some existing ABE systems so as to propose another
expressive searchable encryption system as well. However, this
is not always the truth. We can take [6] as an example. We
may choose to hide a predicate I into a random value set as
well, where I is the search predicate and also an output of
a ciphertext. By masking the predicate, we guarantee that no
one (except the pseudorandom key holder) knows the values
in I . Nevertheless, this indeed limits the capability of search.
It is not difficult to see that in the search test algorithm of [6],
a cloud server needs to know the information of a subset S
(which is a set of non-wildcard value of I). Now I cannot
be seen by the server, such that S is unknown as well. This
definitely will lead to a fail search test. From this example, we
can see that not all existing ABE systems show their potential
to be extended to become a searchable encryption system.

8

Search Token Generation. From the description of our
basic construction, we can see that the construction is based
on somewhat “ABE” infrastructure where there exists a fully
trusted authority working as a private key generator with
knowledge of msk. With the help of this trusted authority, a
data receiver is able to generate a search token for a specified
DFA. In this “ABE” infrastructure, the secure interaction with
the trusted authority is necessary for the generation of a search
token. To eliminate the interaction, we may choose to extend
the construction in the identical way as [6]. Namely, we allow
user to become a trusted authority for itself to generate msk
as its personal secret key. Specifically, we let each system
user generate its own msk = (ĝ−α, ẑ) to make it become a
personal secret key component and meanwhile, e(g, ĝα), z will
become the corresponding public key component for the same
user. We state that this additional secret key msk only is for
the user who generates it, and other users cannot gain access
to it. This basically is identical to public key based system
- other users cannot reach one’s secret key. It is clear to see
that a data receiver (i.e. a valid decryptor) can generate his/her
own search token with knowledge of its secret key msk, such
that we do not need the help of the trusted authority here. This
definitely reduces the communication cost of the system. We
state this slight revision for the construction will not yield any
effect in keyword matching test and data encryption phases.

Offline Keyword-Guessing. Most of existing public key
based searchable encryption cannot hold against offiline
keyword-guessing attacks. In the attack, an adversary is al-
lowed to obtain many search tokens, for example, a search
token corresponding to a keyword string W . The adversary can
also run the encryption algorithm intaking a keyword string
K ′ and a public key of a user to achieve a ciphertext. With
the token and the ciphertext, the adversary can proceed to
the test algorithm to verify whether the token is embedded
with K or not (if the algorithm outputs 1 that indicates
K = K ′). The reason of launching this type of attack is
that the encryption algorithm and the corresponding public
key is publicly known. This is also the typical property of
asymmetric encryption mechanism. We state that our system
(as well as [6], [31]) cannot hold against this attack due to their
natural public key based property. How to prevent public key
based searchable encryption against the attack is an unsolved
interesting problem.

V. EVALUATION

A. Security Analysis
In this section, we present security analysis for our system.

Since the security of the system includes two aspects: keyword
privacy for ciphertext, and for search token, we deliver two
respective analysis below.

Theorem 1: Our S-DFA-FE system achieves keyword pri-
vacy under the asymmetric l-Expanded BDHE assumption.

Proof: Here we first present an analysis in practical point
of view, and next deliver a theoretical analysis.

Practical Analysis. We closely take a look at a ciphertext
CT associated with a search description string W . Recall
that we embed each character wi of the string into the i-
th element of the ciphertext: Ci,1 = gsi , Ci,2 = hsiwiz

si−1

and Ci,3 = fsi . Given these elements, a PPT adversary may
choose to make brute force pairings calculation on them so as
to find out which element corresponds to which character. The
adversary can first try to calculate e(Ci,2 = hsiwiz

si−1 , ĝ) =
e(hsiwi , ĝ)e(zsi−1 , ĝ). It is easy to see that the equation is equal
to e(ĥwi , g

si)e(ẑ, gsi−1). Here all components are known by
the adversary except ẑ. Without knowledge of ẑ, the adversary
cannot make a successful pairings match, such that it cannot
tell whether e(hsiwiz

si−1 , ĝ) contains ĥwi or not. Furthermore,
it is not difficult to see that even the adversary replaces ĝ in
his first calculation with ĥstart, ĥend or f̂ , it still cannot have
successful pairings match.

On the other hand, the adversary may choose to guess all
characters of the string W as it knows the length l of W . Since
we allow all system insiders or outsiders to know the finite
alphabet

∑
, the adversary has knowledge of

∑
and |

∑
|. If

the adversary tries to make a successful guess for this l length
string, its probability is |

∑
|−l. We state that when |

∑
| and

l are sufficient large, the probability trends to negligible.
Theoretical Analysis. In the theoretical proof, we will reduce

the keyword privacy to the hard problem of asymmetric l-
Expanded BDHE. The proof here will share many similarities
with that of [29], we below hence mainly present the differ-
ences in our proof. We note that the game challenger is B
given the problem instance of asymmetric l-Expanded BDHE.

• Initialization. The adversary outputs W ∗0 and W ∗1 with
equal length l∗.

• Setup. B sets w∗ = W ∗b , where b ∈ {0, 1}. B
chooses random elements vz , vstart, vend, βf ∈ Z∗p,
and ∀σ ∈

∑
chooses vσ ∈ Z∗p. It then sets

e(g, ĝ)α = e(ga, ĝb), g = g, ĝ = ĝ, z = gvzgab/d,
ẑ = ĝvz ĝab/d, hstart = gvstart

∏
j∈[1,l∗] g

−ajb/cj ,
ĥstart = ĝvstart

∏
j∈[1,l∗] ĝ

−ajb/cj ,
hend = gvend

∏
j∈[2,l∗+1] g

−ajb/cj , ĥend =

ĝvend
∏
j∈[2,l∗+1] ĝ

−ajb/cj , ∀σ ∈
∑

, hσ =

gvσg−b/d
∏
j∈[0,l∗+1]s.t.w∗

j 6=σ
g−a

(l∗+1−j)b/c(l∗+1−j) ,

ĥσ = ĝvσ ĝ−b/d
∏
j∈[0,l∗+1]s.t.w∗

j 6=σ
ĝ−a

(l∗+1−j)b/c(l∗+1−j) ,

f = gβf and f̂ = ĝβf . B outputs mpk = (e(g, ĝ)α, g, ĝ,
z, f , f̂ , hstart, hend, ĥstart, ĥend, ∀σ ∈

∑
hσ , ĥσ).

• Phase 1.
1) Search Token Queries. B constructs search token

much like the secret key construction in the proof
of [29]. D̂k will be represented as

∏
i∈Sk ĝ

ai+1b

below. For each qk ∈ Q, we need a set Sk of
indices between 0 and l∗. For i=0,1,...,l∗, we
put i ∈ Sk if and only if w∗(i) matches Mk,
where k ∈ [0, |Q| − 1], Mk = (Q, T , qk, F)
and w∗(i) denotes last i symbols of w∗. B starts
by implicitly setting rstart =

∑
i∈S0

ci+1, such
that Kstart2 = ĝrstart ĝθ1 = (

∏
i∈S0

ĝci+1)ĝθ1 ,
Kstart1 = D̂0(ĥstart)

rstartD̄0(ĥθ1start) =
(Kstart2)vstart(

∏
j∈[1,l∗],i∈S0,j 6=i+1 ĝ

−ajbci+1/cj)D̄

(ĥstart)
θ1 , Kstart3 = ĝθ2 , where θ1, θ2 and

D̄0 is chosen by B. For all qx ∈ F , B
implicitly sets rendx =

∑
i∈Sx,i6=0 ci+1, such

9

that Kendx,2 = ĝrendx ĝθ3,x = (
∏
i∈Sx,i6=0 ĝ

ci+1)ĝθ3,x ,
Kendx,1 = ĝ−αD̂x(ĥend)

rendx D̄x(ĥend)
θ3,x =

(Kendx,2)vend(
∏
j∈[2,l∗+1],i∈Sx,i6=0,j 6=i+1 ĝ

−ajbci+1/cj)

D̄x(ĥend)
θ3,x , where θ3,x and D̄x are chosen by B.

The construction of the components for each
t = (x, y, σ) ∈ T are similar to that of [29] except
that B will additionally multiply D̄−1x , D̄y and f̂θ2 to
Kt,1,i and Kt,3,i, respectively.

2) Test queries. B first generates the search token as in
the previous step, and next runs the Test algorithm to
output 1 or 0.

• Challenge Phase. B implicitly sets si = sai and
sets C1 = H(T). It next sets Cstart1 = gs,
Cstart2 = (gs)vstart

∏
j∈[1,l∗] g

−ajbs/cj ;
for i = 1 to l∗: Ci,1 = ga

is, Ci,2 =

(ga
is)

vw∗
i (ga

i−1s)vz
∏
j∈[0,l∗+1]s.t.w∗

j 6=w∗
i
g(−a

l∗+1−j+i)bs/cj ,

Ci,3 = ga
isβf ; finally sets Cend1 = ga

l∗s and
Cend2 = (ga

l∗s)vend
∏
j∈[2,l∗+1] g

−al
∗+jbs/cj .

• Phase 2. Same as Phase 1.
• Guess. A outputs a guess bit b′. If b = b′, B outputs 1

(guessing T = e(g, ĝ)a
l+1bs); else, it outputs 0 (guessing

T ∈R GT).
This completes the simulations. For the challenge ciphertext,
if T = e(g, ĝ)a

l+1bs, the ciphertext is a valid ciphertext of W ∗b ,
such that the probability of the adversary in outputting b = b′ is
1/2+µ. Otherwise, T is a random element in GT such that the
ciphertext is a random one. The probability of the adversary
to guess a correct b′ is 1/2. Therefore, the probability of B
correctly decides a T with the problem instance is 1/2(1/2 +
µ+1/2) = 1/2+µ/2. B can solve the asymmetric l-Expanded
BDHE problem with advantage µ/2 if the adversary can win
the keyword privacy game with advantage µ.

Theorem 2: Given a search token, a PPT adversary cannot
compromise the information of characters embedded into the
DFA under the assumption of the psuedorandom function (we
use in masking DFA) is secure.

Proof: We suppose an adversary can break the security
of pseudorandom function with probability advPRF . Since
all characters are masked as ξ(1)i , the adversary either needs
to break the PRF or correctly guesses the pseudorandom
key key(1), where key(1) belongs to a valid key space
{0, 1}poly(1n). Therefore, the adversary may know the em-
bedded characters with probability advPRF + 2−poly(1

n). On
the other hand, it is possible for the adversary to guess
the characters by unfolding the information of all states.
We recall that inside a DFA given an origin state and a
character as input, it deterministically outputs a destination
state. Besides, the alphabet

∑
is known by the adversary.

The adversary hence can try all unknown characters from
∑

to determine a transaction ti = (xi, yi, wi). Similarly, the
adversary can reveal all states information with probability
advPRF + 2−poly(1

n), where 2−poly(1
n) is the probability

of guessing the pseudorandom key key(2). In summary, the
adversary can achieve the knowledge of characters embedded
into the DFA with probability adv = 2advPRF + 21−poly(1

n).
Since we assume the psuedorandom function is secure, we

have that advPRF is negligible. Therefore, adv is negligible
as 21−poly(1

n) is negligible with a sufficient large n.

B. Performance Analysis

As we mentioned in the introduction part, Boneh and Wa-
ters [6] proposed an expressive searchable encryption support-
ing conjunctive, subset and range search, while Zheng, Xu and
Ateniese [31] introduced a key-policy attribute-based system
supporting keyword search. Here, we make a comprehensive
comparison among our construct, [6] and [31] in terms of
computation and communication cost. Table IV shows the
comparison of computational cost, and Table V shows the
communication comparison.

We now define the notations used in the Tables. Let |G|
and |GT | denote the bit-length of an element in groups G
and GT , l denote the length of a keyword search string, |TL|
denote the number of leaf in an access tree, |S| denote the
number of attribute in an attribute set, cp, c

(1)
ex , c

(2)
ex denote the

computation cost of a bilinear pairing, an exponentiation in
G, and an exponentiation in GT , respectively. Note that we
regard G1 and G2 (of our system) as a G in the theoretical
analysis for simplicity purpose. However, we will treat the
two groups in a different way in the following up practical
analysis. Similarly, the subgroups Gp and Gq , GT,p and GT,q
(of [6] whereby n = pq) will be simply seen as G and GT in
the theoretical analysis only, respectively.

To make a clear and fair comparison, we further make the
following assumptions. Since [6], [31] and our system provide
different functionalities in keyword search, we need to define a
common function among them for a fair comparison. We hence
define the comparison is based on a single equality keyword
match. We assume our system shares the same l with [6],
namely, the length of keyword string in our system is equal
to that of keyword searchable field in [6]. Here we also have
|S| = l for an equality match test in [6]. In [31], we will set
|TL| (i.e. the number of attribute in an access tree) and |Attr|
(i.e. the number of attribute embedded into a ciphertext) to
be equal to l as well, although they are defined by a specific
access policy but not any information of a search keyword.
We note that it can be seen from this point of view that the
efficiency of keyword search of [31] mainly depends on the
complexity of access policy. If a complex access policy is used,
there must be a low search efficiency. This can be regarded
one of the limitations in [31]. For our DFA-based construction,
a single keyword match indicates that a designed DFA needs
one and only successful path from an initial state to a unique
accept state.

Before proceeding to the theoretical complexity analysis, we
first present the complexity assumption comparison among our
scheme, [6] and [31] in Table III. By ROM we mean random
oracle model. From the Table I and Table III, we can see that
the efficiency of [31] may be better than that of [6] and ours,
since [31] is built in the ROM with symmetric pairings and
prime order group. This fact will be further confirmed and
shown in our practical analysis.

From Table IV, we observe that our scheme shares the same
efficiency with [31], while [6] suffers from linearly cost in the

10

TABLE III: Complexity Assumption Comparison with [6],
[31]

Schemes Complexity Pairings
Assumption Group

[6] Composite composite
3-party Diffie-Hellman order group

[31] Decisional Linear symmetric
prime order group

Ours Asymmetric asymmetric
l-Expanded BDHE prime order group

TABLE IV: Computation Comparison with [6], [31]

Schemes Computation Cost
Enc Token Gen Test

[6] O(l)c
(1)
ex +O(1)c

(2)
ex O(l)c

(1)
ex O(l)cp

[31] O(l)c
(1)
ex O(l)c

(1)
ex O(l2)cp +O(l)c

(2)
ex

Ours O(l)c
(1)
ex +O(1)c

(2)
ex O(l)c

(1)
ex O(l)cp

test phase, i.e. O(l2) pairings. It is worth mentioning that our
scheme supports more powerful search functionality than [31].

TABLE V: Communication Comparison with [6], [31]

Schemes Size/Length
Ciphertext Token

[6] O(1)|GT |+O(l)|G| O(l)|G|
[31] O(l)|G| O(l)|G|

Ours O(l)|G| O(l)|G|

Table V shows that the systems have similar complexity in
the size of search token, while [6] needs an extra GT element
in the ciphertext metric.

In conclusion, our scheme achieves regular language key-
word search without requiring a great amount of additional
computation and communication cost.

C. Practical Analysis

For the system simulation, we leverage the Java Pairing
Based Cryptography Library [23] to calculate the system
running time shown in Table VI. Our testbed is: Intel(R)
Core(TM)2 Quad CPU Q6600 @ 2.40GHz, 3 GB RAM,
Ubuntu 10.04. For the fairness of the practical comparison,
we will use different pairing types - one is Type a with 160-
bit group order (the embedding degree of the curve is 2)
for the implementation of [31]’s KP-ABKS scheme; one is
Type a1 with 1024 bits based field size and k = 2 for the
implementation of [6]’s hidden vector encryption construction;
and one is Type d with 159 bits based field and k = 6 for the
implementation of our system (in which we assume a search
token only has one final successful state). We note that the
above pairing types are chosen based on the recommendation
introduced in [24], and all the data is without preprocessing.
We suppose all schemes listed in the Tables must at least
achieve a security level comparable to a symmetric key
cryptosystem with an 80-bit key. That is, an elliptic curve
cryptosystem with around 160-bit key is needed. Therefore,
we set n = 160 bits, the group elements in Gξ1 are set to

be 160 bits, and the group elements from GT and GT,ξ2 are
set to be 1024 bits, respectively, where ξ1 ∈ {1, 2, p, q} and
ξ2 ∈ {p, q}. We further set the following four experimental
samples: Test 1: l = 10; Test 2: l = 30; Test 3: l = 60;
Test 4: l = 100. Table VII is the comparison of concrete
communication cost.

TABLE VI: Comparison in System Running Time

Schemes
Algorithms (Running Time ms)
Enc Token Gen Test

[6]

Test1: 20628.458 16989.681 6830.796
Test2: 60491.738 50302.781 19841.836
Test3: 120286.658 100272.431 39358.396
Test4: 200013.218 166898.631 65380.476

[31]

Test1: 260.232 446.112 344.208
Test2: 631.992 1189.632 974.008
Test3: 1189.632 2304.912 1918.708
Test4: 1933.152 3791.952 3178.308

Ours

Test1: 242.204 1151.185 1224.16
Test2: 664.204 3124.645 3322.72
Test3: 1297.204 6084.835 6470.56
Test4: 2141.204 10031.755 10667.68

TABLE VII: Comparison in Communication Cost

Schemes
Components Length (bit)

Public Key Ciphertext Token

[6]

Test1: 11264 7744 3360
Test2: 30464 20544 9760
Test3: 59264 39744 19360
Test4: 97664 65344 32160

[31]

Test1: 640 2080 3520
Test2: 640 5280 9920
Test3: 640 10080 19520
Test4: 640 16480 32320

Ours

Test1: 5664 5600 5600
Test2: 12064 15200 15200
Test3: 21664 29600 29600
Test4: 34464 48800 48800

Fig. 2: Running Time Comparison in Encryption

To clearly show the comparison, we use the line charts to
depict the experimental results below. Fig. 2, 3 and 4 show
the running time in encryption, search token generation and
keyword matching test, while Fig. 5, 6 and 7 present the
comparison results in the length of public key, ciphertext and

11

Fig. 3: Running Time Comparison in Token Generation

Fig. 4: Running Time Comparison in Test

search token. We note that the unit of the vertical axis of Fig.
2, 3 and 4 is millisecond, and that of others is bit.

Fig. 5: Comparison for Public Key Size

From the running time experimental results, we can see
that all systems experience a climbing trend with the increase
of l. Specifically, [6] suffers from significantly increase of
running time in encryption, keyword token generation and test
algorithms. However, our system and [31] have small range of
ascendancy. In addition, the systems share approximately the
same running cost in each metric.

As illustrated in the running time figures, while the search
keyword length is ≤ 100, our system achieves efficient and

Fig. 6: Comparison for Ciphertext Size

Fig. 7: Comparison for Token Size

acceptable complexity in encryption, decryption and keyword
search. Based on this fact, we set some limitations for our
system while it is implemented in practice. To avoid heavy
complexity in search queries, we may present a limitation for
the design of DFA that each valid path (with direction inside
the DFA) may intake less than 100 symbols for each search
query. This constraint, actually, limits the expressiveness of
AND/Not gate(s) search query. Recall that one direction path
is seen as a query with AND/Not gates in our system. Besides,
it is better to limit at most 5-6 OR gates in the design of DFA.

From the size of public key comparison (Fig. 5), we can
see that [31] enjoys the constant cost as the increase of l.
This is because it only supports a single keyword equality
match but not expressive search. [6] and our system aim to
present more expressive search query such that we need to
represent each character element individually. This basically
explains the reason why more expressiveness requires more
complexity. Fig. 6 shows that although our system requires
more space for the storage of ciphertext as compared to [31], it
outperforms [6]. In Fig. 7, we see that our system suffers from
the largest storage cost for search token, while other systems
have similar space cost (two lines are almost overlapped).

We state that our system needs larger space for search
token is due to a reason that the DFA associated with the
token provides a fine-grained character (which is from a given
alphabet) match pattern. In the designed structure of the DFA,
each character is seen as an individual component. We note

12

that the pattern and the structure is the premise of allowing
us to achieve regular language search. However, the premise
delivers us shortage in search token storage cost. How to
reduce the size of search token without loss of expressiveness
for keyword search is an interesting open problem, which is
our future work.

VI. CONCLUSIONS

We designed a novel searchable encryption system support-
ing regular language search and privacy-preserving property
for search content as well as description content for ciphertext.
To introduce our construction, we started with Waters func-
tional encryption system, and further extended it to achieve
anonymous property for ciphertext. We next redesigned the
DFA structure and made use of it to support regular language
search. We meanwhile presented extensive analysis to show
that our system is provably secure and efficient. This paper
motivates some open problems for our future works. We
need to shorten the size of search token without loss of
expressiveness, and to secure the system from offline keyword-
guessing attacks.

REFERENCES

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryp-
tion revisited: Consistency properties, relation to anonymous ibe, and
extensions. J. Cryptology, 21(3):350–391, 2008.

[2] J. Baek, R. Safavi-Naini, and W. Susilo. On the integration of public key
data encryption and public key encryption with keyword search. InISC,
vol. 4176 of LNCS, pp. 217–232. Springer, 2006.

[3] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently
searchable encryption. In CRYPTO, vol. 4622 of LNCS, pp. 535–552.
Springer, 2007.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of
computation over large datasets. In CRYPTO, vol. 6841 of LNCS, pp.
111–131. Springer, 2011.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In EUROCRYPT, vol. 3027 of LNCS,
pp. 506–522. Springer, 2004.

[6] D. Boneh and B. Waters. Conjunctive, subset, and range queries on
encrypted data. In TCC, vol. 4392 of LNCS, pp. 535–554. Springer,
2007.

[7] C. Bösch, A. Peter, B. Leenders, H. W. Lim, Q. Tang, H. Wang, P. H.
Hartel, and W. Jonker. Distributed searchable symmetric encryption. In
PST, pp. 330–337. IEEE, 2014.

[8] C. Bösch, Q. Tang, P. H. Hartel, and W. Jonker. Selective document
retrieval from encrypted database. In ISC, vol. 7483 of LNCS, pp. 224–
241. Springer, 2012.

[9] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and
anonymous identity-based encryption and authorised private searches on
public key encrypted data. In PKC, vol. 5443 of LNCS, pp. 196–214.
Springer, 2009.

[10] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. IEEE Trans. Parallel
Distrib. Syst., 25(1):222–233, 2014.

[11] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In NDSS. The Internet Society, 2014.

[12] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Highly-scalable searchable symmetric encryption with support for
boolean queries. In CRYPTO, vol. 8042 of LNCS, pp. 353–373. Springer,
2013.

[13] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, vol. 3531 of LNCS, pp. 442–455,
2005.

[14] M. Chase and S. Kamara. Structured encryption and controlled dis-
closure. In ASIACRYPT, vol. 6477 of LNCS, pp. 577–594. Springer,
2010.

[15] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack.
SIAM J. Comput., 33(1):167–226, January 2004.

[16] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In CCS, pp. 79–88. ACM, 2006.

[17] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[18] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword
search over encrypted data. In ACNS, vol. 3089 of LNCS, pp. 31–45.
Springer, 2004.

[19] Y. Hwang and P. Lee. Public key encryption with conjunctive keyword
search and its extension to a multi-user system. In Pairing, vol. 4575
of LNCS, pp. 2–22. Springer, 2007.

[20] V. Iovino and G. Persiano. Hidden-vector encryption with groups of
prime order. In Pairing, vol. 5209 of LNCS, pp. 75–88. Springer, 2008.

[21] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. InCCS, pp. 965–976. ACM, 2012.

[22] K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption.
In FC, vol. 7397 of LNCS, pp. 285–298. Springer, 2012.

[23] J. Library. http://gas.dia.unisa.it/projects/jpbc/benchmark.html#
.U5FXwZS1bLd/, 2013. Online; accessed 18-March-2015.

[24] B. Lynn. On the Implementation of Pairing-based Cryptosystems. PhD
thesis, Stanford University, June 2007.

[25] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems.
In TCC, vol. 5444 of LNCS, pp. 457–473. Springer, 2009.

[26] E. Shi, J. Bethencourt, H. T. Chan, D. X. Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In S&P, pp. 350–364.
IEEE Computer Society, 2007.

[27] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In S&P, pp. 44–55. IEEE Computer Society, 2000.

[28] C. Wang, K. Ren, S. Yu, and K. M. R. Urs. Achieving usable
and privacy-assured similarity search over outsourced cloud data. In
INFOCOM, pp. 451–459. IEEE, 2012.

[29] B. Waters. Functional encryption for regular languages. In CRYPTO,
vol. 7417 of LNCS, pp. 218–235. Springer, 2012.

[30] P. Xu, H. Jin, Q. Wu, and W. Wang. Public-key encryption with fuzzy
keyword search: A provably secure scheme under keyword guessing
attack. IEEE Trans. Computers, 62(11):2266–2277, 2013.

[31] Q. Zheng, S. Xu, and G. Ateniese. VABKS: verifiable attribute-based
keyword search over outsourced encrypted data. In INFOCOM, pp.
522–530. IEEE, 2014.

APPENDIX

A. Definition of DFA

We here give a overview of DFA as of [29]. A DFA M is
a five-tuple (Q,

∑
, δ, q0, F) in which:

1) Q is a set of states.
2)
∑

is a finite set of symbols called the alphabet.
3) δ : Q ×

∑
→ Q is a function known as a transition

function.
4) q0 ∈ Q is called the start state.
5) F ⊆ Q is a set of accept states.

Note we use T to denote the set of transitions associated with
the function δ, where t = (x, y, σ) ∈ T iff δ(x, σ) = y.
Suppose that M = (Q,

∑
, δ, q0, F). M accepts a string

w = w1, w2, ..., wl ∈
∑∗ if there is a sequence of states

r0, r1, ..., rn ∈ Q where:
1) r0 = q0;
2) For i = 0 to n− 1 δ(ri, wi+1) = ri+1;
3) rn ∈ F .

Note we use ACCEPT (M,w) to denote that the machine M
accepts w, and REJECT (M,w) to denote that M does not
accept w. A DFA M recognizes a language L if M accepts
all w ∈ L and rejects all w /∈ L; such a language is called
regular.

http://gas.dia.unisa.it/projects/jpbc/benchmark.html#.U5FXwZS1bLd/
http://gas.dia.unisa.it/projects/jpbc/benchmark.html#.U5FXwZS1bLd/

	Introduction
	Our Contributions
	Related Work

	Problem Statement
	System Entities
	System Algorithms
	System Architecture
	Threat Model
	Design Goals

	Preliminaries
	Asymmetric Pairings
	Complexity Assumptions
	Target Collision Resistant Hash Function.

	An Expressive Keyword Search Mechanism
	An Intuition for Our Basic Construction
	Scheme Notations
	Details of Our Basic Construction
	Improvement for Our Basic Construction

	Evaluation
	Security Analysis
	Performance Analysis
	Practical Analysis

	Conclusions
	References
	Appendix
	Definition of DFA

