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
 

Abstract—Despite widespread availability of ultrasound and a 

need for personalised muscle diagnosis (neck/back pain-injury, 

work related disorder, myopathies, neuropathies), robust, online 

segmentation of muscles within complex groups remains 

unsolved by existing methods. For example, Cervical Dystonia 

(CD) is a prevalent neurological condition causing painful 

spasticity in one or multiple muscles in the cervical muscle 

system. Clinicians currently have no method for 

targeting/monitoring treatment of deep muscles. Automated 

methods of muscle segmentation would enable clinicians to study, 

target, and monitor the deep cervical muscles via ultrasound. We 

have developed a method for segmenting five bilateral cervical 

muscles and the spine via ultrasound alone, in real-time. 

Magnetic Resonance Imaging (MRI) and ultrasound data were 

collected from 22 participants (age: 29.0 ± 6.6, male: 12). To 

acquire ultrasound muscle segment labels, a novel multimodal 

registration method was developed, involving MRI image 

annotation, and shape registration to MRI-matched ultrasound 

images, via approximation of the tissue deformation. We then 

applied polynomial regression to transform our annotations and 

textures into a mean space, before using shape statistics to 

generate a texture-to-shape dictionary. For segmentation, test 

images were compared to dictionary textures giving an initial 

segmentation, and then we used a customized Active Shape 

Model to refine the fit. Using ultrasound alone, on unseen 

participants, our technique currently segments a single image in 

≈0.45s to over 86% accuracy (Jaccard index). We propose this 

approach is applicable generally to segment, extrapolate and 

visualise deep muscle structure, and analyse statistical features 

online. 

 
Index Terms—ultrasound, cervical dystonia, segmentation, 

MRI, shape model, skeletal muscle, trapezius, splenius, 

semispinalis, multifidus, rotatores, generative shape model, 

electomyography, pattern recognition. 

I. INTRODUCTION 

HIS paper concerns segmentation of structures (skeletal 

muscles) which are dynamic, homogeneous in tissue type 

and speckle structure, and imaged by a low quality 

modality, ultrasound (US). There is currently negligible 

literature on segmentation of skeletal muscle within ultrasound 
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[1], [2], and no literature on the segmentation of cervical 

muscles. This is despite the high medical and economic 

impact of chronic neck/back pain and injury, the current need 

for personalised musculoskeletal diagnosis, and the 

widespread availability of ultrasound. These facts testify to the 

challenging nature of these medical imaging problems and 

their inadequate solution by existing methods. The solutions 

we provide here open this entire domain (i.e. low cost, 

personalised muscle diagnosis using ultrasound) for further 

development. 

 Ultrasound is the most challenging modality for image 

segmentation [2]. Compared with Computerised Tomography 

(CT), and (functional) Magnetic Resonance Imaging (f)MRI, 

the spatial resolution is low, the probe-tissue target 

relationship is variable, probe contact is variable, features, 

shape and texture within the target are inconsistent through 

time, the signal to noise ratio is low and in this domain the 

target (muscle) moves. Current methods are not suited to this 

domain of medical image analysis (see section II). Even if one 

assumes “perfect” ultrasound images (i) it is not currently 

established how the muscle boundaries map to the ambiguous 

shape and texture manifestation of the ultrasound image, and 

(ii) the complete muscle boundaries lie outside of the viewing 

region. These reasons rule out direct labelling of ultrasound 

images, and prompt the use of a multiple imaging modalities. 

MR images provide complete and visible cross-section 

boundaries; however, registration of these between modalities 

must address the compression of tissue which occurs only in 

US, and not MRI. 

 This study contributes a novel method for segmenting five 

bilateral cervical muscles and the spine, in real-time from 

ultrasound alone, providing real-time in vivo analysis and 

prediction/visualisation of whole muscle structure beyond the 

visible boundaries of the ultrasound plane. Further, this 

methodology is applicable generally to any set of muscles 

accessible with US, for example is immediately applicable to 

the entire spine, including the back. To deliver our 

contributions while addressing the challenges named above, 

we have developed a novel multimodal MRI-US shape 

annotation and registration method which facilitates the 

construction of physiologically accurate labelled ultrasound 

datasets, which is currently not possible. We have also 

developed a novel segmentation method, in which we 

construct a texture-to-shape dictionary from minimal amounts 

of labelled data, which we use to initialise and inform a local 

statistically-constrained heuristic pixel intensity search based  
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on the well-established Active Shape Model (ASM; [3]).  

Delivery of our contributions provide novel insight into a new 

domain and fundamentally test the hypothesis that ultrasound 

contains the information required to locate an annotation 

defined in the MRI domain. This paper might be regarded as 

an experiment in which the fundamental question is whether 

or not ultrasound provides sufficient information to facilitate 

an anatomically accurate segmentation of the neck muscles. 

 As this domain is new and the literature is relatively sparse, 

we have written a more detailed background and rationale 

(section II), which includes basic cervical muscle anatomy, 

current alternative technologies for measuring the parameters 

of the cervical muscle system, its application to neck/back 

pain and injury with a specific application to Cervical 

Dystonia (CD), review of the relevant state-of-the-art 

segmentation literature, and the justification for our proposed 

method. Following the background and rationale we describe 

our methods (section III) which include the data collection 

protocol (A), our novel image annotation protocol (B), the 

construction of our novel dictionary-to-shape template 

matching segmentation algorithm (C-E), and finally our novel 

heuristic image search algorithm based on the ASM (F). We 

present results (section IV) on the accuracy of our algorithm 

using the popular Dice similarity coefficient (DSC), and the 

more representative Jaccard index, which collectively reveal 

the extent to which whole muscle regions can be automatically 

identified. We also present accuracy results using the 

Hausdorff distance, which reveals the extent to which the 

muscle boundaries (shape) can be accurately traced. To 

facilitate comparison with state-of-the-art, we also compute 

and compare results of the widely used standard Active 

Appearance Model (AAM; [4]); an industry standard medical 

image segmentation algorithm. Finally we compare the 

segmentations of 3 experts following our annotation process. 

After presentation of results, we give a detailed discussion 

(section V) of our contributions and the derived results, 

detailing limitations and successes. We conclude (section VI) 

that the application is important and that real-time 

segmentation of the cervical muscles in vivo directly from 

ultrasound alone, is possible, where current standard 

techniques are inadequate to serve this purpose. 

II. BACKGROUND AND RATIONALE 

The morphometry of human cervical muscles is 

architecturally complex [5]; the posterior neck contains over 

five bilateral muscle layers and those muscles can cross joints 

and attach to multiple bones [5]. The size and shape of 

cervical muscles across a population exhibit wide variability, 

and cross-sectional areas do not scale proportionally with 

body height and/or weight [5]. Furthermore, there are 

significant differences in muscle shape between genders [6]. 

The variability and complexity of the cervical muscles present 

a challenge in defining a generalized model of muscle 

shape/architecture. The human cervical muscles are also 

functionally complex, exhibiting functional redundancy across 

multiple muscles [7]. 

There are a multitude of conditions (e.g. neck and upper 

limb pain and injury) that would benefit from the ability to 

measure the properties of the cervical muscle system in vivo. 

Neck pain is a highly prevalent condition that causes 

substantial disability [8]. Out of 291 conditions studied in the 

Global Burden of Disease Study (2010), neck pain ranked 4
th

 

highest in terms of disability, as measured by years lived with 

disability, and 21st in terms of overall burden [8]. Work-

related upper limb and neck musculoskeletal disorders 

(MSDs) are one of the most common occupational disorders 

around the world [9]. Work-related upper limb disorder 

(WRULD), repetitive strain injury (RSI), cumulative trauma 

disorder, occupational overuse syndrome and work-related 

complaints of the arm, neck or shoulder are the most 

frequently used umbrella terms for disorders that develop as a 

result of repetitive movements, awkward postures and the 

impact of external forces [10]. The cost of WRULDs in the 

EU has been estimated to be between 0.5% and 2% of gross 

national product [9]. 

CD is a complex neurological disorder which causes 

involuntary muscle spasticity which can severely impair 

quality of life. One successful treatment of CD is to inject 

botulinum toxin into the affected muscle(s), which reduces the 

contraction(s) and relieves the person. However, there is 

difficulty in identifying which muscles need to be injected. 

There is also currently no non-invasive method for quantifying 

response to treatment, or severity of dystonia in deep cervical 

muscles – in fact the deep muscles often go untreated. A non-

invasive method for identifying contractions in deep cervical 

muscles would be beneficial for targeting and monitoring 

treatment of CD. Although methods have been developed 

which would differentiate CD patients from healthy subjects 
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Fig. 1. Cervical anatomy and cervical MR image. This figure shows a colour-coded sagittal view of the cervical anatomy (left) and a colour-coded axial 

MRI of a single participant‟s cervical muscles (right); the colour segments are respectively (MRI: posterior to anterior, anatomical: left to right), upper 

trapezius, splenius, semispinalis capitis, semispinalis cervicis, multifidus, and the spine. The dashed black line across the neck on the anatomical image of 

the trapezius (far left) represents approximately where the image on the right was taken from (i.e. an axial scan at that level and inclination). 
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[11], there is currently no clinically accepted method for 

localizing and quantifying severity of CD in deep cervical 

muscles. 

Kinematic analysis of head orientation can reveal force 

loads in the neck via mechanical inference [12], [13] however, 

due to muscle groupings (functional redundancy), complex 

muscle structure [5], and the counterintuitive nature of muscle 

activation [7], information extraction at the level of the muscle 

is currently not possible. Surface electromyography can 

measure muscle activation during contraction in superficial 

and partially superficial muscles in the neck [14], although it 

has been argued that sEMG is not appropriate for 

measurement of partially superficial muscles such as the 

splenius capitis layer [15]. Needle EMG is required to 

measure contraction in deep muscle layers. However, this 

approach is impractically invasive, time-consuming, and has a 

relatively small measurement volume (typically  1mm
3
) [16]. 

Furthermore, there can be no certainty about the clarity of the 

positioning of intramuscular electrodes [16]. The numerous 

methodological problems with EMG are well documented; 

this includes cross-talk, electrical interference, mechanical 

artefacts, and activity of adjacent muscles in contact with the 

same electrode [17]. 

Imaging technology such as MRI and ultrasound allow non-

invasive imaging of cross-sectional areas of every bilateral 

layer of muscle in the neck [7], [18]–[20]. MRI gives high 

spatial, low temporal resolution images of internal body 

structures. Studies have shown that functional MRI (fMRI) 

has sufficient temporal resolution (0.1-0.5Hz) to measure 

contractions in deep cervical flexors [20], however, image 

quality is severely impaired. In comparison to MRI, 

ultrasound has higher temporal frequency (20-100Hz+) – 

allowing observation of muscle function – and has lower 

image quality. While, in comparison to fMRI, ultrasound has 

higher temporal frequency and higher image quality. Studies 

have shown that ultrasound is comparatively as accurate as 

MRI and computerized tomography (CT) for measuring 

thickness of deep cervical muscles [21]; the authors of that 

study note that consistency between comparisons of the 

different modalities was improved by the use of image-plane 

markers. 

Previous work has considered shape parameter 

measurement consistency in the deep multifidus via US, 

concluding that it was a reliable method for measuring muscle 

dimensions, both while at rest, and under contraction [18], 

[19], [22]. A survey on ultrasonography of the cervical 

muscles concludes that there is insufficient literature on 

assessment of the cervical muscles via rehabilitative 

ultrasound imaging, and that there is a need for proper 

identification of muscle boundaries, using landmarks and 

knowledge of functional anatomy [1]. The authors further 

argue that standardized positions of subjects and ultrasound 

transducers are important for statistical analysis of shape 

parameter measurements. 

A broad review of the literature reveals that there is 

negligible published work on the segmentation of skeletal 

muscle within ultrasound. The cervical muscles represent one 

of the most challenging groups to segment within one of the 

most challenging imaging modalities, ultrasound [2]. There 

are no previously published works on segmentation of the 

cervical muscles; a morphologically and physiologically 

complex muscle group. There is however a body of work on 

cardiac muscle segmentation within ultrasound [23]–[27]. 

Cardiac muscle is a multi-segment muscle system, which is 

rhythmical and continually active. This differs from skeletal 

muscle groups, which can activate independently, and appear 

differently depending on the configuration of the connecting 

bones and the active state of the muscles, which is particularly 

prominent with a disease such as cervical dystonia. A further 

distinction can be made between cardiac muscle and skeletal 

muscle in the sense that cardiac muscle is not subject to 

compression resulting from probe contact, whereas skeletal 

muscle is. 

ASMs provide a powerful paradigm for combining shape 

statistics to regularize heuristic segmentation algorithms, 

although they require shape statistics built up from many 

annotations of object boundaries over a population. Previous 

work has used ASMs to achieve fully automatic segmentation 

of a two-layer skeletal muscle system in the human triceps 

surae [28], of which this is the only example of automated 

muscle segmentation/analysis via ultrasound. However, 

annotating images of the cervical muscles – directly from 

ultrasound – is extremely uncertain due to the complexity of 

the architecture of the cervical muscles [5], and the 

challenging nature of ultrasound images [2], therefore there is 

currently no standard approach to obtain truth data for cervical 

ultrasound, which is required for an ASM, and more generally 

for testing of any arbitrary technique. Further, this method did 

not present a workable solution for initialising the 

segmentation, and as such required user intervention in many 

cases. There is evidence that AAMs outperform ASMs at 

matching shapes to patches of texture (and ASMs outperform 

AAMs at matching shapes to edges) [29]. However, AAMs 

require comparatively more training examples due to the large 

increase of data dimensions, and are notoriously slower. 

Here we consider a study which proposes the use of an 

ASM with a Gamma Mixture Model (GMM) to segment heart 

cavities in 3D ultrasound [23]. The authors propose use of a 

GMM to classify pixels from the histogram of pixel 

distributions. The GMM is a 2-class one, which aims to 

differentiate hyper-echoic regions (class 1: muscle) from 

hypo-echoic regions (class 2: blood). This information is used 

to initialize a standard ASM of the whole heart, which then 

iteratively searches the volume for a refined segmentation. 

Then they use the standard ASM of individual heart cavities to 

optimize individual cavities and complete the segmentation. 

The authors evaluate their technique on just 20 cases and 

report an accuracy of 71%-90% (Dice similarity coefficient), 

and one failed segmentation. Two independent experts 

manually annotated the individual 2D images of the 3D 

volumes, identifying 5 distinct segments. Finally, they report a 

runtime of over 2 minutes for a single volume, so this is not a 

real-time solution. Their study further reinforces the case for 

applying ASMs; they are robust and accurate and they 
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maintain population-defined statistical anatomical shapes and 

relationships between shapes, which is important in a clinical 

sense. However, one of the main problems with the ASM – 

particularly for real-time applications – is its initialization; 

their approach is to use the pixel intensity histogram to 

initialize the ASM, yet the contrast between a heart cavity and 

heart muscle is very high, whereas the application to skeletal 

muscle concerns the muscle itself, and the internal structure 

(fascicles) is of a similar composition to the boundary 

(aponeurosis), with a similar level of acoustic impedance. The 

cervical muscles are densely packed together, separated 

almost always only by muscle boundaries which are not 

always visible; this rules out histogram-based methods for 

initializing an ASM. 

Skeletal muscle is homogenous in texture, making 

differentiation of individual muscle segments within a group 

via histogram-based methods – particularly where there is 

large muscle-boundary dropout – inappropriate and unlikely. 

An example of failed muscle segmentation and differentiation 

is given here [30], where the authors present a convoluted 

multi-stage method based on speckle patch similarity 

(histograms); their technique „lumps‟ the whole muscle group 

of only 3 muscles together (even the aponeuroses), as does the 

benchmark technique which they compare against [31]. Upon 

inspection of the example images they present, one can see 

that the entire muscle region (but not individual muscles in the 

region) is distinctly differentiable from the other segments by 

pixel intensity alone. Furthermore, their method is highly 

parametric, where parameters are chosen empirically with 

minimal justification and evidence of generalization. Their 

work has further reinforced the idea that histogram-based 

methods are inappropriate for segmentation of skeletal muscle 

within ultrasound. In contrast to the shortcomings of this 

work, the authors have demonstrated that in principal the 

texture of different structures within ultrasound can be 

informative for segmentation of distinct regions. The authors 

note that a supervised shape-regulated model might provide a 

better solution if the deformation of shapes due to probe 

pressure can be successfully modeled – they further add that 

this is a daunting task which is subject to inter-observer 

variations. 

There are a number of papers on ultrasound segmentation 

based on the level-set methods [27], [32], [33]. The popular 

level-set can be a powerful segmentation technique, 

particularly when combined with shape/texture priors [26]. 

However, level-set methods are parametric and are difficult to 

tune, sensitive to initial conditions (initialization), can suffer 

from contour leakage due to segment boundary dropout, and 

computational complexity (runtime) increases with the 

number of objects (the N-level set paradigm) [34]. By far the 

most popular approach to initialization of a level-set region is 

to have an expert manually select the initial region, as in [26]. 

In contrast, and by far the most popular automatic 

initialization method is the use of classification techniques 

based on the pixel intensity histogram [27], [32] or local 

patches of texture [33]. Within the domain we are 

investigating, manual initialization is not possible for two 

reasons: the first is the lack of expert certainty (subjectivity) 

on the location of each of the 10 muscle segments, and the 

second is the usefulness of a system which requires online 

manual labeling (i.e. not real-time analysis and visualization). 

The problems with use of histogram information have already 

been addressed in this paper, namely: lack of contrast between 

homogenous regions. 

Machine learning, and in particular, deep learning methods 

[25], [35]–[37] are rapidly gaining a reputation as the state of 

the art in vision systems. We consider work on object 

detection within ultrasound, which demonstrates a remarkably 

robust solution to detecting features of fetal brains and 

computing measurements of fetal head structures, using a 

novel technique known as the Integrated Detection Network 

(IDN) [38]. This work proposes the use of an IDN for 

extracting features from training data, which are used in a 

sequential probabilistic object detection framework for 

hierarchical detection of object locations. The authors do not 

attempt to use this information for region extraction, but in 

principal their method could be used to initialize an ASM. 

They use a very large dataset of 13,000 annotations, which we 

note is not always feasible. The runtime of their technique is 

approximately 14.7s on a CPU, which we note is not suitable 

for real-time visualization. In their results they disregard the 

top 5% “large” errors, claiming that large errors were 

correlated with low probability from the IDN and can 

therefore be informative to an operator. The main drawbacks 

of this technique are the required amount of labeled data, and 

the runtime of the algorithm; for these reasons this technique 

has been ruled out, but in principal they have demonstrated 

that if one can construct a feature dictionary, one may be able 

to create an object detection system with which one can 

initialize an ASM. 

Machine learning methods in general suffer from the 

problem of obtaining large volumes of annotated data, and in 

cases where obtaining annotated data is difficult – such as the 

cervical muscles within ultrasound – machine learning is not a 

preferred method. Difficulty obtaining labeled data is not 

uncommon within a research lab or a clinic. We can therefore 

rule out all techniques which use machine learning and are 

dependent on large volumes of data. One such example study 

uses a powerful machine learning method known as random 

forests (lots of bagged decision trees) for liver segmentation 

within ultrasound [25]. That study used over 940 annotated 

images, and since liver segmentation is a single segment 

problem, they therefore do not demonstrate application to 

multi-segment problems such as the cervical muscles. Further, 

they do not regulate their solution with anatomically correct 

boundary models, and we have therefore ruled out this 

technique. 

In this paper, we propose a solution which is fast and 

effective for comparatively small datasets. We use the 

principals of the AAM to create a texture-to-shape dictionary, 

in which annotations (shapes) from a training set are warped 

into a mean shape space using nonlinear polynomial 

transformations. Those transformations are then applied to the 

associated texture. After texture/shape transformations we  
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create a mean shape and texture. Then we create a principal 

component model of the shape alone, and use the first n 

component axes to symmetrically generate thousands of 

shapes. Then we warp the mean images from the mean shape 

space to every shape in the components space, resulting in 

thousands of texture templates to be used as a texture-to-shape 

dictionary. To segment a new image we propose an initial 

segmentation using this dictionary, and then we extract the 

profiles of the selected shape from the associated texture, and 

this is used to guide a heuristic search and refine the fitting 

according to the principals of the ASM. We predict that the 

initial segmentation using the dictionary is compatible with 

parallel processing and therefore has the potential to execute 

fast at runtime, and that it will provide a stable and accurate 

initial segmentation from which we can gauge the fit by taking 

some measure of the discrepancy between test image and 

dictionary texture. We also predict that since the initial 

segmentation will be close to the final segmentation, then only 

few iterations of the heuristic search need to be executed at 

full image resolution, which combined will allow accurate 

real-time segmentation. The following section describes our 

proposed method of segmentation. 

III. METHODS 

A. Data collection 

These experiments were approved by the Research Ethics 

Committee of the Faculty of Science and Engineering, 

Manchester Metropolitan University (MMU). Participants 

gave (written) informed consent to these experiments, which 

conformed to the standards set by the latest revision of the 

Declaration of Helsinki. Experiments were performed at the 

Cognitive Motor Function laboratory, in the School of 

Healthcare Science, Healthcare Science Research Institute, 

MMU, Manchester, England. 

Data were collected from 22 participants (age: 29.0 ± 6.6, 

male: 12, female: 10). Firstly, images of participants‟ posterior 

cervical muscles were acquired via transverse ultrasound. A T-

shaped ultrasound probe was held to the back of the neck, just 

above C7 in the vertebra (see supplementary video). We chose 

a T-shaped probe for its suitability for taping to the skin and 

“wearing” during natural movement while imaging the 

cervical muscles, and not for its imaging quality. We 

emphasize that it is possible to choose alternative probes 

which would provide superior image quality. Participants 

stood upright, while a single image was recorded. Then, 2 cod 

liver oil capsules were taped to the neck either side of the 

probe (using Transpore medical tape) to mark the image plane. 

The probe was removed, leaving the capsules in place, and an 

MRI scan (0.3T open MRI scanner, G-Scan, Esaote, Italy) was 

then obtained with participants lying supine on the scanning 

bed and their neck positioned central within a cervical imaging 

coil. Axial scans (Spin T1-weighted HF, matrix        ) 

were performed in a range from the upper jaw line to the 

clavicle, orthogonal to the spine, in 19 equidistant sections. 

B. Image annotation 

Following data collection, a human expert then annotated 

the MRI images, identifying boundaries of trapezius, splenius, 

semispinalis capitis, semispinalis cervices, multifidus, and the 

spine, bilaterally for all participants. The expert was permitted 

to annotate with as many points as necessary to capture the 

essential detail of each muscle. The expert was also instructed 

to begin annotation at the medial apex of each muscle, 

proceeding anti-clockwise around the muscle boundary. The 

annotation instructions were to facilitate point interpolation 

and statistical shape modelling. Following annotation, the 

expert then manually registered the MRI annotations to their 

corresponding ultrasound image via translations and rotations 

only (deliberately) – no scaling was permitted. In addition to 

translation and rotation, the expert was allowed to optimize 

the parameters of a contour squashing function, to 

approximate the soft tissue deformation and subsequently 

match the annotations to the affected muscles (see figure 2). 

This novel contribution was a necessary step, due to the 

pressure on the muscles from the probe during ultrasound 

imaging, which resulted in the muscles directly beneath the 

probe being squashed and deformed and a mismatch between 

the boundaries of MRI and US. 

 To approximate the soft tissue deformation, we first 

normalize the x component of a given shape, 

 

    (
 

 
 

 

 
)  

 

 
, (1) 

 

and then we proceed to apply an exponential squashing 

function parameterized by curvature and pressure coefficients, 

 
a) 

 
b) 

 
c) 

Fig. 2. Image annotation/registration process. In a an expert annotates the boundaries of 10 muscles and the spine within the MRI image which contained 

the image plane markers (green highlight informs the expert which muscle is currently being annotated). After interpolation and smoothing of the annotated 

points, in b the boundaries are manually registered – by the same expert – to the ultrasound image by rotation and translation (no scaling was permitted 

deliberately). Notice that the superficial boundaries do not agree with the texture. Finally, in c the nonlinear squashing function was then applied – by the 

same expert – to approximate the soft tissue deformation in the superficial muscles and complete the manual registration. 
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where   and   are Hadamard element-wise product and 

division operators respectively, x is a vector of x (horizontal) 

coordinates of some annotation, y is a vector of y coordinates 

of some annotation, w is the image (probe) width, c is a 

curvature parameter, and s is a pressure parameter. The result 

of equations 1 and 2 is a function which allows the expert to 

control the depth magnitude of contour displacement by 

tuning the s coefficient which simulates applied pressure, and 

by tuning the extent to which displacement causes increased 

curvature in the medial portion of the probe by tuning the c 

coefficient, which simulates the curvature of the back of a 

person‟s neck prior to probe contact. Using this approach we 

keep the metric anatomical information intact and express 

annotations in terms of a non-linear parametric function (see 

figure 3). We emphasize that modelling the soft tissue 

deformation may be a better approach to consider, though that 

is not the immediate objective of this study. 

For the majority of cases all muscles were visible, 

permitting accurate annotation and registration in both MRI 

and ultrasound images. For a few cases the superficial 

muscles, particularly trapezius, were unidentifiable in the 

ultrasound image, and this was particularly the case for female 

participants. In the cases with invisible muscles, the expert 

aligned all other muscles as accurately as possible, inferring 

the positions of the trapezius and splenius muscles. To 

validate this process we performed inter-expert comparisons 

of annotations/registrations with an expert population of 3. 

Inter-expert registered annotations were compared in the 

ultrasound image plane using the performance metrics defined 

in the results section. The 3 experts annotated and registered 

muscle contours for all 22 participants in isolation of the other 

experts. Then we cross-validated the registered annotations by 

comparing experts 1 and 2, 1 and 3, and finally 2 and 3. Their 

ultrasound registrations were compared in the ultrasound plane 

only, using the Jaccard and Hausdorff metrics (i.e. no 

extrapolation, since the difficulty is in matching ultrasound 

gradients to contours, and not annotating the MR images). 

C. Shape model 

We follow the paradigm of the ASM to build a statistical 

model of shape and contour variance. Firstly, the entire dataset 

of 22 ultrasound images and their registered annotations was 

mirrored (image-central laterally). This was done to account 

for intrinsic asymmetries in the data, and it resulted in a total 

dataset of 44 annotated images. Then, all annotation points 

were interpolated per muscle such that every muscle consisted 

of 50 point annotations with the same anatomical origin and 

end point. Then, we built a principal components model of the 

annotation points. With this model we generated thousands of 

shapes equidistant in the component space. We use the “elbow 

method” to select only the most descriptive components, 

which resulted in retention of only 9 components, collectively 

encoding over 80% of the total variance. Later (see next  

section), we use 33 components (99% of the variance) to 

optimise the segmentation. 

To generate shapes from the model we explore all 

combinations of the 9-dimensional component space by 

creating a 9-dimensional grid of n equidistant steps, within ±2 

standard deviations of each component. These points define 

component weightings which were used to generate distinct 

shapes. We chose number of bins per component   
[                    ] for each component [   ] 
respectively, such that n was as large as possible while the 

dictionary remained feasible in size. To expand on that point, 

the vector n represents how fine the mesh is in component 

space for each component; e.g. the first element of n means 

that we generate 35 points ±2 standard deviations of the first 

component, and the second element means that we generate all 

combinations of first and second components in a 35×35 grid, 

and finally if we take the last element of n we generate all 

combinations of all 9 components in a    grid. At each point 

in all of the grids a hypothetical shape was generated by 

adding weighted components to the mean shape, 

 

   ̅   (  √ ), (3) 

 

where   is a generated shape,  ̅ is the mean shape vector, P is 

an len(x)×9 matrix of shape components, b is a vector of 

length len(x) which contains the component weightings at a 

single point in the 9-dimensional components space, and λ is a 

vector of eigenvalues. This was done for all weighting  

 
a)         

 
c)           

 
b)           

 
d)             

Fig. 3. Parametric model of the soft tissue deformation. Each graphic 

shows the original MRI annotation in blue, and the annotation in green after 

adjusting the parameters of the squashing function. The parameter values are 

shown below each graphic. Notice that decreasing s (c compared with d), 

decreases the amount of simulated pressure, and increasing c (a compared 

with b), accentuates curvature of the affected muscles. We found that the 

mean compression of the superficial muscles was 6.54mm ± 3.1mm, as 

characterised by mean function parameters c: 0.38 ± 0.21and s: 5.4 ± 2.04. 

The coeficcient of variation (   
 

 
) of the two parameters c: 0.55, and s: 

0.37, is consistent with a low standard deviation (CV < 1), which indicates 

consistent behaviour of the function over the group. These findings are 

consistent with previous studies [16], where the authors empiracally show 

that compression can be anywhere between 7mm and 25mm. 
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combinations, which resulted in a database of 70,619 

generated shapes. 

D. Texture model 

 To create a texture model, the mean texture was required. 

Intuitively the textures of each image in the set are not in a 

comparable space (i.e. the muscles are in different locations 

for each person). In order to create a mean texture, we 

optimized fourth order polynomials to map each shape to the 

mean shape, 

 

    [             ]     ∑     
  (   )   

   , (4) 

 

where   is a shape vector of length   ,   is the mean shape 

vector of length   ,   is a vector of polynomial terms, and   

is the order of the polynomial. Equation 3 provides the 

mapping of   to   via the polynomial coefficients  . We can 

then use the function to map pixel locations of a shape to the 

mean texture space. We can solve for the polynomial 

coefficients analytically by redefining mean shape in fourth 

order polynomial form, 

 

  [            ]. (5) 

 

In this form a linear solver can find the vector of polynomial 

coefficients used to transform   to  , 

 

  (   )     . (6) 

 

After solving for the coefficients, we then transformed all 

pixels in the individual textures to a comparable space, using 

bilinear interpolation to fill gaps in the transformed texture, 

and then we computed the mean texture from all of the 

transformed images. 

Following construction of the mean texture, we repeat the 

same process by optimizing fourth order polynomials to map 

the mean shape to every shape in the shape database. This 

resulted in a texture-to-shape dictionary which describes 

where the muscle boundaries are in those textures. Each 

texture in the dictionary was interpolated to an       image 

matrix (approximately one fifth of the original image size) 

using bilinear interpolation. We retain the full resolution 

image for the refined fitting process (section III. F). The 

reason for down-sampling was to reduce computation time 

during template matching (see next subsection), and to add in 

some feature-translation invariance. 

E. Dictionary segmentation 

After construction of a texture-to-shape dictionary, 

segmentation of a new out of sample image can now be 

achieved by searching the dictionary for the texture which 

minimizes the sum of absolute differences (SAD) between a 

texture and a new image, as is standard for lighting-invariant 

template matching. Once the best matching texture is known, 

the shape associated with that texture can be extracted and 

used as an initialisation for the refined fitting procedure. We 

parallelised the search (partitioning the data) using all 4 cores 

(8 threads with hyper-threading) of a CPU to compute the 

SAD measure in parallel, storing the results in a list, where the 

indexes of the list correspond to the index in the texture-to-

shape dictionary. We acknowledge that further gains in 

computation speed could be achieved by using multiple CPUs, 

and Graphics Processing Units (GPU), however in that regard 

this study only aims to demonstrate the increase in 

computation speed as a result of parallelization. After the SAD 

metric is computed for all textures in the dictionary, we then 

search the list for the minimum, which gives the best texture 

and consequently the best segmentation, from which we can 

use the component model to refine the segmentation (see 

figure 4). 

F. Refined fitting segmentation 

The initial segmentation not only provides a reliable 

estimate with regards to the shape and location of each 

muscle, it also gives the warped mean texture. We extract 

contour profile intensities from the warped texture, and then 

we use the statistical model to refine the segmentation with 

additional components and a heuristic search. We slightly 

modify the ASM search routine which is described in detail 

here [3]. In brief, we define a set of image intensity search 

profiles from the test image, perpendicular to the muscle 

contours at each of the 50 points in each muscle, 20 pixels 

(which is larger than the standard ASM) above and below the 

contour. We also define a set of intensity profiles for the mean 

shape using the warped mean texture from the initial 

segmentation, half the length of the search profiles. The reason 

for using the warped texture and larger profiles is to use as  

Raw US Dictionary textures Dictionary shapes Best SAD solution 

 

  

 

Fig. 4. Dictionary segmentation pipeline. From let to right, the raw ultrasound image is acquired, then the dictionary of textures is compared one by one on 
the CPU (or all in parallel on multiple cores, or a GPU) by taking the average of the sum of absolute pixel differences (SAD). The index of the best matching 

texture (lowest SAD score) is used to extract the contours which were used to generate that texture, which are subsequently used to segment the raw image. 
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much of the texture as possible, since edges and features are 

not typically high contrast in ultrasound images. Then, for 

each contour point we move the mean profile along the search 

profile (from end to end) and compute the sum of squared 

differences (SSD) between intensities of the normalised test 

image and the intensities of the corresponding static profile in 

the normalised dictionary image. We take the moved contour 

point at the minimum SSD and store it in a new shape vector. 

When we have computed the coordinates which minimise 

SSD for all contour points we have a new shape vector, 

 

   [             ]. (7) 

 

We then project this shape into components space, 

 

    (    )  √ , (8) 

 

where   is a gradient term (which we empirically set to 0.1), 

and finally we re-project the component vector c, back into 

shape space, 

 

       . (9) 

 

The rationale for using SSD rather than SAD here, is that 

during dictionary segmentation, the whole texture is 

considered and thus all pixels should be considered with equal 

weight (which empirically was the case), however the for the 

refined fit, we consider the boundary (edge) information, 

therefore normalisation adds weight to these components for 

focussed comparison. 

For this procedure we retained 33 components (99% of 

variance), therefore the process of projection into components 

space and re-projection into shape space the model will 

discard spurious contour movements (i.e. contour shapes that 

are not statistically representative). We do this iteratively for 

some maximum number of iterations (200). To prevent new 

shape vectors wandering away from the statistical norm 

defined by the shape model, we regularised the component 

projection such that each vector lies within 3 standard 

deviations of the model. All parameters were chosen 

empirically. For each iteration, after projection of the new 

shape vector into components space, we compute the 

following sum, 

 

  ∑(     √ )
 
, (10) 

 

and where     we regularise the vector c with, 

 

    
 

 
. (11) 

 

This regularisation forces the norm of any generated 

component to lie within a hyper-ellipse, 3 standard deviations 

from the model, and therefore will limit the optimisation to 

explore only valid points in the manifold. After 200 iterations 

the refined segmentation is complete (see figure 5). 

G. Visualisation and real-time analysis of muscle features 

After segmentation of the muscles, we present live on-

screen visualisation of the whole cervical muscle structure, 

and quantitative and visual analysis of the components of the 

segmented muscles. On the screen we show the raw 

ultrasound with the segmented muscle boundaries overlaid, 

showing the extrapolated muscle boundaries beyond the 

ultrasound plane (see figure 6). Extrapolation is an intrinsic 

property of the ASM, no explicit procedure is needed for this 

– the component model simply re-projects the hypothetical 

boundaries based on the gradients present in the ultrasound 

image (i.e. its best approximation at what the whole muscle 

structure looks like, given the image). 

Further to visualisation of the whole muscle structure, since 

the segmentation is inherently composed of re-projected 

components, and since each component uniquely captures a 

visual feature (e.g. asymmetry, relative muscle 

size/orientation, whole muscle group size) we present 

normalised statistics in the form of a bar chart on the screen. 

We first normalise each shape component, 

 

 
Fig. 5. Shape model refined fitting for a two representative results (> 90% Jaccard index). From left to right the raw ultrasound is shown, followed by 

the dictionary segmentation result, followed by the refined shape model fitting result. Solid green colour shows the automatic segmentation, and dashed cyan 
colour shows the expert annotation/segmentation. These results empirically demonstrate the accuracy of the proposed tool. Importantly, even without the 

refined fitting step, the live segmentation is accurate, even giving a good approximation of the muscle shapes and boundaries beyond the lateral ultrasound 

plane. The refined fitting increases the accuracy and subsequently improves the extrapolation of the muscles beyond the image, which can be used to 
visualise the muscle structure of a patient, beyond the visible features in the ultrasound plane. 
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√ 
, (12) 

 

where    is a vector of standard deviations representative of 

the proportional magnitude of each component. We can now 

express    as a bar chart visualisation, and record/interpret its 

meaning in real time. Further to the quantitative measure, we 

provide an interface for visually interpreting each component. 

We take the top n proportional components and display them 

on the screen as a shape with arrows ending at each contour 

point, originating at each corresponding mean point. This 

allows visual identification, recording and characterisation of 

features present in a person with CD or some other condition. 

IV. RESULTS 

To consider the performance of our technique we consider 

the two features which would be most useful in a clinical 

setting, muscle contour detection and muscle cross-sectional 

area approximation. While these two features are intrinsically 

linked, it is important to know the extent to which they can be 

measured. To measure the accuracy of muscle contour 

detection, we used the Hausdorff distance, which is defined as, 

 

 (   )     (*
 
 
+), (13) 

 

where, 

 

      (    ), 

 

      (    ), 

 

 

and   is the ground truth (expert annotation), and   is the 

model segmentation. The Husdorff distance gives the furthest 

distance (i.e. the greatest deviation) of all points between the 

ground truth and the segmentation, which we express in 

millimetres. 

 To measure the accuracy of cross-sectional muscle area 

measurement we use the Jaccard index, which is defined as the 

intersection between ground truth and model segmentation, 

divided by the union of the ground truth and model 

segmentation. This Jaccard index is computed for individual 

muscle segments to ensure that the correct regions are being 

classified by the model, 

 

 (   )  
     

     
. (14) 

 

The Jaccard index gives the proportion of the combined areas 

of 2 arbitrary polygons (a ground truth muscle, and a model 

segmentation muscle) that is overlapping, which was 

computed for all 11 segments, averaged, and then expressed as 

a percentage. We also give the Dice similarity coefficient, is 

less discriminating than the Jaccard index but due to its 

popularity is given to allow comparisons with other methods, 

 

 (   )  
      

        
, (15) 

 

 In addition to measuring segmentation accuracy, we also 

measured the time taken to segment a single image using 4 

cores on a CPU (i7-4720HQ), where all code is original and 

was written in C++. Leave one out (LOO) cross validation 

was used for all participants‟ data, where any given test case 

contained 2 ultrasound images (original and mirrored), and 42 

(21 originals and 21 mirrored) training images for the 

construction of the shape and texture models. 

 Results showed high Jaccard indices and Dice coefficients, 

and a low Hausdorff distance for the majority of test cases, 

demonstrating consistent and accurate performance for both 

measures. In the best cases, over 99% of the muscle areas 

were in agreement, and the largest deviation of all points in 

the annotation and the segmentation was less than 4mm 

(meaning that all points deviated at most by 4mm). In the 

worst cases we see agreements as low as 33% and 50% for 

Jaccard index and Dice coefficient respectively, and a 

maximum contour deviation of 20mm according to the 

Hausdorff distance. Positively, these cases represent outliers in 

results terms, and their failure can be predicted from their 

SAD values. The trickier cases (x > 60% < 80% Jaccard) 

a) 

 

b) 

 e) 

 

c) 

 

d) 

 
Fig. 6. Muscle feature segmentation visualisation. This figure shows how segmentation can provide visualisation of identified component features, and also 

how those components can be represented quantitatively. The raw ultrasound is given in a, and in b the refined (post) segmentation is given. c and d are a 

vector visualisation of the two main components of variance (2 and 9, respectively) – where the solid blue contours represent the magnitude of deviation from 

the mean shape, and the arrows represent angle of deviation (i.e. each arrow originates at the mean shape, and ends at the component-projected shape – 

highlighting the major differences of a person‟s neck from a population). The bar plot (e) shows the magnitude of the first 15 components, where the colour 

represents the sign (white dashed = negative). With this visualisation a clinician and/or a patient can visually interpret the features detected by the 

segmentation, which can recorded for group and longitudinal studies. 

 



0278-0062 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2623819, IEEE
Transactions on Medical Imaging

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

represent cases where either the ultrasound image was sub-

optimal, or not all muscles were not visible, or the physiology 

of the muscles as appeared in the ultrasound image was 

unusual; for example one of the participants‟ spine was barely 

visible above the lower boundary of the image (i.e. a 

comparatively large neck outlier). To address these cases one 

might suggest increasing the number of standard deviations 

within which the ASM can search the image, however, we 

found that 3 standard deviations was a good regularizer, and 

increasing this value empirically produced some over-fitting, 

even overlap in the muscle segments. One other suggestion 

may be to use a larger population and develop multiple 

models, which the operator could rapidly switch between at 

runtime. This is not dissimilar to (f)MRI brain segmentation, 

or facial segmentation, in which different models are  

 
Fig. 7. Histogram of results. These histograms summarise the 3 

performance metrics, Jaccard, Hausdorff and SAD, for our method. The 

majority of results recorded over 86% accuracy (Jaccard index). Similarly, 

the majority of results recorded below 7mm (Hausdorff distance). Correlation 

of SAD and Jaccard index (                  ), and the Hausdorff 

distance (                 ), revealed a strong relationship between 

the 3 metrics. 

 

employed to segment different ethnical groups. 

Finally, we evaluated the annotation process using the 

above named metrics to assess the agreement between an 

expert population of 3. Comparisons empirically demonstrate 

that our image annotation protocol was robust and consistent, 

showing high accuracy and agreement between operators, 

although there were disagreements occurring in challenging 

ultrasound images. Results also showed that the agreement 

between operators was slightly lower than our automated 

technique for which we give probable reasons in the 

discussion section. 

V. DISCUSSION 

A real-time cervical muscle segmentation and analysis tool 

was successfully developed for use with standard B-mode 

medical ultrasound machines. This study has opened up a new 

domain in medical imaging research (real-time muscle 

segmentation and analysis via ultrasound), which has 

particular relevance to many applications including cervical 

dystonia, concussion, whiplash, and many other neck/back 

pain medical problems. Furthermore, segmentation is a 

precursor step enabling normalisation of individual muscles 

for statistical and machine learning approaches.  Hence we 

anticipate the results achieved by this approach will stimulate 

widespread development within this domain. 

To deliver our tool, we have developed a new 

methodological approach to modelling and segmenting any 

arbitrary semi-rigid structure via ultrasound. Our methods 

presented here allow operators to confidently annotate 

ultrasound images using a novel multimodal (MRI-ultrasound)  

Table. 1. Table of results. This table summarises the accuracy and timing 

metrics for 200 iterations of the segmentation algorithm we have proposed and 

developed. It also summarises the results and timing for 25 iterations at 2 

scales (50 total) of the standard AAM [39]. Results are given for the dictionary 

segmentation (pre) and the refined fitting (post), for both: segmentation within 

the ultrasound image (US) and extrapolation of whole muscle structure beyond 

the ultrasound image (extrap). Results show that our method is accurate to 

over 86%, with the best result recording over 99% accuracy according to the 

Jaccard index and the Dice similarity coefficient, and maximum contour 

discrepancy of just 3.8mm according to the Hausdorff distance. Notice that our 

method is an improvement over the standard AAM, particularly when 

predicting shape (extrap) beyond the image texture. We also demonstrate the 

vast difference in segmentation runtime between our method and the AAM*. 

Additionally we give inter-expert comparisons, which empirically demonstrate 

within the ultrasound: subjectivity, increased variability, and less agreement 

than the automated methods. Further to analysis of performance metrics, the 

timing measurements show that our tool can segment a new image 

approximately 2-3 fps. 

 μ ± σ min max 

J
a
c
ca

r
d

 i
n

d
ex

 

pre - US 

post - US 

AAM - US 

expert - US 

expert - MRI 

85.52% ± 17.36% 

86.67% ± 15.87% 

84.09% ± 14.67% 

79.16% ± 19.70% 

96.84% ± 0.02% 

33.77% 

32.43% 

40.11% 

37.68% 

88.34% 

99.45% 

99.55% 

96.26% 

99.32% 

99.99% 

pre - extrap 

post - extrap 

AAM - extrap 

86.64% ± 13.76% 

87.19% ± 13.04% 

82.98% ± 13.07% 

46.48% 

43.85% 

41.36% 

98.21% 

98.77% 

95.35% 

D
ic

e
 s

im
il

a
ri

ty
 

c
o

e
ff

ic
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n
t 

pre - US 

post - US 

AAM - US 

expert - US 

expert - MRI 

91.08% ± 12.24% 

91.91% ± 11.51% 
90.55% ± 10.43% 

86.87% ± 13.88% 

98.38% ± 0.01% 

50.49% 

48.98% 
57.25% 

54.73% 

93.81% 

99.72% 

99.78% 
98.10% 

99.66% 

99.99% 

pre - extrap 

post - extrap 

AAM - extrap 

92.19% ± 9.06% 

92.56% ± 8.80% 

90.06% ± 9.20% 

63.47% 

60.96% 

58.52% 

99.10% 

99.38% 

97.62% 

H
a

u
sd

o
r
ff

 

d
is

ta
n
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pre - US 

post - US 

AAM - US 

expert - US 

expert - MRI 

7.00mm ± 2.76mm 

6.47mm ± 3.03mm 
7.65mm ± 2.73mm 

7.69mm ± 3.61mm 

2.45mm ± 0.81mm 

4.24mm 

3.84mm 
4.21mm 

3.43mm 

0.81mm 

15.01mm 

16.06mm 
13.71mm 

20.98mm 

4.77mm 

pre - extrap 

post - extrap 

AAM - extrap 

8.75mm ± 2.79mm 

8.32mm ± 2.89mm 

11.21mm ± 3.08mm 

4.03mm 

4.72mm 

6.11mm 

16.95mm 

17.33mm 

17.27mm 

T
im

in
g
 

pre 

post 

AAM* 

0.203s ± 0.002s 

0.130s ± 0.007s 

72.87s ± 2.14s 

0.203s 

0.125s 

69.98s 

0.218s 

0.141s 

81.63s 

S
A

D
 

pre - US 11.47px ± 0.97px 10.11px 13.34px 

*The AAM was downloaded for use with the MATLAB interface, which we 

acknowledge would not be as efficient as the same algorithm written in c/c++. 
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manual registration method. We have also developed a novel 

method for approximating the soft tissue deformation due to 

probe contact. We acknowledge that there are techniques for 

imaging the muscle system without applying pressure to the 

structure being imaged; however the tool presented here was 

developed in such a way that it could be easily deployed and 

used with minimal complications in a clinical setting, and is 

generally applicable without restriction – there is nothing 

preventing the same methods being used where there is no 

tissue deformation. 

On the polynomial mapping of textures from shapes 

(section III. D.), the authors would like to note that various 

other methods were attempted among various levels of 

polynomials. We note that spline-based and triangulation 

methods warped the textures to unrecognisable forms with 

huge holes in the texture (over-fitting), which we attribute to 

the vast differences between matched shapes. In contrast, we 

tried polynomial orders 2 through 4 which all produced 

desirable results, where greater than 4 started to give too much 

over-fitting again. We settled on order 4 polynomials to 

maximise the fitting, while simultaneously preserving regions 

through minimal warping. 

The tool was rigorously evaluated against a gold standard, 

popular and powerful segmentation method (AAM), using 

LOO cross validation under two conditions; its ability to 

extract detailed contour (shape) information (Hausdorff), and 

its ability to localize and identify the area of each muscle 

within the texture (Jaccard/Dice). Results showed that the tool 

is accurate and consistent at over     accuracy on average, 

with the best cases recording      accuracy (see table 1, 

and figure 7), compared with the AAM which reported 

consistent accuracy over 84%, with the best cases only 

recording > 96%. We draw your attention to figure 7, which 

shows how the initial segmentation (pre) performs well overall 

at identifying the correct muscle cross-sectional areas within 

the texture (Jaccard), and how the refined fitting (post) 

worsens slightly for the upper quartile of cases according to 

the same metric. We also draw your attention to the Hausdorff 

results in the same figure, which conversely show an 

improvement after refined fitting for the upper quartile of 

cases. This was predicted in our introduction and supported by 

the literature [29], where we expected AAM-type techniques 

to perform best at matching texture areas than visible 

contours. The initial dictionary segmentation performs well at 

matching muscle areas, but then the refined fitting allows 

capture of the essential detail of the muscle boundary, while 

degrading slightly the quality of the overall texture match. 

This phenomenon can be explained by annotation error (see 

table 1 for inter-expert disagreement), where the whole shape 

of the muscle boundaries is anatomically correct and validated 

due to the rigid registration process, yet somehow the general 

approximation of the location of muscle areas is slightly 

mismatched. This would mean that after refined fitting, the 

overall Hausdorff distance should decrease, and the Jaccard 

index should increase as the muscle shape is corrected to fit, 

and the area has some constant translational/rotational error. It 

may also be that our compression function is not entirely 

physiological, which would also bring about some 

translational error. These findings validate our method and 

justification for our annotation protocol. 

Inter-operator comparisons of the annotation process proved 

comparatively robust, while showing slightly increased 

variability and slightly lower agreement between experts than 

the automated methods. We note that the largest 

disagreements between experts occurred generally in the 

poorest quality ultrasound image data, and were also generally 

the same images which the tool performed poorest on. 

However, our tool provides an interface for regulating quality 

of data via operator feedback, since we have shown that it is 

more consistent and can self-report the SAD metric during live 

segmentation – which was related to the accuracy of the 

segmentation (see figure 7). We can also apply a threshold to 

the SAD metric and discard segmentations below that 

threshold (see supplementary video). With respect to the poor 

agreements between experts, we note that there are fewer 

degrees of freedom during the annotation/registration process; 

by definition the method has more flexibility to transform and 

optimise muscle boundaries using a population-generated 

model, where the experts were not permitted (deliberately, to 

retain the anatomical muscle boundary relationships of 

individual participants). A combination of feedback of muscle 

boundary graphical overlays and a self-reporting error metric 

may lead to regulation of data quality and improved 

segmentation results. 

We also demonstrated how our tool would be used to 

extrapolate and visualise the wider cervical muscle structure 

beyond the ultrasound image plane, and quantitatively analyse 

whole muscle features detected by the segmentation 

procedure, in real time. Live visualisation of the whole 

cervical muscle structure can help inform people with CD 

about their condition and how it affects their anatomy, while 

also giving the clinician a detailed view of the location of any 

features which are characteristic of dystonia. Live 

visualisation of analysis allows interpretation of a person‟s 

condition, which may be recorded and studied longitudinally. 

The proposed application of this tool is to facilitate 

treatment monitoring, and diagnosis of CD, although there are 

many conditions which would benefit; whiplash, burners, 

 
Fig. 8. Lab setup. In the figure a participant stands upright, with the 

ultrasound probe held against the posterior neck, and a screen opposite. 

The screen shows segmentation overlaid on the raw ultrasound in real time. 
See supplementary video; all participants in the video were not included 

in any of the methodological/modelling stages presented in this study; i.e. 

no MRI or ultrasound were acquired or labelled from these participants, 

and thus the video is representative of real-world performance. The video 

shows some ability to handle changes in head orientation/position, although 

of course the accuracy of this currently cannot be quantified; i.e. no ground 
truth labels. 
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cervical radiculopathy, spondylosis, stenosis, and repetitive 

motion disorders, to name a few. With respect to CD, the 

current gold standard treatment involves inserting needles 

directly through the muscle layers into the target muscle, and 

injecting botulinum toxin. However, there are numerous 

problems with this procedure: 

1) There is often difficulty in identifying the affected 

muscle(s), and often the only solution is to feel around the 

neck for tight (active) muscles, and consequently the deep 

muscles cannot be explored or treated because they cannot be 

identified as symptomatic, and they are too close to the spine 

to risk injection. 

2) There is also difficulty in validating whether the correct 

muscles have been targeted by the botulinum needle. 

Botulinum takes approximately a fortnight to take effect; 

therefore feedback about the efficacy of any single injection 

cannot be obtained in real-time. The use of needle EMG or 

feeling for active muscles is not applicable here. 

3) There is currently no quantitative way to monitor the 

progression of CD, or the effect of any treatment in individual 

muscles or muscle groups, whether that is Deep Brain 

Stimulation (DBS), Parkinson‟s drugs, muscle relaxants, or 

botulinum toxin. EMG can provide session-subjective 

information about muscle activation, but it is invasive and 

time consuming, and cannot measure muscle wasting, 

regeneration, or asymmetry about the spine. 

Our tool avoids the need for MR imaging, which would 

otherwise prevent people who meet exclusion criteria from 

benefiting from its use. Our tool can provide clinicians with 

real-time identification of every layer of muscle, allowing 

image optimization by on-screen feedback. With an optimised 

image, there are existing techniques [40] which would allow 

tracking of the needle end point in the ultrasound image plane, 

promoting confident placement of the needle in even the 

deepest muscles. Our tool provides quantifiable data on cross-

sectional muscle area and shape, and asymmetries. Data can 

be recorded with confidence and can be used to inform future 

treatments. We propose that the methods presented here allow 

potential modelling of CD and other neuromuscular disorders 

using pattern recognition methods (e.g. [41]), which may be 

incorporated into the real-time feedback to help identify 

suspected symptomatic muscles, informing decisions to target 

identified muscles. We highlight this as an important research 

area which needs to be explored, which would contribute to 

the development of new treatments for CD. 

We propose this tool has more general application.  The 

structure of muscles along the spine is consistent between 

cervical, thoracic and lumber regions.  Hence all the methods 

are immediately applicable to segmentation of deep lumber 

muscles in application to chronic low back pain.  In principle 

the methods are applicable to complex muscles structures 

within the upper and lower limb. With respect to image 

analysis, deep learning shows much promise for the extraction 

of features characterising muscle structure and muscle action 

for medical diagnosis. However, deep learning is applied to 

individual muscles requires normalisation to a standard form 

and we propose this tool is a first stage in that process [42]. 

VI. CONCLUSIONS 

In summary, a tool has been developed which allows real-

time segmentation and identification of the posterior cervical 

muscles. This study has validated the efficacy of the tool for 

quantifying muscle area and shape parameters with minimal 

error, as validated by high-resolution expert annotations of 

MR images. We have demonstrated that our technique is 

effective with only a small amount of training data, which is 

common in many medical imaging problems. This study also 

presents a generalized methodology for reproducing these 

results using an annotation and our novel multimodal manual 

registration method, to allow modelling and segmentation of 

generally any muscle group in the body that is visible via 

ultrasound. We have tested and validated the hypothesis set 

out in our introduction, that “ultrasound provides sufficient 

information to facilitate an automatically accurate 

segmentation of the neck muscles”. We have also tested and 

validated the hypothesis set out in our introduction, that 

“ultrasound contains the information required to locate an 

annotation defined in the MRI domain”. Since our tool is non-

invasive and has no exclusion criteria, it is suitable for clinical 

environments for the monitoring and guidance of CD 

treatment. Further work is required to clinically validate this 

tool on a large CD population, and to develop the tool to allow 

automatic identification of, and quantification of severity, of 

symptomatic patients and individual patients‟ muscles. 

Importantly, we have given a methodology for applying this 

technique to any arbitrary muscle group and/or disease. There 

is currently a lack of literature on modelling CD in terms of 

measurable muscle parameters; therefore we conclude that the 

tool presented in this study would promote inexpensive 

acquisition of large volumes of quantitative data on 

symptomatic muscles, expanding the scope of understanding 

of the pathophysiology of CD. 
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