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Abstract—In this paper, we derive a non-linear equalizer for a
fading channel with non-Gaussian noise. In particular, we look
into the effects of non-Gaussian noise over power line channels
that severely affect communication signals. Unlike most exist-
ing work based on orthogonal frequency-division multiplexing
(OFDM) in the literature, we investigate the performance of vec-
tor OFDM (VOFDM) over multi-path power line communication
(PLC) channels contaminated with Middleton Class-A noise. To
reduce the impact of impulsive noise we propose a novel filter
to equalize the output of the channel. The performance of the
equalizer is evaluated in terms of bit error rate (BER), and the
impact of several impulsive noise parameters are examined at the
receiver. Results show that the proposed system can considerably
improve the BER performance in comparison to the conventional
OFDM scheme. In addition, it is shown that increasing the
number of vector blocks of the VOFDM system will enhance the
BER performance under the same condition. The proposed non-
linear equalizer improves the performance of VOFDM system
successfully at low signal-to-noise ratios (SNRs), at some instances
it nearly halved the probability of error with respect to linear
filter.

Index Terms—Middleton Class-A noise, noise mitigation,
power line communication (PLC), vector orthogonal frequency-
division multiplexing (VOFDM).

I. INTRODUCTION

THE existing infrastructure of the power line communica-
tion (PLC) network makes a good case for the develop-

ment of many smart grid and home networking applications
[1], [2]. In fact, PLC is increasingly becoming a promising
alternative solution to wireless and optical communications in
networking with the advantage of pre-existing wiring installa-
tions, or regions where access to wireless communications is
scant.

There are several characteristics which affect the perfor-
mance of PLC communication systems, for the power lines
were originally designed for 50–60 Hz electrical power dis-
tribution. Communication signals at high frequencies over
the power cables can severely be affected as attenuation
increases exponentially with both frequency and distance.
Communication signals also suffer from multi-path fading
resulting in signal distortion and inter-symbol interference
(ISI). However, the most impeding factor is the presence of
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impulsive noise which is the dominant element of channel
noise and can have power spectral density of up to 50 dB above
the background noise [3], [4]. Middleton Class-A noise model
is a widely used model for PLC channels and will be adopted
in this paper [5], [6]. Generally, multi-carrier modulation
systems, such as orthogonal frequency-division multiplexing
(OFDM), are more resistant to impulsive noise than single-
carrier systems [7]; for this reason, OFDM has been the main
modulation technique for most PLC standards both in narrow-
band and broadband technologies [8]–[11]. In addition, error
control coding schemes can further improve performance in
impulsive noise channels. For example, the authors in [7]
studied the performance of coded OFDM in PLC system.
However, when the noise power is high, other noise mitigation
techniques should be implemented along with OFDM. For
instance, clipping/blanking of the incoming received signal
when it exceeds a certain threshold has been used in [12]–[14].
These methods are built upon the success of simple empirical
blankers and clippers.

It is known that OFDM systems suffer from spectral nulls
due to ISI in the channel [15]. In addition, there are other
issues with OFDM such as its sensitivity to carrier frequency
offset (CFO) and high peak-to-average power ratio (PAPR)
properties [16]. Vector OFDM (VOFDM) is introduced by Xia
in [17] to alleviate the mentioned shortcomings of OFDM
system. It is shown that VOFDM has a smaller peak-to-
average power ratio (PAPR), increases diversity order, and
is less sensitive to CFO [16]. Authors in [16] have studied
the performance of VOFDM system over frequency selective
channel and showed that the superior bit error rate (BER)
performance of VOFDM is due to signal space diversity.
Furthermore, the guard band configuration, synchronization
and turbo-equalization are discussed in [18].

This paper studies the VOFDM system over a multi-path
power line channel in the presence of Middleton Class-
A noise. The main motivation for proposing VOFDM for
PLC resides in its ability to adapt to frequency selective
fading and its low PAPR features. In order to reduce the
impact of impulsive noise, we propose a non-linear equalizer,
specifically the Masreliez filter1, at the receiver for complex
valued estimation in non-Gaussian environment. Therefore the
main contributions of this paper are as follows: First, we
propose an explicit non-linear filter for the impulsive noise

1Kalman filter for non-Gaussian noise introduced by Masreliez in [19],
is an efficient algorithm for estimating a linear stochastic system with low
computational burden. However, the Kalman equalizer is known to have a
poor BER performance [20].
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Fig. 1. The block diagram of the proposed and conventional VOFDM systems.

PLC channel and compare its performance to that of the
linear equalizer. The second contribution resides in examining
the impact of different VOFDM system parameters and noise
scenarios on the performance of the proposed system. It is
worth mentioning that at the limit when the magnitude of
spikes are much higher than background noise, the Masreliez
filter reduces to a blanker [14].

The rest of this paper is organized as follows. In Section
II, the general system model is described and VOFDM is
briefly reviewed. In Section III, derivations of linear minimum
mean square error (LMMSE) and Masreliez equalizer are
given. Section IV presents the PLC channel and evaluates
the performance of the proposed system over PLC channels.
After that, the simulation results are presented and discussed.
Finally, Section V concludes the paper and outlines the main
results.

The notations used in this paper are as follows: Bold upper-
case and bold lowercase letters denote matrices and vectors,
respectively. Conjugate transpose is denoted by (.)

∗ and ⊗
represents the Kroneker product. The notation ‖.‖ represent
Euclidean norm for vectors or absolute value of a complex
number. Circularly symmetric, complex Gaussian distribution
with mean µ and variance σ2 is denoted by CN

(
µ,σ2

)
; I is the

identity matrix and diag[.] represents a block diagonal matrix
whose diagonal elements are matrices; det (A) indicates the
determinant of matrix A.

II. SYSTEM MODEL

A basic block diagram of the system considered in this paper
is shown in Fig. 1. First, a block of modulated symbols of
size N , denoted as x = [x0, ..., xN−1], is rearranged as x̄
by passing it through a permutation matrix Π, and divided
into L blocks x̄ = [x̄0, ..., x̄L−1]. Then, inverse fast Fourier
transform (IFFT) of size M is performed on each vector
to realize the time domain symbols. After that, the resultant
sequence is once more permuted using matrix Π−1 to produce
x̃ = [x̃0, ..., x̃N−1]. The cyclic prefix (CP) of appropriate

size is now added to the data before transmission. Given that
hk, k = 0, ...,K, represents the channel impulse response,
after the removal of the CP, the time domain signal at the
receiver can be expressed as

ỹk =

K∑
k=0

hkx̃(n−k)≡N
+ nk, (1)

where nk is the noise. The indexes of x’s are chosen con-
gruent to 0, ..., N − 1 modulo N . Next, the received signal
goes through the reverse process of what performed at the
transmitter side. That is, the vector ỹ is permuted by the matrix
Π and is split into L vectors as [ȳ0, ..., ȳL−1]. Fast Fourier
transform (FFT) is then performed on each vector block to
retrieve the original transmitted signal, i.e., x̄, which is then
permuted back to the original positions using the matrix Π−1.

The channel response can be expressed in rows of equivalent
matrix H. Since H is a cyclic matrix, the overall procedure
block diagonalizes the matrix H (see Sec. II.B.) Hence, we
can write the output of the VOFDM system in block form as
follows

yl = Hlxl + n̄l, (2)

where yl, xl, and n̄l are vectors each of size M for l =
0, 1, ..., L−1. The matrix Hl is a factor circulant matrix given
by

Hl =


hl0 ωhlM−1 · · · ωhl1
hl1 hl0 · · · ωhl2
...

...
. . .

...
hlM−1 hlM−2 · · · hl0


M×M

, (3)

where ω = exp
(
−2πi lL

)
. It should also be noted that x̃ is a

weighted sum of independent random variables and for large
n, by the central limit theorem, it has a Gaussian distribution.
For further explanation of VOFDM system and performance
analysis we refer the reader to [15].
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A. Block Diagonalization of H

In OFDM, sub-carriers are orthogonal. Indeed, the unitary
discrete Fourier transform (DFT) matrices diagonalize matrix
H. In this section, we explain how the cyclic matrix H is
block diagonalized in VOFDM. Let S be a block shift matrix
as

S =


0 IM · · · 0
...

. . .
...

0
. . . IM

IM 0 · · · 0


N×N

. (4)

Then, the circulant matrix H can be expressed using powers
of S as

H =

L−1∑
k=0

S−kdiag[H̆k] = U

L−1∑
k=0

Λ−kU∗diag[H̆k]. (5)

where H̆k’s are M ×M matrices of the first M columns of
H, and Λ is the eigenvalues of matrix S. Since diag[H̆k] =

U
{

diag[H̆k]
}

U∗, we can write

H = U

{
L−1∑
k=0

Λ−kdiag[H̆k]

}
U∗

= U {diag[H0, ...,HL−1]}U∗, (6)

where Hi, i = 1, 2, ..., L, is given in (3).
It is clear that S can be looked at as the Kronecker product

of shift matrix SL of size L × L and the identity matrix IM
for N = LM . The eigenvalues and eigenvectors of the matrix
SL ⊗ IM are the set of all the λj λ̄k and the eigenvectors
vj�pk, where λj and vj are the eigenvalues and eigenvectors
of SL whereas λ̄k and pk are the eigenvalues and eigenvectors
of IM [21]. We further note that the eigenvector matrix of SL
is a DFT matrix of size L×L and the eigenvector matrix of IM
is the identity matrix of size M ×M . Hence, the eigenvector
matrix U can be written as U = DL � IM (this is justified
by [21, Thm 13.10] and SL ⊗ IM being a normal matrix).
Therefore, there exists a permutation matrix Π such that [22]

DL � IM = Π−1 (IM � DL) Π. (7)

Since DL is a DFT matrix, IM � DL is a block diagonal
matrix of L DFT matrices of size L. In our derivation, it is
shown that the identity matrix IM can be replaced with any
other diagonal matrix. The representation in (7) helps us to use
FFT, which is practically a computationally efficient method,
on each block of data. It should also be highlighted that the
permutation matrix Π is only a rearrangement of a vector
of input data into a matricial form where the FFT/IFFT is
performed on each row. Furthermore, it can be observed that
when M = 1, the matrix U is simply a DFT matrix of size
N and the VOFDM system reduces to conventional OFDM.

One more remark before moving onto the detection section
is that the matrix Hl is basically a factor circulant matrix and
can be diagonalized as H̄l = U∗lHlUl, where the elements
of matrix Ul is given explicitly as [15]

[Ul]r,s =
1√
M

exp
(
−2πi

(l + rL)s

N

)
, (8)

where r and s ∈ {0, 1, ...M − 1}.

III. DETECTION STRATEGIES

In this section, we first derive the LMMSE equalizer for
Gaussian source, and the equalizer is then generalized for non-
Gaussian noise. We discuss the Masreliez equalizer which is
employed to combat the degradation impact of impulsive noise
channels. Note that with the Gaussian assumption, we can
write the optimum maximum likelihood (ML) detection for
VOFDM system as [15]

x̂ML
l = arg min

x∈XM
‖yl −Hlxl‖2 , (9)

where X is the set of input alphabets and XM is the M -th
Cartesian product. It is evident that the complexity of ML
detection grows exponentially with respect to the size of vector
xl as well as the modulation order. The equalizer provides a
less complex solution to the detection problem [15].

A. LMMSE: Frequency Domain Equalization
Minimum mean square error (MMSE) and other equalizers

have already been proposed for VOFDM in [15]. The main
advantage of using an equalizer for detection is the reduced
computational complexity with respect to ML detector [15].
In this technique, the symbol-by-symbol detection is done on
the equalizer output and the soft values can be calculated
as required. When MMSE is complicated, we settle for the
best linear estimator, i.e., LMMSE. These two equalizers are
exactly the same for Gaussian noise. In this paper we derive
the LMMSE estimator for VOFDM.

Now, assuming that the matrices Σx and Σv are the co-
variance matrices of the input symbols and noise, respectively,
we can express the weight matrix for LMMSE filter in time
domain as [23], [24]

KLMMSE
l = ΣxH

∗
l (HlΣxH

∗
l + Σn)−1. (10)

and the LMMSE estimate of input vector of the symbols x̂l
can be written as

x̂LMMSE
l = KLMMSE

l (Hlxl + Ulnl) . (11)

However, we know from (8) that the factor-circulant matrix
Hl can be diagonalized and therefore (11) can be expressed
as

x̂LMMSE
l = U∗l H̄

∗
l (H̄lH̄

∗
l + UlΣnU∗l )

−1

H̄lUlxl + KLMMSEUlnl. (12)

In diagonal form, (12) can be further simplified to

x̂LMMSE
l = U∗l diag

{ ∣∣h̄l0∣∣2∣∣h̄l0∣∣2 + ρ−1
, ..

..,

∣∣h̄lM−1

∣∣2∣∣h̄lM−1

∣∣2 + ρ−1

}
Ulxl + KLMMSE

l Ulnl. (13)
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As mentioned earlier, comparing (13) and [15, Eq. 9], it can
be observed that LMMSE and MMSE estimators will have the
same representation for the case of Gaussian noise.

Now, to find the hard decisions we use the following
argument

x̄LMMSE
n = arg min

xn∈X

∥∥x̂LMMSE
n −Knxn

∥∥2
, (14)

where x̄n is the hard decision on input alphabets and Kn is
the scale factor of symbol xlM+m which can be calculated
from KLMMSE

l as [15]

KlM+m =
1

M

ML∑
i=0

( ∣∣h̄li∣∣2∣∣h̄li∣∣2 + ρ−1

)
. (15)

When the input data is coded, it is essential to provide soft
values to the decoder. The log-likelihood ratio (LLR) values
of the LMMSE equalizer can be calculated as discussed in
[25]. The extrinsic information for binary constellations are

Laqe (xn|yl) = ln
p(xn = +1|yl)
p(xn = −1|yl)

= 4
Re{x̂j}
σ̂xj

. (16)

It is worth mentioning that the generalization for non-binary
constellations can be found in [25].

B. Non-linear Equalization

Our aim in this section is to develop an equalizer for
impulsive noise over PLC channel. First, we derive a nonlinear
equalizer for the general non-Gaussian case. Following the
same procedure as in [19], we can write an estimate of x as

x̂Masreliez = U∗Σx̃H
∗ ∂

∂ỹ
ln p(ỹ). (17)

where p(ỹ) is the probability of observing vector ỹ at the
output in a non-Gaussian noise environment.

Proof: The proof is given in Appendix A.
This is similar to what is used in [20] and [26]. Also, by

replacing the noise probability with a Gaussian distribution, it
is easy to verify that (17) reduces to LMMSE filter given in
Sec. III-A.

To understand the equalizer in more details, we consider
(17) for independent noise elements and a channel with no
memory in which the size of vector h is 1. We let the
probability pΩ indicate the noise distribution. In the calculation
of p(ỹ), the integral and product are interchangeable and we
can write

p(ỹ) =

∫ N∏
k=1

pΩ (ỹk − h1x̃k) p(x̃)dx̃

=

N∏
k=1

∫
pΩ (ỹk − h1x̃k) p(x̃k)dx̃k, (18)

where we assumed that the elements of vector x̃k are inde-
pendent. In (38), the marginal distribution of the output values
unravels; each p(ỹk) can be calculated separately. Clearly, the

first derivative of p(ỹk) is a nonlinear function. Therefore,
given the distribution of output values p(ỹk), Masreliez filter
can be calculated.

The nonlinear gain function of Masreliez filter, i.e,
∂ ln p(ỹ)/∂ỹ, is shown for different noise distributions in Fig.
2 for real values of ỹ. In this figure, the nonlinear filter corrects
the gain function around impulses mean value, i.e, ỹ = −1.
Note that, unlike the Gaussian case, the nonlinear filter is non-
zero for ỹ = 0. For complex values of ỹ the filter is shown for
impulsive noise in a three dimension plot in Fig. 3 where x
and y axis represent the real and imaginary parts of received
signal.

Next, we consider the more general case with a multi-
tap channel in the presence of impulsive noise over PLC.
In this case, the formulation does not comply to a closed
form. The filter can be further simplified in different manners
depending on the severity of the impulsive noise. We give
an approximation of Masreliez filter by exploiting the matrix
splitting method [27] for ISI channels.

Approximation by Splitting the Covariance Matrix: In this
section, we derive an approximate Masreliez filter for im-
pulsive noise. Throughout this section the assumption is that
HH∗ is diagonally dominant to obtain a closed form solution.
Note that the impulsive noise model can be represented by
hidden Markov states [28]. Meanwhile, let us assume the
locations of noise impulses are known, that is to say the
variance of noise is revealed for each received symbol. Let Σw

be the sum of σ2
i Ji where the main entries of diagonal matrix

Ji are 1 when the variance of noise is σ2
i and 0 otherwise.

Given that current state of noise characteristics w is known,
we can write the probability of noise as follows

pΩ|W ∼ (2π det Σw)−N/2 exp
(
(ỹ −Hx̃)∗Σ−1

w (ỹ −Hx̃)
)
.

(19)
Solving the marginal distribution of the following

pΩ|W (ỹ|W = w) =

∫
pΩ|W (ỹ −Hx̃) p(x̃)dx̃, (20)

we can write

pΩ|W (ỹ|W = w) =
1

det
(

1
σ2
x

(HH∗)−1 + Σw

)
× det H−1

(2πσ2
x)
M

exp
(
−ỹ∗Σ−1ỹ

)
. (21)

where Σ−1 =
(
Σw + σ2

xHH∗
)−1

. Next, we split the inverse
of the covariance matrix as explained in [27]. A two term
splitting with σ1, σ2, where σ2 > σ1 is used. Generalization
to more terms in Σw is cumbersome but straightforward. Let
us define two matrices C,V as

C =
(
σ2
xHH∗ + σ2

1J1 − αI
)
,V =

(
σ2

2J2 + αI
)
, (22)

which enables us to write the approximation of the inverse of
the covariance matrix as
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Fig. 2. Noise distributions and the Masreliez nonlinear filter gain function ∂ ln p(ỹ)/∂ỹ.

(a) Impulsive noise distributions (b) Normalized Masreliez filter

Fig. 3. Complex zero mean impulsive noise distribution and the Masreliez nonlinear filter gain function i.e., ∂ ln p(yr + jyi)/∂(yr).

Σ−1 = (I + V−1C)−1V−1 '
(
I−V−1C

)
V−1. (23)

The parameter α is added here so that the matrix V is
invertible, and its value is chosen to ensure an accurate
approximation. Based on our assumption that the matrix HH∗

is diagonally dominant, the inverse matrix in (23) can be
written as

Σ−1 = q0I + q1J1 + q2J2, (24)

where q0 = 2
α −

σ2
x

α2 , q1 = −σ2
1

α2 , q2 =
(
−σ2

2

α(α+σ2
2)

+
−σ2

x+α

(α+σ2
2)2

)
.

So far we assumed that each received sample has a known
noise variance and its state wi is known. To overcome the
restriction, we use the law of total expectation to get

x̂ = EW [EX [X|Ỹ = ỹ,W = w]] =
∑
w

p(w|ỹ)x̂|W . (25)

Therefore, using the Bayes’ law we obtain

x̂ = U∗Σx̃H
∗
N∏
i=1

∑
w

p(yi|wi)p(wi)∑
p(yi|wi)p(wi)

Σ−1ỹ. (26)

We again assume that only diagonal elements of covariance
matrix Σ are related to each wi; Hence, on row i the product
reduces to one term. We summarize our filter in a form that
mimics the LMMSE filter as follows

x̂Masreliez = U∗KMasreliez(ỹ)ỹ. (27)

The Masreliez filter for the approximated solution is defined
as

KMasreliez(ỹ) = σ2
x̃H
∗ (Σ−1

w=1P1(ỹ) + Σ−1
w=2P2(ỹ)

)
,

(28)
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where Σw=k is the covariance matrix Σ once all the states are
set to k, and matrices Pk’s are defined as

Pk = diag

[
p(wi = k)p(yi|wi = k)∑

p(wi)p(yi|wi)

]
, (29)

and

p(yi|wi = k) =

(
1

σ2
x

+ σ2
k

)−1

exp (−ỹ∗i (q0 + qk) ỹi) .

(30)
For brevity, we have expressed (28) for k = 1, 2. The

formulation can be generalized for higher order of k. In (28)
the inverse matrices can be calculated off-line. We note that
the Masreliez filter given here is a time domain filter, and its
coefficient matrix KMasreliez , unlike the LMMSE filter, is a
nonlinear filter of the received signal ỹ.

IV. SIMULATIONS AND DISCUSSIONS

In this section, we provide some simulation results for
the proposed VOFDM system with Masreliez filtering in a
wide range of impulsive noise environments. There are several
power line channel models available in the literature. In
this paper we adopt the model introduced in [29], based on
practical field measurements. The characteristics of this model
can be represented by

H(f) =

B∑
b=0

|θb| exp
(
−2πfdb

ν

)
exp

(
−(α0 + α1)fKdb

)
,

(31)
where B is the number of paths, θb < 1 is a weighting factor
representing the product of the reflection and transmission
factors along the bth path, db =c/

√
εr is the length of the

path (in meters), c is the speed of light and εr is the dielectric
constant of the power line cable. The parameters α0, α1 andK
are related to the frequency- and distance-dependent attenua-
tion. The time-domain impulse response of the PLC channel
can be given by

q(t) =

B∑
b=1

βbδ(t− τb), (32)

where βb is the amplitude of arrivals and τb is the arrival times
of the multi-path signals.

Impulsive noise is modeled in this study using Middle-
ton Class-A noise model [13], [14]. This model considers
the background and impulsive components as a sequence of
independent identically distributed random complex memory
less variables. The probability density function (pdf) of the
complex Class–A noise is given by

fΩ(n) =

∞∑
m=0

αm
2πσ2

m

exp

(
−‖n‖

2

2σ2
m

)
, (33)

where αm andσ2
m are given, respectively, as

αm =
e−AAm

m!
, (34)

and

σ2
m = σ2

(
m/A+ Γ

1 + Γ

)
. (35)

where σ2 is the variance of the total noise, m denotes
the channel state (0, 1 , 2, . . .) and σ2

m represents the noise
variance for channel state m. The parameter A is referred
to as the impulsive index and Γ is the Gaussian-to-impulse
noise power ratio. There are three parameters specifying the
statistical characteristics of this model, namely: A, Γ and σ2.
When A is increased, the noise will be similar to a Gaussian
noise; reduced values of A mean high noise pulses. In order
to visualize this, we now plot in Fig. 4 some numerical
results of (33) with different values of A and Γ. It is visible
that when Γ is kept constant at 0.001 and the impulsive
index is varied from a large value to a small value, two
main cases can be highlighted. Firstly, when A is large,
the characteristic distribution of the noise is very similar to
Gaussian distribution, see Fig. 4a. Secondly, when A becomes
small, the distribution shows very impulsive characteristics and
therefore the performance is expected to degrade. Similarly,
same observations can be noticed from Fig. 4b when Γ is
changed while keeping A constant.

To evaluate the equalizer filters for VOFDM system, we
tested the algorithm with Middleton Class-A noise where two
terms were considered in generating the noise. For LMMSE
filter the received signal is divided into M×L matrix and each
row is fed into the DFT module. The results are accumulated
into an M × L matrix, where each column goes through the
LMMSE filter introduced in (10). The decisions are made by
the detector given in (14). However, for the VOFDM system,
after removing the CP, the received signal is equalized using
(28). Similar to the LMMSE filter, the equalized signal goes
through the DFT modules and the detector. The simulation
parameters used here are: N = 256 sub-carrier, base-band
modulation is QPSK with gray mapping and the number
channel taps is 4. Recall that M is the size of each vector in
(2). To show the effect of the vector block size of the proposed
VOFDM system performance, we plot in Fig. 5 the BER
performance versus SNR for M = 1, 2, 4, 8, and 16 when
A = 0.1 and Γ = 0.01. The curve for M = 1 indicates the
OFDM system. For the PLC channel, we use reflection factor
K = 1, α0 = 0, α1 = 7.8× 10−10 S/m and delay τb = dz/ν
where ν = 1.5× 108m/s [29]. It was also shown in [29] that
five paths are enough to accurately model the impulse response
of the channel. It is clear that the proposed system always
outperforms the conventional OFDM system (i.e.,M = 1). It
can also be observed that this improvement becomes larger
as we increase the number of the vector blocks. Additionally,
increasing the SNR minimizes the BER irrespective of the
value of M . It is worth pointing out that the computation
time of the proposed method is reasonably small compared to
that of the ML detector, hence it can be applied in both real-
time as well as off-line analyses. Specifically, the complexity
of equalization is at most O(N2) , and this may grow to
O(N3) for online calculations. Note that there are several
methods that have been reported in the literature to further
reduce computation complexity of similar systems, see e.g.
[30].
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Fig. 4. The effect of Middleton Class-A noise model parameters on its pdf.
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Fig. 5. BER performance of the proposed VOFDM system for various values
of M when A = 0.1 and Γ = 0.01.

Now, to illustrate the impact of the noise parameter Γ
on the VOFDM system performance, we illustrate the BER
performance in Fig. 6 for a wide range of Γ values while
keeping A = 0.1 and M = 16. The first observation one can
see from these results is that increasing the SNR will always
offer improved BER performance for all the Γ values under
consideration. For Γ = 1, the Middleton Class-A noise density
is similar to Gaussian and Masreliez equalizer performs the
same as LMMSE. In addition, it is clear that as Γ decreases,
i.e. the impulsive noise power becomes higher relative to the
Gaussian one, the performance degrades significantly, and the
gain from Masreliez equalizer increases. At higher SNR’s the
performance of LMMSE and Masreliez equalizer converges;
This is due to small magnitude of spikes in impulsive noise
that filter can not distinguish from the transmitted data.

When there is no ISI in the channel, we are able to calculate
the error bounds for the detector. For the noise model given
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Fig. 6. BER performance versus SNR for the proposed VOFDM system with
different values of Γ when A = 0.05 and M = 16.

in (33), we can write a bound on the probability of error as
follows [31]

Pe =

∞∑
m=0

αmPe(σm), (36)

where Pe(σm) is the probability of error for uncoded transmis-
sion in the presence of the complex additive white Gaussian
noise (CAWGN) with variance σ2

m. Fig. 7 depicts the BER for
different values of A with Γ = 0.01 and M = 16 for the BPSK
modulation over a memoryless channel. It is interesting to see
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Fig. 7. BER performance versus SNR for the proposed VOFDM system with
several values of A when Γ = 0.01 and M = 16.

that the results on this figure can be divided into two SNR
regions over which the BER behaves differently with respect to
A. These regions can be classified as low SNR (SNR . 20dB)
and high SNR (SNR & 20dB). In the first region, it is clear
that as the value of A decrease, i.e. noise becomes more
impulsive, the performance improves whereas the opposite is
true in the second SNR region. As A increases, the noise
characteristics becomes close to CAWGN. For CAWGN the
symbol-by-symbol detector is optimal. We have compared our
Masreliez equalizer for A = 10 to the CAWGN symbol-by-
symbol detector to validate our detection strategy.

V. CONCLUSION

In this paper, we addressed the transmission over PLC
channels using a VOFDM system in conjunction with the
Masreliez filter for non-Gaussian noise. We derived a non-
linear equalizer to combat the damaging effect of impulsive
noise present in PLC. We implemented the Masreliez filter
in a wide range of impulsive noise environments ranging
from weakly- to heavily-disturbed environments. System per-
formance was evaluated in terms of the BER. The results
have shown that considerable improvements can be attained
with the proposed system relative to the conventional OFDM
system and this improvement becomes higher as we increase
the size of vector blocks. We compared the proposed equalizer
for different set of parameters of Middleton Class-A noise with
LMMSE equalizer. The performance analysis shows that the
proposed Masreliez filter is effective in low SNR where the
spikes of impulsive noise can be distinguished from the signal.
The improvement was compared in a wide range of Middleton
Class-A noise parameters.

APPENDIX A
DERIVATION OF MASRELIEZ FILTER IN (17)

The estimate of x is given as conditional expectation of
transmitted signal given received signal

x̂ = E[X|Ỹ = ỹ]. (37)

However, using the linearity of expectation we can write the
estimator in time domain as [20]

x̂ = U∗E[UX|Y = ỹ] = U∗
∫

x̃p (x̃|ỹ) dx̃idx̃r, (38)

where subscript r and i represent the real and imaginary parts
of the variable, respectively. By Bayes’ law we can write (38)
in terms of noise distribution pΩ

x̂ =
1

p(ỹ)
U∗
∫

x̃pΩ (ỹ|x̃) p(x̃)dx̃idx̃r. (39)

Now, suppose x̃ is a vector of circularly symmetric Gaussian
random variables, CN (0,Σx̃), multiplied by covariance of x̃
and its inverse we get

x̂ =
1

p(ỹ)
U∗Σx̃

∫
pΩ (ỹ|x̃) Σ−1

x̃ x̃p(x̃)dx̃idx̃r. (40)

which, using Wirtinger derivatives [26], can be further simpli-
fied as

x̂ = − 1

p(ỹ)
U∗Σx̃

∫
pΩ (ỹ|x̃)

∂

∂x̃∗
p(x̃)dx̃idx̃r. (41)

Then, integrating by parts we have

x̂ =
1

p(ỹ)
U∗Σx̃

∫
∂

∂x̃∗
pΩ (ỹ|x̃) p(x̃)dx̃idx̃r.

Finally, using chain rule we take the derivative with respect
to ỹ to get

x̂ =
1

p(ỹ)
U∗Σx̃H

∗ ∂

∂ỹ

∫
pΩ (ỹ|x̃) p(x̃)dx̃idx̃r, (42)

where we changed the order of integration and derivation.
Equation (42) can be written more succinctly as in (17).
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