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Abstract 28 

Introduction: Muscle weakness determines functional impairment in spastic cerebral palsy 29 

(SCP). Measurement of specific force (SF) allows for strength comparison with unimpaired 30 

populations (controls) accounting for neural (activation and coactivation), architectural 31 

(fascicle length and pennation angle), and structural differences (moment arm length). 32 

Methods. Medial gastrocnemius (MG) SF (and its determinants) was assessed in both paretic 33 

and non-paretic legs of 11 men with SCP and 11 age-matched controls during plantarflexion 34 

maximal voluntary isometric contraction (MVIC).  35 

Results. SCP fascicles were 28% longer than controls (P<0.05). Pennation angle of SCP was 36 

41% smaller than controls. The PCSA of SCP MG was 47% smaller than controls (P<0.05). 37 

There was no difference in SF between controls and SCP. 38 

Discussion: Weakness in SCP is primarily attributable to deficits in agonist activation and 39 

muscle size; consequently, SF measured in the MG is similar between SCP and controls.  40 

 41 

Keywords: Cerebral Palsy; Muscle architecture; PCSA; Medial gastrocnemius; Specific force; 42 

Ultrasonography.  43 
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Introduction 44 

Muscle weakness in children with spastic cerebral palsy (SCP) has been shown to originate 45 

from impaired neural signalling, smaller muscle size, and altered architecture in the paretic 46 

musculature 1-4. Such weakness of the paretic muscles have been shown to contribute to 47 

differences in gait patterns 5 and to limit motor control performance 6,7. Although muscle 48 

weakness may limit the performance of daily tasks, only a few studies have addressed the 49 

underlying determinants of weakness specifically in adults with SCP.  50 

 51 

It has been reported that larger deficits in weakness exist in the more distal paretic muscles 52 

of the lower limbs in individuals with SCP 8. With this in mind, Elder et al. 1 reported that 53 

isometric plantarflexion (PF) torque of the paretic limb relative to the anatomical cross 54 

sectional area (ACSA; Nm.cm-2) in children with hemiplegic SCP was ~40% lower than either 55 

the non-paretic limb or individuals without neurological impairment. Similarly, while such 56 

findings are crucial to furthering our understanding of the determinants of muscle weakness, 57 

it has been well documented how ACSA measurements underestimate the true physiological 58 

cross sectional area (PCSA) of pennate muscles 9-11. In support of these findings, correlations 59 

between muscle force during PF maximal voluntary isometric contraction (MVIC) and PCSA 60 

have been shown to be considerably higher than correlations with ACSA (r = 0.72 vs r = 0.92, 61 

respectively12).  62 

 63 

Although muscle size is the greatest determinant of muscle strength, architectural 64 

characteristics of pennate muscles are also known to influence contractile function. Changes 65 

in architecture as a result of resistance training 13 and bed rest interventions 14,15 have been 66 

suggested to impact the force output of a muscle in individuals without neurological 67 
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impairment. In children with spastic hemiplegic SCP, the resting fascicle lengths of the paretic 68 

muscle in the gastrocnemius have been reported to be smaller when compared to the muscle 69 

of children without neurological impairment 2 and the contralateral non-paretic limb 3. On the 70 

other hand, resting fascicle pennation angle of the paretic medial gastrocnemius (MG) did not 71 

differ when compared to the non-paretic muscle of individuals with SCP and the dominant limb 72 

of control participants without neurological impairment 2. Conversely, during PF MIVC trials of 73 

the MG in young adult men and women, the paretic fascicle length was not different from that 74 

of normal control participants 16. It is for this reason that measures of contractile area in SCP 75 

should consider the possible morphological differences of the muscle, for example PCSA. 76 

Indeed, Barber et al 16 have shown how MG PCSA can account almost entirely for differences 77 

in PF MVIC torque between those with and without CP. However, a more complete 78 

assessment of the intrinsic strength of the muscle (and the neural and morphological 79 

determinants) would involve the measurement of specific force. 80 

Specific force, defined as the fascicle force/PCSA, is a measure of intrinsic muscle strength, 81 

that accounts for these aforementioned architectural and morphological characteristics of the 82 

muscle, plus the moment arm length and neural determinants of strength (agonist activation 83 

and coactivation) 17,9,10. Moment arm length is a primary determinant of the effective translation 84 

of muscle force to torque 18,19. Despite the excessive plantar flexion and hypothetical impact 85 

this may have on the Achilles tendon moment arm 20, particularly given the joint deformation 86 

in the ankle 21, there appears to be some preservation of the muscle-joint configuration, at 87 

least in terms of indirect measures of the moment arm in children with SCP 22. There is at 88 

present however, no information on moment arm lengths in the paretic and non-paretic limbs 89 

of adults with SCP.  90 

In terms of neural impairment in SCP, increased coactivation of the antagonist 16 and reduced 91 

activation of the agonist 23 are known to contribute to strength decrements between individuals 92 

with and without SCP. Therefore, given the established neural 23, architectural 16, and possible 93 
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joint differences 20 of individuals with SCP, the aim of this study was to determine whether 94 

differences in strength at the fascicle level persist when these morphological and neurological 95 

factors are accounted for through the calculation of specific force. Consistent with other 96 

neuromuscular conditions that have shown evidence of lower specific force or muscle quality 97 

(e.g. sarcopenia 9 and disuse 24), it was hypothesized that the MG specific force of the paretic 98 

limb would be lower than the non-paretic limb and the dominant limb of individuals without 99 

neurological impairment (hereafter, this group will be referred to as ‘controls’). 100 

 101 

Materials and Methods 102 

Participants   103 

Twenty-two active and ambulant men gave written informed consent to participate in the study. 104 

Eleven of the participants had spastic hemiplegic CP [age = 21.2 (3.0) years, stature = 1.79 105 

(0.10) m, mass = 70.0 (12.5) kg], and 11 control participants had no history of musculoskeletal 106 

or neurological impairment [age = 21.8 (2.2) years, stature = 1.81 (0.04) cm, mass = 79.0 (8.4) 107 

kg]. Each participant with SCP rated between II and III on the modified Ashworth scale and 108 

had been formally classified independently by individuals from the Cerebral Palsy International 109 

Sports and Recreation Association (CPISRA). All participants with SCP rated as level 1 on the 110 

Gross Motor Function Classification System (MGFCS). Both the paretic and non-paretic legs 111 

were tested in each participant with CP, whereas the dominant limb was assessed in the 112 

control participants. All participants were free from lower limb injury and had not received any 113 

form of medication to reduce the effects of spasticity within the last year. None of the 114 

participants had a history of any surgical procedures on their lower limbs that would have 115 

affected the data collection from the sites assessed. The study was approved by the local 116 

ethics committee at Manchester Metropolitan University and conformed to the standards set 117 

by the latest revision of the Declaration of Helsinki25.  118 
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 119 

Protocol 120 

Participants attended the laboratory on 2 occasions. During the first visit, familiarization was 121 

carried out, which included a series of 6 PF MVIC followed by a series of submaximal 122 

percutaneous electrical stimulations. During the second visit, participants were assessed for 123 

resting measures of muscle size and moment arm length, which were then followed by the 124 

MVIC tests.   125 

 126 

Strength measurements  127 

The PF MVIC torque was recorded with the participants secured to an isokinetic dynamometer 128 

(Cybex Norm, Cybex International Inc., NY, USA) in the seated position with the back angle 129 

reclined at 65 deg. The participant’s knee was secured in full extension with Velcro straps, 130 

which were positioned proximal to the knee. All participants were able to achieve full knee 131 

extension in this position. The medial malleolus was aligned visually with the dynamometer’s 132 

central axis of rotation, and 2 Velcro straps were used to secure the foot to the footplate in 133 

order to minimize heel displacement. The participant’s hips were also secured to the seat to 134 

limit extraneous movement during PF MVIC trials. All participants warmed up by performing 3 135 

submaximal isometric contractions with the ankle angle at 0 deg (the individual’s anatomical 136 

zero), each of which were separated by a 1 min rest period. In this instance, 0 deg was defined 137 

as the foot at 90 deg to the tibia.  After the warm up, the participant’s ankle remained fixed at 138 

0 deg, and 2 PF MVICs were obtained, separated by a 2 min rest period. Throughout all MVIC 139 

trials, participants were encouraged verbally to exert as much force as possible, and online 140 

visual feedback was provided on a monitor. Dorsiflexion (DF) MVIC was completed after the 141 

PF MVICs using the same testing posture and protocol in order to calculate tibialis anterior 142 
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(TA) coactivation. All but 2 of the SCP participants were able to achieve the 0 deg ankle 143 

position [maximum dorsiflexion ROM was -5.30 (0.48) deg  for SCP participants26]. For these 144 

2 participants “0 deg” was measured at 4 and 6 deg plantarflexion. It should be noted that 145 

fascicle length was longer in SCP during PF MVIC (see results), and passive torque at zero 146 

degrees was no different than in control participants [Control 19.5 (6.80) Nm, Paretic 22.7 147 

(10.3) Nm]. Furthermore, based on the MVIC torque angle relation presented previously16, the 148 

influence of this more plantarflexed position in these 2 participants could be estimated to have 149 

reduced their PF MVIC by ~5 Nm, and was considered unlikely to have influenced the 150 

significance of the results presented below.  151 

 152 

Agonist Activation 153 

In order to account for any deficit in MVIC torque in the quantification of specific force, 2 154 

supramaximal stimuli were applied to the muscle (pulse width, 50 µs).  The first simulus was 155 

applied during MVIC. The second was applied approximately 2 s after the first when the torque 156 

had returned to levels equivalent to that observed prior to MVIC, from which voluntary 157 

activation levels of gastrocnemius were calculated 23,17. The stimulus was delivered by 158 

applying 2 percutaneous stimuli  (DSVDigitimer Stimulator; Digitimer, Herts., UK) to the 159 

gastrocnemius using rubber stimulation pads (size ranging from 38 mm x 89 mm to 76 mm x 160 

127 mm; Versastim; Conmed, NY, USA), both of which were placed transversely distal to the 161 

popliteal crease and myotendinous junction of the soleus. The amplitude of the stimuli was 162 

determined prior to interpolation while the participant was in a relaxed state, administering 163 

twitches starting from 50 mA and increasing in increments of 50-100 mA, until no further 164 

increase in twitch torque was quantified. The voluntary activation level of each participant was 165 

assessed using the trial that produced the highest contractile torque. Agonist activation was 166 

calculated by dividing the supramaximal twitch torque during MVIC by the post MVIC twitch 167 
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torque, consistent with Morse et al. 9. If there was a deficit in muscle activation (a value <100%) 168 

and assuming a linear relationship between MVIC torque and agonist activation 27,28, a 169 

correction was made with PF MVIC, which was calculated as: (PF MVIC torque / 100) x deficit 170 

in voluntary activation. This value was subsequently added to the MVIC torque along with 171 

torque contributions in coactivation to estimate PF MVIC net torque. 172 

 173 

Coactivation  174 

TA electromyographic (EMG) activity was recorded using 2 pre-gelled, unipolar, 10 mm, Ag-175 

AgCl percutaneous electrodes (Medicotest, Denmark). Boundaries of the TA were determined 176 

using ultrasonography to ensure accurate placement of each electrode along the mid-sagittal 177 

axis of the muscle and to reduce cross-talk. Two electrodes were placed distally at two-thirds 178 

of the TA length, and a reference electrode was placed over the lateral epicondyle of the 179 

femur. Prior to placement of the electrodes, the area was shaved and cleaned with an alcohol 180 

swab to remove residual skin cells and oils and reduce skin impedance. Raw EMG data were 181 

recorded at 2000 Hz, with high and low band-pass filters set at 10 and 500 Hz, respectively, 182 

with a notch filter set at 50 Hz. The integral of the root mean square of the raw signal 0.5 s 183 

either side of the MVIC PF torque was used to quantify the level of muscle coactivation. The 184 

torque produced by the DF during PF MVIC was estimated by assuming a linear relationship 185 

between torque and EMG activity, as previously reported 29. The relative contribution of 186 

antagonist coactivation from the DF MVIC was added to estimate PF net torque along with 187 

any correction in agonist activation as aforementioned. 188 

 189 

Muscle volume 190 
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B-mode ultrasonography (AU5, Esaote, Italy) was used to obtain several axial-plane images 191 

of the MG to measure ACSA 30. The MG proximal insertion and the MTJ were marked to 192 

identify 50% of muscle length. Strips of MicroporeTM tape were placed axially across the mid-193 

line of the MG at approximately 3.5 cm intervals. These strips of tape were used as echo 194 

absorptive markers that project a shadow onto the ultrasound image to provide a positional 195 

reference into the scanned structures. With the probe in an axial plane, a recording of the 196 

probe moving from the medial to the lateral border of the MG was obtained. Individual images 197 

were extracted from the recording offline and used to reconstruct the muscle by overlapping 198 

anatomical landmarks and external markers, as has been described previously 30. Image J 199 

software (version 1.34; National Institutes of Health) was used to measure the ACSA of the 200 

reconstructed MG, from which volume was estimated as described below.  201 

The use of ultrasonography in the measurement of ACSA has been validated against MRI in 202 

the rectus femoris (R2 = 0.90, CV = 6.7% 31) and vastus lateralis (R2 =  0.98, CV = 1.7% 30). 203 

However, no current data exist on techniques for using a single ACSA measurement to predict 204 

MG muscle volume. Based on a previous approach32, retrospective analysis of MRI scans 205 

from an adult male population were carried out to allow more accurate predictions of muscle 206 

volume in this study. Briefly, the MG from 11 adult men [age 24.7 (4.7) years, height 1.79 207 

(0.08) cm, mass 76.9 (12.4) kg] had been scanned previously in the transverse plane in 10% 208 

increments, from 10-90% of MG muscle length using a 0.2 T MRI (E-Scan, ESAOTE 209 

Biomedica, Genova, Italy). At each 10% increment, the ACSA of the MG was measured 210 

(OsiriX medical imaging software, OsiriX, Altlanta, USA) and presented relative to the 211 

maximum ACSA.  A third order polynomial curve was then fitted through the ACSA at each 212 

section relative to the maximum ACSA (equation 1, as follows). The MG volume was then 213 

estimated by integrating the regression equation over the measured length of the muscle at 214 

intervals equivalent to 10% of measured muscle length. Compared to MG volumes acquired 215 

from this subgroup using contiguous ACSA measures along the muscle length at 1cm intervals 216 
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(e.g. 33), there was no significant difference in estimated MG volume [301 (65) cm3 and 294 217 

(83) cm3]. The bias (± 95% confidence limits) tended towards negative, but was low (-7.63 ± 218 

22.4 cm3), equivalent to 3% of the measured volume. There was also a significant correlation 219 

between measured and predicted MG volume (r2 = 0.86). Therefore, this regression-based 220 

approach was adopted using the previously validated ultrasonography measure of ACSA to 221 

estimate MG muscle volume.  222 

It should be acknowledge that this regression is based on a healthy adult male population, 223 

and although the similar muscle length between the participants [controls = 25.7 (2.0) cm, 224 

SCP 24.5 (3.75) cm] suggests some homogeneity, differences in the distribution of ACSA 225 

along the length of the muscle (if present) could not be accounted for. 226 

𝑦 = −3.6395𝑥3 + 1.838𝑥2 + 1.8061𝑥  (Equation 1) 227 

MG ACSA relative to maximum MG ACSA (y, where ACSA max = 1) expressed relative to 228 

muscle length (x, where 100% of muscle length = 1), from which seMGental volumes were 229 

estimated and summed to calculate MG volume from measured ACSA at 50% of muscle 230 

length. 231 

Muscle architecture  232 

At the point of peak PF torque during the MVIC trials, real time ultrasonography was used to 233 

record fascicle length and pennation angle during contraction synchronized with the measured 234 

PF torque values. The 5 cm, 7.5 Hz linear array probe was held on the mid-sagittal plane of 235 

the MG equidistant between the proximal and distal tendon insertions previously established 236 

by ultrasonography. Additionally, the probe was held perpendicular to the surface of the skin 237 

to obtain several visible fasciculi ranging from the superficial to the deep aponeuroses. After 238 

the PF MVIC trials were completed, the recording of the highest torque trial was analyzed 239 

offline using Image J software. Fascicle length was measured as the length between the 240 
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superficial and deep aponeuroses 34. Pennation angle was defined as the insertion angle of 241 

the fascicle into the deep aponeurosis 17. Fascicle length and pennation angle were measured 242 

at the time point of maximum PF torque, as it has been reported that pennation angle is 243 

underestimated and fascicle length is overestimated during rest conditions by 18.1 deg and 244 

17.0 mm, respectively 34. Thus, in order to accurately calculate the intrinsic force-generating 245 

capacity of the MG, data must be obtained during contraction, not during rest 17,35,9. The 246 

dimensions of the window used for analysis were 4.15 cm x 3.5 cm; in some cases fascicle 247 

length was estimated using linear extrapolation if a whole image of the fascicle was not 248 

available for direct measurement. 249 

 250 

PCSA 251 

The PCSA was estimated as the ratio of MG muscle volume to fascicle length 36,17.  252 

 253 

Moment arm length 254 

The tendon excursion method was used to estimate moment arm length during a passive 255 

stretch trial on an isokinetic dynamometer by passively rotating the ankle to calculate tendon 256 

excursion while in a seated position. The medial malleolus was visually aligned with the 257 

dynamometer’s central axis of rotation. Prior to the experimental trial, end dorsiflexion end 258 

range of motion was identified by the experimenter by rotating the ankle at 1 deg.s-1, starting 259 

from 15 deg PF, until discomfort caused participants to cease the stretch in dorsiflexion. This 260 

velocity was chosen in relation to previous findings which elicited minimal neural activity 261 

throughout passive stretch trials in individuals without neurological impairment 37,38. During the 262 

passive stretch, B-Mode ultrasonography was used to determine the displacement of the MG 263 

MTJ throughout the passive stretch. MTJ displacement was measured relative to an 264 
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acoustically-reflective marker (a thin strip of MicroporeTM tape) secured to the skin proximal to 265 

the MG MTJ.  266 

 267 

The total change in MTJ displacement was divided by the change in ankle range of motion 268 

(rad), to predict the moment arm length for each individual. This technique has previously 269 

been validated using cadavers when assessing the moment arm length of the Achilles 270 

tendon39. In vivo, the tendon excursion technique shows high agreement with the center of 271 

rotation approach (R2 = 0.76) but may underestimate by 2-8% compared to the MRI based 272 

measures of the latter 40,41. As previously mentioned, we observed no significant difference in 273 

passive DF end ROM between the participant groups [Control -8.40 (0.16) deg, Paretic -5.30 274 

(0.48) deg 26]. Based on current measures of the Achilles tendon moment arm over the PF 275 

ROM41, this 3 deg difference in ROM would be equivalent to an underestimation of the moment 276 

arm in SCP by 21 mm. 277 

 278 

Achilles tendon force  279 

Tendon force was calculated by dividing the net plantarflexion torque by the Achilles tendon 280 

moment arm length 9,10. 281 

 282 

Fascicle force  283 

In order to estimate MG fascicle force, PF MVIC net torque was multiplied by the relative 284 

contribution of the MG PCSA in the triceps surae muscle group. The relative PCSA of the PF 285 

muscles have previously been used to determine the relative contribution of each muscle, 286 

whereby the relative PCSA of the MG was found to account for 15.4% of the Achilles tendon 287 
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force 12. Therefore, the force generated by the MG was calculated by determining ratio of MG 288 

contribution to Achilles tendon force. At present there are no complete data on the relative 289 

PCSA in the triceps surae of adults with SCP, therefore it is not possible to test the assumption 290 

that the MG contributes 15% of the Achilles tendon force. However, in the triceps surae of 291 

children with SCP there is a degree of homogeneity to the relative atrophy of these muscles. 292 

Compared to age-matched controls, the MG, soleus (SOL), and lateral gastrocnemius (LG) 293 

were 42, 39, and 36% smaller, respectively 42. The calculation of specific force is therefore 294 

presented with the knowledge that at least in terms of muscle ACSA, there seems to be some 295 

degree of similarity in the relative differences between SCP and controls in the triceps surae. 296 

 The force generated by the MG muscle was subsequently divided by the cosine of the 297 

pennation angle measured during contraction to determine MG fascicle force. 298 

 299 

Specific force  300 

Specific force was calculated by dividing MG fascicle force by MG PCSA.  301 

 302 

Statistics 303 

All statistical analyses were performed using SPSS software (Version 19, SPSS Inc., Chicago 304 

Illinois). To ensure the data were parametric, the Shapiro-Wilk and Levene tests were utilized 305 

to assess the distribution and variance of the data. As there were no breaches of these 306 

statistical assumptions, independent t-tests were used to assess baseline anthropometric data 307 

between CP and control groups. To minimize type I error of the main outcome measures (as 308 

could occur with repeated ANOVA tests), a MANOVA was used to compare the differences 309 

and interactions in the joint torque, force, neural, and architectural variables (listed in Tables 310 



14 
 

 

1-3) of the paretic vs. non-paretic limbs vs. the dominant limb of control individuals. Statistical 311 

significance was accepted at the P < 0.05 level, and all data are presented as mean (SD). 312 

 313 

Results 314 

Adults with SCP and matched control individuals were of similar age (P = 0.575), stature (P = 315 

0.604), and body mass (P = 0.061).  316 

 317 

Torque and moment arm properties  318 

The PF MVIC torque produced by the paretic limb was 33% less than the non-paretic limb  319 

and 46% lower than the control group (Table 1). No difference in PF MVIC torque was 320 

identified between the non-paretic limb and control group (P = 0.178). During the PF MVIC 321 

trial, net torque from the paretic limb was 30% lower than the control group (Table 1). However, 322 

no difference was identified between the paretic and non-paretic net PF MVIC torque (P = 323 

0.892), nor between the non-paretic limb and control groups (P = 0.193). No differences were 324 

identified in DF MVIC torque (P = 0.653) or moment arm length (P = 0.281) between groups 325 

(Table 1). 326 

 327 

MG muscle size and architecture 328 

There was no difference between the paretic and non-paretic MG fascicle lengths (P = 0.070) 329 

and non-paretic and control MG fascicle lengths (P = 0.929; Table 2). However, the paretic 330 

fascicles were 28% longer than in the control group (Table 2). The pennation angle at which 331 

the fascicles joined the deep aponeurosis during PF MVIC in the paretic MG was 31% less 332 
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than the non-paretic limb and 41% smaller than the control group (Table 2). No difference in 333 

pennation angle was identified between the non-paretic limb and control group (P = 0.095).  334 

 335 

The ACSA of the paretic MG was found to be 20% and 27% smaller than the non-paretic and 336 

control group MG, respectively (Table 2). No differences were identified between the non-337 

paretic and control group MG ACSA (P = 0.601). The paretic MG volume was 28% smaller 338 

than that of the non-paretic and 30% smaller than the control group (Table 2). Similarly, the 339 

PCSA of the paretic MG was 41% and 47% smaller than the non-paretic and control group, 340 

respectively (Table 2). However, no difference was identified between non-paretic limb and 341 

control group when assessing MG volume (P = 0.574) and MG PCSA (P = 0.323). No 342 

difference between groups was identified when assessing MG length (Table 2; P = 0.095). 343 

 344 

Force measurements 345 

Achilles tendon force and MG force of the paretic limb was 41% lower than the control limb 346 

(Table 3). No difference in the non-paretic Achilles tendon force and MG force was established 347 

when compared to the paretic limb (both P = 0.100) and control group (both P = 1.000). The 348 

paretic MG fascicle force was 41% less than the non-paretic limb and 52% lower than the 349 

control MG fascicle force (Table 3). No difference between the non-paretic MG fascicle force 350 

and control group was identified (P = 0.370). Lastly, no difference between the groups was 351 

established when assessing MG specific force (P = 0.393, Table 3). 352 

 353 
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Discussion 354 

This study assessed the specific force of the MG in active individuals with SCP. The purpose 355 

was to establish whether the specific force of the paretic MG and the variables used in its 356 

calculation differed when compared to the non-paretic limb and control participants. Contrary 357 

to the hypothesis, the main finding of the study was that there was no difference between the 358 

in vivo specific force of the paretic and non-paretic MG of active individuals with SCP and the 359 

muscle of control participants. Although specific force of the MG was the same across all 360 

groups, paretic fascicle force was 41% and 52% lower than the non-paretic and control group, 361 

respectively.  362 

 363 

Consistent with the results of our previous work 23, the SCP participants demonstrated 364 

significantly lower levels of activation than unimpaired counterparts. The aim of the electrical 365 

stimulation in the present study was not to calculate the level of the activation deficit but to 366 

account for any neural contribution to weakness and allow for a more accurate measure of 367 

MG specific force. By accounting for the differences in MG activation and TA coactivation 368 

across the paretic, non-paretic, and control groups, the net PF MVIC torque remained 30% 369 

lower in the paretic limb when compared to the control group, but it was not different from the 370 

non-paretic limb. Prior to this correction, the paretic PF MVIC torque was 46% and 33% lower 371 

compared to the control group and non-paretic limbs, respectively. As previously discussed 372 

23, the 3 times higher coactivation and 38% lower agonist activation of the CP group, therefore 373 

contributes to about 16% of the difference in PF MVIC strength between CP and controls. The 374 

remaining 30% is attributable to morphological or architectural properties of the muscle. 375 

 376 
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The majority of research concerning muscle weakness in individuals with SCP measures the 377 

MVIC torque generated by a muscle or group of muscles 16,43,1,4. A limitation when assessing 378 

torque is that moment arm lengths between limbs and/or groups of individuals are not taken 379 

into account. As individuals with SCP may have structural deformities in the paretic limb as a 380 

result of increased tone of the muscle throughout maturation 44, it is possible that the internal 381 

structures between the paretic, non-paretic, and control limbs may be more prominent in 382 

adults, compared to pediatric populations. It has been established that the Achilles tendon 383 

moment arm increases in length with plantarflexion 45, and although previously hypothesized 384 

to be different in the ankle following gait kinematics 20, indirect measures at the wrist suggest 385 

some preservation of the moment arm in children with SCP 22. In our study, based on the 386 

consistent foot angle of 0 deg, we observed no significant difference in the Achilles tendon 387 

moment arm between the SCP and control groups. Nevertheless, when the in vivo forces were 388 

calculated in the paretic Achilles tendon and MG, they were found to be 41% weaker than the 389 

control group, but with no difference between the paretic and non-paretic limbs. Although the 390 

difference in Achilles tendon moment arm observed in our participants was not significantly 391 

different, based on the measured values and the assumed underestimation (see methods), 392 

the paretic Achilles tendon moment arm is between 0.51-0.72 cm larger than controls. With all 393 

else being equal when calculated using the mean PF MVIC net torque in this SCP population, 394 

reducing the moment arm length by 0.51-0.72 cm would theoretically increase the tendon 395 

force in the SCP limb by 212-120 N, or approximately 5-10% of the measured value. As a 396 

result, assessment of specific force using joint torque rather than tendon force would 397 

overestimate the true force-producing capacity of the contractile mass. Accounting for moment 398 

arm lengths, muscle architecture, and neural properties facilitates assessment of the intrinsic 399 

material force-producing capacity of muscle in vivo 9,35. 400 

 401 
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In children with SCP, the morphology of the paretic MG during rest showed that fascicle length 402 

was 18% shorter compared to the non-paretic contralateral limb 3 and 16% shorter compared 403 

to age-matched controls 2. Based on these previous findings, deficits in paretic fascicle length 404 

would imply that the number of sarcomeres in series is typically lower than in participants 405 

without SCP. However, in contrast to previous architectural data, we found that fascicle length 406 

during PF MVIC was 8% longer in SCP than in the control group. It is likely that the contrasting 407 

results we obtained reflect the nature of the measurement technique. Where previous studies 408 

have reported muscle architecture at rest, MG fascicle length in this study was measured at 409 

peak PF MVIC torque, as is consistent with the calculation of specific force 17. Due to the 410 

spasticity in the MG muscle, the paretic foot of participants with SCP is typically in an equinus 411 

position. Where previous studies have reported shortened fascicles in SCP,  it is likely that 412 

this is due to them being measured at a more plantarflexed or “relaxed” position 2. In addition, 413 

as we measured MG fascicle length during PF MVIC, any difference in the tendon properties 414 

or force produced would influence the relative shortening experienced by individuals with and 415 

without SCP, as has been observed in the elderly 35. At present however, tendon stiffness 416 

comparisons between those with and without SCP show no difference in Achilles tendon strain 417 

during MVC16. Although it should be noted in their comparisons Barber et. al., 16 conducted 418 

tendon measurements at maximal dorsiflexion (-6 deg in SCP, -21 deg in controls), in men 419 

and women. Therefore, direct comparisons regarding fascicle shortening may not be possible 420 

with the men in our study who performed PF MVC at 0 deg ankle angle and who had no 421 

difference in maximal dorsiflexion angles.  422 

 423 

When neural and architectural factors were accounted for in this study, there was a difference 424 

in MG fascicle force between SCP and control participants that was almost entirely accounted 425 

for by the difference in PCSA, as evidenced by similar values for specific force between SCP 426 

and controls. As PCSA takes into account the volume and fascicle length of the muscle, it 427 
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provides a more accurate measurement of the true contractile area of pennate muscle 11. We 428 

found that the paretic MG PCSA was ~45% smaller than the non-paretic limb and control 429 

group, similar to the observed difference in MG fascicle force (52% smaller). Such differences 430 

indicate that the paretic MG muscle has fewer sarcomeres in parallel compared to the non-431 

paretic and control MG muscle, and any weakness at the whole muscle level is unlikely to be 432 

influenced by a decrease in the quality of the muscle at the fascicle level. Indeed, no difference 433 

in specific force was observed between the SCP and control group or between the paretic and 434 

non-paretic limbs of the SCP participants. This would initially appear to be in contrast to 435 

previous work which established that the size/strength relationship of muscles in individuals 436 

with SCP is reduced compared to individuals without neurological impairment (e.g. PF 437 

MVIC/ACSA torque 1). However, as previously stated, based on the architectural differences 438 

between SCP and the control group, and the substantial neural contribution to reduced joint 439 

torque, the estimation of the size/strength relationship (e.g. MVIC/ACSA) may be erroneous 440 

unless these factors are considered. Indeed, where PCSA and coactivation have previously 441 

been included, the size/strength relationship appears no different between SCP and controls16.  442 

It is pertinent to consider however, that where lower size/strength indices have previously 443 

been reported in SCP even though neural factors are likely to contribute, there is an element 444 

that may be attributed to alterations in the collagen content of the extracellular matrix46. It is 445 

possible that inclusion of an elevated collagen content (or other non-contractile elements) in 446 

the calculation of muscle size would likely result in a lower size/strength relationship (e.g. 447 

MVC/ACSA1). This is particularly relevant, as the participants of Elder et. al., 1 were likely more 448 

impaired than in our study (most of those in the former study had undergone surgical 449 

procedures to the Achilles tendon compared to none of our participants), and it has been 450 

shown that contracture severity is linked to collagen content 46. This is also reflected in the 451 

work of Barber et. al., 16 who showed no difference in PF MVC/PCSA in young adults with 452 

SCP classified on the MGFSC as level 1, or least impaired. At least in our study and the work 453 

of Barber et. al., where no difference in specific force is observed, it is consistent with the 454 
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direct observations that histological structure is similar between SCP and control muscle 47. 455 

Indeed, despite the fact that collagen content has been reported to be elevated in SCP muscle, 456 

there is no evidence of its mislocalisation within the muscle 46. 457 

 458 

Although consistent with the observations of others 16, several factors may potentially impact 459 

on the calculation of in vivo specific force reported in the present investigation. In the present 460 

study, moment arm was estimated during rest, whereas specific force should represent the 461 

data obtained during MVIC. The difference in Achilles moment arm length during MVIC is 462 

approximately 1.5 cm longer than resting measures in individuals without neurological 463 

impairment 45. In addition, fascicle length was measured at a comparable length rather than 464 

the angle at which peak torque occurred 35 due to the fact that we used 0 deg ankle angle to 465 

control for the different resting angles between participants. However, as the plantarflexors 466 

are on the ascending limb of the force/length relationship, it is likely that specific force is 467 

underestimated 35. To compare between individuals that have limited dorsiflexion ROM, a 468 

consistent joint angle was chosen for measurement of specific force at 0 degrees. As 469 

previously mentioned, compared to SCP, Achilles tendon strain at PF MVIC is no different 470 

than controls16. Nevertheless, the interaction of the muscle and the tendon has yet to be 471 

addressed in adult males with SCP at a matched ankle angle, consistent with the 472 

measurement of specific force.  473 

 474 

Conclusion  475 

This study has shown that the paretic MG of physically active individuals with SCP has a 476 

similar specific force-generating capacity to the non-paretic muscle and the MG of control 477 

individuals. This study also demonstrates how the pennation angle and fascicle length of the 478 
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paretic muscle at MVIC is different from the control group. Nevertheless, weakness (while 479 

accounting for neural properties, moment arm lengths, and muscle architecture) observed in 480 

the paretic MG can be primarily attributed to a smaller PCSA rather than to the intrinsic 481 

material properties at the fascicle level. 482 

 483 

 484 

 485 

 486 

  487 
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Abbreviations  488 

Anatomical cross sectional area (ACSA) 489 

Dorsiflexion (DF) 490 

Electromyography (EMG) 491 

Medial Gastrocnemius (MG) 492 

Lateral Gastrocnemius (LG) 493 

Soleus (SOL) 494 

Maximal voluntary Isometric contraction (MVIC) 495 

Physiological cross sectional area (PCSA) 496 

Plantarflexion (PF) 497 

Spastic cerebral palsy (SCP) 498 

Standard deviation (SD) 499 

Tibialis anterior (TA) 500 
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Tables 616 

Table 1. Joint torque, moment arm, and neural properties of the paretic and non-paretic limbs 617 

of individuals with SCP and controls. 618 

 Paretic limb Non-paretic limb Control group 

PF MVIC (Nm) 102 (55.8)*† 153 (47.7) 190 (26.7) 

Net PF MVIC (Nm) 139 (59.5)* 160 (46.9) 198 (27.3) 

DF MVIC (Nm) 17.5 (8.58) 21.3 (11.9) 20.8 (10.6) 

Moment arm (cm) 6.05 (1.69) 5.08 (0.98) 5.54 (1.56) 

*Difference between paretic and control groups (P < 0.001). †Difference between paretic and 619 

non-paretic groups (P = 0.039). ‡Difference between paretic and non-paretic groups (P < 620 

0.001). 621 

 622 

  623 
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Table 2. Muscle size and architectural characteristics of the MG muscle in the paretic and 624 

non-paretic limbs of individuals with SCP and controls. 625 

 Paretic limb Non-paretic limb Control group 

Fascicle length (cm) 3.70 (0.62)* 3.14 (0.56) 2.89 (0.47) 

Pennation angle (deg) 25.7 (4.08)†§ 37.2 (7.59) 43.4 (7.00) 

MG length (cm) 24.5 (3.75) 26.8 (3.23) 25.7 (2.00) 

MG ACSA (cm2) 12.0 (2.62)‡‖ 15.0 (2.23) 16.5 (2.90) 

MG volume (cm3) 195 (56)*¶ 269 (62) 279 (52) 

MG PCSA (cm2) 52.3 (11.6)†# 89.0 (28.1) 98.8 (23.8) 

*Difference between paretic and control groups (P = 0.0004). †Difference between paretic and 626 

control groups (P < 0.001). ‡Difference between paretic and control groups (P = 0.001). 627 

§Difference between paretic and non-paretic groups (P = 0.001). ‖Difference between paretic 628 

and non-paretic groups (P = 0.028). ¶Difference between paretic and non-paretic groups (P = 629 

0.0005). #Difference between paretic and non-paretic groups (P = 0.0001). 630 

 631 

  632 
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Table 3. Force measurements in the paretic and non-paretic limbs of individuals with SCP and 633 

controls 634 

 Paretic limb Non-paretic limb Control group 

Achilles tendon force (kN) 2.26 (0.57)* 3.34 (1.59) 3.81 (0.32) 

MG muscle force (N) 347 (88.2)* 515 (244) 586 (161) 

MG fascicle force (N) 388 (104)†‡ 662 (317) 814 (205) 

Specific force (N.cm-2) 7.53 (1.84) 7.37 (2.08) 8.65 (2.99) 

*Difference between paretic and control groups (P = 0.010). †Difference between paretic and 635 

control groups (P < 0.001). ‡Difference between paretic and non-paretic groups (P = 0.024).  636 
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