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Abstract

This paper is concerned with detecting the presence of switching behavior in experimentally

obtained posturographic data sets by means of a novel algorithm that is based on a combination

of wavelet analysis and Hilbert transform. As a test-bed for the algorithm, we first use a switched

model of human balance control during quiet standing with known switching behavior in four distinct

configurations. We obtain a time-frequency representation of a signal generated by our model system.

We are then able to detect manifestations of discontinuities (switchings) in the signal as spiking

behavior. The frequency of switchings, measured by means of our algorithm and detected in our

models systems, agrees with the frequency of spiking behavior found in the experimentally obtained

posturographic data.

Keywords: Switched systems, Wavelets, Normalized Hilbert transform, Discontinuities,

Instantaneous frequency.

1. Introduction

Many engineering and biological systems are characterized by the presence of switchings and/or

dynamics evolving over multiple time scales. For instance, brain activity, which is measured by

means of Electroencephalography (EEG), is characterised by natural time scales related to spiking

and bursting behaviour, with the dynamics evolving over time scales ranging from milliseconds to

minutes. Feedback control mechanisms used, for instance, in power engineering contain switching

elements which, on the macroscopic scale, may be considered as acting instantaneously. In robotics,

the control problem of biped robots has several characteristics such as the inherent instability of

two-legged motion, high-dimensional dynamics, and the existence of different phases of the walking

cycle, which require a fuzzy switching control system to represent the continuous-time dynamics and

discrete event dynamics of a walking biped (Liu et al., 2007).

In recent years, much of research effort has been spent on understanding the character of control

strategy which ensures human balance control during quiet standing. Human balance control during
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quiet standing is often modelled using linear, continuous time systems (Jeka et al., 2004; Kiemel

et al., 2002). These models exclude thresholds, instantaneous switchings and time variant processes

such as open loops. However, impulsive like muscle movements have been detected during quiet

standing (Bottaro et al., 2008), and so it should come as no surprise that among the biomechanics

community switched and intermittent control models have been used to account for sway dynamics

during quiet standing (Gawthorp et al., 2011). There is currently a controversy whether human quiet

standing can be better captured by a linear time invariant process, or whether it is an intermittent

or switched control that can better capture the balance control mechanism. The aim of the current

work is to find in experimental posturographic data sets the possible existence of switching transi-

tions (discontinuities). To this aim we propose an algorithm which would allow one to detect time

instances of the occurrences of discontinuities in signals generated by switched systems with noise.

In particular, we are interested in determining time instances when a PD (proportional-derivative)

control is switched on/off when a state variable crosses some threshold value.

Several methods have been proposed in the literature for different applications to detect change

points in the process data. For instance, auto-covariance methods (Killick and Eckley, 2013), time-

domain methods (Thornhill and Horch, 2007; Theron and Aldrich, 2004) and spectral methods

(Antoniadis and Gijbels, 2002; Babji et al., 2009) have been considered. In particular, Killick and

Eckley (Killick and Eckley, 2013) introduced a method to detect changes in general auto-covariance

structure within non-stationary time series data. Their method is based on locally stationary wavelet

framework and does not assume a specific structure for the auto-covariance. Thornhill and Horch

(Thornhill and Horch, 2007) developed a time-domain approach for detecting and diagnosing plant-

wide control system disturbances in chemical processes. Antoniadis and Gijbels (Antoniadis and

Gijbels, 2002) have contributed to the methodology available for dealing with the detection and

the estimation of the location of discontinuities by implementing a curve fitting estimation method

followed by wavelet smoothing to detect and locate discontinuities in a time series data. Babji et

al. (Babji et al., 2009) proposed a method based on Hilbert-Huang Transform to detect control

valve nonlinearity. The nonlinearity can be captured by Intrinsic Mode Functions obtained from the

Empirical Mode Decomposition of the process output. Inoue and Sakaguchi (Inoue and Sakaguchi,

2015) proposed an analysis method for extracting intermittent discontinuities observed in human

hand movement using the amplitude and phase information of the complex wavelet transform. It

was found that the discontinuous changes in the velocity profile roughly corresponded to specific

peak positions in the jerk profile, and confirmed that these peaks could be effectively detected by

continuous wavelet transform with a Gaussian derivative kernel.

Each of these methods relies on the recognition of certain characteristics of the process data,

and they are dependent on the domain of analysis. The character of discontinuities that we are

concerned with here is different from all these cases in so far that we are interested in revealing

2



discontinuities in a deterministic signal buried in noise. Let us suppose that we are concerned with a

switched system with additive noise that is switching between two distinct differentiable vector fields

when a control variable crosses some threshold value . A system trajectory, ignoring the presence

of noise, will contain discontinuity in one of its derivatives. Added noise will have some ‘linearising’

effect on this ‘deterministic’ discontinuity (Gammaitoni, 1995). The question now arises how could

one detect these types of discontinuities in a signal. That is, to investigate the ‘deterministic’ part

of a stochastic system it is required to separate the ‘deterministic’ components of a signal ‘buried’

in additive noise. Thus we need to reconstruct the signal without noise components.

As explained by Boashash in (Boashash, 1992), for non-stationary processes, produced signals

do not lend themselves well to decomposition into sinusoidal components, and they cannot be rep-

resented in a meaningful way by Fourier expansions. Consequently, a time series data of a switched

or time variant stochastic system cannot be represented by a Fourier series due to the apparent

presence of non-stationarity. In such cases, the notion of frequency looses its effectiveness, and one

needs to use a parameter which accounts for the time-varying nature of the process. Therefore,

for non-stationary signals, in which frequency value changes at any moment, it is more useful to

characterise the signal in terms of its Instantaneous Frequency (IF), which is a time dependent

representation of the frequency of a signal at any moment. It is the instantaneous frequency which

will provide us with the information on the presence of discontinuities in a signal at any given time

instant.

In this article, we propose a novel Wavelet-Frequency Analysis algorithm for detecting disconti-

nuities in time series data of switched systems with additive white noise by combining the advantages

of discrete Wavelet decomposition technique and Normalized Hilbert Transform (NHT). The wavelet

analysis can extract important information of switched model systems at different time intervals,

and the computed instantaneous frequency can effectively provide us with the information on the

presence of discontinuities in the signal at any given time instant. In the designed algorithm, we

introduce an energy wavelet decomposition technique to resolve one key obstacle for computing a

meaningful instantaneous frequency from a multicomponent signal by reducing it to a collection

of monocomponent functions. Once we obtain the monocomponent signals, the instantaneous fre-

quency can be computed using the normalized Hilbert transform method. Therefore, a practical

wavelet filtering technique has been used to help to decompose the data into monocomponents. It

was found that, this decomposition approach has effectively worked as a special band pass filter.

One of the advantages of this technique is that it allows us to decompose the data into a set of inde-

pendent coefficients with a coefficient corresponding to each of the orthogonal basis functions. These

monocomponents were then analyzed and recombined into a signal that contained the instantaneous

frequency reflections, but not the switched system main response or the noise.

The paper is organized as follows: Sec. 2.1 discusses the wavelet-based method that we are going
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to use, whereas Sec. 2.2 presents an outline of the frequency analysis technique for estimating the

instantaneous frequencies. Sec. 2.3 illustrates the details of the proposed algorithm. Then in Sec. 3,

we present the detection of discontinuous nonlinearities in simulated data sets produced by different

model systems. We also consider posturographic data sets in which we identify spiking features

resembling those found in our switched model systems. At the end of this section, we evaluate

the performance of our algorithm by comparing it against other detection methods available in the

literature. Finally, Sec. 4 concludes the paper and outlines our future work.

2. Algorithm Framework

2.1. Wavelet Analysis

2.1.1. Wavelet transformation of signals

Wavelet transform is being used in many real-time signal and image processing applications due

to its efficiency in multi-resolution analysis (Liu et al., 2008). Wavelet transformation maps data

from the time domain to the wavelet domain, and the result is a vector of the same size. The wavelet

transform decomposes a function into a weighted sum of its various frequency components. The time

and frequency localization of wavelets makes it into a powerful tool for feature detection. Wavelet

transformation is linear and it can be defined by matrices of dimensions m ×m if it is applied to

inputs of size m. The signal f(t) is examined by the wavelet transform with the help of a mother

wavelet, say ψ. Thus, the wavelet transform is given by

Fω(a, b) =
1√
a

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt (1)

The last equation shows how a function f(t) is decomposed into a set of basis functions Fω(a, b).

The variables a and b, scale and shift, are the new dimensions after the wavelet transform. The

parameter b shifts the wavelet so that local information about f , at time t = b, is contained in

Fω(a, b), and the parameter a controls the frequency value of the wavelet for a particular shift b.

It is useful to decompose the data into wavelet coefficients using stationary discrete wavelet

transform because most of the coefficients will be close to zero, with only a few coefficients carrying

most of information. Consequently, the original signal f(t) can be reconstructed in a way that

depends on the aim of the analysis. Successful reconstruction also depends on the original choice of

ψ. If the wavelet ψ is such that

Cψ = 2π

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω (2)

where ψ̂ denotes the Fourier transform of ψ, the original signal f(t) can be reconstructed as

f(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|a| − 1/2ψ

(
t− b
a

)
Fω(a, b)

dadb

a2
(3)
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One of the advantages of wavelet transformation is that it allows the use of long time intervals

when we want more precise low frequency information, and shorter intervals where we want high

frequency information. It should be noted that, in order to isolate signal discontinuities, it is more

efficient to use a very short basis function. Hence, the proposed method performs a multilevel

stationary wavelet decomposition using a specific biorthogonal wavelet called Daubechies. This

wavelet family constructs compactly supported orthogonal wavelets with a preassigned degree of

smoothness. These wavelet bases are defined as a pair of mutually orthogonal bases neither of

which is an orthogonal basis. The detailed properties of this wavelet can be found in Daubechies’

monograph (Daubechies, 1992).

2.1.2. Wavelet decomposition tree

The designed algorithm performs the wavelet decomposition of the time series data based on the

theory of orthogonal filter banks described in (Strang and Nguyen, 1997). In this approach, pyramid

or cascade procedures process the data at different scales, ranging from fine to coarse, in a tree-like

algorithm, in such a way that the signal can be decomposed to different levels, then de-noised,

enhanced or compressed by appropriate scale-wise treatment. Such idea gives a constructive and

efficient recipe for performing the discrete wavelet transformation. It links the wavelet coefficients

from different levels in the transformation using parallel filtering.

At level (i), the wavelet decomposition process starts by splitting a given time series data into

two parts by using a two-channel filter bank in combination with down-sampling by a factor of 2.

After splitting, we obtain a vector of approximation coefficients Ai+1 and a vector of details coeffi-

cients Di+1, both at different scales. Then the next step consists of splitting the new approximation

coefficient vector Ai+1 into two parts to obtain a new approximation vector Ai+2 and details vector

Di+2. This process continues till we build the wavelet decomposition tree with a number of approx-

imation and details vectors Ai+n and Di+n, respectively, where n is the number of decomposition

levels. Note that, at each stage of the filtering process, the approximation vector is obtained by

using a low pass filter to extract the low frequency components while the details vector is obtained

using a high pass filter to extract the high frequency components. Each details or approximation

coefficients vector can be reconstructed at any decomposition level using the same filtering approach

combined with up-sampling by a factor of 2.

2.2. Frequency analysis

2.2.1. Instantaneous frequency

The instantaneous frequency is a time dependent representation of the frequency of a signal

at any moment(Boashash, 1992). It can be described by considering the following time-domain
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procedure:

z(t) = s(t) + jH[s(t)] = a(t)ejφ(t) (4)

where z(t) is the analytic signal, s(t) is the real signal and H is the Hilbert Transform defined as

H[s(t)] = p.v.

∫ ∞
−∞

s(t− τ)

πτ
dτ (5)

where p.v. denotes the Cauchy principal value of integral (Marple, 1999).

By considering the problem of positioning a signal s(t) in the frequency domain, we construct

the analytic signal z(t) as defined in (4). Its spectrum, Z(f), is given by

Z(f) =

∫ ∞
−∞

a(t)ej[φ(t)−2πft]dt. (6)

The application of the stationary phase principle indicates that this integral will have its largest

value at the frequency fs , for which the phase is stationary, such that

d

dt
[φ(t)− 2πfst] = 0. (7)

Equation (7) leads to the definition of the instantaneous frequency as

fs =
1

2π

dφ(t)

dt
. (8)

This indicates that if fs is a function of t, fs(t) provides a measure of the signal energy concentration

as a function of time.

2.2.2. Normalized Hilbert transform method

The instantaneous frequency for any monocomponent data can be computed by applying Hilbert

transform in equation (5) combined with a normalization scheme. This approach will enable us to

get an exact instantaneous frequency (Huang et al., 2009). We first compute the absolute value

of Hilbert transform of the signal s(t) to produce an envelope to the data, then this envelope e(t)

is used as the base for normalizing the data as follows n(t) = s(t)
e(t) , where n(t) is the normalized

data. Ideally, n(t) should have all the extrema with unity value. Such normalization is particularly

important because it enables us to compute the phase angels directly without any approximation.

The next step is to apply Hilbert transform to the normalized data to obtain an analytic complex

signal z(t) such that

z(t) = x(t) + jy(t) = a(t)ejφ(t) (9)

where a(t) is an absolute value of the signal and φ(t) is the phase function. The imaginary part

includes phase information that depends on the phase of the original data. Once the phase angles are

determined, the instantaneous frequency fs can be computed as the derivative of the phase function

φ(t) by using equation (8).
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2.3. The proposed algorithm

In this section, we present a novel algorithm aimed at determining discontinuities in a signal

buried in noise generated by switched control systems. The developed algorithm is mainly based

on a combined frequency and wavelet analysis approach. We first present an outline guide to the

algorithm steps as shown below:

1. Choose a wavelet ψ and a decomposition level n.

2. Compute the wavelet decomposition of a given time series data down to level n.

3. For each level, from 1 to n, determine the details wavelet coefficients.

4. Identify the highest energy components of the details coefficients using energy entropy based

method.

5. Reconstruct and combine the identified details components.

6. Apply Hilbert transform to get an envelope to the identified data.

7. Normalize the monocomponents data using Hilbert’s envelope.

8. Compute the phase angles of the identified monocomponents using NHT method.

9. Compute the instantaneous frequency as the derivative of the phase function to produce a

time-frequency representation of the signal.

10. Identify the peaks in the time-frequency data representation, which would then correspond to

abrupt changes in system dynamics.

In our case studies in Sec. 3, we start the algorithm by decomposing the time series data down

to level seven. The selection of a suitable number of levels is based on the frequency of the data

components. This process splits the data into different frequency bands from high to low frequencies.

Level one to five contains highest frequencies, which mostly consist of noise, while levels eight and

above contain the basic response of the system. All of these components are therefore discarded. The

other levels are considered for further analysis. The chosen wavelet for this problem is Daubechies

wavelet with six vanishing moments (db6). This wavelet is superior for representing polynomial

behaviour in addition to its ability to detect the discontinuities. It has scaling φ and wavelet ψ

functions both for the decomposition and reconstruction processes. The scaling function φ and

its coefficients detects localized low frequency information, while the wavelet ψ and its coefficients

detects localized high frequency information.

The wavelet coefficients are then obtained by applying the discrete wavelet transform. At each

decomposition level, the output of the discrete wavelet transform brings out a high resolution data
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(details coefficients) while at the same time smoothing the remaining data (approximation coef-

ficients). The wavelet coefficients are placed in a transformation matrix and ordered using two

patterns, one contains the smoothed data, and the other brings out the details information. This

decomposition technique enables to detect more easily any change points by looking for details

coefficients in modulus not at the full range of all the data levels.

We use an energy entropy based method for choosing the right decomposition level. Entropy

measures the repeatability or predictability within a time series to quantify the complexity of a

signal produced by a given system (Richman and Moorman, 2000).

In our approach, the energy E of each level at time k, and for scale j can be approximated

by E(j, k) = |si(t)|2, where si(t) is the wavelet coefficients at level i. Summing this energy for all

discrete times k and scales j leads to an approximation of the energy content at each level i as

E(i) =
∑
j

∑
k

E(j, k). Then, we follow the Shannon entropy, which is a probability density function

PE defined as a ratio between the energy of each level and the total energy, that is PE(i) =
E(i)
n∑
i=1

E(i)
.

This corresponds exactly to the probability density distribution of energy across the scales. Then,

we calculate the value of energy entropy En for each decomposition level i, which computes the

variation of the degrees of complexity of noise as:

En(i) =

n∑
i=1

−PE(i)ln(PE(i)). (10)

The greater value of En reflects more randomness and signal complexity. The selection of the

decomposition level to be analyzed was based on the difference of energy distribution between the

noisy time series data at each level. The highest difference value is used to measure the degree of

complexity of the data for all the levels. The highest difference value indicates a jump between

the low and high level of noise. Hence, the value of entropy En at each level i is calculated.

Then, the highest difference value of En between two consecutive levels is determined. The higher

decomposition level is chosen for further analysis. The signal of the selected level should have lower

degree of complexity and contains low noise influences. Consequently, it is found that the first few

levels contain highest frequencies that mostly consist of noise, while higher levels contain the basic

response of the system. All of these components therefore should be discarded and only the levels

that carry most of the information of the signal have to be considered for further analysis.

Then, the algorithm passes the details coefficients vectors through the same filtering process to

reconstruct these components. Note that, in order to reconstruct the details components through

the filter banks process, we feed in a vector of zeros in place of the approximation coefficients vector.

The next step of the algorithm process is to apply the Hilbert transform, described by equation

(5), to produce an envelope to the monocomponents data. This envelope is used to normalize the

data. This normalization allows us to compute the phase angles of the monocomponents directly
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by using the NHT method. Then the instantaneous frequencies are calculated using equation (8).

The strongest peaks, in the time-frequency representation, allow us to identify any abrupt changes

in the time series data.

3. Numerical Experiment

In this section, we apply our algorithm to identify discontinuous nonlinearities in time series data

produced by four switched model systems, which can be thought of as models of human balance

control during quiet standing. All these different switched models are presented in order to verify how

well does the algorithm perform. We apply our procedure to the time series data produced by the

switched control systems to investigate the effect of additive white noise or time delay on detecting

discontinuities. There is also a fifth case which presents the analysis of experimental posturographic

time series data by means of our algorithm. At the end of this section, the performance of the

algorithm is compared against other detection methods available in the literature.

3.1. Switched model of human balance control

We will model human neuromuscular control during quiet stance using an inverted pendulum

model (Craik, 1947; Jeka et al., 2000; Winter et al., 2001). That is, we assume that the human body

is represented as a single rigid link of some length with the centre of mass m located at the distance h

above the ground. The only force acting on the mass is that of gravity, and we additionally assume

that the neuromuscular control is applied to the system through a Proportional-Derivative (PD)

control signal acting with a certain time delay τ (the delay is present due to neural processing).

Moreover, there is a dead-zone present in our model system due to a finite accuracy of sensing.

That is, the PD control is switched on when the position signal, θ(t− τ), exceeds certain fixed, but

non-zero, value θ0. A noise torque is modelled using an additive Gaussian white noise, say ζ(t), of

intensity σ. The sway motion will be modelled by a delay differential equation with additive noise

as:

Jθ̈ = mgh sin(θ) + σζ(t) for |θ(t− τ)| ≤ θ0, (11)

when there is no control applied to the system, and

Jθ̈ = mgh sin(θ) + T + σζ(t) for |θ(t− τ)| > θ0. (12)

when a PD controller is switched on; J is the moment of inertia of the body about the ankle joint

axis. The delay terms are present in the applied torque generated by the PD controller. Namely

T = −Kpθ(t−∆)−Kdθ̇(t−∆). (13)

where Kp and Kd are positive constants, and ∆, τ > 0 are time delays.
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Assuming that the sway angle is small, we can approximate sin(θ) ≈ θ and we obtain a switched

linear stochastic system

Jθ̈ = mghθ + σζ(t) for |θ(t− τ)| ≤ θ0, (14)

when there is no control applied to the system, and

Jθ̈ = mghθ + T + σζ(t) for |θ(t− τ)| > θ0. (15)

when the PD controller is applied to it.

The phase space of the system is represented by θ(t) and θ̇(t) which are the position and velocity

components, respectively. The switchings occur after the delayed switching time τ takes place after

passing the boundary of the dead zone. The system evolves according to the differential equation

(14) when there is no control applied to the system, and according to the differential equation

(15) when the PD control is applied to the system. The presence of the switching function implies

that, depending on the value of the random variable θ(t − τ), the system is either governed by a

stochastic differential equation, or a stochastic delay differential equation. We switch between these

two systems when the random variable θ(t− τ) is greater or smaller than the threshold value θ0.

We approach the modelling of human balancing by using switched control system with the noise

term σζ(t). The dynamics of the deterministic system (14) and (15) was investigated in (Kowalczyk

et al., 2011). Numerical simulations were performed with a fixed step size of 0.001s for the duration

of 160s. We set m = 66 kg, h = 0.87 m, g = 9.81m/s2, J = 66 kgm2, time delays ∆ = τ = 0.15s,

the control coefficients Kp = 720 Nm/rad and KD = 300 Nms/rad, which are the values used in

(Kowalczyk et al., 2011). We assume that the width of the dead zone is equal to |θ| = 0.02rad, which

is approximately one degree. The data corresponding to the first 120s were discarded as describing

transient dynamics, while the following 40s were recorded and used for the analysis. In the next

subsections, we will analyze signals generated from our switched model of human balance control

by using the designed algorithm. We perform numerical integration of our switched models with

noise using an Euler’s algorithm described in the appendix. For consistency, we also use a first order

Euler’s scheme for numerical integration in the absence of noise.

3.2. Case 1: Non-delayed switched system without noise (σ = 0, τ = 0)

In this section, we investigate the effect of time delay in the switching function on the dynamics

of the switched system. Thus, firstly, a human balance control model with time delay only in torque

T will be investigated. By modifying equations (11) and (12) and assuming that the sway angle is

small, we can approximate sin(θ) ≈ θ, and then we can obtain a switched linear system without

time delay in the switching function in the form

Jθ̈ = mghθ for |θ(t)| ≤ θ0, (16)
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Fig. 1: (a) Time series data of the position component of the switched system (16) and (17). (b) The velocity

component. (c) Phase plot of the system.

Jθ̈ = mghθ −Kp(t−∆)θ −Kd(t−∆)θ̇ for |θ(t)| > θ0. (17)

Fig. 1 shows the angular position component θ, the angular velocity component θ̇, and the phase

plot of the time series data produced by the modified switched model system. In our analysis we

use the angular position data corresponding to the first two limit cycle attractors. The period of

each limit cycle will be approximately 0.165 seconds.

We have applied the proposed algorithm to analyze the produced time series data. The algorithm

accurately locates the change points in the data where the trajectory crosses the dead zone of the

system. As shown in Fig. 2 these discontinuities occur at t = 0.065s, and t = 0.095s for the limit cycle

in the first period, and at t = 0.207s, and t = 0.237s for the limit cycle in the second period. Note

that the limit cycle attractor is built from two smooth trajectory segments and there are two points

on the limit cycle where the trajectory looses it smoothness as a direct result of switchings between

two regions where the variable θ(t) is greater or smaller than the threshold value θ0. Therefore,

in one time period, the discontinuity occurs at two times in the time series data. This suggests

that the computed instantaneous frequency is able to capture the discontinuities produced by the

non-delayed switched control system without noise.

3.3. Case 2: Non-delayed switched system with additive noise (σ 6= 0, τ = 0)

In order to further investigate the capability of the developed method to detect the discontinuities

in a switched stochastic system without time delay, we modify our model system to include Gaussian
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Fig. 2: Time-frequency representation of the switched stochastic system 16) and (17).

noise term according to the following stochastic differential equations

Jθ̈ = mghθ + σζ(t) for |θ(t)| ≤ θ0, (18)

Jθ̈ = mghθ −Kpθ(t−∆)−Kdθ̇(t−∆) + σζ(t) for |θ(t)| > θ0. (19)

Fig. 3 shows the angular position component θ, the angular velocity component θ̇, and the

phase plot of the system. In this case, adding white noise to this system will result in sample path

(trajectory) following the underlying limit cycle attractor as depicted in Fig. 3(c). We used a time

window of 0.32 seconds, which is approximately the length of time at tow periods of evolution of

the corresponding limit cycle attractor.

In this case, the high frequency noise will disturb the detection process, therefore, an efficient

filtering operation is essential to decompose the data to monocomponent functions. The stationary

discrete wavelet transform was applied to decompose the data into seven levels as shown in Fig. 4.

The wavelet decomposition technique brings out a high resolution data which are the details coef-

ficients, while at the same time it extracts the remaining data as approximation coefficients. Here,

we are interested in examining the details coefficients. By performing the energy entropy based

method, and exploring all the levels, it was found that the first five levels are irrelevant because they

consist mostly of the high frequency noise. The frequency analysis method only applies to the two

remaining levels where we can isolate the presence of harmonics, thereby confirming the presence

of the underlying limit cycle attractors. Hence, levels six and seven of the details monocomponents

were reconstructed for further analysis, while the other levels were considered irrelevant because

they consist mostly of the high frequency noise.

The algorithm starts the normalization process by calculating Hilbert’s envelop to reconstructed
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Fig. 3: (a) Time series data of the position component of the stochastic system (18) and (19). (b) The

velocity component. (c) Phase plot of the system.

Fig. 4: Wavelet approximation coefficients (left columns), and wavelet details coefficients (right column).
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Fig. 5: (a) The reconstructed data (solid line), with Hilbert’s envelop (dashed line). (b) Normalized data

by Hilbert transform. (c) The computed instantaneous frequencies of the switched system (18) and (19).

data from the wavelet details coefficients. Fig. 5(a) shows the time series data with the calculated

Hilbert’s envelop. Fig. 5(b) presents the produced signal after the normalization scheme where all

of the values of the signal are less than or equal to unity. This normalized carrier enables us to

provide a ready and sharper local energy based measure of any abrupt changes. The instantaneous

frequency of the data can then be computed by applying Hilbert transform. This approach will

enable us to get an exact instantaneous frequency as a derivative of the phase function. Fig. 5(c)

shows the time-frequency presentation of the time series data generated by our stochastic model

system. Four major instantaneous frequency peaks can be detected within this time period which

correspond to the discrete jumps that are present in the signal derivatives. These discontinuities

occur at t = 0.075s,t = 0.129s, t = 0.217s and t = 0.238s for the time window 0.32 seconds.

As it can be seen in Fig. 5(c), the discontinuities occur at each limit cycle period as in the

previous case. However, there is a slight shift in the identified peaks. We believe this is because of

the influence of noise on the instances when switchings occur.

3.4. Case 3: Time-delayed switched system without noise (σ = 0, τ 6= 0)

Similarly, we analyze the time series data produced by our switched model system (14) and

(15) without the noise term. Fig. 6 shows the angular position component θ, the angular velocity

component θ̇, and the phase plot of the system. According to equation (14), the PD control is not
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Fig. 6: (a) Time series data of the position component of the switched system (14) and (15) without noise.

(b) The velocity component. (c) Phase plot of the switched system.

active so the switched system is not controllable, and all the trajectories diverge to ±∞. Once the

delayed control signal θ(t− τ) reaches the value of ±θ0, that is the boundary of the dead-zone, the

system switches on the PD control, and the evolution follows according to equation (15). As a result

of applying the PD control, the system trajectory will move back within the dead-zone region, and

will finally converge to a limit cycle attractor as shown in the phase space plot in Fig. 6(c). Therefore,

stable periodic motion is found. Due to the system’s symmetry, for any given parameter values, there

are two limit cycle attractors present in the system. For the purpose of our analysis, we use the

angular position data corresponding to the first two limit cycle attractors. In this case, the period of

each limit cycle is approximately 1.656 seconds. Fig. 7 shows the results of applying the algorithm

to the time series data produced by the switched system. The time-frequency representation has

been used to illustrate the detection of discontinuous nonlinearities at different time locations in the

time series data. As we can see in Fig. 7, the discontinuities occur at t = 0.631s and t = 1.116s for

the limit cycle in the first period, and at t = 2.188s and t = 2.69s for the limit cycle in the second

period. The algorithm accurately locates the change points in the time series data. This suggest

that the computed instantaneous frequency is able to capture the discontinuity produced by the

switched control system without additive noise.

3.5. Case 4: Time-delayed switched system with additive noise (σ 6= 0, τ 6= 0)

In order to investigate the influence of the additive white noise, we have analyzed the time series

data produced by the switched stochastic control system (14) and (15). Adding white noise to the

system may cause the switching of the evolution between neighbourhoods of the two asymmetric
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Fig. 7: Time-frequency representation of the switched system (14) and (15) without noise.

limit cycles present in the switched system in the absence of noise. An example of a stochastic run

is shown in Fig. 8.

As shown in Fig. 9, the output was a series of peaks, each of which occurred when the system

switches between two different modes. Each peak seen in the analyzed results corresponds to the

event when the system trajectory crosses the line of the dead-zone region. Similarly as in the case

of the non-delayed system (18) and (19), there is a slight shift in the identified peaks as a result of

the influence of noise on the instances when switchings occur.

3.6. Case 5: Analysis of posturographic data

In this section, we will present the results of analyzing experimentally obtained data sets of

human sway during quiet stance. We consider the time series data of human subjects standing

quietly with eyes closed or open. The data were collected at the IRM (Institute of Research into

Human Movement) laboratory at Manchester Metropolitan University. Eight people, with no balance

disorders, participated in the study. Each subject was standing quietly with eyes open for the

duration of 240s. Horizontal and vertical ground reaction forces were measured using a force plate

with four strain gauge sensors (OR6-7; AMTI, Watertown, MA). The position of the center of

pressure of the forward-backward and side-to-side body sway was calculated from the ground reaction

forces. The time series data were recorded and sampled at 1 kHz. The experiment was then repeated

with eyes closed. For the purposes of analysis, we expressed the force signal as angular position

and velocity data. The signal was then filtered using lowpass butterworth filter with the cut off

frequency of 4Hz. Fig. 10 shows the time series and phase plot of one of the collected experimental

posturographic data sets.

The algorithm procedure was performed in order to analyze the time series data. We used a

time window of 3.2 seconds which is approximately similar to the sample path that follows the first
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Fig. 8: The trajectory of the position component of the switched system with added white noise. (b) The

velocity component. (c) Phase plot of the switched system.

Fig. 9: Time-frequency representation of the switched stochastic system (14) and (15).
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Fig. 10: (a) Time series data of the angular position of the experimental posturographic data. (b) The

angular velocity. (c) Phase plot of the data.

two underlying limit cycle attractors produced by the switched stochastic system (14) and (15). We

first decompose the data by using the discrete wavelet transform process to isolate the low and high

frequency components. This step produces two complementary components for further analysis-

details coefficients and approximation coefficients, and the original signal is broken down into many

lower resolution components. The first few levels of the details coefficients are small and consist

mainly of a high frequency noise. These levels are therefore discarded. Only coefficients that convey

most of the information of the signal are considered for further analysis. These components are

reconstructed by using the inversion process. Fig. 11 shows the computed instantaneous frequencies

of the reconstructed data. The algorithm identifies different peaks corresponding to abrupt changes

in the signal. These spikes indicate features such as a jump, or discontinuity in the time series data.

It can be noted that simulated and experimental data have similar spectral properties during each

time window.

3.7. Algorithm Performance Evaluation

The results suggest that the algorithm works well in different cases and is capable of locating the

discontinuities for all the model systems in the present study in a reliable manner. The obtained

results confirm the ability of the developed algorithm to handle sharp changes in the characteristic

properties of the signal generated by a stochastic process.

For quantitative purposes, we apply the designed algorithm to the time series data produced by

the model system (18) and (19) for a time window of 0.192 seconds, which is the time required to

make one revolution around the underlying limit cycle attractor. We compute the Fourier power
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Fig. 11: The instantaneous frequencies of experimental data within a time window of 3.2 seconds.

spectrum for all the signals at each decomposition level. The total power present in harmonic

frequencies is then determined. The algorithm identifies two peaks by analysing the sixth and seventh

decomposition levels. The power contribution from the identified peaks is calculated by dividing

the power summation of the captured peaks by the total power present in all the decomposition

levels. It is found that the amount of power in the identified peaks is 14.2 % of the power in the

original signal. Thus, the algorithm is able to capture the discontinuities having a relatively low

power content.

The previous simulated results are for single realizations only. Using Monte Carlo simulations, we

have examined the probability of detection performance of the algorithm for all the model systems

(case 1 to 4). Here, we examine the effect of varying the intensity σ of each realization of the white

Gaussian noise process by averaging MC=100 Monte Carlo simulations. The different intensity of

white Gaussian noise denotes different levels of noisy environment. Fig. 12 shows the probability of

detection as a function of the noise intensity σ. The results show that, as the noise intensity σ is

increases, the probability of detection for the algorithm decreases.

Furthermore, when we applied our algorithm to posturographic data of human balance control

during quiet standing, we observed approximately one to two peaks per second in the time-frequency

representation, as it is shown in Fig. 9. This observation is consistent with the hypothesis (Loram

et al., 2009; Navas and Stark, 1968) that control via serial ballistic actions, at a rate of two per second,

is generic to human motor control. Moreover, the spikes which we found in the time-frequency plot

of the analyzed experimental data were qualitatively similar to those found in our switched model

systems.
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Fig. 12: The probability of detection for the switched model systems (case 1 to 4) varies with the intensity

of white Gaussian noise.

4. Conclusions

In this work, we propose a method that uses wavelets and frequency analysis for the detection

of discontinuity in switched control systems with noise. Simulation results, based on analyzing time

series data produced by four different switched feedback control systems with (and without) noise

and time delay, which are models used in the context of human balance control during quiet standing,

demonstrate that discontinuous nonlinearities manifest themselves as spikes in the time-frequency

plane.

A review of observations from the neuro-motor control literature (Gawthorp et al., 2011; Loram

et al., 2011, 2009) reveals that there is evidence of intermittent control in human movement. For

instance, Loram et al. (Loram et al., 2011) showed that, when using a joystick to control an unstable

load that falls over, like a person fainting, the control using intermittent gentle hand taps with the

frequency of 1-2 taps per second, that one can make without mutual interference between movements

is an optimal control strategy. We applied the proposed method to posturographic time series data

and found the presence of spikes in the time-frequency plane with the average frequency of spikes of

4 per 3.2 seconds in switched models (18) and (19). Thus, it is the switched model with time delay

in the control and switching function which captures better the presence of discontinuities in the

posturographic data. Our results give evidence for the presence of intermittent control in human

neuro-muscular control system. Future work is aimed at continuing to test the designed algorithm

under a variety of conditions in order to distinguish between different types of discontinuities, or

strong nonlinearities, that can be captured by means of the developed algorithm.
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Appendix

Switched system (14)-(15) is a stochastic delay differential equation. It has been shown in (Baker

and Buckwar, 2000) that stochastic delay differential equations

ẋ = f(x(t), x(t− τ)) + σζ(t), (20)

where τ is the time delay, ζ is Gaussian white noise with intensity σ, can be approximated by

xn+1 = xn + f(xn, xn−k)h+ σWn

√
h, (21)

for h sufficiently small; τ is the time delay, h is the step size, k = τ/h and Wn is the standard Wiener

process. The standard Wiener process is approximated numerically at each step tn by a function

which generates pseudo-random numbers with expected value µ = 0 and standard deviation σ = 1.

The same numerical scheme may be used when there is no delay present in the system. If we integrate

the system with the time delay in the switching function, we switch between different systems at

some step n when (θ(tn − tn−k) − θ0)(θ(tn−1 − tn−1−k) − θ0) < 0 (the value θ0 > 0 determines

the width of the dead-zone). When there is no time delay in the switching decision function the

switching condition at step n reduces to (θ(tn)− θ0)(θ(tn−1)− θ0) < 0.
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