
A Highly Parallelized and Vectorized
Implementation of Max-Min Ant System on Intel R©

Xeon PhiTM.
Huw Lloyd

Informatics Research Centre
Manchester Metropolitan University

Manchester, M1 5GD, UK
Email: huw.lloyd@mmu.ac.uk

Martyn Amos
Informatics Research Centre

Manchester Metropolitan University
Manchester, M1 5GD, UK

Email: m.amos@mmu.ac.uk

Abstract—The increasing trend in processor design towards
many-core architectures with wide vector processing units is
largely motivated by the fact that single core performance has
hit a ‘power wall’, meaning that performance gains are currently
achievable only through increasingly parallel and vectorized exe-
cution models. Consequently, applications can only exploit the full
performance of modern processors if they achieve high parallel
and vector efficiencies. In this paper, we illustrate how this might
be achieved for the well-established Ant Colony Optimization
metaheuristic. We describe a highly parallel and vectorized
variant of the Max-Min Ant System algorithm applied to the
Traveling Salesman Problem, and present two novel vectorized
algorithms for selecting cities during the tour construction phase.
We present experimental results from an implementation on the
Intel R© Xeon PhiTM platform, which show that very high parallel
and vector efficiencies are achieved, and significant speedups are
obtained compared to both the reference serial implementation
and the previous best Xeon Phi implementation available in the
literature.

I. INTRODUCTION

In this paper, we consider the implementation of a well-
known metaheuristic method on a new parallel computing
platform. Ant Colony optimization (ACO) [1], [2], [3] is
a well-established population-based optimization algorithm
inspired by the foraging behavior of ants. It has been applied
to a wide range of NP-hard problems such as the Traveling
Salesman Problem (TSP), in which the aim is to find the
shortest Hamiltonian circuit of a graph. Applied to the TSP,
a population of simulated ants (agents) construct tours of the
graph, choosing vertices probabilistically based on a combi-
nation of heuristic weights and a simulated pheromone trail.
After constructing their tours, ants deposit pheromone on the
visited edges in proportion to the quality of the tour (which
encourages the following ants to select those edges with higher
probability, leading to positive reinforcement of higher-quality
tours). In order to remove unproductive paths from the search,
pheromone is gradually evaporated from the trail. Several
variants of the basic algorithm have been proposed (see [3]
for a review). In this paper we concentrate on the Max-Min
Ant System algorithm (MMAS) [4], which has emerged as the

best overall performing variant for the Travelling Salesman
Problem [3].

The main motivation for this paper lies in advances
in processor chip technology. In recent years, the use of
coprocessors with many-core architectures for accelerating
compute-intensive workloads has received widepread atten-
tion; Graphics Processing Units (GPUs) are widely used, espe-
cially NVIDIA R© hardware programmed using the proprietary
CUDA API [5]. The GPU has provided a valuable platform
for nature-inspired algorithms [6], [7] and other metaheuristics
[8], [9], [10], and several authors have specifically used it to
study ACO [11], [12].

The latest generation of NVIDIA hardware, Tesla, offers
up to 4992 CUDA cores [13], but fine-grained parallelism is
required in order to extract the full performance from this
class of hardware. A recent entry into the coprocessor market
is Intel’s Xeon Phi coprocessor, based on the Many Integrated
Core (MIC) [14] architecture.

The current generation of Xeon Phi (at the time of writing)
is known as Knight’s Corner, and has up to 61 cores: one of
these is reserved for the operating system (Busybox Linux)
whereas the other 60 are available to applications. Each core
runs four hardware threads, giving up to 240 threads in total.
The cores run at a relatively low clock speed (1.2GHz),
and each core has a vector processing unit (VPU) which
operates on 512-byte wide registers. In order to best exploit the
hardware, it is therefore essential that applications make full
use of the fine-grained data parallelism offered by the VPU,
in addition to filling all 240 threads with work. Using all four
threads on a core offers the best chance of hiding latency.

In this paper we present an implementation of the MMAS
algorithm on the Knight’s Corner architecture. In this way, we
demonstrate how a fundamental metaheuristic method may be
optimized for this important new parallel computing archi-
tecture. We present two vectorized algorithms for selecting
vertices during the tour construction phase, and show that the
code makes efficient use of the VPU and the hardware threads.

The remainder of the paper is organized as follows: in
section II we summarize related work in implementing ACO

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161891102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on MIC and GPUs. Section III describes the MMAS algorithm
and the details of our implementation. Section IV presents the
results of experiments conducted with the code. We summarize
our findings in section V.

II. RELATED WORK

Fu, et al. [15] implemented the MMAS algorithm on GPU,
and introduced the ‘All-in Roulette’ algorithm for selecting the
next vertex in a tour. Several authors subsequently explored
data parallel approaches to the Ant System (AS) variant of
ACO on GPU, [11], [12], [16], [17]. Cecilia, et al. [11]
introduced the Independent Roulette (IRoulette) algorithm for
selecting vertices in tour construction as an alternative to
the traditional roulette wheel approach. In this method, the
weights associated with the edges are independently multiplied
by random numbers in parallel, and a parallel reduction is
carried out to find the largest product. As in All-in-roulette,
the probabilities are not proportional to the weights, but higher
weighted edges are more likely than lower weighted edges,
and the scheme can be implemented efficiently on GPU.
Around the same time, Dawson and Stewart [12] introduced
the Double Spin Roulette (DS Roulette) scheme, in which
two roulette wheels selections are used; one which selects a
block of threads (and its associated vertices) and a second
which selects within the chosen block. DS Roulette preserves
the proportionality between the edge weights and selection
probabilities.

Candidate sets are an important optimization in ACO imple-
mentations [3]. By only considering the ’most likely’ vertices
when constructing a tour, runtime can be reduced considerably,
and better solutions may even be obtained in some cases [18].
Several authors use nearest-neighbor lists to accelerate their
GPU implementations of the AS algorithm [19], [16].

To the best of our knowledge, there exist only two published
studies of Ant Colony Optimization on the Xeon Phi platform.
Sato, et al. [20] used ACO to solve the Quadratic Assignment
Problem on Xeon Phi and Graphics Processing Unit (GPU).
They conclude that the Xeon Phi gives poor performance for
this application compared to GPU; however it seems their
implementation made no use of the SIMD capability of Xeon
Phi, which is essential for good performance. Tirado, et al.
[21] used the Ant System algorithm to solve the Travel-
ling Salesman Problem on Xeon Phi. Their implementation
obtained significant speedups over the single-threaded CPU.
Methods were tested for constructing the tours, which differed
in their memory access patterns, and for assessing whether
the weights were calculated using the pow() function, or
multiplied out explicitly. Best performance was obtained when
the memory access was cache-friendly, and without using
pow().

III. MMAS ON XEON PHI

A. MMAS Algorithm

An iteration of the MMAS algorithm comprises two stages:
tour construction and pheromone update. The ant system
contains m ants. At the beginning of the tour construction

stage, each ant is placed randomly on one of the n vertices
of the graph. At each subsequent step in the construction
of a tour, ants randomly select the next vertex to visit; the
probability of ant k, currently placed on vertex i, choosing
vertex j is given by

pki,j =

[τi,j]

α[ηi,j]
β∑

i∈Nk
i
[τi,j]α[ηi,j]β

i ∈ Nk
i

0 otherwise
(1)

where ηi,j = 1/di,j , di,j is the length of the edge connecting
vertices i and j and τi,j is the amount of pheromone associated
with edge i, j. Nk

i is the feasible region for ant k on vertex
i – this is simply the set of vertices not yet visited on the
current tour, and is maintained in practice using the tabu list,
a list of the vertices already visited by a given ant. The two
parameters α and β are fixed at the beginning of a run and
control the relative importance of edge cost and pheromone in
determining the probabilities.

When all ants have completed their tours, the pheromone
values associated with each edge of the graph are updated.
Firstly, the pheromone values are evaporated according to the
rule

τi,j ← (1− ρ)τi,j∀(i, j) ∈ L (2)

where ρ ∈ [0, 1] is a parameter which controls the rate of
evaporation and L is the set of edges in the complete graph.
Finally, pheromone is deposited on all edges which form part
of either the iteration-best or best-so-far tour. The pheromone
is updated using

τi,j ← τi,j + ∆τi,j∀(i, j) ∈ L (3)

where ∆τi,k is the amount of pheromone deposited on edge
(i, j), given by

∆τi,k =

{
1/C if edge(i, j) ∈ T
0 otherwise

(4)

where T is the set of edges in the iteration-best or best-so-far
tour, and C is the total cost of tour T – this is simply the sum
of the edge lengths,

∑
i,j∈T di,j .

In the MMAS algorithm, the pheromone values are clamped
between limits τmin and τmax. These limits are given by

τmax =
1

ρCbest
; τmin = τmax

2(1− a)

a(nneighbors + 1)
(5)

where a = exp(log(0.05)/n) and nneighbors is the length of
the nearest-neighbor list (see section III-D).

We now describe how each of these stages were imple-
mented on the Xeon Phi.

B. Tour Construction

We use OpenMP to distribute the work of the tour con-
struction phase by assigning ants to threads. This can be done
without any synchronization, as the tour construction phase
requires only read access to the shared pheromone trail and
edge length data, and write access is required only for memory
which is private to each ant. We use all of the 240 hardware

threads on the Xeon Phi to maximize latency-hiding. Each ant
maintains a tabu list during the tour construction phase, which
tracks the vertices already visited in the current tour. We store
the tabu list as an array of 16-bit masks.

To construct an ant’s tour, a random vertex is selected, and
the bit corresponding to that vertex is set in the tabu list. We
then repeatedly call an edge selection function, which takes
as input (a) the tabu list and (b) an array of weights for all
edges which include the current vertex. The edge weights are
stored in a two dimensional array of 32-bit floats. Each row
of the array is aligned on a 64-byte boundary (which allows
efficient loading into AVX-512 registers) – the pointer passed
to the edge selection function is then simply the beginning of
the ith row of the weights array, where i is the current vertex.
Having selected the next vertex, the tour length and tabu list
are updated, and the process repeats until the tour is complete.

We implemented two distinct edge selection functions,
which we call Vectorized Roulette-1 and Vectorized Roulette-
2 (vRoulette-1 and vRoulette-2). In both cases, the functions
were vectorized by hand using the AVX-512 compiler intrin-
sics.

1) vRoulette-1: vRoulette-1 is a vectorized version of the
IRoulette algorithm ([11]). In this algorithm, each edge weight
is multiplied by a uniform random deviate, and the selected
edge is the edge not in the tabu list with the highest product
of weight and random number. This algorithm does not select
edges with probabilities proportional to the weights; however,
edges with higher weights are more likely to be selected
than edges with lower weights. Our vectorized implementation
loops through the weights 16 at a time, maintaining 16-
wide vectors of the highest-per-lane products and of the
corresponding indices, before performing a serial reduction to
find the selected edge. The algorithm is given in Algorithm 1
for p-wide vectors. Here, Random() is a function which
returns a vector of p random deviates, and MaskedSave(
mask, a, b) is a function which returns a vector in
which elements are taken from a if the corresponding bit in
mask is set, otherwise from b. Masks are generated as the
output of vectorized Boolean operations.

2) vRoulette-2: vRoulette-2 chooses edges with probabili-
ties which are proportional to the weights. The algorithm uses
repeated binary trials, choosing with probability proportional
to the weights. The winner of a trial accumulates the weight
assigned to the loser. It is straightforward to show that this pro-
duces a final result in which the probabilities are proportional
to the weights. A similar method (with two trials) is used in
the DS-Roulette algorithm [12]. Again, the weights and indices
are tracked in 16-wide vectors, and 16 trials are conducted
simultaneously using the AVX-512 vector instructions. A final
serial phase performs a binary tree of trials to decide the
selected edge. The algorithm is given in Algorithm 2.

C. Pheromone Update

In the Max-Min Ant System algorithm, only one ant (the
iteration-best, or best-so-far ant) deposits to the pheromone

ALGORITHM 1: vRoulette-1
Input: Edge weight p-vector array W0...N−1, Tabu mask

array T0...N−1
Output: Selected edge
// Variables in bold are p-vectors, superscripts indicate
vector lanes

Wmax ← (0 . . . 0);
Imax ← (0 . . . 0);
I← (0 . . . p− 1);

for i← 0 to N − 1 do
R← Random();
w← MaskedSave(Ti, (−1 . . .− 1), Wi ×R);
max mask ← w >Wmax;
Wmax ← MaskedSave(max mask, w, Wmax);
Imax ← MaskedSave(max mask, I, Imax);
I← I + (p . . . p);

end
// Serial Reduction
j = argmax(Wmax);
return Ijmax;

trail. This process is carried out using a single thread, and
there is little scope for vectorization.

After the pheromone is deposited, the code performs three
tasks: evaporation of the pheromone trail, application of the
pheromone minimum and maximum limits, and calculation
of edge weights for the next round of tour construction.
These three operations are computed in a pair of nested loops
which iterate over the pheromone matrix. We parallelize the
outer loop with OpenMP over 240 threads, leaving an inner
loop which vectorizes trivially. The edge weight calculation
is accelerated by hard-coding the powers α and β using
multiplication (rather than calling the pow() function) and by
using a precomputed matrix of inverse edge lengths (saving a
divide). Note that, as neither of the edge selection schemes
require the weights to be normalized, we do not need to
compute the denominator in equation 1; we store a two-
dimensional array of edge weights

Wi,j = [τi,j]
α[ηi,j]

β (6)

D. Nearest-neighbor Lists

The reference implementation of MMAS [22] uses a list of
nearest neighbors at each vertex to accelerate the calculation.
When constructing a tour, the next edge is chosen from the
nearest neighbor list, unless all nearest neighbors have already
been visited, in which case the shortest of the remaining edges
is chosen. As well as optimizing the serial version of the
algorithm, this technique may also improve the solution quality
[18]. In order to obtain the potential solution quality benefits
of the nearest neighbor list, we emulate this effect in our
vectorized implementation.

At the beginning of the calculation, we compute the nearest
neighbor lists, and then construct a two-dimensional array of

ALGORITHM 2: vRoulette-2
Input: Edge weight p-vector array W0...N−1, Tabu mask

array T0...N−1
Output: Selected edge
// Variables in bold are p-vectors, superscripts indicate

vector lanes

Wacc ← (0 . . . 0);
Iwin ← (0 . . . 0);
I← (0 . . . p− 1);

for i← 0 to N − 1 do
R← Random();
w← MaskedSave(Ti, (0 . . . 0), Wi);
Wacc ←Wacc + w;
win mask ← (Wacc ×R) < w;
Iwin ← MaskedSave(win mask, I, Iwin);
I← I + (p . . . p);

end
// Serial Phase
numTrials ← p/2;
R← Random();
iRandom ← 0;
for i← 0 to log2(p)− 1 do

for j ← 0 to numTrials− 1 do
W2j

acc ←W2j
acc + W2j+1

acc ;
if W2j

acc ×RiRandom <W2j+1
acc then

I2jwin ← I2j+1
win ;

end
Ijwin ← I2jwin;
Wj

acc ←W2j
acc;

iRandom ← iRandom +1;
end
numTrials ← numTrials /2;

end
return I0win;

floating point values fi,j where fi,j = 1 if edge (i, j) is in the
nearest neighbor list for vertex i and 0 otherwise. Then, when
computing the weight for edge (i, j), we modify the weight
such that

W ′i,j = Wi,j (Afi,j + 1) (7)

where A is some constant � 1 (we use 1000). In this
way, edges not in the nearest neighbor list have a very low
probability of selection unless all the nearest neighbor edges
are already used in the tour. This correction is folded in to the
weight calculation, and also vectorizes trivially.

IV. EXPERIMENTAL RESULTS

We carried out experiments on the Iden cluster at the UK
STFC Hartree Centre, using compute nodes equipped with
Xeon Phi 5110P accelerators. The code was compiled using
the Intel C++ compiler (icc version 16.0.0) with the opti-
mization level set to -O3. The code was run in native mode on
the Xeon Phi, and all timings were obtained by instrumenting

the code with calls to the standard gettimeofday function
which provides a microsecond timer. The reference (baseline)
sequential implementation is the ACOTSP code [22], which
was compiled using icc with -O3. The reference code was
run on one of the Intel Xeon E5-2697 v2 2.7 GHz processors
of the host node. We used a nearest neighbour list of 20 for the
reference runs. Timings for the reference code were averaged
over five runs of ∼ 500 iterations for each problem instance.

A. MMAS Parameters and Problem Instances

We used α = 1, β = 2 and ρ = 0.5. In all cases, the
number of ants m was set equal to n, the number of vertices
in the problem instance. The pheromone trail is updated by
the iteration-best ant. We ran experiments using five values
for the size of the nearest neighbor list – 20, 40, 70, 100, and
n (which is equivalent to no nearest-neighbor list). We used
the same five TSP instances from the TSPLIB [23] library as
solved in[21] (lin318, pcb442, rat783, pr1002,
pr2392), in order to allow for a direct comparison of exe-
cution times. For each problem instance and nearest-neighbor
list size, we ran an ensemble of 16 runs, with 512 iterations
per run.

We now present comparative results in terms of both exe-
cution time and solution quality.

B. Execution Time

Figure 1 shows the average execution time per iteration
for the two Xeon Phi implementations, compared to both the
reference implementation on CPU, and times taken from [21].
The times from [21] were taken from their Figure 5a. Note that
[21]’s results are comparable with the CPU implementation
here. This is most likely due to the fact that the reference
implementation uses the nearest-neighbour list optimization,
which speeds up the calculation considerably. Also, [21] used
the Ant System (AS) algorithm, which requires more work
in the pheromone update stage than MMAS (as well as pro-
ducing poorer quality solutions). vRoulette-1 and vRoulette-
2 are very similar in execution time, with vRoulette-1 being
slightly faster, and both are an order of magnitude faster than
[21]’s implementation and the reference code with the nearest-
neighbour list optimization.

C. Solution Quality

We define solution quality as the ratio of the length of
the best tour found to the known optimum for the problem
instance. Figure 2 shows the average solution quality from
the ensembles of runs. The solution quality using vRoulette-
2 is strongly dependent on the size of nearest-neighbor list
– with no nearest-neighbor list the solution is significantly
worse, especially on the larger instances. There is a much
weaker dependence on the nearest-neighbor list when using
vRoulette-1. In addition, the solution quality is consistently
better with vRoulette-1 than with vRoulette-2, for all instances
and all nearest-neighbor list sizes.

Fig. 1. Execution time per iteration for CPU and Xeon Phi implementations.

Fig. 2. Average solution quality after 512 iterations as functions of nearest-
neighbor list size. Average solution quality from the CPU reference runs (with
20 nearest neighbours) are shown for comparison.

D. Xeon Phi Diagnositcs

Intel VTune Amplfier XE 2016 was used to gather perfor-
mance diagnostics on runs of the code using vRoulette-1 and
vRoulette-2. Table I shows data obtained from the profiling
runs. The Level 1 Cache Hit Ratio gives the percentage of
memory accesses which did not result in a Level 1 Cache
miss (‘in-flight’ hits are not counted as misses in this diagnos-
tic). Typically, the code achieves around 95%. Vectorization
intensity is the ratio of data elements processed to vector
instructions issued. For single precision float vectors, the upper
limit to this measure is 16. Our code typically achieves > 10
on this measure. We derived the thread usage from the CPU
usage per thread, as the mean CPU per thread divided by
the maximum. Although this measure does not directly map
to parallel efficiency (for example, in the perverse case of
only one thread active at a time, with all threads consuming

TABLE I
XEON PHI PERFORMANCE DIAGNOSTICS - LEVEL 1 CACHE HIT RATIO
(L1HR), VECTORIZATION INTENSITY (VI), THREAD USAGE (TU) AND

SPEEDUP (COMPARED TO CPU REFERENCE CODE)

Algorithm Instance L1HR (%) VI TU (%) Speedup

lin318 97.9 10.49 94.2 13.2
pcb442 96.3 10.96 92.4 16.6

vRoulette-1 rat783 94.6 11.27 94.6 11.6
pr1002 94.3 11.37 93.9 10.5
pr2392 92.5 11.56 87.8 5.6

lin318 98.5 9.09 93.2 10.0
pcb442 97.5 10.07 90.0 13.0

vRoulette-2 rat783 95.4 10.91 94.5 10.1
pr1002 94.9 11.33 95.4 9.2
pr2392 92.1 12.21 88.7 5.3

equal time, this measure would give 100% whereas the parallel
efficiency would be very small), in this case it is a good
guide to the efficiency as the timelines show very little idle
time in the threads. Typically, we achieve over 90% on this
measure. For comparison, [21] report L1 hit ratio of ∼ 80%
and vectorization intensity of ∼ 10 for their best-performing
method. The results show that our method is cache-friendly,
and efficiently parallelized and vectorized.

E. Discussion

vRoulette-1 and vRoulette-2 show very similar execution
times, although vRoulette-1 is slightly faster on the smaller
problems. This is possibly due to vRoulette-1 requiring less
work in the serial phase; the main loops are comparable, so
the effect of the serial part of the algorithm will be more
pronounced when the trip count of the main loop is lower.
The solution quality, and the sensitivity to nearest-neighbor
list size, seems to be considerably better with vRoulette-1.
However, this may be down to convergence speed, and it is
possible that given more iterations, the vRoulette-2 code may
converge to similar, or better, solutions although we note that
the relatively high value of ρ used here should give rapid
convergence (slightly better solutions may be obtained with
lower ρ and more iterations [24]). Further work is required
to investigate this effect fully, especially in the context of
varying the MMAS parameters. Finally, we note that our
implementation does not include a local search phase, which
is commonly added to accelerate convergence in ACO [3].
Local search is added as an extra step in the tour construction
phase, and hence could be parallelized in a similar manner to
the remainder of the tour construction (i. e. by assigning ants
to threads) although it is unlikely to benefit from vectorization.
However, we note that in the ACOTSP code, local search
typically adds less than 10% to the run time per iteration.
Investigating the addition of local search to the Xeon Phi
implementation is an area for future work.

V. CONCLUSION

In this paper, we have described an efficient implementation
of the MMAS algorithm on the Xeon Phi platform. The key
contributions are two novel vectorized procedures for selecting
vertices in the tour construction phase; vRoulette-1, which is
based on the IRoulette method of [11], and vRoulette-2, which
is based on roulette wheel selection. In addition, we present
a novel implementation of nearest-neighbour lists in a data-
parallel ACO code. Experimental results show that our code
makes efficient use of the parallel and vector capabilities of
the hardware, and is an order of magnitude faster than both the
previous best implementation in the literature and the reference
CPU implementation. There is some evidence that vRoulette-1
gives better quality solutions, and is less sensitive to the size
of the nearest-neighbor list. Further work is required to inves-
tigate this effect in more detail. The algorithm may be suitable
for other many-core, SIMD architectures; in future work we
will investigate its use on other platforms, in particular the next
generation of Xeon Phi hardware (Knight’s Landing). The use
of the nearest neighbor list to accelerate the calculation, as in
[16], and the implementation of local search are also areas for
future work.

ACKNOWLEDGMENTS

We acknowledge use of Hartree Centre resources in this
work. The STFC Hartree Centre is a research collaboration in
association with IBM providing High Performance Computing
platforms funded by the UK’s investment in e-Infrastructure.
The Centre aims to develop and demonstrate next generation
software, optimised to take advantage of the move towards
exa-scale computing. HL thanks Stephen Pickles of the STFC
Scientific Computing Department for useful discussions during
the development of this work.

REFERENCES

[1] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Politecnico di Milano, Italy, 1992.

[2] M. Dorigo and L. Gambardella, “Ant Colony System: a cooperative
learning approach to the Traveling Salesman Problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53–66, 1997.

[3] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA,
USA: Bradford Company, 2004.

[4] T. Stützle and H. H. Hoos, “MAX-MIN ant system,” Future Gener.
Comput. Syst., vol. 16, no. 9, pp. 889–914, Jun. 2000. [Online].
Available: http://dl.acm.org/citation.cfm?id=348599.348603

[5] NVIDIA. What is GPU computing? Last accessed 2016-11-7. [Online].
Available: http://www.nvidia.com/object/what-is-gpu-computing.html

[6] X. Cui, J. S. Charles, and T. Potok, “GPU enhanced parallel computing
for large scale data clustering,” Future Generation Computer Systems,
vol. 29, no. 7, pp. 1736–1741, 2013.

[7] P. Pospichal, J. Jaros, and J. Schwarz, “Parallel genetic algorithm on
the CUDA architecture,” in European Conference on the Applications
of Evolutionary Computation. Springer, 2010, pp. 442–451.

[8] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent
advances and new trends,” International Transactions in Operational
Research, vol. 20, no. 1, pp. 1–48, 2013.

[9] P. Krömer, J. Platoš, and V. Snášel, “Nature-inspired meta-heuristics on
modern GPUs: state of the art and brief survey of selected algorithms,”
International Journal of Parallel Programming, vol. 42, no. 5, pp. 681–
709, 2014.

[10] T. Van Luong, N. Melab, and E.-G. Talbi, “GPU computing for parallel
local search metaheuristic algorithms,” IEEE Transactions on Comput-
ers, vol. 62, no. 1, pp. 173–185, 2013.

[11] J. M. Cecilia, J. M. Garcı́a, A. Nisbet, M. Amos, and M. Ujaldón,
“Enhancing data parallelism for Ant Colony Optimization on GPUs,” J.
Parallel Distrib. Comput., vol. 73, no. 1, pp. 42–51, 2013.

[12] L. Dawson and I. Stewart, “Improving Ant Colony Optimization per-
formance on the GPU using CUDA,” in 2013 IEEE Conference on
Evolutionary Computation, L. G. de la Fraga, Ed., vol. 1, Cancun,
Mexico, 2013, pp. 1901–1908.

[13] NVIDIA. NVIDIA tesla GPU accelerators.
Last accessed 2016-11-7. [Online]. Available:
http://international.download.nvidia.com/pdf/kepler/TeslaK80-
datasheet.pdf

[14] A. Duran and M. Klemm, “The intel many integrated core architec-
ture,” in High Performance Computing and Simulation (HPCS), 2012
International Conference on, 2012, pp. 365–366.

[15] J. Fu, L. Lei, and G. Zhou, “A parallel Ant Colony Optimization
algorithm with GPU-acceleration based on All-In-Roulette selection,” in
Advanced Computational Intelligence (IWACI), 2010 Third International
Workshop on, 2010, pp. 260–264.

[16] L. Dawson and I. A. Stewart, Candidate Set Parallelization Strategies
for Ant Colony Optimization on the GPU. Cham: Springer
International Publishing, 2013, pp. 216–225. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-03859-9 18

[17] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation of
Ant Colony Optimization for the Traveling Salesman Problem,” in Net-
working and Computing (ICNC), 2012 Third International Conference
on, 2012, pp. 94–102.

[18] M. Dorigo and L. M. Gambardella, “Ant colonies for
the Travelling Salesman Problem,” Biosystems, vol. 43,
no. 2, pp. 73 – 81, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303264797017085

[19] J. M. Cecilia, J. M. Garcia, M. Ujaldon, A. Nisbet, and M. Amos, “Par-
allelization strategies for ant colony optimisation on gpus,” in Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, May 2011, pp. 339–346.

[20] M. Sato, S. Tsutsui, N. Fujimoto, Y. Sato, and M. Namiki, “First
results of performance comparisons on many-core processors in solving
QAP with ACO: Kepler GPU versus xeon PHI,” in Proceedings
of the Companion Publication of the 2014 Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO Comp ’14. New
York, NY, USA: ACM, 2014, pp. 1477–1478. [Online]. Available:
http://doi.acm.org/10.1145/2598394.2602274

[21] F. Tirado, A. Urrutia, and R. J. Barrientos, “Using a coprocessor to
solve the ant colony optimization algorithm,” in 2015 34th International
Conference of the Chilean Computer Science Society (SCCC), Nov 2015,
pp. 1–6.

[22] T. Stützle. ACOTSP v1.03. Last accessed 2016-11-7. [Online].
Available: http://iridia.ulb.ac.be/ mdorigo/ACO/downloads/ACOTSP-
1.03.tgz

[23] G. Reinhelt. TSPLIB, url=http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/, note=Last accessed 2016-11-7.

[24] T. Stützle, M. López-Ibáñez, P. Pellegrini, M. Maur, M. Montes de
Oca, M. Birattari, and M. Dorigo, Parameter Adaptation in Ant Colony
Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 191–215. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
21434-9 8

