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 17 

ABSTRACT 18 

This study evaluates the relationship between the emissions parameters of smoke number 19 

(SN) and mass concentration of non-volatile particulate matter (nvPM) in the exhaust of a gas 20 

turbine engine for a conventional Jet A-1 and a number of alternative fuel blends. The data 21 

demonstrate the significant impact of fuel composition on the emissions, and highlight the 22 

magnitude of the fuel-induced uncertainty for both SN within the Emissions Data Bank, as 23 

well as nvPM mass within the new regulatory standard under development. Notwithstanding 24 

these substantial differences, the data show correlation between SN and nvPM mass 25 

concentration still adheres to the First Order Approximation (FOA3), and this agreement is 26 

maintained over a wide range of fuel compositions. Hence the data support the supposition 27 

that the FOA3 is applicable to engines burning both conventional and alternative fuel blends 28 

without adaption or modification.  The chemical composition of the fuel is shown to impact 29 

mass and number concentration as well as geometric mean diameter of the emitted nvPM, 30 

however the data do not support assertions that the emissions of black carbon with small 31 

mean diameter will result in significant deviations from FOA3.  32 

 33 

INTRODUCTION 34 

Emissions from aircraft gas turbine engines include the combustion products carbon 35 

dioxide (CO2) and water (H2O), combustion by-products: oxides of nitrogen (NOx) and 36 

products of incomplete combustion: carbon monoxide (CO), unburned hydrocarbons (UHC) 37 

and soot aerosol (or black carbon, BC).  Each of these species are produced in different 38 

relative proportions and all impact or contribute to climate forcing and degradation of air 39 

quality
1,2,3,4

.  40 
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The International Civil Aviation Organization (ICAO) sets regulatory standards for NOx, 41 

CO, UHC and Smoke Number, which are reported for all certified aircraft engine types 42 

>26.7kN thrust in the Emissions DataBank
5
 (EDB). Emissions of BC are not currently 43 

reported within the ICAO EDB, but may be inferred through the surrogate measurement of 44 

Smoke Number (SN) at specific thrust settings that correspond to those used in the Landing 45 

and Take-Off (LTO) cycle.  SN is an optically based method that quantifies the change in the 46 

reflectance of a Whatman #4 filter paper after sampling a fixed mass of engine exhaust per 47 

unit area at a given temperature
6
. The ICAO regulation of SN was originally introduced in 48 

1981 as means to quantify aircraft exhaust plume visibility and to act as a driver to reduce 49 

emissions. SN does not provide a characterization of BC emissions in terms of mass and 50 

number concentration, size distribution, or chemical composition, and given its proxy nature, 51 

cannot be used to directly determine the environmental impacts of aviation. Currently, there 52 

is an initiative within ICAO to replace the SN with a regulatory measurement methodology 53 

for non-volatile particulate matter (nvPM) emissions for aircraft engines certified for use in 54 

the commercial sector. In the meantime, SN remains the only measurement whereby BC 55 

emissions can be estimated for environmental assessment activities. 56 

A number of studies have reported the correlation between SN and mass concentration of 57 

black carbon (C(BC)) using a range of different hardware:  Champagne
7
 reports a correlation 58 

derived from exhaust samples extracted from a combustor rig based on a T56 turboprop 59 

engine; Whyte
8
 presented a method to convert between SN and C(BC) from a study of 60 

kerosene alternative fuels; and Girling et al.
9
 report a correlation from an experimental study 61 

using soot generated by a kerosene fuelled smoke generator amongst others
10,11

. A critical 62 

inter-comparison of these and other data, which agree to within 10%, was presented by 63 

Wayson et al.
12

. These correlations between SN and C(BC) form the basis of a method 64 

endorsed by ICAO’s Committee for Aviation Environmental Protection to estimate the mass 65 
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concentration and/or mass-based emission index of BC emitted from aircraft engines, referred 66 

to as the ‘First Order Approximation
13

 version 3’ (FOA3). The FOA3 is intended for use as a 67 

standard method to estimate PM mass-based emissions from certified commercial aircraft 68 

engines within the vicinity of airports, and as an important assessment tool, there is a 69 

commitment to improve FOA3 as new data become available until such time that the 70 

methodology is rendered obsolete by a fully validated database of PM emission indices for 71 

the commercial fleet. 72 

Nevertheless, there has been criticism of FOA3, not least because of the potential for the 73 

SN measurement to be dependent upon the capture efficiency of the filter and thus particle 74 

size distribution of the emitted BC. This potential for error was first alluded to by Dodds et 75 

al.
14

, followed by Wayson et al.
12

, Sevcenco et al.
15

, and most recently discussed by Stettler et 76 

al.
16

, though any suggestion that the SN underestimates C(BC) would mainly be applicable to 77 

more recent engine technology due to the reduced mean diameter of the emitted BC. 78 

However, as will be demonstrated and discussed later, the correlation between SN and C(BC) 79 

remains a good first order approximation, even when the emitted BC particles have a mean 80 

geometric diameter of the order of 20nm. 81 

Within the emissions inventory and modeling communities, sources of uncertainty in 82 

estimating the mass concentration of BC using SN values may arise when there is the need to 83 

interpolate between data points at the four specific LTO thrust settings to determine 84 

intermediate values, and also more generally, from the error in the reported SN data itself 85 

induced by both measurement uncertainty and the use of non-standardized fuel for 86 

certification tests on different engine types. Concerning this latter point, the hydrogen to 87 

carbon ratio (H:C) and the aromatic content of the fuel used to produce the SN data for the 88 

specific engine type and in the specific emissions certification test are (mostly) recorded 89 

within the EDB. The spectrum of reported values in the EDB legacy data of 1.85 – 2.00 for 90 

Page 4 of 33

ACS Paragon Plus Environment

Environmental Science & Technology



Page 5 of 32 

 

H:C ratio and 11.9% – 22.5% for aromatic content, covers a range that extends slightly 91 

beyond the current recommended specification for fuel to be used in aircraft engine emission 92 

testing of 1.85 – 1.99 and 15% – 23%, respectively
17

. Nevertheless, even the current 93 

‘tightened’ specification envelope allows for considerable variation in fuel properties, such 94 

that the known impacts of fuel composition upon SN are ostensibly not considered. The 95 

variation in the fuel properties reported within the ICAO EDB reveal that aromatic content 96 

may vary by ± 3% at a given H:C ratio, and H:C ratio may vary by ± 0.05 at a given aromatic 97 

content. And whilst a decrease in aromatic content is generally associated with an increase in 98 

H:C ratio, the correlation between these two parameters is generally poor and insufficient to 99 

define the fuel. 100 

Since the introduction of SN, engine technology has made significant progress and certified 101 

SN’s at take-off power have decreased from the 25 – 35 range in early data, to values for 102 

newer engine technology that typically occupy the 0 – 5 range. However, a SN of zero is 103 

clearly a problem for the application of FOA3 in air quality and climate models as it implies 104 

that the mass concentration of BC is also zero. For these reasons, ICAO has committed to 105 

develop a new direct nvPM standard, but with typical engine lifetimes exceeding 20 years, 106 

older legacy engines will continue to contribute to overall emission levels and so both SN and 107 

FOA3 may not be fully transitioned for some years to come.  108 

The new ICAO regulatory standard under development for the measurement of aircraft gas 109 

turbine engine nvPM number and mass-based emissions uses the standard methodology 110 

specified in the Society of Automotive Engineers (SAE) Aerospace Information Report 111 

(AIR) 6241
18

. The development of this standard methodology for engine nvPM emission 112 

measurement was born out of the Aircraft Particle Emissions eXperiment (APEX) campaigns 113 

and many other similar studies
19,20,21,22,23,24,25

. These studies highlighted the complexity of BC 114 

emissions measurement, and in particular the difficulty in obtaining repeatable and reliable 115 
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measurement data. The data presented here have been obtained using the AIR6241 compliant 116 

system North American Mobile Reference System that has been developed and robustly 117 

characterized over several years through international collaboration
26

. 118 

The objective of this work was to compare SN measured using a SAE Aerospace 119 

Recommended Practice (ARP) 1179d
6
 compliant system with the nvPM mass concentration 120 

measured using the SAE AIR6241
 
compliant system for a conventional Jet A-1 and a number 121 

of alternative fuel blends. In contrast to earlier FOA3 analysis where the correlation was 122 

examined in terms of engine technology applicability, here we analyze the FOA3 correlation 123 

from a fuel composition perspective. The gas turbine engine used in this study, a Garrett 124 

Honeywell GTCP85-129 auxiliary power unit (APU), is not included within the EDB as its 125 

rated output is <26.7kN. It is however a suitably close analogue to aircraft main engines that 126 

provides a good model soot aerosol, and advances the methodologies previously used in the 127 

development of the FOA3.  128 

The chemical composition of the test fuels was managed by introducing various blends of Jet 129 

A-1 and a Used Cooking Oil derived Hydrotreated Esters and Fatty Acids (UCO-HEFA) 130 

kerosene. A complete range of fuels was investigated to allow full characterization of the data 131 

within the FOA3 model, from low blend ratios (0 – 20%) that may be considered to be 132 

essentially Jet A-1 variants, through to very high blend ratios that are distinctly paraffinic and 133 

alternative in composition. Through this careful management of the fuel composition, it was 134 

possible to vary SN in the range from 4 to >40, although the size distribution of the soot 135 

aerosol is also present as a co-variable.  136 

The significant impact of fuel aromatic content and/or fuel H:C ratio on nvPM emissions 137 

and measured SN, is highly relevant to both the recommended specification for fuel to be 138 

used in aircraft engine certification testing and the downstream effect on accurate emission 139 

estimates due to regional variability in commercially available aviation fuel. Furthermore, the 140 
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potential impact of fuel compositional change becomes considerably more pronounced and 141 

pertinent within the context of alternative fuels, and to the projected scale-up of sustainable 142 

alternative aviation fuel use (eg. EU Flightpath 2020
27

), together with future fuel 143 

certification, fuel diversification, and long-term fuel security. Sustainable alternative fuels are 144 

anticipated to play a sizeable role in decarbonizing the aviation industry, and currently there 145 

are no methods to quantify the much-reduced atmospheric burden of BC that results from 146 

their use
28

.  Any future update to FOA3 may need to incorporate a SN-fuel composition 147 

response function. 148 

 149 

BACKGROUND 150 

Soot aerosol 151 

Unfortunately the term ‘soot aerosol’ is rather imprecise in its definition, and terms such as 152 

particulate matter, soot, black carbon, graphitic carbon, refractive carbon and non-volatile 153 

particulate matter are often used synonymously. On occasions even the term carbon black is 154 

used, even though this is distinct in that it is a manufactured product
29

. Efforts to develop 155 

precise nomenclature to distinguish between these terms are on-going, but these are often 156 

based on particular measurement techniques or light-absorbing properties
30,31,32,33

 and lack 157 

universal acceptance.  158 

In recent years, the term black carbon (BC) has gained widespread usage within the climate 159 

and emissions measurement communities, although it is recognized that BC is in itself a 160 

generic term that describes a wide range of carbonaceous combustion derived substances 161 

from partly charred residues to highly graphitized soot
34

. BC particles have highly variable 162 

physical properties and chemical compositions that very much depend upon their source
35,36

. 163 

Indeed the disparate nature of BC from different sources is well established and has even 164 

been used in source apportionment studies. Physical properties such as size, morphology, 165 
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heterogeneity, surface area, isotopic ratio and density are all variable, as is chemical 166 

composition with solvent extractable organic matter, and total carbon sometimes being 167 

primarily elemental carbon (EC), but more often existing as complex mixtures of EC and 168 

organic carbon (OC), with volatile and semi-volatile hydrocarbons, and other non-carbon 169 

species such as ionic species, sulphates, moisture and trace metals
37,38,39,40

. 170 

Laboratory-generated ultrafine EC particles such as those created in a diffusion flame are 171 

yet another distinct form of carbonaceous material. Overall, scientific studies need to clearly 172 

distinguish between these highly disparate EC-containing particles with care and precision to 173 

forestall the unwarranted extrapolation of properties and the transposition of inappropriate 174 

study conclusions from one material to another. Black carbon from one combustion source is 175 

not necessarily a model particle that is representative of the characteristics of an entirely 176 

different combustion source.  177 

The focus of this work is to evaluate the correlation between current and forthcoming 178 

regulated measurement techniques using the soot aerosol emitted from a gas turbine engine 179 

burning a conventional Jet A-1 and a number of alternative fuel blends. The precise bounds 180 

and classification of the emitted soot aerosol is therefore operationally defined by the 181 

measurement technique employed. Within this text, the term black carbon is used to define 182 

the measurand associated with the measurement of smoke number through SAE ARP1179d, 183 

whilst the term non-volatile particulate matter is used to define the measurand associated with 184 

the measurement of mass concentration, number concentration and size distribution through 185 

SAE AIR6241, although it is recognized that size distribution is not a formal part of this 186 

standard. The term soot aerosol is used elsewhere in the broader discussion to represent less 187 

defined states. 188 

 189 

Impact of fuel chemistry on soot aerosol formation 190 
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Aviation Jet A-1 is a complex cocktail of thousands of different hydrocarbon component 191 

molecules, though these molecules are often categorized into four principal groupings: n-192 

paraffins, iso-paraffins, cyclo-paraffins and aromatics
41

. The former two groupings of n- and 193 

iso-alkanes typically dominate the class composition of all-fit-for-purpose petroleum derived 194 

fuels
42

. 195 

Variability in the chemical composition of Jet A-1 (and other kerosene specifications such 196 

as Jet A, JP4, JP8, etc.) over both region and time is commonplace. The extent of this 197 

variation is largely reflective of variability in the feedstock crude and localized demand for 198 

other petrochemical distillation fractions. It is assessed on a regional level within fuel survey 199 

data such as Rickard
43

 or the Petroleum Quality Information System
44

 (PQIS). Furthermore, 200 

this diversity in the chemical composition of aviation kerosene is set to increase as alternative 201 

fuels from a variety of sources enter the market as blend components or substitute fuels. 202 

Perhaps the most notable impact of low aromatic kerosene fuels, including Jet A-1 blended 203 

with Fischer-Tropsch (F-T) or Hydro-processed Esters and Fatty Acids (HEFA) alternative 204 

fuels, is the very strong reduction in black carbon emissions
45,46,47,48,49,50,51

. For example, the 205 

Alternative Aviation Fuel Experiment (AAFEX) study using a CFM56-2C1 engine reported 206 

concentrations of BC at the engine exit nozzle may be reduced by as much as 90% using F–T 207 

fuels
50

. These reductions affect the mass concentration, number concentration and size of the 208 

emitted BC aerosol
46,47,51

. A detailed evaluation of the impact of small variations in the Jet A-209 

1 / HEFA fuel blend ratio on the emission of nvPM is given in Lobo
52

. Evidence that the 210 

reduction in soot aerosol occurs due to the lower aromatic content of the fuel is becoming 211 

established, and aromatics are attributed as the class of compounds that primarily influence 212 

the tendency to form BC and soot precursors during combustion
42,45,53

. For example, 213 

DeWitt
45

 in an investigation of fuel composition, material compatibility and its relation to 214 

emission characteristics showed that BC emissions increase with both increasing fuel 215 
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aromatic content and increased aromatic molecular weight when evaluated in a T63 turbo 216 

shaft engine. This increase in BC emissions was attributed to an increase in soot precursors. 217 

 218 

FOA3: smoke number – mass concentration correlation model 219 

The FOA3 model endorsed by ICAO, is often used to predict the mass concentration of BC 220 

in the exhaust emissions of a gas turbine engine from the surrogate smoke number 221 

measurement
13

. Such data is routinely required by atmospheric modelers and for the 222 

development of emission inventories.  223 

For an engine with SN<30, the mass concentration of BC (mg/m
3
) is predicted from the 224 

measured smoke number using the following FOA3 equation
12

: 225 

C(BC) = 0.0694 (SN)
1.24

        (1) 226 

Whereas for SN>30, the mass concentration of BC (mg/m
3
) is predicted from the measured 227 

smoke number and using the following FOA3 equation
12

: 228 

C(BC) = 0.0297 (SN)
2
 - 1.802(SN) + 31.94      (2) 229 

In both of these equations, C(BC) is reported at standard temperature (273.15 K) and 230 

pressure (101.325 kPa), and the bounds of uncertainty for the correlation are dominated by 231 

the error in the measurement of the SN as errors in measurement of mass concentration are 232 

small in comparison
12

. 233 

 234 

EXPERIMENTAL METHOD 235 

Gas turbine engine & operating conditions 236 

The Garrett Honeywell GTCP85-129 gas turbine engine used in this study is often operated 237 

as an auxiliary power unit (APU) on Boeing 737 aircraft. APU gas turbine engines offer a 238 

good model of aircraft main engine combustion characteristics whilst being considerably 239 

more manageable and less costly to operate. 240 
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In this work, three APU operating conditions were investigated: No Load (NL), 241 

Environmental Control Systems (ECS), and Main Engine Start (MES). These conditions 242 

correspond to the normal operating conditions for an APU. For each experimental run the 243 

APU was put through a warm up sequence using Jet A-1 before switching to the test fuel 244 

without interruption, and then stabilizing at the first condition. The test matrix followed a 245 

successive step down in power from MES to ECS to NL condition, which represented 1 test 246 

cycle. For each of the fuel blends evaluated, this test cycle was twice sequenced without 247 

shutdown. The sequence stepped down in power to minimize possible differences in 248 

operating temperature and therefore potential differences in the fuel vaporization rates that 249 

could feasibly manifest themselves as measurement uncertainties. For each engine condition, 250 

the emissions data were recorded over a 6 minute window once the APU was determined to 251 

be stable (ie. when engine EGT, RPM, and fuel flow were established as consistent).  252 

The different fuel blends of Jet A-1 and Used Cooking Oil based HEFA (UCO-HEFA) 253 

used for the study were selected at random to mitigate possible systematic bias and drift. 254 

Experimental runs with Jet A-1 were conducted at the beginning and end of the study, as well 255 

as several times in between runs with different fuel blends to reaffirm baseline conditions. 256 

Engine parameters such as fuel flow rate, RPM, air fuel ratio, and exhaust gas temperature 257 

were also recorded. The engine was very stable at each operating condition and the 258 

reproducibility of engine parameters was good due to the on-board engine management 259 

system.  260 

Ambient conditions of temperature, pressure, and relative humidity were also recorded 261 

throughout, and the range of values for these parameters was: 14.0 – 20.6 ºC, 102.47 – 103.11 262 

kPa, and 61 – 85%, respectively. 263 

 264 

Sampling system and instrumentation 265 
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Two identical and almost collocated single-point probes, one for gaseous emissions and SN 266 

measurement, and the second for nvPM emissions measurement were place within ½ nozzle 267 

diameter of the engine exit plane (~15 cm). 268 

The sample line for gaseous emissions and SN was compliant with the specifications in 269 

ICAO
17

 Annex 16 Volume 2 and maintained at a temperature of 160°C. Gaseous species 270 

were determined using a Binos Non-Dispersive Infrared Sensor (CO), a Signal Flame 271 

Ionization Detector (UHC), and an Eco Physics Chemi-Luminescence Analyser (NOx), each 272 

using appropriate span and zero gases between measurements. The SN was determined in 273 

accordance with SAE ARP1179d
6
 using a Richard Oliver smoke meter to collect at least 274 

three filter samples for each fuel and at each engine condition. The reflectance of the filter 275 

samples was determined pre and post sampling using a BOSCH reflectometer. . Reported SN 276 

data are the arithmetic mean of measurements from 6 filters (2 test cycles x 3 filters at each 277 

condition) and uncertainty is conservatively estimated as ±2 SN. This estimate of uncertainty 278 

is consistent with the measured variability, with due recognition that the accuracy of an 279 

individual SN measurement is considered to be ±3 SN
6
. 280 

The nvPM emissions were measured using the AIR6241 compliant North American mobile 281 

reference system
18,26

. The probe line used to extract nvPM emissions sample was connected 282 

to a 3-way splitter using a 7.5 m long, 7.9 mm internal diameter thin-walled stainless steel 283 

tubing maintained 160ºC. The nvPM sample was diluted with particle-free nitrogen gas via a 284 

Dekati ejector diluter and carried to the measurement suite along a 25 m long, 7.9 mm 285 

internal diameter, carbon-loaded and electrically grounded PTFE tube maintained at 60ºC in 286 

accordance with SAE AIR6241. The nvPM number-based emissions were measured using an 287 

AVL Advanced Particle Counter, while nvPM mass-based emissions measurements were 288 

obtained using an Artium Laser Induced Incandescence and an AVL Micro Soot Sensor 289 

(MSS). Only the nvPM mass data obtained using the MSS is used in this analysis. The 290 
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particle size distributions of the nvPM, which are not specified in AIR6241, were measured 291 

using the Cambustion DMS500. The CO2 concentration in the diluted nvPM line was 292 

measured using a LiCor NDIR detector. The nvPM emissions data are reported at standard 293 

temperature and pressure (273.15 K and 101.325 kPa), which is equivalent to mass 294 

concentration data reported via FOA3. All nvPM emission concentration data was corrected 295 

for dilution and thermophoretic loss in the sampling system. Measurement uncertainties in 296 

nvPM emissions were calculated using 1σ standard deviation of the average data. 297 

 298 

Properties of test fuels 299 

The two kerosene fuels used in this study were Jet A-1 and UCO-HEFA. The Jet A-1 was 300 

straight-run kerosene obtained from Air BP (Kingsbury, UK), while the UCO-HEFA was 301 

provided by SkyNRG (Amsterdam, NL). A GC x GC chemical analysis was used to quantify 302 

the paraffinic and aromatic chemical composition of the two fuels, a summary of which is 303 

shown in Figure 1. The figure shows the significant difference in the composition of the two 304 

fuels: the Jet A-1 contains a substantial fraction of cyclo-paraffins and aromatics, whereas 305 

these are much reduced for the UCO-HEFA fuel that is dominated by iso-paraffins. 306 

 307 

 308 
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Figure 1. Summary of the GC x GC compositional analysis for the Jet A-1 and UCO-HEFA 309 

kerosene fuels that were used to formulate the test blends. 310 

 311 

A number of Jet A-1 / UCO-HEFA kerosene fuel blends were formulated in-house through 312 

careful weighing and thorough mixing (blend ratios of 5%, 10%, 15%, 20%, 25%, 30%, 40%, 313 

50%, 60%, 70%, 75%, 80%, 85%, 90%, and 95% by mass). The chemical composition of the 314 

fuels varied linearly with fuel blend ratio, and test fuel H:C ratio varied from 1.89 to 2.14 315 

whilst aromatic content correspondingly varied from 19.2% to 1.8% by mass. The Jet A-1 316 

and UCO-HEFA fuels were fully miscible and the blended fuels were formulated at least 48 317 

hours prior to use. It is recognized that several of these blends are outside of current ASTM 318 

certification limits for HEFA fuel blends in operational aircraft, however these limits are no 319 

longer applicable to the now ground based APU used within this study. Further details of the 320 

fuel properties for neat Jet A-1 and UCO-HEFA fuels are given in Lobo et al.
52

. 321 

By introducing the hypothetical concept of an aromatic - H:C ratio space, these fuels can be 322 

compared with fuels in the EDB, a world survey of the available JP8 fuels, and the nominal 323 

bounds for JP8 jet fuel. The specification for JP8, a military grade kerosene made to more 324 

exacting specifications than commercial jet fuel, is used in this context as a proxy, since H:C 325 

ratio is not defined for checklist Jet A-1. This comparison is shown in Figure 2. 326 

 327 
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 328 

Figure 2. Comparison of aromatic content and H:C ratio of different fuels: Blue points: EDB 329 

engine certification data; Red points: Experimental fuel blends; Green shaded area: Bounds 330 

of ICAO engine test fuel specification
17

; Yellow shaded area: Bounds of PQIS world JP8 331 

2013 survey
44

; Chart area: Nominal bounds for JP8 jet fuel; Blue dashed line: ASTM D7566 332 

minimum aromatic limit
54

. 333 

 334 

RESULTS AND DISCUSSION 335 

Correlation between nvPM mass concentration and SN 336 

Figure 3 shows the measured nvPM mass concentration, corrected for dilution and 337 

thermophoretic loss
18

, as a function of SN. The different colored data points in the plot 338 

indicate the three different engine conditions, and the BC mass concentration as a function 339 

SN predicted by FOA3 for both SN<30 and SN>30 are also overlaid. 340 

 341 
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 342 

Figure 3. nvPM mass concentration as a function of smoke number. Colored data points 343 

indicate the three different engine operating conditions: Blue=MES; Red=ECS; Green=NL. 344 

The C(BC) as predicted by FOA3 using SN data is overlaid: Purple line = FOA Equation 1 345 

(nominally applicable for SN<30); Dashed blue line = FOA Equation 2 (nominally applicable 346 

for SN>30); Dashed orange line = upper bound for Equation 1 generated using +3 SN error 347 

[Wayson et al.
12

]. An indication of the change in fuel aromatic content (H:C ratio) for ECS 348 

operating condition is inset. 349 

 350 

The experimental data for the correlation between SN and nvPM mass concentration show 351 

close agreement with FOA3, particularly at SN<30. Furthermore this agreement is 352 

maintained over a wide range of kerosene compositions, and is largely independent of the 353 

engine operating condition. Lines of regression for the datasets representing the three engine 354 

conditions are practically coincident (not shown in the figure). The location of specific 355 

emissions data on the FOA3 curve is merely dependent upon the chemical properties of the 356 

fuel. Data points towards the left in Figure 3 represent measurements from fuel blends with 357 
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lower aromatic content and correspondingly greater H:C ratio. It is clear that the chemical 358 

composition of the kerosene has a significant impact on the tendency to form nvPM. Fuel 359 

aromatics have been identified as compounds that primarily influence the tendency to form 360 

soot aerosol during combustion
45,46

, although it has long been suggested that fuel hydrogen 361 

content may be a more fundamental parameter that is independent of molecular structure
58,59

. 362 

The data presented here cannot be used to differentiate between the impact of aromatics and 363 

the impact of H:C ratio since both vary linearly in the two component fuel blends. 364 

Experimental data using multi-component blends or surrogate fuels to adjust these parameters 365 

independently is necessary to explore their relative authority. The magnitude of the 366 

reductions in SN and/or nvPM emissions are comparable with data reported elsewhere for 367 

other gas turbine engines burning paraffinic fuels
38,44,45,47,48

. 368 

The nvPM mass concentration (C(nvPM)) and BC mass concentration (C(BC)) as defined 369 

by their respective measurement methodologies are not identical, and generally C(nvPM) ≥ 370 

C(BC) since the former encompasses line loss correction factors that are not inherent in latter. 371 

The two standards are however closely related and these data support the supposition that 372 

C(nvPM) can be estimated from FOA3, but more significantly, that FOA3 can be used with 373 

alternative fuel blends of varying chemical composition without adaption or modification.  374 

The data indicate that the relation between C(nvPM) and SN is foremost represented by 375 

FOA3 equation (1), even at SN>30. Using all data points in Figure 3 and a power law fit to 376 

be consistent with FOA3 equation (1), the line of regression is given by: 377 

C(nvPM) = 0.048 (SN)
1.35

        (3) 378 

Whilst using a constrained range of data points up to SN<30, the line of regression is given 379 

by: 380 

C(nvPM) = 0.058 (SN)
1.27

        (4) 381 
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with the correlation coefficients of R
2
 = 0.979 (n=51) and R

2
 = 0.965 (n=33), respectively 382 

(to simplify the representation of data, these lines of regression are not included in Figure 3). 383 

Figure 3 also shows a marker to indicate the 15% - 19% fuel aromatic range for the ECS 384 

engine operating condition (markers for other engine conditions are of comparable magnitude 385 

but offset relative to the SN axis). This marker corresponds to the mid-range and the lower 386 

bound for aromatic content in the ICAO specification for fuel to be used for aircraft engine 387 

certification testing. For this modest shift in fuel composition, the SN decreased by 30% and 388 

C(nvPM) decreased by 45%. Hence the fuel-induced uncertainty in EDB SN or C(nvPM) 389 

derived through FOA3 is potentially twice this number, when considered in respect of the 390 

limits of fuel used for engine certification testing
17

 and typical commercial fuel variability
43

.  391 

SN data for a particular engine in the EDB is strictly only correct for the stated certification 392 

test fuel and will increase or decrease in magnitude for fuel of different chemical 393 

composition.  394 

The data suggest that for engines with relatively large reported SNs the fuel-induced 395 

uncertainty could be significant and markedly greater than the nominal ±3 SN uncertainty 396 

associated with the measurement of SN, whilst for engines with relatively small reported SNs 397 

the fuel-induced uncertainty will be captured within this same ±3 SN measurement 398 

uncertainty. The proportional reduction in nvPM mass are consistent with data reported by 399 

Brem et al.
55

 in a study evaluating the impact of fuel aromatic content on nvPM emissions 400 

from an in-production gas turbine engine. 401 

 402 

nvPM number concentration and size distribution 403 

Figure 4 shows the measured nvPM number concentration corrected for dilution and 404 

thermophoretic loss
18

 as a function of the measured SN. Measurement uncertainties are as 405 
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previously described, and similarly the different colored data points in the plot indicate the 406 

three different engine conditions. 407 

 408 

Figure 4. nvPM number concentration as a function of smoke number. Colored data points 409 

indicate the three different engine operating conditions: Blue=MES; Red=ECS; Green=NL. 410 

An indication of the change in fuel aromatic content (H:C ratio) for ECS operating condition 411 

is inset. 412 

 413 

Data points towards the left in Figure 4 represent measurements from kerosene fuel blends 414 

of lower aromatic content and show a progressive reduction in the nvPM number 415 

concentration. In this case there is some distinction between lines of regression for the three 416 

datasets (shown in the figure) indicating that the relation between nvPM number 417 

concentration and SN may be dependent upon the engine operating condition. 418 

Figure 4 also shows a marker to indicate the 15% – 19% fuel aromatic range for the ECS 419 

engine operating condition corresponding to the mid-range and the lower bound for aromatic 420 

content in the ICAO specification for fuel to be used in aircraft engine certification testing. 421 
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For this shift in fuel composition, SN decreased by 30% and the nvPM number concentration 422 

decreased by 22%. This would suggest that nvPM number concentration is also a strong 423 

function of fuel composition, an observation that is consistent with data reported 424 

elsewhere
52,55

. 425 

The nvPM size distribution parameters of geometric mean diameter (GMD) and geometric 426 

standard deviation (GSD) for the fuel blends tested at each of the three APU operating 427 

conditions are shown in Figure 5.  The nvPM exhibited a characteristic lognormal size 428 

distribution, which narrows and shifts the geometric mean diameter to smaller sizes as the 429 

aromatic content of the fuel blend is decreased (correspondingly increased H:C ratio). For a 430 

given fuel, the succession of nvPM GMD tracked the sequence NL>ECS>MES. Overall the 431 

GMD varied from a minimum of 22nm for 1.8% aromatic fuel in the MES engine condition 432 

to 42nm for 19.2% aromatic fuel in the NL engine condition. The corresponding GSD ranged 433 

from 1.58 to 1.79. Hence on the microscopic scale, the fuel-induced reduction in the mass of 434 

emitted nvPM corresponds to the emission of fewer and smaller units of particulate matter. 435 

These data are consistent with those reported for other gas turbine engines burning 436 

conventional and alternative fuels
21,26,47,49,50

. 437 

 438 
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 439 

Figure 5. Geometric mean diameter and geometric standard deviation for nvPM emission 440 

from selected fuel blends. Colored data points indicate the three different engine operating 441 

conditions: Blue=MES; Red=ECS; Green=NL. In both cases the upper secondary axis shows 442 

the corresponding fuel H:C ratio. 443 

 444 

When these nvPM GMD data are considered in relation to the C(nvPM) in Figure 3, it is 445 

evident that the small nvPM with GMD ~ 22nm that are characteristic of modern aircraft 446 

engine emissions, do not result in significant deviations in the FOA3 estimation of mass 447 

concentration. Previously Stettler et al.
16

 published data that appears to show that the relation 448 

between SN and C(nvPM) deviates significantly from FOA3 for nvPM with a GMD of the 449 

order of 20nm, with deviations of up to a factor 3. The data presented here do not support this 450 

finding. The data presented by Stettler et al.
16

 do not represent a fair comparison with the 451 

FOA3 method in three principal ways. Firstly, the applied methodology did not have a direct 452 
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measurement of nvPM mass concentration, but rather estimated it from size distribution and 453 

effective density measurements. In the current work, we directly measure nvPM mass. 454 

Secondly, Stettler’s experiments were based on laboratory measurements of propane 455 

diffusion flame combustion, and the black carbon generated from a propane burner is not a 456 

model particle that is representative of the soot aerosol produced by a gas turbine engine. 457 

Propane burners produce black carbon via a different mechanistic route (as chemically 458 

dissimilar) that result in high EC fraction particulate matter with different physical and 459 

chemical properties. This assertion is supported by experimental data from Durdina et al.
56

. 460 

Thirdly, the SN measurement methodology employed by Stettler
 
was not comparable with the 461 

methodology that has been used to populate the data in the ICAO EDB. The use of a catalytic 462 

stripper to remove the semi-volatile OC from the line is not compliant with SAE ARP1179d
6
 463 

and will result in a relatively ‘clean’ source of soot aerosol to be impingent upon the SN 464 

filter. The impact of volatiles to the measurement of SN was demonstrated by Rye et al
60

. 465 

The data in Stettler et al.
16

 do demonstrate that a ‘clean’ black carbon from a propane 466 

burner is captured with a progressively decreasing efficiency as the geometric mean diameter 467 

is reduced. However, the extrapolation that these data are applicable to the emission of nvPM 468 

from an aircraft gas turbine engine cannot be justified because of the differences in both the 469 

modeled source for BC / nvPM and the measurement methodologies employed. This is 470 

important since Stettler et al.
16

 claim that the FOA3 significantly underestimates aircraft 471 

emissions of BC by a factor of 2.5 – 3 for SN ≤15, and consequentially, propose a factor ~3 472 

upwards revision of aircraft BC radiative forcing which would make it equivalent to ~1/3 of 473 

the aviation CO2 radiative forcing
57

. On the basis of the measurements presented here and 474 

critique of the Stettler et al
16

 methodology, such conclusions and extrapolations cannot be 475 

supported. 476 
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Significantly, this work develops a comparative framework between current and future 477 

regulatory standards for the measurement of soot aerosol from a gas turbine that incorporates 478 

the quantitatively distinct emission from the combustion of alternative fuels, and places these 479 

within the ICAO endorsed and widely accepted FOA3 methodology. With typical engine 480 

lifetimes exceeding 20 years, older legacy engines will continue to contribute to overall 481 

emission levels and so both SN as a surrogate measurement of BC, and FOA3 as a vital 482 

assessment tool, may not be fully transitioned for some years to come. The importance of fuel 483 

composition and the impact of its attendant variability may be particularly acute in the 484 

application of EDB data to air quality modeling and the development of emission inventories.  485 
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