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Thesis abstract 

Diabetes mellitus is a serious worldwide disease characterised by pathological 

metabolism of sugars. Diabetic peripheral neuropathy (DPN) is a common 

complication of diabetes involving dysfunction of peripheral nerves. Diabetes is 

known to alter a number of biomechanical aspects of gait, but it remains unknown 

as to whether these alterations could impact upon the metabolic cost of walking 

(CoW). The aim of this thesis was to investigate the CoW in people with diabetes 

and examine biomechanical factors that could contribute to explaining any potential 

differences. Data were generated from three groups: patients with DPN (n=14), 

patients with diabetes but without peripheral neuropathy (DM, n=22), and controls 

without diabetes (Ctrl, n=31). Gait assessment was performed using a Vicon motion 

analysis system and Kistler force plates while participants walked at a range of 

matched speeds (between 0.6 and 1.6 m/s). Oxygen consumption was measured 

continuously whilst participants walked on a motor-driven treadmill at the range of 

matched walking speeds. Ultrasonographic imaging data from the plantarflexor 

muscle-tendon complex (MTC) were collected in vivo during walking to determine 

MTC properties. Magnetic resonance imaging of the ankle joint in the standing 

position was used to quantify the internal leverage around the ankle. Isometric 

plantarflexor maximal voluntary contraction strength was measured using a 

dynamometer. The CoW was significantly higher in the DPN group across a range 

of matched walking speeds and also in the DM group at selected speeds, compared 

to Ctrl. Despite the higher CoW in patients with diabetes, concentric lower limb joint 

work was significantly lower in DM and DPN groups compared to Ctrl. A greater 

value for the effective mechanical advantage (EMA) at the ankle joint was found in 

the DPN and DM groups compared to Ctrl, meaning that the ankle plantarflexor 

muscles developed relatively lower forces to generate a given joint moment 

compared to Ctrl. The increased EMA was mainly caused by a smaller external 

moment arm of the ground reaction force in the DPN and DM groups compared to 

Ctrl. The DPN group reduced the joint moment at the ankle during walking by 

applying the ground reaction force more proximally on the foot, or at an angle 

directed more towards the ankle, thereby reducing the external moment arm and 

increasing the EMA around the ankle. The DPN group demonstrated significantly 

less Achilles tendon elongation during walking, higher stiffness and higher hysteresis 

compared to Ctrl. These properties mean that the Achilles tendon would store and 

release less energy in the DPN group during walking, requiring more work from the 

plantarflexor muscles. Vertical displacement of the centre of mass during walking 

was not different between groups and is therefore unlikely to be a factor in itself that 

contributes towards the increased CoW in people with diabetic neuropathy. A higher 

cumulative joint work resulting from an increased cadence may contribute to the 

higher CoW in patients with diabetes, along with a reduced elastic energy 

contribution from the Achilles tendon. 
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1. INTRODUCTION 

 

1.1 Introduction to Diabetes mellitus 

Diabetes mellitus (DM) is a serious worldwide endocrinological disease 

characterised by pathological metabolism of sugars. The term diabetes mellitus 

describes a group of chronic metabolic disorders characterised by hyperglycemia 

resulting either from a deficiency of insulin production, or decreased ability to 

transduce the insulin signal (insulin resistance), or both (7). Diabetes is a global 

epidemic with significant morbidity, very common in older people and is often 

undiagnosed (67). Diabetes is associated with a range of serious complications that 

result in reduced quality of life and premature mortality. The prevalence of diabetes 

is increasing at an alarming rate and the condition presents lifelong health problems 

(27). There are four main types of diabetes: 

Type 1 is caused by an autoimmune reaction where the body’s defence system 

attacks the insulin-producing beta cells in the pancreas. Type 1 diabetes is 

developed if the body cannot produce any insulin. Usually appears before the age 

of 40 years. It is the least common of the two main types of diabetes and accounts 

for around 10% of all people with diabetes (35).  

Type 2 diabetes develops when the body can still produce insulin, but this is either 

not sufficient, or the insulin has little or no intended effect (known as insulin 

resistance). This type of diabetes usually appears in people over the age of 40 years, 

though in South Asian and African-Caribbean people, it often appears much earlier, 

appearing typically after the age of 25 years. Type 2 diabetes is the more common 

of the two main types and accounts for around 90% of people with diabetes (34). 
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Type 2 diabetes typically affects patients who are overweight and display lower level 

of physical activity, but evidence suggests that stressful experience might affect 

diabetes, both its onset and its exacerbation (79). Diabetes is a very common 

condition among older adults. Secondary diabetes develops in serious health 

failures such as pancreatic damage, hepatic cirrhosis, endocrinological 

disease/therapy, or anti-viral/anti-psychotic therapy. 

Gestational diabetes is another form of diabetes, affecting pregnant women without 

a previous history of diabetes, but who develop a high blood glucose level during 

pregnancy. Gestational diabetes has a tendency to occur around the 24th week of 

pregnancy and occurs when insulin receptors do not function properly. This is likely 

due to pregnancy-related factors such as the presence of human placental lactogen 

that interferes with susceptible insulin receptors. This in turn causes inappropriately 

elevated blood sugar levels. 

The main complications associated with diabetes are cardiovascular diseases, 

nephropathy, retinopathy and peripheral neuropathy (46) and this will be discussed 

further in one of the following sections. 

 

1.2 Symptoms of DM Type 1 and Type 2. 

There are a variety of symptoms present in diabetes: increased thirst, urinating 

frequently, particularly at night, increased hunger (especially after eating), feeling 

very tired, dry mouth, non-healing skin infections, unexplained weight loss and loss 

of muscle bulk, blurred vision, fatigue, cramps, Itchiness around the genitals and 

recurrent infections including thrush Infections. The three classic symptoms of 

diabetes are thirst, polyuria (excessive urination) and weight loss. As glucose is lost 



9 
 

in the urine it draws fluid and other small molecules with it, causing excessive 

urination, which in turn causes dehydration and thirst. Weight is lost because of rapid 

breakdown of fat and protein reserves to compensate for the loss of glucose and 

metabolic inefficiency due to lack of insulin action. The breakdown of protein 

primarily occurs from skeletal muscles, explaining the reduction in body mass 

through muscle atrophy. In most cases the presence of diabetes is associated with 

several of these symptoms occurring together. 

 

1.3 Risk factors and prevalence 

Type 1 diabetes is not currently preventable, while Type 2 is more complex and is a 

combination of genes and life habits (lifestyle) and prevention is certainly possible. 

Simple lifestyle measures have been shown to be effective in preventing or delaying 

the onset of type 2 diabetes (153). 

The main risk factors for developing diabetes are: 

1. Genetics (family history) 

2. Obesity 

3. Sedentary way of life and lack of exercise (hypokinesia) 

4. Stress 

5. Poor nutrition 

6. High blood pressure, heart attack, stroke, coronary diseases 

7. Ethnicity. 

 

The International Diabetes Federation (IDF) estimates that in 2014 the five countries 

with the highest numbers of people with diabetes were India, China, the United 
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States, Russia and Brazil, also low and middle income countries face the greatest 

burden of diabetes. Li et al. (77) shows that the ‘‘top three’’ countries with the 

absolute numbers of people with diabetes are India, China, and the USA. Large 

increases in prevalence are also expected, mostly in countries such as Bangladesh, 

Brazil, Indonesia, Japan, and Pakistan. Among other factors, ethnicity can be one of 

the factors that can decrease or increase risk of developing diabetes. In some cases 

that can be explained by socio-economic factors, studies have shown that even with 

equal access prevalence of diabetes differs between people of different ethnicity. 

The prevalence of adult Type 2 diabetes is about three to five times greater in 

African-Caribbean and South Asian people (Table 1), respectively, compared with 

the white European population. Certain gender differences are present in both type 

1 and 2. Diabetes prevalence among the countries is ranging from 2.4% to 37.5% 

(138, 160, 20). The world health organisation estimates that by 2025 as many as 

200–300 million people worldwide will have developed type 2 diabetes (74). 

Approximately 15% of adult people in developed countries have diabetes. In the 

United Kingdom, 3.2 million people (6% of the total United Kingdom population) have 

been diagnosed with diabetes (67). By 2025, it is predicted that there will be more 

than four million people with diabetes in the United Kingdom (8). An additional 

worldwide problem is undiscovered/undiagnosed diabetes and it is estimated that 

there are up to half a million people in the United Kingdom who have diabetes but 

have not yet been diagnosed. 

 

 

Table 1. Countries with the highest prevalence of diabetes (67). 
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Country % prevalence 

Tokelau 37.5 

Federated States of Micronesia 35.0 

Marshall Islands 34.9 

Cook Islands 25.7 

Saudi Arabia 24.0 

Nauru 23.3 

Kuwait 23.1 

Qatar 22.9 

 

1.4 Financial costs 

In the United Kingdom, it is currently estimated that 10% of the total NHS budget is 

spent on diabetes. This works out at around £9 billion a year (based on 2007/2008 

budget for the NHS of approximately £90.7 billion), or £173 million a week, or £25 

million a day (35). Patients with diabetes require at least two to three times the 

health-care resources to patients without diabetes, and approximately 15% of health 

care budgets are spent on diabetes related care. In 2012, the cost of diabetes to the 

United States of America healthcare system was $245 billion, of which $69 billion 

was due to reduced productivity, and $176 billion was spent on direct medical costs. 

Hex et al. (58) presented the current and the future costs of Type 1 and Type 2 

diabetes in the UK, including direct health costs and indirect societal and productivity 

costs. In their study they estimated total costs screening, testing, treatment, 

management and complications, in 2011 to be £10 billion and estimated cost for 

2035 to increase to £17 billion. 
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1.5 Complications of Diabetes mellitus 

The main complications associated with diabetes are cardiovascular diseases, 

nephropathy, stroke, peripheral arterial disease, retinopathy, skin problems, poor 

wound healing and peripheral neuropathy (43, 46). The prevalence of diabetes is 

increasing because of the ageing population, obesity and sedentary way of life. The 

chronic hyperglycemia is associated with long-term damage, failure or dysfunction 

of many tissues and organs (65). Diabetes can cause peripheral nerve dysfunction, 

which might be one pathway through which diabetes leads to decreased physical 

function, particularly in the lower limbs (97). 

Other complications of diabetes might include foot deformity (146), deterioration in 

the function of large afferent nerve fibres, slow eye movements (57), motor and 

vestibular impairment (121).  

Neuropathies, muscle weakness and balance impairments, either together or 

individually, can lead to gait abnormalities including improper pressure distribution 

on the foot, a longer stance phase and shorter steps than observed in people without 

diabetes (21, 57, 95, 123, 91). These gait and balance impairments in diabetes are 

not simply a matter of academic interest; people with diabetes are fifteen times more 

likely to report experiencing a fall-related injury during standing and walking when 

compared to people without diabetes (118, 139, 36, 118). Although there are many 

complications related to diabetes, this introduction will focus mainly on diabetic 

peripheral neuropathy (DPN), as one of the most significant complications that 

affects gait in people with diabetes. 

1.5.1 Diabetic Peripheral Neuropathy 

Diabetic peripheral neuropathy is a long-term complication and dysfunction of 
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peripheral nerves. The main cause is neurovascular alterations to the nerve fibres 

and blood vessels supplying the nerve endings, resulting in reduced or absent nerve 

conduction (35). The European association for the study of diabetes defines DPN as 

“the presence of symptoms and/or signs of peripheral nerve dysfunction in people 

with diabetes after the exclusion of other causes” (17). The incidence of DPN ranges 

from 13 to 68% in diabetes populations (145, 97, 17). Nerves become damaged and 

people affected by neuropathy are 15 times more likely to experience an injury during 

walking (38, 25). DPN affects the sensory, motor and autonomic components of the 

nervous system, manifesting as a loss of protective sensation, intrinsic foot muscle 

dysfunction and anhidrosis (diminished sweating response) of the foot. Both age and 

duration of diabetes are independent risk factors for DPN. Moreover, neuropathic 

patients walk slower, have longer double support time (two feet in contact with the 

ground), shortened stride lengths, decreased ground reaction forces and decreased 

ankle moments and powers compared to matched controls (21, 57, 116, 96, 73, 37), 

while the impact of diabetes on the cost of walking (CoW) remains unknown. 

Symptoms of DPN may include sensory deficits in light touch and proprioception and 

motor deficits in terms of reduced strength in the ankle muscles. The sensory and 

motor deficits may subsequently result in balance disorders and an increased risk of 

falling (21), which may lead to injuries and hospitalization in this group of patients 

(91). 

 

1.5.2 Diabetic Peripheral Neuropathy and gait impairment 

Patients with diabetic peripheral neuropathy exhibit decreased stability both, while 

standing and during walking (16, 48, 134, 19). Several authors (128, 73) have found 
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gait pattern deviations in diabetic peripheral neuropathy and diabetes mellitus 

patients. For instance, important deviations were revealed in hip, knee, ankle joints 

and trunk movement patterns over the entire stance phase of gait in both DPN and 

DM subjects (128). Fernando et al. (41) presented that DPN participants walked 

slower than healthy control subjects (50, 126, 129) and two studies reported slower 

walking speeds in the DPN group compared to the DM patients (128). DPN-related 

changes in the lower limbs may lead to functional gait variations; predominantly 

related to reduced range of movement of joints, reduced active muscle power and 

changes in gait mechanics (9). Gait related changes and developing foot ulcers are 

very often consequences of neuropathy (143). DPN can have catastrophic 

consequences for patients, as this leads to foot ulceration and increased risk of limb 

amputation, significant healthcare costs, reduced quality of life and reduced mobility 

(41, 17, 135). Handsaker (57) showed that training may favourably alter muscle 

activations and increase the speed of ankle and knee strength development in 

people with DPN, potentially reducing the risk of falling and improving safety during 

the everyday task of stair walking. Therefore, understanding the impact of DPN on 

the biomechanical aspects of human locomotion is clinically important (45). Boulton 

(17) recommends all diabetic patients, regardless of their type of diabetes, duration 

of diabetes, or age, require careful clinical examination of the lower extremities and 

feet at least once a year.  

1.6 Glycation and Diabetes mellitus 

The hallmark of diabetes mellitus, whether Type I or type II, is hyperglycemia. 

Clinical complications associated with diabetes are most likely the consequence of 

hyperglycemia via both altered metabolic pathways and non-enzymatic glycation of 
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proteins. The nonenzymatic glycation of proteins is accelerated in diabetes due to 

elevated blood glucose concentration. The Amadori product of nonenzymatic 

glycation will further cross-link with other proteins to form advanced glycosylation 

end products (158). Advanced glycation end products (AGEs) represent a 

heterogeneous group of chemical products resulting from a non-enzymatic reaction 

between reducing sugars and proteins, lipids, nucleic acids, or a combination of 

these (99). The glycation process (glucose fixation) affects circulating proteins 

(serum albumin, lipoprotein, insulin, hemoglobin), whereas the formation of AGEs 

implicates reactive intermediates such as methylglyoxal. Glycation involves a series 

of reactions in which proteins bind non-enzymatically to reducing sugars such as 

glucose (3, 51). AGEs have been identified in the kidney, nerve, arteries and heart 

of diabetic animals and humans (3, 135, 44, 98) Thus, the accumulation of these 

compounds has been implicated in the etiology of the diabetic complications of 

nephropathy, retinopathy, cataract, neuropathy and accelerated vascular disease 

(137, 44, 98). Hyperglycemia is still considered the principal cause of diabetes 

complications (104). The recognition and binding of AGEs to RAGE contribute to the 

microvascular and macro vascular complications of diabetes. It has been shown in 

animal models of diabetes (111, 112, 113) that non-enzymatic glycation affect other 

tissues such as tendon. This causes increased cross-linking, increasing the stiffness 

and modulus of the tendon. 

1.7 Gait characteristics in people with DM and DPN 

Walking represents the most convenient and the most usual way of transport for 

humans. Walking is one of the most practiced of all motor skills (72). Also walking is 

a popular, convenient and a relatively safe form of exercise (60) that holds great 
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promise for weight management (56, 69). Weight management is most effective 

when individuals can accurately determine how much energy they expend during 

exercise, which, in the case of walking, is dependent on speed (22). In the work of 

Sasaki & Neptune (101) it is suggested that previous studies indicated that the two 

primary energy saving mechanisms in walking are the passive exchange of potential 

and kinetic energy (25) and elastic energy utilization (59). Assuming that walking can 

be modelled as an inverted-pendulum, the maximum theoretical efficiency of the 

energetic exchange between kinetic and potential energy (i.e., energy recovery) is 

only as high as 65% and varies depending on walking speed (26) and stride 

frequency (93). During human gait, the storage and return of elastic energy in 

compliant structures is an important energy saving mechanism that will reduce the 

necessary muscle fibre work and be an important determinant of the preferred gait 

mode (i.e., walk or run) at a given speed. 

The main question this thesis addresses the impact of diabetes and diabetic 

peripheral neuropathy on the CoW. The further questions investigate possible 

mechanisms accounting for any differences in the CoW, including vertical 

displacement of the centre of mass (CoM) and the cadence. 

The purpose of the studies comprising this thesis are to investigate the metabolic 

cost of walking in people with diabetes and further elucidate biomechanical factors 

that alter gait characteristics and that may impact upon the metabolic cost of walking. 

Treadmill walking has frequently been used to assess in older adults due to the 

ability to control walking speed closely (28, 42, 80, 84, 151). It is hypothesized that 

walking at slower speeds (as is the case in diabetes patients) may be mechanically 

less efficient (100). There are many possible factors, which can explain oxygen 
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uptake and the CoW, among them are shorter strides, longer double support time, 

higher values of ground reaction forces, presence of neuropathies and a stiffer 

Achilles tendon. 

It is particularly interesting to investigate, from a biomechanical point of view, what 

is the impact of diabetic peripheral neuropathy and diabetes without neuropathy on 

walking characteristics.  

Walking patterns of diabetic patients are explained in many studies: 

A review of the main aspects of gait in people with diabetes and diabetic neuropathy 

follows:  

1.7.1 Spatio-temporal gait parameters 

The gait speed of diabetes and control patients was described in many studies. The 

self-selected walking speed in diabetic patients has been observed to range from 

0.7 to 1.24 m/s and was significantly lower than that of controls, which ranged from 

0.9 to 1.47 m/s (41, 21, 91, 128, 110). Petrovsky et al. (105) described a significantly 

higher walking speed in controls compared to groups with either type 1 or 2 diabetes. 

Additionally, they assessed slower reaction times in patients with diabetes and a 

much slower gait while turning than compared to control subjects. They 

demonstrated that subjects with type 2 diabetes used an average of two steps to 

turn, whereas control subjects on average used one step. The subjects with type 2 

diabetes took 1.66 s to execute this free pivot, whereas the control subjects took, on 

average, 0.78 s. Stride length findings in diabetes patients has been observed to 

range from 1.04 to 1.38 m and was significantly lower than that of for the Ctrl group, 

which ranged from 1.14 to 1.54 m (127, 129, 95, 87, 30, 37, 91). Step length 

differences between the DPN and the Ctrl groups were well documented in many 
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studies (29, 91, 11, 95, 5, 157), with constant findings of shorter steps in the DPN 

groups. Step-cycle length was described in several studies (36, 37, 38, 95, 91, 57). 

Values ranged from 1.38 to 1.54 m for controls, and from 1.08 to 1.38 m in diabetic 

patients. Cadence (steps/min) at self-selected walking speed has been described in 

many studies (95, 157, 49, 110, 87, 76, 123, 159, 4). All mentioned studies showed 

that the DPN group had a higher cadence compared to the Ctrl group and as the 

main responsible factors were suggested as slower self-selected speed, shorter 

steps and shorter strides. 

 

Table 1. Self-selected walking speed reported from the literature in three different 
participant groups (Ctrl – controls, DM – Diabetes mellitus (without neuropathy), 
DPN – Diabetic Peripheral Neuropathy). 

 Ctrl DM DPN 

 Self-selected walking speed (m/s)  

Sawacha et al. (2009a) 1.27 1.10 1.10 

Sawacha et al. (2009b) 1.00 - 1.00 

Savelberg et al. (2012b) 1.22 1.30 1.40 

Allet et al. (2009) 1.49 1.27 1.19 

Dingwell et al. (2000) 1.47 - 1.24 

Brown et al. (2014) 1.39 1.28 1.22 

Menz et al. (2004) 1.21 - 0.98 

Jor`dan et al. (2014) 1.14 - 1.05 

Raspovic (2013) 1.3 1.4 1.2 

Savelberg et al. (2012a) 1.18 1.06 1.02 

Mueller et al. (1995) 1.26 1.09 - 

Martinelli et al. (2013) 1.03 - 0.89 

Salsich & Mueller (2000) 1.29 - 1.12 

de Mettelinge et al. (2013) 1.38 - 1.04 

Kwon et al. (2013) 0.9  0.7 

 

Gait cycle time has been investigated in various studies. Gait cycle time in diabetic 

patients was in range between 1.15 to 1.26 s, with the time ranging from 1.00 to 1.22 

s for controls (118, 119, 120, 121, 95, 96, 38, 30, 36, 37, 38). Richardson et al. (118) 

showed that environmental factors have a significant effect on all spatio-temporal 
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gait parameters in diabetic subjects. In a challenging environment in which either 

walking surface conditions or lighting intensity was manipulated, a decrease in step 

length and walking speed and an increase in step width, step-width variability, step 

width to step length ratio and step-time variability were observed. Furthermore, the 

controls did not decrease their step length or increase step width in a challenging 

environment, unlike patients with diabetes. Menz et al. (95) found comparable 

results, reporting that the walking speed of patients with DPN was 19% slower while 

walking on a level surface and 25% slower on an irregular surface than among 

healthy controls. 

1.7.2 Kinematics of gait 

Petrovsky et al. (105, 106, 107) compared diabetic patients with and without 

neuropathy to healthy controls and showed that subjects with diabetes walked 

significantly slower than control subjects and with a wider stance (base of support), 

both for walking in a linear path and when making turns. The accelerometers 

measured side-to-side and forward–backward directions. The coefficient of variation 

was higher at the head than the shoulders and higher for the hip than the shoulders 

for both controls and diabetics. However, the coefficient of variation for movement 

was much larger in diabetic patients. Menz et al. (91) found smaller magnitude 

accelerations in patients with diabetes compared to controls and recorded more 

erratic acceleration signals in diabetic patients, particularly at the head. Dingwell et 

al. (36) used a tri-axial accelerometer on the upper body to measure the standard 

deviation of accelerations and reported no difference between diabetic patients with 

neuropathy and healthy controls. Consistently smaller ranges of motion (RoM) at the 

ankle, knee and hip in the DPN group have been reported from a range of studies 
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and likely underlies the shorter step length reported in diabetes patients. Ankle RoM 

in diabetic patients was reported to have a range of 21 - 23.6 degrees, and 24.4 - 

26.7 degrees for controls. Values of the knee RoM were reported to have a range of 

25.5 - 54.3 degrees for the DPN group and 30.7 - 57.7 degrees for the Ctrl group. 

Hip RoM for the DPN group was reported to have a range of 38.9 - 43.2 degrees for 

the DPN group and 40.5 - 44.7 for the Ctrl group (1, 50, 87, 95, 110, 123). The 

reported values for the range of joint movement (i.e., the minimum to maximum joint 

movement) were higher at the hip for diabetic patients compared to controls, but 

lower at the ankle with more variation in range reported at the knee in diabetic 

patients. 

1.7.3 Kinetics of gait 

The ground reaction forces (GRF) have been investigated both in diabetes and 

controls patients. It was anticipated that DPN patients would exhibit higher GRF due 

to neurological deficit and reduced proprioception, causing a relatively higher impact 

with the ground. Constantly higher values of the GRFs have been reported in the 

diabetes patients compared to controls (129, 142, 125, 159) with the values at initial 

contact in the range of 82.5 and 104 N/BW% for the diabetes patients and 80-91.2 

N/BW% for the control group. Sacco et al. (123) were the only group who 

differentiated the two peaks of the GRF, the first at heel strike and another at the 

moment of propulsion. For the first peak, they agreed with Katoulis et al. (73) and 

Uccioli et al. (142) who did not find a difference in the mean GRFs between controls 

and patients with or without neuropathy. Concerning the second peak, however, they 

found a significant difference between vertical forces of controls and the values of 

the diabetic group. In addition to patients with and without neuropathy, Katoulis et 
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al. (73) evaluated a group of diabetes patients with previous ulcers. They described 

a decrease in the maximum value of the vertical component of the GRF for these 

patients compared to healthy controls, and diabetic patients without neuropathy 

(p<0.03). Meier et al. (89) investigated the anterior posterior (A/P) and medio-lateral 

(M/L) forces during stopping tasks. The participants were instructed to walk at their 

self-selected walking speed and to stop in front of the marked stopping line on the 

walkway. They found a slower A/P speed of the centre of mass (CoM), and larger 

A/P and M/L centre of pressure overshoots than in controls. Furthermore, they 

described decreased shock absorption at heel strike and Uccioli et al. (142) 

described significantly reduced peak forces recorded mainly during heel strike and 

push-off for patients with diabetes compared to a control group. During walking, 

movement is caused by moments of force generated by muscles around ankle, knee 

and hip joints. Joint moments are a measure of the rotational force acting around a 

joint, allowing an indication of the magnitude of the muscle force and they have been 

well investigated both in diabetic and non-diabetic populations. Similar findings have 

been reported across a range of studies (21, 128, 76, 95, 96, 159) where patients 

with diabetes are reported as developing lower ankle joint moments during walking. 

The knee joint extension moment tended to be lower in DPN participants. In a study 

that did not control gait velocity, Kwon et al. (76) found similar results comparing 

subjects with and without DPN, but in addition they reported decreased maximal 

plantarflexion moments and knee joint extension moments Mueller et al. (95) found 

reduced maximal plantarflexion moments in diabetic polyneuropathy. Katoulis et al. 

(73) described lower knee joint moments in the DPN group compared to controls. 

They also notice that gait alterations in people with diabetes and neuropathy could 
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facilitate foot injuries, thus contributing to frequent foot ulceration. As the main cause 

for lower moments all authors suggested that this alteration might be caused by a 

decline in plantarflexor strength and slower self-selected walking speed in people 

with neuropathy. External and internal moment arms are important measurements 

contributing to the calculation of the effective mechanical advantage around a joint. 

The external moment arm (ExtMA) length around the ankle during walking is defined 

as the perpendicular distance between the resultant GRF vector in sagittal plane and 

the ankle joint centre of rotation. A smaller ExtMA at the ankle means that either the 

resultant GRF is applied closer to the ankle joint centre or the angle of application is 

more towards the ankle, making the ExtMA smaller, thereby minimising the ankle 

joint moment (assuming a similar GRF). The effective mechanical advantage around 

the ankle is given by the ratio of the internal (Achilles tendon moment arm) to the 

ExtMA, with lower values reflecting a relatively greater contribution from the 

plantarflexor muscles towards the joint moment required to overcome the external 

resistance applied (15). Indeed, it has been shown in a healthy population how a 

marked increase in the ExtMA around the knee and therefore a marked reduction in 

the effective mechanical advantage at the knee, likely accounts for the marked 

increase in the cost of transport when going from walking to running (14). To the best 

of our knowledge there are no previous studies reporting the effective mechanical 

advantage in diabetes patients during walking, but it has been measured for different 

human and animal populations (10, 14, 54, 130, 136). 

1.7.4 Muscle activity during gait 

Neuropathic damage of the nerves affects motor control of the lower limbs, as DPN 

affects proprioception of lower limb position. Patients with DPN display a decreased 
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nerve conduction velocity, and impaired contractile properties as a result of non-

enzymatic glycation, which in tandem results in a slower muscle response (65, 90, 

124). During locomotion, patients with DPN exhibit delayed peak muscle activations, 

despite an earlier activation of muscles, which may lead to decreased motor control 

during walking (57). Handsaker et al. (57) observed the delayed activation during 

stair ascent of the knee extensors and plantarflexors in patients with diabetic 

neuropathy. These delayed activations may explain a slower speed of strength 

generation in the knee and ankle extensors of the DPN group. During stair descent, 

changes are observed in the plantarflexors with a significantly earlier activation, a 

longer time to peak activation, and longer duration of activation. Persons suffering 

from diabetes used nearly twice the muscular activity compared to controls to initiate 

and maintain gait at a lower walking speed. The earlier activation of the 

plantarflexors in patients with DPN is expected to be an anticipatory mechanism, 

preparing the ankle joint to stabilize before contact with the step actually occurs 

(Kwon et al., 2003; Sacco et al., 2000). It has been well documented significantly 

earlier activation of the gastrocnemius medialis, lateralis, soleus, tibialis anterior, 

vastus lateralis, and biceps femoris muscles in DPN patients, in addition to a 

prolonged cessation times of tibialis anterior and vastus medialis muscles (41, 2, 4, 

50, 76, 124, 129). 

1.7.5 Centre of mass vertical displacement during gait 

Large vertical centre of mass displacement (CoM) results in increasing in the 

metabolic cost of walking, because of greater mechanical work performed at the 

ankle, knee and hip joints (52). It has been suggested by Chwala et al. (29) that the 

main element of biomechanical cost of walking is energy used to control the 
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displacements of the CoM. Kinematic methods are predominantly used to determine 

the vertical displacements of the CoM during a gait cycle (40). Race walking events 

can be used as an example of how the CoM influences the metabolic CoW, where 

the speeds must be significantly higher, slightly above the threshold speed, but then 

the gait becomes more “costly”. To minimise the CoW individuals movement should 

be optimised towards minimal vertical oscillations of the centre of mass combined 

with a smooth passage from the heel-strike to toe-off phase involving only small 

changes in kinetic energy. 

 

1.8 Tendon properties in people with Diabetes mellitus 

Muscles attach to the skeleton via tendons. Tendons are force transmitters enabling 

skeletal movement. They are structural links between muscles and bones (114, 161, 

24) and they transfer forces to the skeleton and the environment. Tendons are 

mechanically responsible for transmitting muscle forces to bone, and in doing so, 

permit locomotion and enhance joint stability (70). Tendons are spring-like structures 

and they respond by increasing their mechanical stiffness in response to chronic 

loading and decreasing with chronic unloading (102). Tendons consist of a 

collagenous matrix and demonstrate viscoelastic properties. This property enables 

forces to transmit (75), store and return elastic strain energy during locomotion and 

other movements (55, 47). The muscle-tendon complex has a very important role in 

gait mechanics of humans. The tendon is not an inert structure; both muscles and 

tendons are highly malleable tissues (32) and just as skeletal muscle displays 

plasticity to changes in the level of physiological loading. The function of tendons 

can be classified into two categories: tensile force transmission, storage and release 
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of elastic strain energy during locomotion (81). Tendons of both animals (23, 154, 

155) and humans have been shown to respond to loading levels higher than those 

experienced habitually (running in animals and resistive training in humans), by 

increasing their tensile stiffness (115). Animal studies show that diabetes affects 

non-enzymatic glycation of soft tissues, such as tendon (113). This causes increased 

cross-linking, increasing the stiffness and modulus of the tendon (111, 112). 

Furthermore, tendon tensile stiffness is increased, limiting the range of joint motion 

at the ankle and knee (31, 87). In humans, calcification and fascicle disruption have 

been observed in the diabetic human Achilles tendon (13). Stiffening of the tendon 

will reduce the degree to which it can be stretched, affecting its potential for storing 

elastic strain energy during walking. The Achilles tendon is particularly important for 

storing and releasing elastic energy during walking (6) and can lead to the significant 

metabolic energy savings, as it actually ‘spares’ the muscle from performing a large 

part of the work. Since tendons exhibit low mechanical hysteresis, most of the elastic 

energy stored during stretching is returned on recoil (82). Thickness and stiffness of 

plantar fascia (the flat band of tissue (ligament) that connects calcaneus to toes) and 

Achilles tendon are increased in type I and type II diabetic subjects, mainly in those 

with peripheral neuropathy (1). In patients with diabetes however, it is hypothesised 

that this energy saving mechanism of the Achilles tendon will play a far less-

significant role during walking compared to healthy matched-controls. As a result, it 

is hypothesised that the plantarflexor muscles will need to contribute a relatively 

greater proportion of the energy required, thereby increasing the energy cost of 

walking for diabetic patients compared to matched-controls. Cronin et al. (31) found 

the Achilles tendon length changes to be attenuated in the DM patients and that they 
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were inversely correlated with diabetes duration, as was the ankle range of motion. 

Also, they found that tendon length changes were independent of walking speed and 

age in the diabetic group. 

 

1.9 The Metabolic Cost of walking 

A parameter that characterizes locomotion is the metabolic cost of walking (CoW) 

and is defined as the energetic cost needed to travel a given of distance. Of particular 

interests are several studies that examined the CoW in different cohorts and different 

conditions. Houdijk et al. (61) found that the effort for balance control can elicit a 

meaningful metabolic energy demand. The same authors also found that the 

increased mechanical work for the step-to-step transition from prosthetic to intact 

limb contributes to the increased metabolic energy cost of amputee walking. Van 

Engelen et al. (114) proved that tibiotalar arthrodesis leads to higher metabolic 

energy cost during walking. Energy expenditure of stroke patients has been 

investigated during postural control tasks (63), as well as the treadmill and 

overground walking. The main conclusions are that impaired balance control should 

not be overlooked as a contributing factor to the increased energy cost of walking in 

patients with stroke, and improving or assisting balance control should be considered 

to reduce the energy cost of hemiplegic. They have provided further evidence that 

active control of medio-lateral stability during walking imposes a metabolic demand 

even in young healthy people. IJmker et al. (66) demonstrated that the effect of 

lateral stabilization on energy cost is independent of walking speed, suggesting that 

medio-lateral stability is not influenced by walking speed in young healthy persons. 

The CoW is an important factor that could contribute towards dictating a slower self-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Houdijk%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19321343
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selected walking speed in diabetes patients. As walking speed increases, joint 

moments and work are expected to increase (39, 152), increasing the CoW. The 

slower self-selected speed may therefore reflect the most efficient strategy for 

diabetes patients as previously shown in other populations (92, 86, 12, 162). The 

CoW is known to be higher in healthy elderly people compared to young adults, 

which likely reflects energetic inefficiencies in older people (92). Knowing some key 

‘inefficiencies’ are present in people with diabetes, it might be expected that the CoW 

would be higher in people with diabetes, but so far this remains unknown. A higher 

CoW in people with diabetes may underpin the lower physical activity levels and 

lower habitual walking distances in this population and may also contribute towards 

a negative spiral where there is a greater perception of difficulty for walking, which 

causes less engagement in physical activity (Maluf et al., 2003; Morrato et al., 2003; 

Tudor-Locke, 2002, 2004), leading to poorer metabolic control and worsening of the 

diabetic condition. To allow intervention to break this negative cycle, it is therefore 

important to understand the factors that contribute to increasing the CoW in diabetes. 

1.10    Thesis aim 

The purpose of this thesis was to investigate the energy cost of walking in people 

with diabetes and examine biomechanical factors that could contribute to explaining 

any potential differences. 

 

1.11 Thesis outline 

This thesis will take the form of six chapters, focusing around the presentation of four 

experimental chapters. The first experimental chapter reports the metabolic cost of 

walking (CoW) in people with diabetes and diabetic peripheral neuropathy across a 
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range of matched walking speeds and gives an insight of the muscle concentric 

work. Experimental chapter 2 investigates the external moment arm and the effective 

mechanical advantage around the ankle during walking across a range of matched 

walking speeds in people with diabetes and diabetic peripheral neuropathy. 

Experimental chapter 3 examines muscle-tendon behaviour during walking for its 

potential role in the CoW in people with diabetes and diabetic peripheral neuropathy. 

The final experimental chapter 4 investigates the vertical displacement of CoM 

during walking across a range of matched walking speeds in people with diabetes 

and diabetic peripheral neuropathy. The last chapter summarises all findings, brings 

conclusions, limitations and possible future work. 
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2. Experimental chapter one - Is the metabolic cost of walking 

higher in people with diabetes? 

 

2.1 ABSTRACT 

People with diabetes walk slower and display biomechanical gait alterations 

compared to controls, but it remains unknown whether the metabolic cost of walking 

(CoW) is elevated. Thirty-one non-diabetic controls (Ctrl); 22 diabetic patients 

without peripheral neuropathy (DM) and 14 patients with moderate/severe DPN, 

underwent gait analysis using a motion analysis system and force plates and 

treadmill walking using gas analyser to measure oxygen uptake. The aim of this 

study was to investigate the CoW and the lower limb concentric joint work as a major 

determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy 

(DPN). The CoW was significantly higher particularly in the DPN group compared to 

controls and also in the DM group (at selected speeds only) compared to controls, 
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across a range of matched walking speeds. Despite the higher CoW in patients with 

diabetes, concentric lower limb joint work was significantly lower in DM and DPN 

groups compared to controls. The higher CoW is likely due to energetic inefficiencies 

associated with diabetes and DPN reflecting physiological and biomechanical 

characteristics. The lower concentric joint work in patients with diabetes might be a 

consequence of kinematic gait alterations and may represent a natural strategy 

aimed at minimizing the CoW. 

 

 

2.2 INTRODUCTION 

Diabetes mellitus (DM) is a disease with a global reach, the prevalence of which is 

increasing at an alarming rate, with type 2 diabetes being particularly common 

among older adults. The prevalence of diabetes in most developed countries ranges 

between 2.1% (Iceland) and 10.5% Brazil (70, 82, 13). The world health organisation 

estimates that by 2025 as many as 200–300 million people worldwide will have 

developed type 2 diabetes (69). 

Diabetic peripheral neuropathy (DPN) is one of the most common complications 

associated with diabetes occurring in 30–50% of patients and causing dysfunction 

of peripheral nerves (17, 22). Diabetic neuropathy affects sensory, motor and 

autonomic components of the nervous system. In terms of complications arising from 

diabetic neuropathy and impacting upon gait, a loss of sensory perception and 

impaired muscle function are major factors.  

Diabetes patients have consistently been shown to display a slower self-selected 

walking speed, and take shorter strides compared to age-matched controls (19, 46, 

28). Diabetic patients also generate lower knee and ankle joint moments compared 
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to controls during walking (56, 52, 14). It could be suggested that diabetic patients 

walk more slowly at least in part to keep the joint moment demands of gait lower, 

which may therefore explain their lower walking speed. However, lower joint 

moments during gait in diabetic patients have also been shown to be independent 

of walking speed (14).  

The cost of walking (CoW) is another important factor that could contribute towards 

dictating a slower self-selected walking speed in diabetes patients. As walking speed 

increases, joint moments and work are expected to increase (24, 79), increasing the 

CoW. The slower self-selected speed may therefore reflect the most efficient 

strategy for diabetes patients as previously shown in other populations (53, 6, 49, 

84).  

The CoW is known to be higher in healthy elderly people compared to young adults, 

which likely reflects energetic inefficiencies in older people (53). Despite previous 

studies describing gait alterations in people with diabetes, the CoW and its relation 

to walking speed remains unknown in this clinical population. Lower limb concentric 

joint work is closely related to the CoW, with higher joint work being linked to a higher 

CoW (24, 79). Knee and ankle concentric joint work has recently been shown to be 

lower in people with diabetes during walking at a self-selected speed compared to 

controls (14), which might suggest a lower CoW as a result. However, there are also 

a number of energetic inefficiencies present in patients with diabetes that might 

increase the CoW for any given speed. For example, the effects of non-enzymatic 

glycation has been shown to stiffen tendons in animal models of diabetes (30, 58, 

61, 62, 63). A stiffer Achilles tendon may reduce the amount of elastic energy stored 

in the tendon during walking (based upon the assumption of lower forces and 
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therefore smaller elongations resulting from the lower joint moments developed in 

diabetic patients compared to controls). Reduced elastic energy storage in the 

Achilles tendon would increase the amount of energy required from ankle muscles, 

thereby increasing the CoW. Other factors that could contribute to energetic 

inefficiencies during walking in diabetic patients include altered leverage around the 

foot due to diabetic foot deformities and increased antagonist muscle co-activation 

(80, 19, 33).  

The aim of this study was therefore to investigate the CoW (and the lower limb joint 

work as a major determinant of the CoW) in patients with diabetes and diabetic 

neuropathy compared to controls at a range of matched walking speeds. I 

hypothesised that due to the above-mentioned inefficiencies in diabetes patients, 

they would display a higher CoW when walking at the same speed compared to 

controls and that this would be more marked in diabetes patients with DPN 

compared to those without. 
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2.3 MATERIALS AND METHODS 

Participants 

After receiving ethical approval from all relevant bodies, a total of sixty seven 

participants gave written informed consent to participate in this study. All procedures 

in this study complied with the declaration of Helsinki. All participants were aged over 

40 years and were allocated into one of three groups: healthy controls without 

diabetes or peripheral neuropathy (Ctrl, n=31, 19 men), patients with diabetes but 

no neuropathy (DM, n=22, 12 men) and patients with diabetes and moderate-severe 

peripheral neuropathy (DPN, n=14, 14 men). All participants were assessed to 

confirm they satisfied the inclusion criteria for each group. Exclusion criteria for 

participation in the study were vascular disease, unstable ischemic heart, 

neurological, rheumatic disease, cerebral injury, disorders of the vestibular system, 

musculoskeletal injury, recent surgery affecting gait, foot or lower limb amputation 

(amputation of the hallux; amputation of more than two lesser toes on one foot; 

amputation of part of/whole foot) and open foot ulcer. Information about duration and 

type of diabetes, smoking habits and use of current medication was obtained via 

questionnaire. The majority of the DM and the DPN patients reported taking insulin, 
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cholesterol-lowering medication and diabetes medication, while from the whole 

sample (including controls) only 2 people reported smoking. Participant 

characteristics are displayed in Table 3. 

 

Assessment of peripheral neuropathy 

A clinical evaluation was undertaken to quantify neuropathy in diabetic patients and 

to confirm the absence of neuropathy in healthy controls. Peripheral neuropathy was 

assessed by using the modified Neuropathy Disability Score (mNDS) and the 

vibration perception threshold (VPT). The mNDS is a combined score taken from 

tests measuring the patient’s ability to detect temperature, pain, vibration and the 

Achilles tendon reflex (10). The VPT was assessed by placing the probe of the 

biothesiometer on the apex of the hallux and increasing the level of vibration until 

detected by the participant. A random blood glucose test was performed in the Ctrl 

group to confirm the absence of diabetes and the above neuropathy tests conducted 

to confirm the absence of neuropathy in the Ctrl group resulting from any aetiology. 

 

Modified Plug-in-gait based marker set  

A full-body Plug- In-Gait marker set (Vicon®, 2002) was selected due to the minimal 

number of markers required for a full-body model. The plug-in-gait model uses joint 

calibration markers for both segment definition and tracking, thereby minimising the 

need for additional tracking markers. Whilst the model employed for the studies 

within this thesis include additional tracking markers, the intention of these markers 

is to provide additional redundancy in the model rather than to replace the calibration 

markers. The plug-in-gait model has previously been shown to have good 
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repeatability, and good comparability to other models including a six-degrees of 

freedom approach for sagittal plane motion. Some markers have fewer placement 

constraints still; these are tracking markers only and are not used for defining the 

body segment; rather during the model’s calibration their position is calculated 

relative to the segment in order to define it’s position during gait, these markers then 

provide more reliable tracking of the segments during the trials. 



 

Figure 1. Marker placements in anterior, posterior and lateral views. 
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Table 1. Upper body marker placements (head, arms and torso). 

Marker Landmark/Placement 

1. Head 1 Headband: left front 

2. Head 2 Headband: right front 

3. Head 3 Headband: left back 

4. Head 4 Headband: right back 

5. Right Shoulder Acromio-clavicular joint (right) 

6. Left Shoulder Acromio-clavicular joint (right) 

7. Cervical 7 7th cervical vertebra 

8. Thorax 10 10th Thoracic vertebra 

9. Sternum Xiphoid process 

10. Scapula Inferior angle 

11. Clavicula Incisura jugularis 

12. Left Upper Arm 
On upper arm between Elbow and Shoulder 
(Left) 

13. Left Elbow Lateral epicondyle (Left) 

14. Left Wrist Medialis Styloid process of Radious (Left) 

15. Left Wrist Lateralis Styloid process of Ulna (Left) 

16. Left Finger 
On the hand just proximal to the 2nd metacarpal 
head (Left) 

17. Right Upper Arm 
On upper arm between Elbow and Shoulder 
(Right) 

18. Right Elbow Lateral epicondyle (Right) 

19. Right Wrist 
Medialis 

Styloid process of Radious (Right) 

20. Right Wrist 
Lateralis 

Styloid process of Ulna (Right) 

21. Right Finger 
On the hand just proximal to the 2nd metacarpal 
head (Right) 

 
Table 2. Lower body marker placements (pelvis and legs). 
 

22. Left SISA Left anterior superior iliac spine 

23. Right SISA Right anterior superior iliac spine 

24. Sacrum 1 Left posterior superior iliac spine 

25. Sacrum 2 Right posterior superior iliac spine 

26. Sacrum 3 
Placed midway between Sacrum 1 and 
Sacrum 2 markers and slightly inferior 

27. Left Upper Thigh 

On the lateral side of the left thigh, 
approximately halfway between hip centre 
and knee centre. It should be aligned 
anteroposterially with the knee and hip 
extension/flexion axes 

28. Right Upper Thigh 

On the lateral side of the right thigh, 
approximately halfway between hip centre 
and knee centre. It should be aligned 
anteroposterially with the knee and hip 
extension/flexion axes 

29. Left Knee Lateral 
Lateral femoral epicondyle (Left leg) – lateral 
side of knee flexion/extension axis 
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30. Right Knee Lateral 
Lateral femoral epicondyle (Right leg) – 
lateral side of knee flexion/extension axis 

31. Left Knee Medial 

Medial femoral epicondyle (Left leg) medial 
mirror of Left Knee Lateral marker so that the 
line connecting the two markers 
approximates the flexion/extension joint axis. 

32. Right Knee Medial 

Medial femoral epicondyle (Right leg) medial 
mirror of Right Knee Lateral marker so that 
the line connecting the two markers 
approximates the flexion/extension joint axis. 

33. Left Shank 1 
Top 1/3 of shank, in the same plane as the 
knee and ankle flexion/extension axes (Left 
leg) 

34. Left Shank 2 
Bottom 1/3 of shank, in the same plane as the 
knee and ankle flexion/extension axes (Left 
leg) 

35. Left Shank 3 
Placed midway between Left Shank 1 and 
Left Shank 2 markers and slightly inferior 

36. Right Shank 1 
Top 1/3 of shank, in the same plane as the 
knee and ankle flexion/extension axes (Right 
leg) 

37. Right Shank 2 
Bottom 1/3 of shank, in the same plane as the 
knee and ankle flexion/extension axes (Right 
leg) 

38. Right Shank 3 
Placed midway between Right Shank 1 and 
Right Shank 2 markers and slightly inferior 

39. LANKMED Medial malleolus (Left ankle) 

40. RANKMED Medial malleolus (Right ankle) 

41. LANKLAT Lateral malleolus (Left ankle) 

42. RANKLAT Lateral malleolus (Right ankle) 

43. LHEEL On the left calcaneus 

44. RHEEL On the right calcaneus 

45. Left B1 Base of the first metatarsal bone (Left foot) 

46. Left H1 Head of the fifth metatarsal bone (Left foot) 

47. Left B5 Base of the first metatarsal bone (Left foot) 

48. Left H5 Head of the fifth metatarsal bone (Left foot) 

49. Right B1 Base of the first metatarsal bone (Right foot) 

50. Right H1 Head of the fifth metatarsal bone (Right foot) 

51. Right B5 Base of the first metatarsal bone (Right foot) 

52. Right H5 Head of the fifth metatarsal bone (Right foot) 

53. Left Toe Tip of left toe 

54. Right Toe Tip of right toe 
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Figure 2. Fully labelled standing calibration file in Nexus (Vicon, Oxford, UK). 

 

Gait analysis 

Participants were asked to walk along a 10-metre walkway in the gait laboratory. 

Participants were instructed to walk the length of the walkway at a series of 

different walking speeds performed in a specific order (0.6, 0.8, 1.0, 1.2, 1.4 and 

1.6 m/s). Walking speed was controlled by measuring the velocity of a marker 

attached to the sacrum after each trial from the motion analysis data and 

providing immediate feedback for participants as to whether they needed to walk 

more quickly or more slowly on the next trial to achieve the required speed, 

allowing +/- 5% deviation from the required speed. Participant's starting position 

was altered by the experimenters to ensure a ‘clean’ (i.e., no overlap outside the 

force platform) foot-strike on one or two of the force platforms per walking trial 

without alteration to their natural gait. Walking trials were repeated until at least 
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three ‘clean’ foot contacts with the force platforms were made per limb, per speed 

condition. Kinematics were collected at 100 Hz using a full-body modified Plug-

In-Gait marker set with 54 markers and a 10-camera Vicon motion capture 

system (Vicon, Oxford, UK) positioned around the 10-meter walkway. Kinetics 

were simultaneously collected at 1000 Hz from three force platforms (Kistler, 

Zurich, Switzerland) embedded into the middle of the walkway. Where possible 

markers were placed directly onto the skin; to minimise movement artefacts 

resulting from loose clothing all participants wore tight-fitting shorts and tops. All 

participants wore specialist diabetic shoes (MedSurg, Darco, Raisting, Germany) 

with a neutral foot-bed, ensuring the diabetic patients walked with safe, 

appropriate footwear whilst minimising the effect of footwear by standardising 

across all participants. 

 

Oxygen uptake measurements and metabolic calculations 

Prior to testing, all participants completed walking familiarisation sessions for a 

minimum of 6 minutes on the treadmill to become accustomed to the task of 

treadmill walking and enable a natural walking style to be achieved. 

Measurements of expired air were acquired whilst participants walked on a motor-

driven treadmill (Woodway Ergo ELG 70, Weil am Rhein, Germany) set at six 

different walking velocities (0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 m/s). The treadmill was 

inclined by 1% from horizontal for the purpose of increasing the similarity of 

oxygen uptake demands with level ground walking as previously shown (34, 38). 

Participants wore a facemask, which passed expired air into an automated 

analyser (Cortex Metalyser 3B, Biophysik, Leipzig, Germany). The analyser, 

calibrated prior to each testing session, provided breath-by-breath data sent via 

telemetry to a computer. Oxygen consumption (VO2) was measured continuously 
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using this online system. The net VO2 during walking was determined as: 

Net VO2 = gross VO2 - resting VO2
× 

×resting VO2 was measured during quiet standing on the treadmill prior to walking. 

  

Net VO2 was expressed relative to body mass for all participants. The cost of 

walking was calculated using the mean rate of oxygen consumption for VO2 data 

collected between the 3rd and 4th minute of each stage. 

Net VO2 was converted to joules using an energetic equivalent and calculated 

using the specific respiratory exchange ratio (RER) value from each participant 

as (29): VO2 • (4.94 • RER + 16.04). The CoW was calculated by dividing VO2 by 

the walking speed and multiplying this value for the energy equivalent. Using the 

RER and calculating the energetic equivalent in this way takes into account 

possible differences between groups due to the contribution of the anaerobic 

energy system. Nine participants (Ctrl=3, DM=1, DPN=5) were unable to walk for 

a sufficient period of time at 1.6 m/s to derive adequate VO2 measurements at 

this specific speed. 

 

Gait biomechanical analysis 

Temporal–spatial parameters (walking speed, stance time) were calculated from 

the gait analysis testing session described above using Visual 3D software (C-

motion Inc., MD, USA), using the process of inverse dynamics to calculate joint 

powers. Power curves during stance were calculated to assess concentric 

(positive) periods of power during the stance phase to calculate concentric joint 

work done, defined as the positive power-time integral (14). Concentric joint work 

done was then subsequently normalised to body mass. Work done (ankle, knee, 

and hip) was calculated taking into account data from both legs, across at least 
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three trials (data from at least six stance phases). 

 

Statistics 

A one-way analysis of variance (ANOVA) was performed for all variables to 

assess between group differences. If the ANOVA was significant, a Fisher’s least 

significant difference (LSD) post-hoc test was used to test for differences between 

the diabetes groups (DM and DPN) and the control group. All values presented 

are means and standard deviation. All statistical tests were performed on SPSS 

statistical package (SPSS v21, Chicago, Illinois) with significance set at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 RESULTS 

Participant characteristics  

There were significant differences between the groups in age, body mass and 
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BMI, which were significantly greater in the DPN group (Table 3, p<0.01).  

 

Neuropathy assessments  

As expected, the DPN group displayed significantly higher values for the VPT 

and the mNDS compared to the Ctrl group (Table 3). The VPT and mNDS for the 

DM group were not significantly different from the Ctrl, underlining that this 

diabetic patient group had no neuropathy (Table 3). 

 

Temporal–spatial gait parameters  

The DPN group displayed significantly longer single limb stance times and shorter 

step lengths in all given speeds compared to Ctrl group (Table 4). 

 

Total joint work during walking at different speeds 

Total concentric work showed a very consistent pattern across all speeds with 

the Ctrl group displaying the highest values, followed by lower values in the DM 

group and the lowest values observed in the DPN group (Fig. 3). Compared to 

the Ctrl group, significantly lower joint work was observed at all speeds for the 

DPN group and all but 1.4 m/s for the DM group.   

 

Ankle, knee and hip joint work during walking  

Ankle concentric joint work was lower for the DPN group compared to the Ctrl 

group, reaching significance at gait velocities of 0.8; 1.2; 1.4 and 1.6 m/s (Fig. 3). 

Knee concentric joint work was significantly lower in the DPN group compared to 

Ctrl at gait velocities of 0.6; 0.8; 1.0; 1.2 and 1.6 m/s. In the DM group, knee 

concentric joint work was significantly lower compared to Ctrl at the gait velocity 

of 0.6 m/s. Hip concentric joint work was lower for the DPN group compared to 
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Ctrl reaching significance at velocities of 0.6; 0.8 and 1.6 m/s. 

 

Cost of walking at different speeds 

There were significant differences in the CoW between the groups across the 

matched speeds tested, with the general pattern of a higher CoW in the DPN 

group, followed by the DM group and the lowest CoW in the Ctrl group (Table 4; 

Fig. 4). Significant differences in the CoW were mainly found between the DPN 

and Ctrl groups (at 0.6; 0.8; 1.0; 1.2 and 1.6 m/s), with some significant 

differences also present between DM and Ctrl groups at the higher gait velocities 

(1.4 and 1.6 m/s). 

 

 

Table 3. Participant characteristics and results from neuropathy assessments. 

Variable 
Group 

Ctrl DM DPN 

Age (yr) 56 (10) 51 (9)** 66 (14)** 

Body mass (kg) 76 (10) 80.5 (12) 91.5 (18)** 

Height (m) 1.72 (0.12) 1.71 (0.09) 1.73 (0.11) 

BMI (kg/m2) 26 (3) 28 (4) 31 (4)** 

NDS (Score/10) 1 (1) 2 (1) 7 (2)** 

VPT (Volts) 6.1 (3.4) 8.2 (3.4) 27.4 (9.1)** 

Diabetes duration (years) - 14 (12) 14 (11) 

Type 1 diabetes - 7 4 

Type 2 diabetes - 15 10 

Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) 
and diabetic patients with moderate/severe neuropathy (DPN, n=14). Significant 
differences from the Ctrl group are denoted by *(P<0.05) or ** (P<0.01). BMI = 
body mass index, NDS = neuropathy disability score, VPT = vibration perception 
threshold. Values are means (standard deviations). 
 
 
 
 



57 
 

 

Figure 3. Lower limb ankle, knee, hip and total concentric joint work across 
walking speeds from 0.6 to 1.6 m/s for healthy controls (Ctrl, n=31), diabetic 
patients with no neuropathy (DM, n=22) and diabetic patients with 
moderate/severe neuropathy (DPN, n=14). Values are group means and SD, 
**denotes significantly (P<0.01) different from the control group. 
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Figure 4. The cost of walking (CoW) plotted across walking speeds from 0.6 to 
1.6 m/s for healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, 
n=22) and diabetic patients with moderate/severe neuropathy (DPN, n=14). Nine 
participants (Ctrl=3, DM=1, DPN=5) were unable to walk for long enough to 
calculate the CoW at 1.6 m/s. Values are group means and SD, **denotes 
significantly (P<0.01) different from the control group. 
 
 

 
Figure 5. Mean data for the cost of walking (CoW) plotted against total concentric 
work during walking at walking speeds from 0.6 to 1.6 m/s for healthy controls 
(Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) and diabetic 
patients with moderate/severe neuropathy (DPN, n=14). The curves were fitted 
with a cubic function to yield R2 values over 0.98. Line graphs: Ctrl - solid line, 
DM - dotted line, DPN - dashed line. 
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Table 4. Temporal-spatial gait parameters and net oxygen uptake.  

    Variable Group 

 Ctrl DM DPN 

0.6 m/s 

Actual speed (m/s) 
 

0.57 (0.24) 
 

0.59 (0.16) 
 

0.61(0.11) 

Step length (m) 
Single limb stance time (sec) 

0.59 (0.20) 
0.902 (0.20) 

0.57 (0.24) 
0.841(0.23) 

0.51 (0.09)** 
0.958 (0.05)** 

Net VO2 (ml/min kg) 3.81 (1.11) 3.05 (1.69) 4.93 (2.95)** 

RER 0.89 (0.05) 0.93 (0.08) 0.96 (0.09) 

0.8 m/s    

Actual speed (m/s) 0.82 (0.27) 0.78 (0.21) 0.77 (0.19) 

Step length (m) 
Single limb stance time (sec) 

0.63 (0.21) 
0.801 (0.15) 

0.57 (0.21) 
0.842 (0.21) 

0.53 (0.05)** 
0.960 (0.05)** 

Net VO2 (ml/min kg) 5.11 (0.89) 5.00 (1.55) 6.56 (2.94)** 

RER 0.86 (0.09) 0.87 (0.11) 0.97 (0.07) 

1.0 m/s 
Actual speed (m/s) 

 
1.02 (0.17) 

 
1.04 (0.28) 

 
0.97 (0.13) 

Step length (m) 
Single limb stance time (sec) 

0.69 (0.15) 
0.713 (0.13) 

0.67 (0.05) 
0.741 (0.05) 

0.64 (0.04)* 
0.884 (0.05)* 

Net VO2 (ml/min kg) 6.44 (1.08) 6.89 (1.32) 7.75 (3.29)** 

RER 0.84 (0.04) 0.91 (0.06) 0.93 (0.03) 

1.2 m/s    

Actual speed (m/s) 1.18 (0.16) 1.22 (0.15) 1.22 (0.23) 

Step length (m) 
Single limb stance time (sec) 

0.76 (0.11) 
0.579 (0.31) 

0.75 (0.17) 
0.617 (0.05) 

0.69 (0.07)* 
0.682 (0.06)* 

Net VO2 (ml/min kg) 7.46 (1.15) 7.89 (1.29) 8.62 (2.65)** 

RER 0.87 (0.08) 0.91 (0.04) 0.91 (0.07) 

1.4 m/s    

Actual speed (m/s) 1.45 (0.19) 1.44 (0.12) 1.46 (0.19) 

Step length (m) 
Single limb stance time (sec) 

0.79 (0.12) 
0.555 (0.15) 

0.77 (0.17) 
0.579 (0.21) 

0.71 (0.11)* 
0.621 (0.14)* 

Net VO2 (ml/min kg) 9.22 (1.69) 10.73 (0.80)** 9.87 (2.89) 

RER 0.90 (0.07) 0.89 (0.05) 0.93 (0.06) 

1.6 m/s    

Actual speed (m/s) 1.62 (0.27) 1.57 (0.17) 1.59 (0.12) 

Step length (m) 
Single limb stance time (sec) 

0.81 (0.11) 
0.499 (0.15) 

0.80 (0.04) 
0.498 (0.11) 

0.74 (0.02)* 
0.525 (0.01)* 

Net VO2 (ml/min kg) 10.97 (4.45) 12.84 (3.35)** 12.19 (4.99)** 

RER 0.89 (0.04) 0.90 (0.07) 0.98 (0.06) 

Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) 
and diabetic patients with moderate/severe neuropathy (DPN, n=14). Significant 
differences from the Ctrl group are denoted by *(P<0.05) or **(P<0.01). Values 
are means (standard deviations). Gait parameters were collected on the 
laboratory walkway. 
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2.5 DISCUSSION 

This study has shown for the first time that when walking speed is matched, 

patients with diabetic neuropathy have a higher CoW compared to controls (Fig. 

4). Despite a higher CoW, patients with diabetic neuropathy showed significantly 

reduced concentric lower limb joint work compared to controls at these matched 

speeds. The finding of lower joint work in patients with diabetic neuropathy is 

surprising considering that under ‘normal’ conditions lower concentric work is 

clearly linked to a lower CoW (67, 57), but I suggest possible reasons for this 

below.  

The finding of a higher CoW in patients with diabetic neuropathy when walking 

speed was matched likely reflects energetic inefficiencies resulting from a 

number of physiological and biomechanical factors. Firstly, animal models of 

diabetes have shown that tendons are stiffer due to the effects of non-enzymatic 

glycation. In human diabetic patients, this likely applies to the long Achilles 

tendon, which plays a major role in energy saving during walking under ‘normal’ 

circumstances (3). Stiffening of the Achilles tendon with diabetes and especially 

diabetic neuropathy (presumably due to longer exposure with poor glycaemic 

control), would reduce the extensibility of the tendon. Based upon the lower joint 

moments developed in patients with diabetic neuropathy during gait (46, 52, 56, 

81), it would be expected that the force on the Achilles tendon would be lower 

compared to controls. The stiffer Achilles tendon of patients with diabetic 

neuropathy would be expected to elongate less compared to controls, storing less 

elastic energy and requiring more energy to be generated by the plantarflexor 

muscles (assuming similar hysteresis compared to controls), thereby contributing 

to a higher CoW in diabetes patients.  

Higher levels of muscle co-activation during walking have been reported in 
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diabetic patients compared to controls (1, 32). Considering that locomotion 

should reflect a fine balance between activation and de-activation of agonist and 

antagonist muscles during specific phases of the gait cycle, an increase in the 

level of muscle co-activation will increase metabolic energy cost and could 

therefore be another factor contributing to increase the CoW at a given speed in 

patients with DPN. Foot deformities are common in diabetic patients (29, 78) and 

even subtle changes in foot structure would alter the application of force to the 

ground during walking (43, 51). Changes in the application of force to the ground 

during walking (and running) will alter the mechanical leverage around the ankle 

joint, i.e., the external moment arm. This has been shown both in humans and 

animals (7, 8, 9, 5, 41, 42, 68, 12) and therefore such changes may increase the 

CoW in patients with DPN. Another contributing factor to the higher CoW in the 

DPN group is the increased step frequency (the DPN group had a shorter step 

length for a given speed, therefore requiring a higher step frequency) and greater 

body mass compared to the DM and the Ctrl groups. These two factors 

(increased step frequency and greater body mass) would increase the internal 

work required for moving the lower limbs and may contribute to a higher CoW in 

people with diabetes and particularly those with DPN (54). 

A higher CoW was clearly evident in patients with diabetes (DM group) and 

particularly in those with diabetic neuropathy (DPN group) across the matched 

walking speeds. In this study I examined a range of different walking speeds (from 

0.6 until 1.6 m/s) and observed that the differences in the CoW between groups 

were most evident at the lower gait velocities (0.6-1.2 m/s; Fig. 4). At the higher 

walking speeds, the pattern changes slightly with the CoW still remaining higher 

in patients with diabetes and diabetic neuropathy compared to controls, but with 

the differences being less evident than at the slower walking speeds. This may 
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be explained by patients with diabetic neuropathy moving closer towards their 

maximal oxygen uptake when walking at velocities of 1.4 m/s and above. It is well 

known that diabetes patients engage in less physical activity (48, 55, 72, 73) and 

are therefore likely less fit i.e., have a lower maximal oxygen uptake compared to 

non-diabetic controls (40, 65, 66). It is also a possibility that diabetes patients 

might have reached the lactate threshold earlier than controls (i.e., at lower 

walking speeds), which could have influenced the VO2 kinetics and the time to 

reach a relatively constant VO2. Specifically, with heavy exercise above the 

lactate threshold the VO2 slow component (i.e., the gradual rise in VO2 with 

constant workload) may be more pronounced (77) and there is a risk that diabetes 

patients may have reached their lactate threshold earlier than controls, thereby 

influencing our estimate for the CoW differently between diabetes and control 

participants. Although I did not measure the lactate threshold or the maximal 

oxygen uptake in our participants, previous studies have shown that the lactate 

threshold occurs in other populations at a VO2 between 50 and 55 ml/kg/min, or 

at running speeds of between 3.75 and 4.73 m/s (64, 26, 83, 2). These VO2 

values (50-55 ml/kg/min) and running speeds (3.75-4.73 m/s) are considerably 

higher compared to those measured in our study (VO2 values of up to 13 

ml/kg/min and walking speeds of up to 1.6 m/s; Table 4), and despite these 

previous reports being in healthy populations, it may suggest that all participants 

in the present study were well below their lactate threshold. Future work could be 

conducted to compare the CoW between these groups at relative exercise 

intensities, taking into account individual lactate thresholds. 

The CoW data in the present study are comparable with a number of previous 

studies conducted in similar populations reporting values ranging between 1.1 

and 5 J (kg m)-1 (76, 25, 75, 35, 15, 36, 6, 16, 18, 20, 53, 59). In the DPN group 
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the CoW showed a U-shaped relationship with walking speed as previously 

reported in other populations (53), but this relationship was not as clearly evident 

in the DM and Ctrl groups (Fig. 4). All three groups showed the same consistent 

pattern of increasing net VO2 with increasing walking speed. Slight differences in 

the RER values between groups likely explain the lack of a consistent U-shaped 

relationship between the CoW and walking speed across all three groups. The 

DPN group displayed particularly high standard deviations for the CoW (Fig. 4) 

and VO2 data (Table 4). This high within-group variance is a consistent 

characteristic reported in previous studies with DPN patients for other gait 

variables, but here I also highlight the within-group variance associated with VO2 

and CoW parameters in DPN patients.  

Across the matched walking speeds in the present study, there was a consistent 

pattern of lower total concentric joint work being developed by the DM group and 

particularly the DPN group compared to controls (Fig. 3). A slower walking speed 

is a consistent finding of previous studies in diabetic patients (5, 52, 60, 28). 

Whilst most other studies have examined only self-selected walking speed (45, 

21), the present study is the first to examine a range of different functionally 

relevant matched walking speeds (between 0.6 and 1.6 m/s) in the diabetic 

patient population. Since lower limb joint work is known to be closely linked to the 

CoW, joint work was examined in the present study to provide insight to the 

mechanism(s) for group differences in the CoW. I found a consistent pattern of 

lower joint work in the DM group and particularly in the DPN group compared to 

the Ctrl group for the hip, knee and ankle joints across walking speeds (Fig. 3). 

Theoretically, the same lower limb joint work was associated with a higher CoW 

in diabetic patients and particularly in patients with DPN, which can be observed 

by projecting vertically from any point on the x-axis on Fig. 5.  
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It was surprising that diabetic patients were actually able to match the same 

walking speed as controls despite generating significantly reduced lower limb 

joint work. This interesting aspect might be explained by a number of kinematic 

alterations to gait made by diabetic patients with implications for joint kinetics. 

This may represent an ‘altered gait strategy’ in people with diabetes to enable 

them to meet the task demands in the face of compromised musculoskeletal 

properties and already elevated CoW due to energetic inefficiencies. Diabetic 

patients display a reduced lower limb range of motion during walking compared 

to controls. This is achieved at least in part via shorter steps taken by diabetic 

patients during walking (Table 4). It is known that DM and DPN patients are able 

to lower joint moments and walk with shorter steps and this translates to less 

flexed joints, which in general means that the moment arms of the ground 

reaction force are smaller compared to the situation with more flexed joints. 

Smaller moment arms will lower the joint moments and since joint work is derived 

from the product of joint moments and joint angular speed (joint power), this 

kinematic strategy likely contributes towards reducing the joint work done during 

walking. Concentric contractions are associated with a relatively high metabolic 

load, whereas in contrast, this is much lower for isometric and eccentric 

contractions (27, 23). Despite these strategies to lower the joint moments, 

patients with DPN have a higher CoW presumably due to metabolic inefficiencies 

discussed above. If patients with DPN did not employ these ‘altered gait 

strategies’ presumably the CoW would be even higher.  

There are some limitations in the present study that should be acknowledged. 

Firstly, several participants were not able not complete walking on the treadmill 

at the highest speed (1.6 m/s). Secondly, body mass was significantly different 

between groups, however, this should not affect the two main parameters of the 
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CoW and joint work, since both parameters were normalised for body mass. Also, 

the higher body mass in patients with DPN is a well-known characteristic of this 

population described in the literature (45, 39, 37). Although only a mean of 10 

years difference, patients in the DPN group were significantly older than controls 

(66 to 56 years, respectively), which might be a confounding factor for some of 

the variables examined. I did not measure blood lactate to confirm that all 

participants were working below their lactate threshold. This is a consideration 

since the VO2 slow component is much more pronounced during exercise above 

the lactate threshold compared to below as discussed above. Although the 

intensity of the exercise during walking in the present study was unlikely sufficient 

for participants to exceed their lactate threshold based on comparison with 

previous studies (64, 26, 83, 2), it remains a note of caution since it would affect 

our interpretation of the CoW data if there were between-group differences in the 

onset of the lactate threshold occurring within the range of walking speeds 

examined.    

I have shown that the CoW is higher in patients with diabetes and particularly in 

those with diabetic neuropathy compared to controls when walking speed is 

matched. This higher CoW is likely due to energetic inefficiencies in diabetic 

patients reflecting physiological and biomechanical characteristics and occurs 

despite the development of lower concentric joint work in patients with diabetes 

and diabetic neuropathy. 
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3. Experimental chapter two - Altered leverage around the 

ankle in people with diabetes: a natural strategy to modify 

the muscular contribution during walking? 
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3.1 ABSTRACT 

Diabetes patients display a number of gait alterations compared to controls 

including a higher cost of walking. The aim of this study was to investigate the 

external moment arm (ExtMA) and effective mechanical advantage (EMA) at the 

ankle in patients with diabetes and diabetic peripheral neuropathy compared to 

controls as a potential mechanism contributing to the increased cost of walking. 

Thirty one non-diabetic controls (Ctrl); 22 diabetes patients without peripheral 

neuropathy (DM) and 14 patients with moderate/severe diabetic peripheral 

neuropathy (DPN), underwent gait analysis using a motion analysis system and 

force plates. Internal moment arms were determined using magnetic resonance 

imaging during weight-bearing and external moment arms were calculated using 

gait analysis. A greater value (P<0.01) for the EMA at the ankle joint was found 

in the DPN (0.488) and DM (0.46) groups compared to Ctrl (0.448). This means 

that the ankle plantarflexor muscles develop relatively lower forces to generate a 

given joint moment compared to controls. The increased EMA was mainly caused 

by a smaller external moment arm in the DPN (9.63cm; P<0.01) and DM 

(10.31cm) groups compared to Ctrl (10.42cm). Here, I uncover a new mechanism 

through which patients with diabetes and particularly those with DPN reduce the 

joint moment at the ankle during walking – by applying the ground reaction force 

more proximally on the foot or at an angle directed more towards the ankle, 

increasing the EMA around the ankle and thereby reducing the ankle joint 

moment.  

3.2 INTRODUCTION 

Diabetes presents a global health challenge and the prevalence is increasing 

rapidly, ranging between 2.4% to 24% across various international countries (44, 

48, 7). The world health organisation estimates that by 2025 as many as 200-300 
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million people worldwide will have developed type 2 diabetes (19). One of the 

major complications of diabetes is diabetic peripheral neuropathy (DPN), which 

occurs in 30–50% of patients with diabetes, causing dysfunction of peripheral 

nerves (10, 13). Diabetic peripheral neuropathy affects not only sensory but also 

motor nerves, having implications for movement dysfunction (35, 18, 9). People 

with diabetes walk less and at a slower speed and engage in lower levels of 

physical activity compared to match controls (27, 30, 45, 46). Other gait 

characteristics in diabetic patients include taking shorter strides, spending 

relatively longer in double support (two feet in contact with the ground) and 

generating lower knee and ankle joint moments compared to matched controls 

(31, 11, 22, 9, 12, 14, 24, 29, 31). I have recently shown a higher cost of walking 

(CoW) across a range of matched walking speeds in patients with diabetes and 

especially in those with DPN compared to controls. This higher CoW in people 

with diabetes may underpin the lower physical activity levels and lower habitual 

walking distances in this population and may contribute towards a negative spiral 

where there is a greater perception of difficulty for walking, which causes less 

engagement in physical activity, leading to poorer metabolic control and 

worsening of the diabetic condition. To allow intervention to break this negative 

cycle, it is therefore important to understand the factors that contribute to 

increasing the CoW in diabetes.  

One potential factor that might contribute to increasing the CoW is a greater 

external moment arm (ExtMA) of the resultant ground reaction force (GRF) 

around the ankle, since this will increase the relative contribution from the 

plantarflexor muscles. The effective mechanical advantage (EMA) around the 

ankle is given by the ratio of the internal (Achilles tendon moment arm) to the 

ExtMA, with lower values reflecting a relatively greater contribution from the 
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plantarflexor muscles towards the joint moment required to overcome the 

external resistance applied (5). Indeed, it has been shown in a healthy population 

how a marked increase in the ExtMA around the knee and therefore a marked 

reduction in the EMA at the knee, likely accounts for the marked increase in the 

cost of transport when transitioning from walking to running (4). Although running 

is not an issue of investigation here in diabetes patients, this clearly illustrates the 

concept of how differences in external leverage around joints can impact upon on 

the energy cost of locomotion.  

In diabetes patients the ExtMA at the knee would not be increased since they 

take shorter strides and have less flexed joints compared to controls (31, 11, 22). 

However, many diabetes patients have some level of foot deformity such as a 

high arch, or toe deformities (16, 47), which may result in applying force to the 

ground more distal on the foot, increasing the ExtMA around the ankle, 

decreasing the EMA and thereby increasing the relative contribution from the 

plantarflexor muscles. The EMA around the ankle in diabetic patients could be 

also affected by altered use of the lower limb and foot caused by sensory deficits 

and plantaflexor muscle weakness. A relative increase in the contribution from 

ankle plantarflexor muscles during walking may partly explain the increased CoW 

in diabetes patients and especially those with DPN. 

The aim of this study was to establish whether there are differences in the ExtMA 

and EMA at the ankle in patients with diabetes and DPN compared to controls at 

a range of matched walking speeds, as a potential mechanism contributing to the 

increased CoW recently observed in diabetes patients (32). I hypothesized that 

the ExtMA will be higher and the EMA will be lower in diabetes patients compared 

to controls. 
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3.3 MATERIALS AND METHODS 

Participants 

After receiving ethical approval for the study from all relevant bodies, a total of 

sixty seven participants were recruited, who gave their written informed consent 

to participate. Participants were aged over 40 and allocated into one of three 
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groups based upon defined criteria: patients with diabetes and moderate-severe 

peripheral neuropathy (DPN, n=14, 12 men), patients with diabetes but no 

neuropathy (DM, n=22, 12 men) and healthy controls without diabetes or 

peripheral neuropathy (Ctrl, n=31, 19 men). 

All participants were assessed to confirm they met the inclusion criteria. Major 

exclusion criteria included: severe vascular disease, unstable ischemic heart, 

neurological, rheumatic disease, cerebral injury, disorders of the vestibular 

system, musculoskeletal injury, recent surgery affecting gait, foot or lower limb 

amputation (amputation of the hallux; amputation of more than two lesser toes on 

one foot; amputation of part of/whole foot) and open foot ulcer. A questionnaire 

was used to obtain the following information: duration and type of diabetes, 

smoking habits and use of current medication. The majority of the DM and the 

DPN patients reported taking insulin, cholesterol-lowering medication and 

diabetes medication, while from the whole sample (including controls) only 2 

people reported smoking. Participant characteristics are displayed in Table 1. 

 

Clinical assessment of peripheral neuropathy 

A clinical evaluation was undertaken to quantify neuropathy in diabetes patients 

and to confirm the absence of neuropathy in healthy controls. Peripheral 

neuropathy was assessed by using the modified Neuropathy Disability Score 

(mNDS) and the vibration perception threshold (VPT). The mNDS is a composite 

score taken from tests measuring the patient’s ability to detect temperature 

perception, pain, vibration and the Achilles tendon reflex (6). The VPT is an 

assessment performed using a biothesiometer placed on the apex of the hallux 

and increasing the level of vibration until detected by the participant. A random 

blood glucose test was performed in the Ctrl group to confirm the absence of 
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diabetes and the above neuropathy tests conducted to confirm the absence of 

neuropathy in the Ctrl group resulting from any aetiology. 

 

Gait analysis 

Kinematic data were collected at 100 Hz using a full-body modified Plug-In-Gait 

marker set with 54 markers and a 10-camera Vicon motion capture system 

(Vicon, Oxford, UK) positioned around the 10-meter walkway. Ground reaction 

forces were measured at 1000 Hz synchronously with motion capturing using 

three force platforms (Kistler, Zurich, Switzerland) embedded into the walkway. 

Where possible markers were placed directly onto the skin; to minimise 

movement artefacts resulting from loose clothing all participants wore tight-fitting 

shorts and t-shirts. Participants were instructed to walk the length of the walkway 

at different walking speeds performed in a specific order (0.6, 0.8, 1.0, 1.2, 1.4 

and 1.6 m/s). Walking speed was controlled by measuring the velocity of a marker 

attached to the sacrum after each trial from the motion analysis data and 

providing immediate feedback for participants as to whether they needed to walk 

more quickly or more slowly on the next trial to achieve the required speed. 

Walking trials were repeated until at least three ‘clean’ foot contacts with the force 

platforms were made per limb, per speed condition. All participants wore 

specialist diabetic shoes (MedSurg, Darco, Raisting, Germany) with a neutral 

foot-bed, ensuring the diabetes patients walked with safe, appropriate footwear 

whilst minimising the effect of footwear by standardising across all participant 

groups. 

 

MRI scanning and analysis 
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Magnetic resonance imaging (MRI) was used to quantify the internal Achilles 

tendon (AT) moment arm length at the ankle as previously described (26). The 

internal moment arm was defined as the perpendicular distance from the centre 

of rotation on the talus to the AT line of action (26). Internal moment arm lengths 

were determined with participants standing upright (i.e., full weight-bearing) in a 

0.25T MRI scanner (E-Scan, Esaote Biomedica, Genoa, Italy). Weight-bearing 

scans were acquired across the predominant range of ankle joint angles (10 

degrees dorsiflexion, neutral position, 10 degrees plantarflexion) experienced 

during walking, to relate these measurements as closely as possible to the 

conditions of walking. In the present study rotation of the ankle joint from 

plantarflexion to dorsiflexion was treated as a single planar mechanism (25, 39, 

41, 38). The ankle joint instant centre of rotation was located following the 

graphical approach described by Reuleaux (37) for ankle angle rotations from 

−10 to 10 deg. Instant centre of rotation was determined by measuring the 

rotation of the talus, which was considered to represent the whole rotating foot, 

relative to the tibia. The AT moment arm was measured on the neutral ankle scan 

as the perpendicular distance from the centre of rotation on the talus to the line 

of action on the AT. All images were analysed using a custom-script written in 

MATLAB software. 

 

 

Measurement of the external moment arm at the ankle during walking and 

foot length 

Foot length was measured in the standing position as the distance between the 

end of the big toe and the heel. The external moment arm (ExtMA) length around 

the ankle during walking was defined as the perpendicular distance between the 
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resultant GRF vector in sagittal plane and the ankle joint centre of rotation. The 

ankle joint centre of rotation was defined from the markers positioned on both 

lateral and medial malleoli. The ExtMA was quantified throughout the stance 

phase on every motion analysis frame from integration of the kinematic data with 

the GRF data.  

 

Calculation of the EMA 

Consistent with the approach used in previous studies (4, 5, 36), the EMA around 

the ankle joint was calculated as the ratio of the internal moment arm length to 

the external moment arm length (Fig. 2).  

 

Effective Mechanical Advantage = 
Internal moment arm

External moment arm
 

 

The ExtMA values were quantified across the stance phase from the kinematic 

data as described above. The internal moment arm values were measured using 

MRI as described above and calculated across the stance phase by using the 

measured ankle joint angle data and the previously reported ratio of internal 

moment arm to ankle joint angle determined from MRI (38). 

 

 

 

Gait biomechanical analysis 

Gait variables were calculated using Visual 3D software (C-motion Inc., MD, 

USA): external moment arm lengths, joint moments, GRFs and ankle, knee and 

hip joint angles. Joint moments and GRFs were normalised to body mass. Data 

for the external moment arms, joint moments and GRFs were collected during 
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the stance phase, while ankle, knee and hip joint ranges of motion (RoM) were 

analysed throughout the gait cycle. Means across both legs and three trials were 

used for all variables presented.  

 

Statistics 

A one-way analysis of variance (ANOVA) was performed for all variables to 

assess between group differences. If the ANOVA was significant, a Fisher’s least 

significant difference (LSD) post-hoc test was used to test for differences between 

the diabetes groups (DM and DPN) and the control group. An analysis of 

covariance (ANCOVA) was performed for the external moment arm at peak ankle 

joint moment using foot length as the covariate. All values presented are means 

and standard deviation. Significance was set at p<0.05. 

 

 

 

 

 

 

 

 

 

3.4 RESULTS 

 

Participant characteristics  
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Significant differences existed between the groups in age, body mass and BMI, 

with the DPN group being older and heavier with a greater BMI compared to 

controls (Table 1, P<0.01). 

 

Diabetic Peripheral Neuropathy 

As expected, patients with DPN displayed significantly higher mNDS and VPT 

than the Ctrl and the DM groups (Table 1). There were no differences (P>0.05) 

in the mNDS or VPT between the Ctrl and the DM groups, underlining that this 

diabetes group had no neuropathy. 

 

Temporal–spatial gait parameters  

The DPN group displayed significantly longer single limb stance times and shorter 

step lengths in all given speeds compared to Ctrl group (Table 2). 

 

External moment arm at peak ankle joint moment during walking & gait 

parameters  

The ExtMA length at peak ankle joint moment was significantly smaller (P<0.01) 

in the DPN group compared to the Ctrl group at walking speeds of 0.6; 1.0 and 

1.4 m/s and for the mean across all speeds (Table 2). Significant differences 

(P<0.01) were also observed in the external moment arm length between the DM 

and Ctrl groups at a walking speed of 1.4 m/s. The DPN group displayed 

significantly (P<0.01) longer single limb stance times and shorter step lengths in 

all given speeds compared to the Ctrl group (Table 2). 

Internal moment arm and EMA during walking  

There were no differences in the internal moment arm length in the DPN and the 

DM groups compared to the Ctrl group (P>0.05). The EMA at the ankle was 
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significantly (P<0.01) higher in the DPN group compared to the Ctrl group at 

walking speeds of 0.6; 1.0; 1.2; 1.4, 1.6 m/s and for the mean across all walking 

speeds (Table 2). The EMA at the ankle was also significantly (P<0.01) higher in 

the DM group compared to the Ctrl group at walking speeds of 0.6; 0.8, 1.4 m/s 

and for the mean across all walking speeds (Table 2). 

 

Ground reaction forces during walking  

Ground reaction forces were significantly higher (P<0.01) in the DPN group 

compared to the Ctrl at walking speeds of 0.6; 0.8; 1.0; 1.4 and 1.6 m/s and for 

the mean across all walking speeds (Table 2). Significantly higher (P<0.01) GRF 

values were also found in the DM group compared to the Ctrl group at the walking 

speed of 1.6 m/s and for the mean across all speeds (Table 2). 

 

Peak ankle joint moments & lower limb kinematics during walking 

Peak ankle plantarflexion joint moments were significantly lower (P<0.01) in the 

DPN compared to the Ctrl group for all walking speeds including the mean across 

all speeds (Table 2), with the exception of values at 1.2 m/s. Peak ankle 

plantarflexion joint moments were also significantly lower (P<0.01) in the DM 

compared to the Ctrl group at walking speeds of 1.2, 1.4 and 1.6 m/s and for the 

mean across all speeds (Table 2). 

A significantly (P<0.01) smaller ankle, knee and hip joint RoM was observed in 

the DPN group compared to the Ctrl group across all walking speeds (Table 3). 

Joint RoM was also significantly (P<0.01) reduced in the DM group compared to 

the Ctrl group at the ankle (1.0 and 1.2 m/s), knee (0.8; 1.0; 1.2 m/s and for the 

mean values) and hip (all speeds except 0.6 m/s). Between group differences 

(range of motion) for the DPN and Ctrl groups were in the range 11-15% for the 



84 
 

ankle, 4-6% for the knee and 9-11% for the hip across the range of speeds 

examined. Smaller percentage differences were found when the Ctrl group was 

compared to the DM group across the range of speeds (1-5% for the ankle, 1-3% 

for the knee and 4-8% for hip). Smaller ankle RoM in the DPN group was mainly 

brought about through a significantly reduced peak dorsiflexion angle (Table 4). 

Smaller knee RoM was the result of significantly (P<0.01) reduced peak flexion 

and knee extension in the DPN group compared to the Ctrl group (Table 4). 

Despite overall reductions in hip RoM in the DPN compared to Ctrl group (Table 

3), the DPN group displayed significantly (P<0.01) greater hip flexion (Table 4). 

The overall reductions in hip RoM were explained by significantly (P<0.01) 

reduced hip extension in the DPN group compared to Ctrl (Table 4). 

 

 

 

Figure 1. An example sagittal plane MRI scan of the lower limb showing the 
measurement of the internal moment arm length (indicated by the white arrow). 
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Figure 2. Diagram showing the external moment arm length (Ext MA; black 
dashed line) as the perpendicular distance between the resultant GRF vector and 
the joint centre of rotation (●); the internal Achilles tendon moment arm (Int MA; 
red dashed line) as the perpendicular distance between the tendon`s action line 
and the ankle joint centre (●). The EMA is calculated as: IntMA/ExtMA. 
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Figure 3. External moment arm (EMA), ankle joint moment (AJM) and ground 
reaction forces (GRFs) during stance phase while walking at 1.4 m/s for healthy 
controls (Ctrl), diabetic patients with no neuropathy (DM), and diabetic patients 
with moderate/severe neuropathy (DPN). Values are means. Line graphs: Ctrl - 
solid line (n=31), DM - dotted line (n=22), DPN - dashed line (n=14). 
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Table 1. Participant demographics and diabetes characteristics by study group. 
 

 

 

 

 

 

Healthy controls (Ctrl, n=31), diabetes patients with no neuropathy (DM, n=22) 
and diabetes patients with moderate/severe neuropathy (DPN, n=14). Significant 
differences from the Ctrl group are denoted by ** (P<0.01). BMI = body mass 
index, mNDS = modified neuropathy disability score, VPT = vibration perception 
threshold. Values are means (standard deviations). 

Variable 
Group 

Ctrl DM DPN 

Age (yr) 56 (10) 51 (9)** 66 (14)** 

Body mass (kg) 76 (10) 80.5 (12) 91.5 (18)** 

Height (m) 1.72 (0.12) 1.71 (0.09) 1.73 (0.11) 

BMI (kg/m2) 26 (3) 28 (4) 31 (4)** 

Foot length (cm) 25.43 (1.76) 24.77 (2.1) 25.81 (2.4) 

Internal MA (cm) 4.72 (0.27) 4.73 (0.30) 4.98 (0.21) 

mNDS (Score/10) 1 (1) 2 (1) 7 (2)** 

VPT (Volts) 6.1 (3.4) 8.2 (3.4) 27.4 (9.1)** 

Diabetes duration (years) - 14 (12) 14 (11) 

Type 1 diabetes - 7 4 

Type 2 diabetes - 15 10 
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Table 2. Biomechanical parameters at the ankle joint and temporal-spatial parameters during walking at different matched speeds. 
 

 
Healthy controls (Ctrl; n=31), diabetes patients with no neuropathy (DM; n=22) and diabetes patients with moderate/severe neuropathy 
(DPN; n=14). Significant differences from the Ctrl group are denoted by *(P<0.05) or **(P<0.01). Values are means (standard deviations). 
ExtMA @ peak AJM – external moment arm around the ankle at peak ankle joint moment. Peak AJM – peak ankle joint moment. Peak 
GRF – peak vertical ground reaction force. EMA - Effective mechanical advantage. 
 
 
 
 
 
 
 
 

 ExtMA @ peak AJM (cm) Peak AJM (Nm/kg) Peak GRF (N/kg) EMA 
Single limb stance time 

(s) 
Step length (m) 

Speed 
(m/s) 

Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN 

0.6 
11.71  
(3.74) 

11.79  
(3.14) 

9.54  
(4.41)** 

1.53 
(0.53) 

1.47 
(0.47) 

1.28 
(0.45)** 

9.91 
(2.81) 

9.63 
(2.70) 

11.22 
(3.27)** 

0.402 
(0.09) 

0.424 
(0.06)** 

0.486 
(0.08)** 

0.90 
(0.20) 

0.84 
(0.23) 

0.96 
(0.05)** 

0.59 
(0.20) 

0.57  
(0.24) 

0.51  
(0.09)** 

0.8 
9.81  

(4.14) 
10.03  
(3.47) 

10.22  
(4.01) 

1.69 
(0.59) 

1.57 
(0.50) 

1.32 
(0.41)** 

10.84 
(2.87) 

10.52 
(2.78) 

11.91 
(3.38)** 

0.458 
(0.07) 

0.473 
(0.04)** 

0.462 
(0.07) 

0.80 
(0.15) 

0.84 
(0.21) 

0.96 
(0.05)** 

0.63 
(0.21) 

0.57  
(0.21) 

0.53  
(0.05)** 

1.0 
10.25  
(3.57) 

10.30  
(3.68) 

9.70  
(4.98)** 

1.52 
(0.53) 

1.45 
(0.57) 

1.40 
(0.52) 

10.80 
(2.74) 

11.13 
(2.70) 

12.74 
(3.02)** 

0.460 
(0.06) 

0.465 
(0.11) 

0.485 
(0.09)** 

0.71 
(0.13) 

0.74 
(0.05) 

0.88 
(0.05)* 

0.69 
(0.15) 

0.67  
(0.05) 

0.64  
(0.04)* 

1.2 
9.51  

(3.71) 
9.63  

(4.03) 
9.48 

(4.55) 
1.74 

(0.60) 
1.50 

(0.58)** 
1.56 

(0.55)** 
12.01 
(2.94) 

11.78 
(2.82) 

12.97 
(3.17) 

0.486 
(0.04) 

0.488 
(0.08) 

0.494 
(0.05)** 

0.58 
(0.31) 

0.62 
(0.05) 

0.68 
(0.06)* 

0.76 
(0.11) 

0.75  
(0.17) 

0.69 
(0.07)* 

1.4 
11.02  
(4.65) 

9.97  
(4.81)** 

8.46  
(5.54)** 

1.99 
(0.74) 

1.68 
(0.66)** 

1.46 
(0.55)** 

12.25 
(3.08) 

12.74 
(3.01) 

14.52 
(3.43)** 

0.426 
(0.05) 

0.461 
(0.04)** 

0.508 
(0.06)** 

0.56 
(0.15) 

0.58 
(0.21) 

0.62 
(0.14)* 

0.79 
(0.12) 

0.77  
(0.17) 

0.71 
(0.11)* 

1.6 
10.24  
(5.40) 

10.18  
(5.49) 

10.43  
(6.14) 

2.09 
(0.81) 

1.80 
(0.67)** 

1.62 
(0.60)** 

13.13 
(3.28) 

11.28 
(2.86)** 

14.16 
(3.48)** 

0.460 
(0.03) 

0.451 
(0.04) 

0.493 
(0.09)** 

0.50 
(0.15) 

0.50 
(0.11) 

0.53 
(0.01)* 

0.81 
(0.11) 

0.80  
(0.04) 

0.74 
(0.02)* 

Mean 
10.42  
(4.20) 

10.31 
(4.10) 

9.63  
(4.93)** 

1.74 
(0.64) 

1.59 
(0.56)** 

1.44 
(0.51)** 

9.82 
(2.95) 

11.18 
(2.81)** 

12.92 
(3.29)** 

0.448 
(0.05) 

0.460 
(0.06)** 

0.488 
(0.07)** 

0.68 
(0.18) 

0.68 
(0.14) 

0.77 
(0.06)** 

0.71 
(0.15) 

0.68 
(0.14) 

0.63 
(0.06)** 
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Table 3. Ankle, knee and hip joint ranges of motion (RoM) over the gait cycle at different matched speeds. 
 
 
 
 
 
 
 

 

 

 
Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) and diabetic patients with moderate/severe neuropathy 
(DPN, n=14). Significant differences from the Ctrl group are denoted by *(P<0.05) or **(P<0.01). Values are means (standard deviations). 
RoM – range of motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 RoM Ankle (deg) RoM Knee (deg) RoM Hip (deg) 

Speed (m/s) Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN 

0.6 23.1 (8.1) 22.7 (7.8) 20.8 (9.5)** 64.5 (24.4) 62.6 (23.7) 61.2 (27.4)** 44.9 (16.5) 42.4 (12.7) 40.8 (15.8)** 

0.8 23.7 (7.4) 23.5 (8.5) 21.1 (7.8)** 66.6 (27.6) 64.8 (28.3)** 62.7 (29.1)** 46.6 (17.9) 43.1 (15.8)** 42.9 (16.0)** 

1.0 25.6 (9.0) 24.4 (8.3)* 22.5 (9.4)** 67.7 (25.1) 66.1 (21.2)** 64.9 (24.0)** 46.8 (14.8) 44.8 (16.6)** 42.1 (19.3)** 

1.2 26.4 (7.5) 25.2 (8.7)* 23.7 (8.4)** 69.4 (22.9) 67.7 (26.6)** 66.5 (27.3)** 47.9 (16.7) 44.5 (15.7)** 43.2 (18.7)** 

1.4 26.8 (10.3) 26.0 (9.1) 23.4 (9.2)** 69.8 (27.8) 69.3 (25.8) 67.3 (30.4)** 49.8 (13.7) 47.3 (14.2)** 45.7 (15.3)** 

1.6 27.3 (9.9) 26.9 (8.6) 24.3 (9.0)** 71.0 (28.4) 70.3 (31.2) 68.4 (30.7)** 50.7 (19.4) 48.4 (18.9)** 46.5 (21.4)** 

Mean 25.4 (8.7) 24.7 (8.5) 22.4 (8.8)** 68.2 (26.0) 66.8 (26.1)** 65.2 (28.1)** 47.8 (16.5) 45.1 (16.7)** 43.5 (17.8**) 
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Table 4. Peak joint angle values for the ankle, knee and hip during the gait cycle at different matched speeds. 
 

 Peak ankle angle Peak knee angle Peak hip angle 

Speed 
(m/s) 

Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN 

DF PF DF PF DF PF Flex Ext Flex Ext Flex Ext Flex Ext Flex Ext Flex Ext 

0.6 10.3 12.8 10.1 12.6 8.3** 12.5 55.2 9.3 53.0 9.6 51.0** 10.2** 37.7 7.2 36.8 5.6** 38.0 2.8** 

0.8 10.4 13.3 10.4 13.1 8.1** 13.0 57.4 9.2 55.3 9.5 52.6** 10.1** 38.7 7.9 37.3 5.8** 38.1 4.8** 

1.0 10.4 15.2 9.8 14.6 7.9** 14.6 59.5 8.2 57.4 8.7 56.0 8.9 38.0 8.8 37.5 7.3 38.6 3.5** 

1.2 10.5 15.9 10.1 15.1 8.6** 15.1 61.0 8.4 58.9 8.8 57.3** 9.2** 38.1 9.8 38.4 6.1** 39.8** 3.4** 

1.4 10.7 16.1 10.6 15.4 8.2** 15.2** 64.3 5.5 62.9 6.4** 59.9** 7.4** 36.2 13.6 39.1** 8.2** 40.1** 5.6** 

1.6 10.9 16.4 11.5 15.4 9.0** 15.3** 67.6 3.4 66.1 4.2** 61.9** 6.5** 35.5 15.2 39.3** 9.1** 42.4** 4.1** 

Mean 10.5 14.9 10.3 14.4 8.1** 14.3 60.8 7.4 59.0 7.8 56.5** 8.7** 37.4 10.4 38.0 7.1** 39.5** 4.0** 

Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) and diabetic patients with moderate/severe neuropathy 
(DPN, n=14). Significant differences from the Ctrl group are denoted by *(P<0.05). Values are means. DF – dorsflexion, PF – plantarflexion, 
Flex – flexion, Ext – extension. 
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1.2 m/s 

 

1.4 m/s 

 

1.6 m/s 

 

Figure 4. Effective mechanical advantage (EMA) values across the entire stance 

phase. Line graphs: Ctrl - solid line, DM - dotted line, DPN - dashed line. Values 

are means. 



93 
 

3.5 DISCUSSION 

I have recently shown that patients with diabetes and especially those with DPN 

have a higher CoW compared to controls (32). In the present study I investigated 

whether differences between diabetes patients and healthy controls in the ExtMA 

and EMA around the ankle joint could be potential mechanisms underpinning the 

above finding. I established that patients with diabetes and especially those with 

DPN have a smaller ExtMA and a higher mechanical advantage around the ankle 

joint compared to controls (Fig. 3; Table 2), which is in contrast with our 

hypothesis that the ExtMA will be higher and the EMA will lower in the diabetes 

patients. 

The smaller ExtMA at the ankle in patients with diabetes and especially those 

with DPN was evident across all walking speeds (Table 2) and means that either 

the resultant GRF was applied closer to the ankle joint centre, or the angle of 

application was more towards the ankle, making the ExtMA smaller, thereby 

minimising the ankle joint moment. The effects of this can be seen by the reduced 

ankle joint moment in patients with DPN compared to controls across all matched 

walking speeds (Table 2). 

It is has previously been shown that diabetes patients reduce joint moments by 

taking shorter strides with less flexed joints (2, 23, 29, 31, 33, 9). Our unexpected 

findings demonstrate a mechanism through which people with diabetes and 

particularly those with DPN reduce the joint moment at the ankle during walking 

– by applying the GRF more proximally on the foot or at an angle more towards 

the ankle, reducing the ExtMA around the ankle and thereby reducing the ankle 

joint moment (Figs. 2 & 3). No differences in foot length existed to explain the 

smaller ExtMA found in patients with DPN (Table 1) and further, this parameter 

(foot length) was also entered as a covariate in the statistical analysis of variance. 
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Our finding of a smaller ExtMA and greater EMA around the ankle does not 

appear to explain an increased CoW, as the plantarflexor muscles would need to 

produce not higher, but smaller contractile forces to rotate the foot and propel the 

body forward. However, the consequent reduction in the force applied to the 

Achilles tendon would result in reduced tendon elongation and therefore reduced 

storage of elastic strain energy. The reduced contribution from elastic strain 

energy stored in the Achilles tendon could impact upon the CoW, but this requires 

further investigation.  

The joint kinematics from the present study provides insight as to how patients 

with DPN might have been able to execute this natural strategy of reducing the 

ExtMA around the ankle and thereby minimising the ankle joint moment. The 

ankle joint RoM over the gait cycle was reduced in patients with DPN compared 

to controls as a result of a reduced peak dorsiflexion angle (Tables 3 & 4). This 

reduced dorsiflexion suggests that patients with DPN were not able to allow the 

tibia to rotate over the foot to the same extent as controls during the mid-stance 

phase, further evidenced by the reduced knee flexion (Table 4), thereby applying 

force to the ground more proximally on the foot and reducing the ExtMA around 

the ankle as a result. These joint range of motion limitations may also raise the 

possibility that this may not be a natural strategy of choice, but rather in contrast, 

patients with DPN may adopt this strategy since they have no other possibilities 

due to such limitations. 

Whilst the total hip joint RoM during walking was reduced in diabetes patients 

and especially those with DPN compared to controls (Table 3), patients with 

diabetes and to the greatest extent those with DPN flexed the hip more than 

controls (Table 4). This kinematic strategy fits very well with the ‘hip strategy’ 

previously reported in other studies (31, 34), whereby diabetes patients have 
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been observed to ‘drag’ the leg forwards into the swing phase from the hip, rather 

than ‘propelling’ the leg off from the ground using the ankle plantarflexors. Whilst 

greater knee and hip RoM occurs with increasing walking speeds in all groups, a 

consistently smaller RoM at the knee and hip in the DPN group (Table 3) 

underlies the shorter step length reported in the present study and is comparable 

with a number of previous studies conducted in diabetes patients (47, 34, 28, 15, 

1, 31, 32).  

Through measuring the ExtMA during walking and the internal Achilles tendon 

moment arm in the weight-bearing condition using MRI, I calculated the EMA 

around the ankle. The present study found a greater value for the EMA at the 

ankle joint in diabetes patients and especially in those with DPN compared to 

controls (Table 2). To the best of our knowledge there are no previous studies 

reporting the EMA in diabetes patients during walking, but it has been measured 

for different human and animal populations (4, 40, 42, 17, 3). The internal AT 

moment arm values in the present study (Table 1) measured using MRI are 

comparable with those reported from previous human studies conducted in other 

populations reporting values ranging between 3.7 and 5.3 cm (26, 4, 38, 43). The 

EMA was calculated throughout the stance phase (Fig. 4), but the most 

functionally relevant point to report was considered to be from 50% till 100% of 

the stance phase. Figure 4 shows that for the same joint work there is still a higher 

CoW in DPN. 

Whilst previous studies have consistently reported lower ankle joint moments in 

diabetes patients during walking, this has typically been at the self-selected 

speed, which is consistently lower in diabetes patients as they seek to minimise 

the demands of the task. Here I show that when walking speed is matched, joint 

moments are consistently lower in the DM and particularly in the DPN group 
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compared to controls (Table 2). The reduction in the ExtMA and increasing the 

EMA at the ankle in the diabetes groups is relatively independent of walking 

speed, whereas ankle joint moments and the vertical GRF increase with 

increasing walking speed (Table 2). It is also noteworthy that although the peak 

ankle joint moments were significantly lower in the diabetes groups compared to 

controls, the vertical GRF was significantly higher especially in the DPN group 

(Table 2). This higher GRF seems to underline the importance of the strategy in 

patients with diabetes and particularly those with DPN for reducing the ExtMA 

around the ankle to lower the ankle joint moment substantially below that of 

controls. What remains unclear is whether the way in which the DPN group 

walked represents a natural strategy to lower the demands, or whether they have 

no other possibility to walk differently because of any foot deformities present and 

inflexible joints in the lower limb and within the foot. 

In terms of study limitations, the mean body mass was significantly different 

between groups (being higher in the DPN group), however, this should not affect 

the ankle ExtMA, EMA, or the joint moments since these were normalised for 

body mass. Furthermore, the higher body mass of patients with DPN is a well-

known characteristic of this clinical population described by previous studies (23, 

20, 21). Although only a mean of 10 years difference, patients in the DPN group 

were significantly older than controls (66 to 56 years, respectively), which might 

be a confounding factor for some of the variables examined, but unlikely to affect 

the main variables of interest: the ankle ExtMA and EMA. 
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4. Experimental chapter three – Achilles tendon properties 

during walking in patients with diabetes: implications for 

metabolic energy saving 

 

4.1 ABSTRACT 

The Achilles tendon (AT) has the capacity to store and release elastic energy 

during walking, contributing to metabolic energy savings. In diabetes patients, it 

is hypothesised that a stiffer tendon may reduce the capacity of the tendon for 

energy saving, thereby contributing to an increased metabolic cost of walking in 

this population. The aim of this study was to investigate the effects of diabetes 

and diabetic peripheral neuropathy (DPN) on plantarflexion muscle-tendon 

behaviour during walking at self-selected and a controlled (1.0 m/s) walking 

speed. 23 non-diabetic controls (Ctrl); 20 diabetic patients without peripheral 

neuropathy (DM) and 13 patients with moderate/severe DPN, underwent gait 

analysis using a motion analysis system, force plates and ultrasound 

measurements from the gastrocnemius muscle. The DM and particularly the DPN 

group displayed significantly lower Achilles tendon elongation, higher stiffness 

(Ctrl: 210; DM: 231; DPN: 240 N/mm) and higher hysteresis (Ctrl: 18; DM: 21; 

DPN: 24 %) while walking compared to controls. The muscle fascicles of the 

gastrocnemius underwent very small length changes. Achilles tendon forces 

were lower in the diabetes groups compared to controls (Ctrl: 2666; DM: 2609; 

DPN: 2150 N). The results strongly point towards the reduced energy saving 

capacity of the Achilles tendon in diabetes patients as an important factor 

contributing to the increased metabolic CoW in these patients. 
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4.2 INTRODUCTION 

Diabetes mellitus (DM) is a common problem in older adults worldwide and is 

associated with many complications such as cardiovascular diseases, 

nephropathy, stroke, peripheral arterial disease, retinopathy, skin problems, poor 

wound healing and peripheral neuropathy (16, 14). One of the most common 

complications in diabetes is diabetic peripheral neuropathy (DPN). The incidence 

of DPN has been reported to range between 13 and 68% in diabetes populations 

(41); while Boulton (6) reports up to 50% of diabetes patients are affected by 

neuropathy.  

Scientists and clinicians are particularly interested in the impact of diabetes and 

DPN on gait and mobility since it has a direct impact on person’s quality of life. 

Diabetes has been reported to affect level walking, stair negotiation and cause 

impairments to balance control during walking and standing (13, 29, 42, 19, 5). 

The muscle-tendon complex is central to all movement tasks, with skeletal 

muscle generating force, which is transmitted to the skeleton via viscoelastic 

tendons. In addition to their force transmitting role, tendons can also play an 

important role in energy saving by storing (during stretching) and returning (during 

recoil) elastic energy (36, 37, 38, 2). In particular, the Achilles tendon is important 

for storing and releasing elastic energy during walking and can lead to significant 

metabolic energy savings, as it actually ‘spares’ the muscle from performing a 

large part of the work (3).  

Both muscles and tendons are highly malleable tissues, which can modify their 

properties in response to the level of physiological loading and also the metabolic 

environment (35, 1, 17). Animal studies show that diabetes causes non-

enzymatic glycation of soft tissues, such as tendon (33). This non-enzymatic 

glycation causes increased cross-linking, increasing the stiffness and modulus of 
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the tendon (32, 34). Stiffening of the tendon reduces the degree to which it can 

be stretched, affecting its potential for storing (and subsequently releasing) 

elastic strain energy during walking and also limiting the range of joint motion (11, 

18, 27). In humans, calcification and fascicle disruption have been observed in 

the diabetic human Achilles tendon (AT) (4). Since tendons exhibit relatively low 

mechanical hysteresis, most of the elastic energy stored during stretching is 

returned on recoil (25), but there is the capacity for hysteresis to also be affected 

by diabetes as has been shown to occur in human ageing (36).  

Cronin et al. (10) found the Achilles tendon length changes during walking at self-

selected speed to be attenuated in diabetes patients and that they were inversely 

correlated with diabetes duration. In dynamometry tests, Couppé et al. (10) found 

Achilles tendon stiffness and skin connective tissue cross-linking were greater in 

diabetes patients compared with controls.  

The role of the Achilles tendon during walking and the relative contribution 

required from the plantarflexors muscles remains unknown in diabetes patients. 

The aim of this study was to investigate the effects of diabetes and diabetic 

peripheral neuropathy on muscle and tendon behaviour during walking at self-

selected and a controlled speed. I hypothesized that the AT would contribute less 

to elastic energy during walking due to its increased stiffness in diabetes patients 

compared to controls and as a result a greater contribution would be required 

from the plantarflexor muscles, requiring more energy and contributing to explain 

the higher cost of walking (CoW) in people with diabetes. 
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4.3 MATERIALS AND METHODS 

Participants 

After receiving ethical approval for the study from all relevant bodies, a total of 

sixty seven participants were recruited, who gave their written informed consent 

to participate. Due to logistical reasons the measurements for this study were 

acquired in 56 of these participants. All participants were aged over 40 and 

allocated into one of three groups based upon defined criteria: patients with 

diabetes and moderate-severe peripheral neuropathy (DPN, n=13), patients with 

diabetes but no neuropathy (DM, n=20) and healthy controls without diabetes or 

peripheral neuropathy (Ctrl, n=23). Major exclusion criteria included: disorders of 

the vestibular system severe vascular disease, neurological, rheumatic disease, 

cerebral injury, unstable ischemic heart, musculoskeletal injury, foot or lower limb 

amputation (amputation of the hallux; amputation of more than two lesser toes on 

one foot; amputation of part of/whole foot) and open foot ulcer and recent surgery 

affecting gait. Information about the duration and type of diabetes, smoking habits 

and use of current medication were obtained by using a questionnaire. The vast 

majority of the DM and the DPN patients reported taking insulin, cholesterol-

lowering medication and diabetes medication. Participant characteristics are 

displayed in Table 1. 

 

Diagnosis of Diabetic Peripheral Neuropathy  

The presence and severity of peripheral neuropathy was assessed through 

clinical evaluation, which was undertaken to quantify neuropathy in diabetes 

patients and to confirm the absence of neuropathy in controls. Peripheral 

neuropathy was assessed by using the modified Neuropathy Disability Score 

(mNDS) and the vibration perception threshold (VPT). The mNDS is a composite 



105 
 

score taken from tests measuring the participant’s ability to discriminate 

temperature, detect pain, vibration and the Achilles tendon reflex (6). The VPT is 

an assessment performed using the probe of a neurothesiometer on the apex of 

the hallux and increasing the level of vibration until detected by the participant. A 

random blood glucose test was performed in the Ctrl group to confirm the 

absence of diabetes (<7 mmol/l) and the above neuropathy tests conducted to 

confirm the absence of neuropathy in the Ctrl group resulting from any aetiology. 

 

Gait analysis 

Gait analysis was performed for the purpose of assessing the contribution of the 

plantarflexor muscle-tendon complex and the capacity for elastic energy storage 

and release via the Achilles tendon. Participants were asked to walk along a 10-

metre walkway in the gait laboratory at their self-selected speed, as well as at 

standardized speed of 1.0 m/s. Walking at the standardized speed was controlled 

by measuring the velocity of a marker attached to the sacrum after each trial from 

the motion analysis data and providing immediate feedback for participants as to 

whether they needed to walk more quickly or more slowly on the next trial to 

achieve the required speed (1.0 m/s). Kinematic data were collected at 100 Hz 

using a 10-camera Vicon motion capture system (Vicon, Oxford, UK) a full-body 

modified Plug-In-Gait marker set consisting of 54 markers. Where possible 

motion analysis markers were placed directly onto the skin; to minimise 

movement artefacts resulting from loose clothing all participants wore tight-fitting 

shorts and t-shirts. Ground reaction forces were measured at 1000 Hz from three 

force platforms (Kistler, Zurich, Switzerland) embedded into the walkway and 

synchronised with the kinematic data. Walking trials were repeated until at least 

three ‘clean’ foot contacts with the force platforms were made with each limb, for 
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both speed conditions. During walking, an ultrasonographic imaging device 

(Aloka SSD-5000, Tokyo, Japan) operating at 25 Hz was used to measure 

gastrocnemius medialis (GM) muscle fascicle length changes in vivo. For these 

measurements, a linear 7.5 MHz probe with 60 mm field of view was tightly 

secured around the right lower leg in the mid-sagittal plane of the GM muscle with 

a custom-built fixation device (Fig. 1). The ultrasound scanning was synchronized 

with recordings of the kinematic and kinetic data. All participants wore specialist 

diabetic shoes (MedSurg, Darco, Raisting, Germany) with a neutral foot-bed, 

ensuring the diabetic patients walked with safe, appropriate footwear whilst 

minimising the effect of footwear by standardising across all participants (Fig. 1). 

 

Figure 1. A linear 7.5 MHz probe (A) with 60 mm field of view. A custom-built 
fixation device made of Velcro straps and a plastic cast molded to fit the general 
contour of the calf (B) was used to secure the probe around the left lower leg, in 
the mid-sagittal plane of the gastrocnemius muscle (C) (Fukunaga et al., 2001). 
 

Dynamometry measurements: Measurement of Maximal Plantarflexion 

Strength 

Isometric plantarflexor maximal voluntary contraction (MVC) joint moment 

(maximum strength) was recorded with participants laying prone with the knee in 

full extension. The axis of rotation of the ankle, defined as the line connecting the 

two malleoli, was carefully aligned with the axis of rotation of the dynamometer 

and the right foot secured to the foot adapter of an isokinetic dynamometer 

(Cybex NORM, Cybex International, New York, NY, USA). Straps were used 



107 
 

around the ankle and also the hips to prevent extraneous movements during 

maximal plantarflexions. Prior to testing subjects became familiarised with the 

procedures involved. Participants were instructed to perform maximal isometric 

plantarflexion contractions at joint angles of 0, 5 and 10 degrees of dorsiflexion, 

where zero degrees was neutral ankle position: the footplate of the dynamometer 

perpendicular to the longitudinal axis of the tibia. The subjects were verbally 

encouraged for additional motivation to perform static contractions with the ankle 

plantarflexor with a maximum possible effort at all three ankle angles and they 

were encouraged to hold each contraction for up to 5-6 s. Contractions were 

performed in a randomized order. Two contractions were performed at each ankle 

angle by allowing a 1-min rest interval between bouts and the highest value was 

considered as the MVC at that ankle angle. Results were subsequently 

normalised to body mass. 

 

Data processing 

The purpose of the data analysis was to quantify the plantarflexor muscles and 

Achilles tendon characteristics during walking. The gastrocnemius medialis (GM) 

muscle was assessed as a representative of the plantarflexor muscle group (39, 

40). The GM muscle fascicle lengths were measured from every frame of the 

ultrasound recordings during the entire stance phase. On each ultrasound frame, 

three lines were defined automatically using a custom-script written in MATLAB 

software (12): one line tracked the superficial aponeurosis, a second line was 

matched with the deep aponeurosis, and a third line defined the fascicular path 

of the fascicle movement. From these three lines, fascicle length and pennation 

angle were calculated on each frame of ultrasound data. The pennation angle 

was defined as the angle that the fascicle made with the deep aponeurosis. 
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Muscle fascicle length was defined as the distance between the superficial and 

deep aponeurosis parallel to the lines of collagenous tissue (Fig. 2). Pennation 

angle (α) was defined as the angle between the collagenous tissue and the deep 

aponeurosis. The equations by Menegaldo et al. (28) were used to calculate the 

GM muscle-tendon complex (MTC) length change (muscle plus free tendon and 

aponeurosis in both distal and proximal ends) using the fascicle length changes 

and the ankle and knee joint displacements measured during walking over the 

stance phase. The length of the tendon (including both the free tendon and 

aponeurosis) was found by subtracting muscle fascicle length projected in the 

direction of the line of force application from the muscle–tendon complex (MTC) 

length for each time instant. Thus: 

l t = l MTC – l m cos α 

 
where l t is the length of the tendon, l MTC is the length of the MTC, l m is the 

ultrasound-measured muscle fascicle length, and α is the ultrasound-measured 

pennation angle. Muscle fascicle and tendon properties were assumed to be 

consistent along the length of the MTC. The muscle fascicles were also assumed 

to be parallel to one another. The validity and reliability of the ultrasound 

measurements in vivo during walking have been critically assessed in other 

studies on the same and similar populations, reporting ICC values between 0.78 

and 0.94 (11, 26, 30, 39). 
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Figure 2. Typical sonograph of the GM muscle. The fascicular trajectory between 
the two aponeurosis, as well as the pennation angle (α) are highlighted in white. 
SA, superficial aponeurosis; GM, gastrocnemius medialis muscle; DA, deep 
aponeurosis. 
 

Achilles tendon force 

Achilles tendon (AT) forces were calculated during walking throughout the stance 

phase by dividing the net plantarflexion joint moments (Nm) by the AT internal 

moment arm length (m). The plantarflexion joint moments were derived from the 

kinematic and kinetic data using Visual 3D software (C-motion Inc., MD, USA). 

MRI scanning and analysis was used to quantify the internal AT moment arm 

length at the ankle as previously described (24). Elongation of the AT was 

calculated as described in the above section. The AT force and elongation were 

normalised to 100 points to represent the entire stance phase. Therefore, the AT 

force-elongation curve was derived, as shown in Figs. 5 and 6, where the loading 

phase (arrow pointing up) represents 10-70% of the stance phase and the 

unloading phase (arrow pointing down) the remaining 30%, as described in Table 

2. The area between the loading and unloading curves represents the AT’s 

hysteresis, which is the energy dissipated upon recoil.  
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Stiffness and hysteresis during walking 

The AT stiffness was calculated from the measurements taken during walking as 

the slope of the loading curve by dividing the estimated tendon force (N) by the 

tendon’s elongation (mm) over a force region between 500 and 1500 N (26). The 

AT hysteresis was calculated by dividing the difference between the area under 

the loading and the unloading curves by the area under the loading curve alone. 

This provides a measure of the energy converted to heat, an important feature of 

the mechanical properties of tendon. The mechanical hysteresis was defined as 

the area between the loading (L) and unloading (UnL) curves and expressed as 

a percentage: 

Mechanical hysteresis = (L - UnL) / L∙100 

 

Statistics 

A one-way analysis of variance (ANOVA) was performed for all variables to 

assess between group differences. If the ANOVA was significant, a Fisher’s least 

significant difference (LSD) post-hoc test was used to test for differences between 

the diabetes groups (DM and DPN) and the control group. All values presented 

are means and standard deviation. Significance was accepted at p<0.05. 
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4.4 RESULTS 

Participant characteristics  

Participant characteristics are shown in Table 1. There were no significant 

differences between the groups in age and BMI (Table 1). 

 

Neuropathy assessments  

As expected, the DPN group displayed significantly higher values for the VPT 

and the mNDS compared to the Ctrl group (Table 1). The VPT and mNDS for the 

DM group were not significantly different from the Ctrl, underlining that this 

diabetic patient group had no neuropathy (Table 1). 

 

Lower limb kinetics and kinematics during walking 

Peak ankle plantarflexion joint moments were significantly lower (P<0.01) in the 

DPN and the DM compared to the Ctrl group for both, self-selected and 1.0 m/s 

walking speeds (Table 2). A significantly (P<0.01) lower ankle and knee joint 

range of motion (RoM) was observed in the DPN and the DM groups compared 

to the Ctrl group for self-selected and 1.0 m/s walking speeds (Table 2). 

 

Plantarflexor muscle-tendon unit behaviour during walking  

There were no differences in the fascicle length during standing in the DPN and 

the DM groups compared to the Ctrl group (P>0.05). Average fascicle length 

change data show that the DPN group was significantly different (P<0.01) than 

the Ctrl group for both self-selected speed and 1.0 m/s, while the DM group was 

different than the Ctrl group only at 1.0 m/s. Significant differences (P<0.01) in 

the MTC length change were found between the DPN and the Ctrl as well as the 

DM and the Ctrl groups for both walking speeds (Table 2). There were significant 
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differences in the tendon length change between the groups at self-selected 

walking speed (Ctrl: 1.81 cm; DM 1.66 cm; DPN: 1.54 cm; P<0.01) as well as 1.0 

m/s (Ctrl: 1.67 cm; DM 1.51 cm; DPN: 1.47 cm; P<0.01), where the DPN group 

expressed smaller tendon length changes. The DM and particularly the DPN 

group displayed significantly lower Achilles tendon elongation, higher stiffness 

(Ctrl: 210; DM: 231; DPN: 240 N/mm: P<0.01) and higher hysteresis (Ctrl: 18; 

DM: 21; DPN: 24 %: P<0.01) while walking compared to controls. 

 
 
Table 1. Participant characteristics and results from neuropathy assessments. 

Variable 
Group 

Ctrl DM DPN 

Age (yr) 55 (7) 57 (8) 61 (7) 

BMI (kg/m2) 26 (4) 28 (4) 29 (5) 

mNDS (Score/10) 1 (1) 2 (1) 7 (2)** 

VPT (Volts) 6.1 (3) 8.2 (4) 27.4 (9)** 

Diabetes duration (years) - 14 (13) 17 (11) 

Type 1 diabetes - 6 4 

Type 2 diabetes - 14 9 

 
Healthy controls (Ctrl, n=23), diabetic patients with no neuropathy (DM, n=20) 
and diabetic patients with moderate/severe neuropathy (DPN, n=13). Significant 
differences from the Ctrl group are denoted by ** (P<0.01). BMI = body mass 
index, mNDS = modified neuropathy disability score, VPT = vibration perception 
threshold. Values are means (standard deviations). 
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Table 2. Plantarflexor muscle-tendon and Achilles tendon parameters during walking. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gastrocnemius muscle fascicle length and other muscle-tendon parameters during walking for healthy controls (Ctrl; n=23), 
diabetic patients with no neuropathy (DM; n=20) and diabetic patients with moderate/severe neuropathy (DPN; n=13). Values 
are group means and SD; Significant differences from the Ctrl group are denoted by *(P<0.05) or **(P<0.01). MTC – muscle-
tendon complex; RoM – range of motion. 

 Ctrl DM DPN 

 Self-selected  Self-selected  Self-selected  

Walking speed (m/s) 1.43 1.0 1.33 1.0 1.30 1.0 

Stiffness (N/mm) 210 (41) 186 (34) 231 (46)** 194 (39)** 240 (49)** 202 (37)** 

Hysteresis (%) 18 (3) 17 (3) 21 (5)** 19 (4)* 24 (6)** 21 (5)** 

Standing fascicle length (cm) 5.15 (1.5) 5.08 (1.4) 5.19 (1.3) 

Fascicle length change (cm) 0.57 (0.06) 0.52 (0.16) 0.41 (0.04) 0.37 (0.04)** 0.35 (0.09)** 0.41 (0.12)** 

MTC length change (cm) 1.62 (0.3) 1.41 (0.4) 1.13 (0.4)** 0.95 (0.3)** 0.84 (0.3)** 0.63 (0.2)** 

Tendon length change (cm) 1.81 (1.0) 1.67 (0.7) 1.66 (0.5)* 1.51 (0.6)* 1.54 (0.8)** 1.47 (0.6)** 

Fascicle  length change (cm) 

10-70 % of stance (loading) 
0.58 (0.08) 0.53 (0.19) 0.42 (0.05)** 0.39 (0.06)** 0.38 (0.12)** 0.44 (0.14)** 

Fascicle  length change (cm) 
70-100% of stance (unloading) 

0.54 (0.04) 0.50 (0.12) 0.38 (0.04)** 0.33 (0.04)** 0.31 (0.07)** 0.37 (0.11)** 

MTC length change (cm) 

10-70 % of stance (loading) 
1.21 (0.2) 1.11 (0.3) 0.89 (0.3)** 0.81 (0.2)* 0.76 (0.2)** 0.69 (0.1)** 

MTC length change (cm) 

70-100% of stance (unloading) 
1.44 (0.1) 1.20 (0.1) 0.97 (0.1)** 0.84 (0.1)** 0.63 (0.1)** 0.58 (0.1)** 

Tendon length change (cm) 
10-70 % of stance 

1.96 (0.6) 1.71 (0.4) 1.65 (0.3)** 1.26 (0.4)** 1.18 (0.5)** 0.81 (0.4)** 

Tendon length change (cm) 

70-100% of stance 
1.92 (0.4) 1.82 (0.3) 1.63 (0.2)** 1.41 (0.2)** 0.78 (0.3)** 1.15 (0.2)** 

Achilles Tendon forces (N) 2666 (242) 2343 (288) 2609 (167)* 2256 (290)** 2150 (177)** 2288 (241)** 

Ankle RoM (deg) 26.4 (7.9) 25.1 (8.7) 25.3 (7.1)** 24.2 (8.1)** 25.1 (8.6)** 22.3 (9.5)** 

Knee RoM (deg) 69.7 (26.1) 67.8 (24.9) 67.0 (21.5)** 66.0 (21.3)** 64.8 (30.2)** 64.7 (23.5)** 
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Self-selected walking speed 

 

1.0 m/s 

 

 

Figure 1. Muscle fascicle length, MTC length and tendon length changes respectively while walking at self-selected speed and 1.0 m/s. 
Values are means. Line graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), DPN - dashed line (n=13).
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Figure 2. MTC length changes during walking at self-selected walking speed. 

Values are means. Line graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), 

DPN - dashed line (n=13). 

 

Figure 3. MTC length changes during walking at 1.0 m/s. Values are means. Line 

graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), DPN - dashed line (n=13).
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Self-selected walking speed 

 

1.0 m/s 

 

Figure 4. Knee and ankle range of motion and ankle joint moment (AJM) during stance phase while walking at self-selected walking speed 

and 1.0 m/s for healthy controls (Ctrl), diabetic patients with no neuropathy (DM), and diabetic patients with moderate/severe neuropathy 

(DPN). Values are means. Line graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), DPN - dashed line (n=13). 
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Figure 5. Achilles tendon force-elongation curves while walking at self-selected 
speed for healthy controls (Ctrl), diabetic patients with no neuropathy (DM), and 
diabetic patients with moderate/severe neuropathy (DPN). Values are means. 
Line graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), DPN - dashed line 
(n=13). 
 

 
Figure 6. Achilles tendon force-elongation curves while walking at 1.0 m/s for 
healthy controls (Ctrl), diabetic patients with no neuropathy (DM), and diabetic 
patients with moderate/severe neuropathy (DPN). Values are means. Line 
graphs: Ctrl - solid line (n=23), DM - dotted line (n=20), DPN - dashed line (n=13). 
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Figure 7. Isometric plantarflexion maximal voluntary contraction (MVC) strength 
for healthy controls (Ctrl, n=23), diabetic patients with no neuropathy (DM, n=20) 
and diabetic patients with moderate/severe neuropathy (DPN, n=13). Values are 
means and SD. Significant differences from the Ctrl group are denoted by ** 
(P<0.01). 
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4.5 DISCUSSION 

This study has shown reduced Achilles tendon elongation during the loading 

phase of walking (10-70% stance) and reduced recoil during the subsequent 

propulsive phase (70-100% stance) in people with diabetes and particularly those 

with DPN compared to controls (Table 2; Fig. 1). People with diabetes and 

particularly those with DPN demonstrated a higher stiffness and hysteresis of the 

Achilles tendon measured during walking compared to the Ctrl group (Figs. 5 & 

6; Table 2). Taken together the present findings strongly indicate a reduced 

elastic energy contribution from the Achilles during walking in people with 

diabetes and particularly in those with DPN, with implications for increasing the 

metabolic CoW in patients with diabetes.  

The increased stiffness observed in the diabetes groups shows that for the same 

application of force the AT is less extensible during walking, which means that 

less energy can be stored, with less therefore available to return. The increased 

stiffness is further compounded by the fact that less force is applied on the AT in 

the DM and particularly the DPN groups (Figs. 5 & 6; Table 2). The lower tendon 

forces applied during walking in diabetic patients are the result of lower joint 

moments being developed, which reflect a natural strategy to lower the demands 

of walking (7, 8, 20). This requirement to lower the demands of walking stems 

from the lower muscular capabilities of diabetes patients, exemplified by the lower 

maximum plantarflexor strength observed in both diabetes groups (Fig. 7). The 

maximum plantarflexor strength deficits were most marked as the ankle moved 

further into dorsiflexion (Fig. 7), which is closely aligned with the position of the 

ankle during walking when the Achilles tendon is undergoing elongation (Fig. 1 & 

4). Hence, lower moments developed in dorsiflexion during walking means lower 

forces applied to elongate and store energy in the AT.  
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The results show that the MTC length changes during walking are dependent 

upon the changes in ankle and knee joint angles (Fig. 1 & 4). Although the 

magnitude of the between-group differences were relatively small (~2 deg at the 

ankle and ~4 deg at the knee), a significantly smaller ankle and knee joint range 

of motion during walking was observed in the DPN group compared to the 

controls (Fig. 4). This resulted in significantly smaller MTC length changes during 

walking in the diabetes and particularly in the DPN group compared to controls 

(Fig. 1; Table 1). The present findings of reduce tendon elongations are in line 

with previous work by Cronin et al. (11) showing that the AT length changes 

during walking are attenuated in long-term diabetic patients.   

During walking the muscle fascicles of the gastrocnemius underwent very little 

length change compared to the Achilles tendon and the MTC (Fig. 1) and they 

could be considered as acting near-isometrically. Indeed, near-isometric 

behaviour of plantarflexor muscle fascicles has been previously reported in 

healthy young populations Fuknaga (17), Lichtwark (23), Ishikawa (21), Roberts 

(37), which functions to allow the Achilles tendon to absorb the length changes 

of the MTC, thereby facilitating elastic energy storage within the tendon. Although 

the muscle fascicles were observed to actually shorten very little during the 

propulsive phase of gait in any group (Fig. 1), the reduced elastic energy 

contribution from the Achilles during walking in people with diabetes and 

particularly in those with DPN indicates that the plantarflexor muscles would need 

to contribute a greater proportion of the work, thereby increasing the metabolic 

CoW.       

The tendon stiffness data measured during walking in the present study are 

comparable with a number of previous in vivo human studies of the Achilles 

tendon measured using a dynamometry approach and reporting values ranging 
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between 149 and 207 N/mm (30, 10, 23, 26). Also, values for tendon hysteresis 

from the present study measured during walking are similar to dynamometry-

based methods reported previously in the literature for the Achilles tendon in the 

range between 5 and 26 % (30, 23, 26, 15, 22). It should be noted, that whilst 

previous studies have derived tendon stiffness and hysteresis values from static 

dynamometry measurements, the present study is unique in determining these 

tendon properties during walking. It should be acknowledged that tendon length 

changes can result from both tendon loading and also joint rotations. Therefore, 

measurements of tendon elongation in the previous and present studies reflect 

not only ‘true’ elongations resulting from tensile forces, but also elongation due 

to joint rotations. Whilst this is more easily ‘corrected’ for with the dynamometry-

based approach, the complexity of the unique approach followed in the present 

study mean that joint rotations are more challenging to account for. Nevertheless, 

the magnitudes of between-group differences in joint rotations were relatively 

small and therefore unlikely to impact on the present findings (Fig. 4; Table 1). 

Increased tendon stiffness means that the tendon will not elongate as much, and 

therefore not store as much energy. This reduced length changes is important 

because plantarflexor muscles have relatively short fibres and long tendons and 

therefore most of the length changes are achieved by lengthening and shortening 

of tendon, rather than length changes occurring within the muscle. This pattern 

of length change can be seen from presented data (most of the length changes 

occur within the tendon rather than within the muscle fascicles). 

Tendon stiffness measurements have traditionally been performed during 

isometric contractions performed on a dynamometer. Clearly these dynamometry 

measurements are more constrained as they allow control over many variables. 

For example, with dynamometry measurements there is no movement of the 
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ankle and all of the measured elongations can be attributed to the load applied 

by muscle contraction. Although measurements of tendon stiffness performed 

during gait offer high ecological validity, control over certain variables is more 

limited. For example, the ankle joint angle is not fixed, which can lead to some 

tendon elongations attributed to joint rotation rather than just the load applied to 

the tendon. Although ankle joint movement occurred during the measurements, 

the RoM in the ankle and knee were not so different between groups as to mask 

any differences found in tendon stiffness. 

The present study has shown reduced Achilles tendon elongation, increased 

stiffness and hysteresis during walking in people with diabetes compared to 

controls. The implications of these findings are a reduced storage and release of 

elastic energy from the Achilles tendon of diabetes patients during walking, 

presumably requiring a greater contribution to the work from plantarflexor 

muscles. The results strongly point towards the reduced energy saving capacity 

of the Achilles tendon in diabetes patients as an important factor contributing to 

the increased metabolic CoW in these patients. 
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5. Experimental chapter four – Vertical displacement of the 

centre of mass during walking in people with diabetes: can 

it explain a higher metabolic cost of walking? 

 

5.1 ABSTRACT 

People with diabetes display biomechanical gait alterations compared to controls 

and have an increased metabolic cost of walking (CoW), but it remains unknown 
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whether differences in the vertical displacement of centre of mass (CoM) may 

play a role in this increased CoW. Thirty-one non-diabetic controls (Ctrl); 22 

diabetic patients without peripheral neuropathy (DM) and 14 patients with 

moderate/severe DPN, underwent gait analysis using a motion analysis system 

and force plates while walking at a range of matched speeds. The aim of this 

study was to investigate CoM displacement and its relation with step length as a 

potential explanatory factor in the previously observed increased CoW with 

diabetes. Vertical displacement of the CoM was measured over the gait cycle. 

Vertical displacement of the CoM during walking was not different between 

diabetes patients with and without diabetic neuropathy compared to controls 

across the range of matched speeds examined and is therefore unlikely to be a 

factor in itself that contributes towards the increased CoW observed recently in 

people with diabetic neuropathy. The higher CoW in patients with diabetes may 

not be explained by the CoM displacement, but rather may be more related to 

shorter step lengths, increased cadence and the associated increased internal 

work and higher muscles forces developed by walking with more flexed joints. 

5.2 INTRODUCTION 

Diabetes is a global epidemic with significant morbidity and particularly common 

with increasing age (15). Diabetes is associated with a range of serious 

complications that result in reduced quality of life and premature mortality. 

Diabetic peripheral neuropathy (DPN) is one of the most severe complications of 

diabetes, occurring in 30–50% of all diabetic patients (7). DPN-related changes 

in the lower limbs lead to functional gait adaptations including taking shorter 

steps, having a higher cadence but slower self-selected and maximum walking 

speed (6, 11, 23, 30, 28, 19). Other major gait adaptations include reduced range 

of joint movement (3) and reduced muscle strength and power characteristics (6). 
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I have recently shown how the metabolic cost of walking (CoW) is higher in 

people with diabetes and particularly in those with DPN compared to controls 

(27). During walking mechanical work is done to continuously raise and lower the 

body centre of mass (CoM), which requires metabolic energy expenditure. The 

body CoM moves like an inverted pendulum during human walking, with the 

pendulum action conserving mechanical energy (1). More specifically, by keeping 

the knee relatively straight during the single leg stance phase of gait giving rise 

to the arc of the CoM, the leg supports body mass with relatively little muscle 

force. 

Like an inverted pendulum, the CoM rises/decelerates in the first half of the 

stance phase and then falls/accelerates during the second half of the stance 

phase (8, 20, 21, 31). Consequently, in the first half of the stance phase, kinetic 

energy is converted into gravitational potential energy (9), whereas in the second 

half of the stance phase, the opposite conversion occurs. During walking, the 

CoM has a sinusoidal pattern in the vertical direction with two peaks occurring. 

The first vertical peak of the CoM occurs around 30% of the gait cycle during 

single-limb stance as the CoM is ‘vaulted’ over the straight stance limb in an 

inverted pendulum manner, while the second peak occurs around 80% of the gait 

cycle during the terminal mid-stance phase.  

Increasing the CoM displacement in a type of up and down ‘bobbing’ action leads 

to an increase in the CoW compared to a normal gait (25, 22). Equally, if gait is 

manipulated to minimise or eliminate any vertical displacement of the CoM by 

walking in a ‘crouched’ style with very flexed limbs, there is an increase in the 

CoW compared to normal gait (26, 22, 14). Hence, there appears to be an 

‘optimum’ vertical displacement for the CoM in terms of its effect on the metabolic 
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CoW, where deviations from this optimum seem inefficient in terms of energy 

cost.  

Stride length also seems intrinsically linked to the CoM vertical displacement and 

the associated CoW. It has been shown that stride lengths lower than the optimal 

reduced the vertical displacement of the CoM and increased the CoW, while 

stride lengths greater than the optimal increased the CoM vertical displacement 

and increased the CoW (14). Since it is known that diabetes patients take shorter 

steps compared to controls, it might be hypothesised that that this would reduce 

the vertical displacement of the CoM, thereby increasing the CoW. Since walking 

speed may be a confounding factor in the relationship between step length and 

CoM displacement, in the present study I chose to compare the CoM 

displacement at matched walking speeds between patients with diabetes and 

controls. Therefore, this study examined the vertical displacement of the CoM 

while walking at different speeds. I hypothesised that diabetes patients have a 

reduced vertical CoM displacement that might explain previously reported finding 

of a greater CoW, with a reduced step length being a potential factor underpinning 

the suggested CoM behaviour. 

 

 

 

 

 

 

 

 

 



129 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 MATERIALS AND METHODS 

Participants 

After receiving ethical approval from all relevant bodies, sixty seven participants 

gave written informed consent to participate in this study. All procedures in this 

study complied with the declaration of Helsinki. All participants were aged over 

40 years and were allocated into one of three groups: patients with diabetes and 

moderate-severe peripheral neuropathy (DPN, n=14, 14 men), patients with 

diabetes but no peripheral neuropathy (DM, n=22, 12 men) and healthy controls 

without diabetes or peripheral neuropathy (Ctrl, n=31, 19 men). All participants 

were assessed to confirm they satisfied the inclusion criteria for each group. 

Major exclusion criteria for participation in the study included peripheral vascular 

disease, musculoskeletal injury, recent surgery affecting gait, foot or lower limb 
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amputation (amputation of the hallux; amputation of more than two lesser toes on 

one foot; amputation of part of/whole foot) and open foot ulcer. Information about 

duration and type of diabetes, smoking habits and use of current medication was 

obtained via questionnaire. The majority of the DM and the DPN patients reported 

taking insulin, cholesterol-lowering medication and diabetes medication, while 

from the whole sample (including controls) only 2 people reported smoking.  

 

Assessment of peripheral neuropathy 

A clinical evaluation was undertaken to quantify peripheral neuropathy in diabetic 

patients and to confirm the absence of neuropathy in healthy controls. Peripheral 

neuropathy was assessed by using the modified Neuropathy Disability Score 

(mNDS) and the vibration perception threshold (VPT). The mNDS is a combined 

score taken from tests measuring the patient’s ability to detect temperature, pain, 

vibration and the Achilles tendon reflex (5). The VPT was assessed by placing 

the probe of the biothesiometer on the apex of the hallux and increasing the level 

of vibration until detected by the participant. A random blood glucose test was 

performed in the Ctrl group to confirm the absence of diabetes (<7 mmol/l) and 

the above neuropathy tests conducted to confirm the absence of neuropathy in 

the Ctrl group resulting from any aetiology. 

 

Gait analysis 

Participants were asked to walk along a 10-metre walkway in the gait laboratory 

at a series of standardised speeds (0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 m/s), as well as 

at their maximum walking speed. The standardised walking speeds were 

controlled by measuring the velocity of a marker attached to the sacrum after 

each trial from the motion analysis data and providing immediate feedback for 
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participants as to whether they needed to walk more quickly or more slowly on 

the next trial to achieve the required standardised speed. Participant's starting 

position was altered by the experimenters to ensure a ‘clean’ (i.e., no overlap 

outside the force platform) foot-strike on one or two of the force platforms per 

walking trial without alteration to their natural gait. Walking trials were repeated 

until at least three ‘clean’ foot contacts with the force platforms were made with 

each limb, for each speed condition. Kinematics were collected at 100 Hz using 

a 10-camera Vicon motion capture system (Vicon, Oxford, UK) positioned around 

the 10-meter walkway, tracking a full-body modified Plug-In-Gait marker set 

consisting of 54 markers. Kinetics were simultaneously collected at 1000 Hz from 

three force platforms (Kistler, Zurich, Switzerland) embedded into the middle of 

the walkway. Where possible markers were placed directly onto the skin; to 

minimise movement artefacts resulting from loose clothing all participants wore 

tight-fitting shorts and tops. All participants wore specialist diabetic shoes 

(MedSurg, Darco, Raisting, Germany) with a neutral foot-bed, ensuring the 

diabetic patients walked with safe, appropriate footwear whilst minimising the 

effect of footwear by standardising across all participants. 

 

Centre of mass displacement 

Gait variables (stride length, step length and cadence) were calculated from the 

kinematic data using Visual 3D software. The vertical displacement of the CoM 

was also measured from the kinematic data using Visual 3D software (C-motion 

Inc., MD, USA). Motion data collected during gait analysis were processed, and 

Dempster’s segment parameter model was used to calculate mass distribution 

for each body segment, thereby allowing accurate calculation of the entire body 

centre of mass. This measurement was calculated as the range of vertical 
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displacement of the CoM (Figure 1; Figure 2) during the whole gait cycle, using 

the mean of the three trials from each person. 

 

Statistics 

A one-way analysis of variance (ANOVA) was performed for all variables to 

assess between group differences. If the ANOVA was significant, a Fisher’s least 

significant difference (LSD) post-hoc test was used to test for differences between 

the diabetes groups (DM and DPN) and the control group. All values presented 

are means and standard deviation. Significance was set at p<0.05. 

 

 

5.4 RESULTS 

Participant characteristics  

There were significant differences between the groups in age, body mass and 

BMI, which were significantly greater in the DPN group (Table 1, p<0.01). 

 

Neuropathy assessments  

As expected, the DPN group displayed significantly higher values for the VPT 

and the mNDS compared to the Ctrl group (Table 1). The VPT and mNDS for the 

DM group were not significantly different from the Ctrl, underlining that this 

diabetic patient group had no neuropathy (Table 1). 

 

Step length and cadence 

The DPN group displayed significantly shorter step lengths in all given speeds 

compared to Ctrl group (Table 2). The DPN group had significantly higher 

cadence in all given speeds compared to Ctrl group. 
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Centre of mass displacement at different speeds 

There were significant differences in the CoM displacement between the groups 

only at maximum walking speed, where the DPN group expressed greater vertical 

displacement of the CoM (Fig. 1). 

 

 

 

 

 

Table 1. Participant characteristics and results from neuropathy assessments. 

Variable 
Group 

Ctrl DM DPN 

Age (yr) 56 (10) 51 (9)** 66 (14)** 

Body mass (kg) 76 (10) 80.5 (12) 91.5 (18)** 

Height (m) 1.72 (0.12) 1.71 (0.09) 1.73 (0.11) 

BMI (kg/m2) 26 (3) 28 (4) 31 (4)** 

NDS (Score/10) 1 (1) 2 (1) 7 (2)** 

VPT (Volts) 6.1 (3.4) 8.2 (3.4) 27.4 (9.1)** 

Diabetes duration (years) - 14 (12) 14 (11) 

Type 1 diabetes - 7 4 

Type 2 diabetes - 15 10 

Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) 
and diabetic patients with moderate/severe neuropathy (DPN, n=14). Significant 
differences from the Ctrl group are denoted by ** (P<0.01). BMI = body mass 
index, NDS = neuropathy disability score, VPT = vibration perception threshold. 
Values are means (standard deviations). 
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Table 2. Temporal-spatial gait parameters. 

    Variable Group 

 Ctrl  DM DPN 

0.6 m/s    

Step length (m) 0.59 (0.12) 0.57 (0.12) 0.51 (0.09)** 

Cadence (steps/m) 108 (0.61) 108 (0.74) 113 (0.41)** 

0.8 m/s    

Step length (m 0.63 (0.14) 0.57 (0.12) 0.53 (0.15)** 

Cadence (steps/m) 112 (0.84) 113 (0.67) 116 (0.68)** 

1.0 m/s    

Step length (m) 0.69 (0.15) 0.67 (0.05) 0.64 (0.04)* 

Cadence (steps/m) 117 (1.12) 119 (1.08) 122 (1.25)** 

1.2 m/s    

Step length (m) 0.76 (0.11) 0.75 (0.17) 0.69 (0.07)* 

Cadence (steps/m) 124 (1.16) 125 (1.27) 128 (1.08)** 

1.4 m/s    

Step length (m) 0.79 (0.12) 0.77 (0.17) 0.71 (0.11)* 

Cadence (steps/m) 127 (1.56) 129 (1.47) 131 (1.49)** 

1.6 m/s    

Step length (m) 0.81 (0.11) 0.80 (0.04) 0.74 (0.02)* 

Cadence (steps/m) 129 (0.98) 132 (0.48) 135 (0.63)** 

Maximum walking speed 
(m/s) 
Step length (m) 

1.92 (0.11) 
0.85 (0.07) 
143 (1.18) 

1.88 (0.16)** 
0.79 (0.06)* 
140 (1.27)* 

1.68 (0.22)** 
0.78 (0.12)** 
129 (0.98)** 
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Cadence (steps/m) 

Healthy controls (Ctrl, n=31), diabetic patients with no neuropathy (DM, n=22) 
and diabetic patients with moderate/severe neuropathy (DPN, n=14). Significant 
differences from the Ctrl group are denoted by *(P<0.05) or **(P<0.01). Values 
are means (standard deviations). Gait parameters were collected on the 
laboratory walkway. 

 
Figure 1. Centre of mass (CoM) vertical (Z) displacement across walking speeds 
from 0.6 to 1.6 m/s and maximum walking speed for healthy controls (Ctrl; n=31), 
diabetic patients with no neuropathy (DM; n=22) and diabetic patients with 
moderate/severe neuropathy (DPN; n=14). Values are group means and SD; ** 
denotes significantly (P<0.01) different from the control group. 
 

 
Figure 2A. Example trace from one participant showing the vertical displacement 
of the CoM over the gait cycle. ↑ start of double support phase, ↑↑ end of single 
support phase (start of double support phase), ↑↑↑start of swing phase 70%. 
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Figure 2B. Schematic illustration of the rise and fall of the CoM during the gait 

cycle. 

 

 

 

 

 

 

 

5.5 DISCUSSION 

This study has shown that the vertical displacement of the CoM during walking is 

not different between diabetes patients with and without diabetic neuropathy 

compared to controls across a range of matched speeds (Fig. 1) and is therefore 

unlikely to be a factor in itself that contributes towards the increased CoW 

observed recently in people with diabetic neuropathy (27). The exception to this 

was at maximum walking speed where patients with diabetes and those with 

diabetic neuropathy showed an increased or a decreased CoM displacement 

respectively compared to controls (Fig 1).  
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It has previously been shown that stride lengths shorter and longer than the 

optimum lead to reduced and increased CoM displacements respectively, 

increasing the metabolic CoW in both situations (14). In that study subjects 

increased their metabolic cost when they reduced their vertical CoM movement 

by taking shorter strides. Subjects also expended more metabolic energy when 

they walked with greater stride length than their preferred stride length. Previous 

work (13) has shown that as stride length increases, metabolic energy 

expenditure and mechanical work performed on the CoM also increase. This is 

not caused by CoM displacement per se but rather by the additional negative 

work performed to redirect the CoM velocity during step-to-step transitions and 

by positive work to restore the energy lost. Although I did find consistently shorter 

step lengths across matched walking speeds in patients with diabetes and 

particularly those with diabetic neuropathy, this did not alter the vertical 

displacement of the CoM (Fig. 1). The lack of effect of stride shortening on the 

CoM might be due to the fact that people with diabetes and neuropathy have 

adapted to a different optimal step length, which is consistently shorter compared 

to controls across the range of speeds examined, or that they have adopted a 

different step length based on the total metabolic CoW rather than the cost 

associated with CoM displacement. The exception to this was at maximum 

walking speed where the CoM displacement was different in both diabetes groups 

compared to controls (Fig. 1). Both diabetes groups took shorter steps compared 

to controls, but the DPN group displayed an increased CoM displacement, while 

the DM group displayed a decreased CoM displacement. This might reflect the 

fact that asking people with diabetes to walk as fast as they can disturbs the 

normal regulatory control that they exert over gait and may force them to adopt 

stratgeies that are suboptimal in terms of energy efficiency. This is supported by 
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the observation that all groups adapted to increased walking speeds between 0.6 

and 1.6 m/s by increasing cadence, whereas in the transition from walking at 1.6 

m/s to maximum walking speed the DPN group were unable to increase cadence 

any further and instead needed to increase step length, presumably 

compromising the optimal step length (Table 2). 

Consistent with the shorter steps taken by both diabetes groups compared to 

controls was the higher cadence required to meet the required matched walking 

speeds by the diabetes patients (Table 2). An increased cadence in the diabetes 

groups would require greater internal work from the muscles to move the legs 

during walking (24). Although I have previously found the joint work developed 

during a single stance phase to be lower in patients with diabetes and even more 

so in those with diabetic neuropathy, this would be repeated more often over a 

given distance in diabetes patients because of a higher cadence. Therefore, a 

higher cadence for any given walking speed could explain the higher CoW 

previously reported in patients with diabetes and those with diabetic neuropathy 

(27). 

In the absence of differences in the CoM displacement, another possible 

explanation for the higher CoW previously reported in diabetes patients is that 

they might be producing greater muscle force without performing as much joint 

work per stance phase. This would be consistent with previous reports from 

walking with a ‘crouched gait’ by excessively flexing the joints (26, 22). Diabetes 

patients were observed to walk with shorter steps, which is known to be achieved 

by greater flexion in the lower limb joints. This likely gives rise to higher muscle 

forces to sustain the more flexed joint positions as previously observed (29) and 

consequently a higher metabolic CoW. Therefore, the effective mechanical 

advantage (muscle force moment arm/ground reaction force moment arm) may 



139 
 

be worse in diabetic patients, which would mean that more muscle force would 

be required to overcome the moment of the ground reaction force – hence higher 

CoW. This factor may also explain why/how diabetes patients have adopted 

“optimum” CoM displacement per stride length as a strategy to minimise CoW 

(meaning unaltered compared to controls). This relates to the Achilles tendon, 

which plays a major role in energy saving during walking under ‘normal’ 

circumstances (2). Gordon et al. (14) presented in their study a manipulation of 

step length above and below the optimal, and found that the CoM vertical 

displacement increases and decreases over that observed at the self-selected 

step length. Both increased and decreased vertical displacement of the CoM 

beyond were associated with a higher energy cost compared to that observed at 

self-selected step length, suggesting an optimal vertical displacement of the CoM 

where energy cost is minimised. 

 In my opinion the main issues determining the CoW are higher cadence and 

higher cumulative joint work, stiffer Achilles tendon with higher hysteresis, 

potentially co-activation (it is hypothesized but not measured). There are many 

factors, not just one, but maybe one of the most important factors is related to 

stiffer tendons because these tendons might also cause some of the other 

reported factors such as shorter steps, longer contact time, lower joint moments, 

smaller RoM and smaller elongation. It is difficult to say for sure that these 

relations are causative or just correlative; one way to prove this would be to 

manipulate stride length and cadence, one by one in some systematic way in 

healthy participants to see what effect they might have. A future study might use 

some form of regression analysis in terms of defining one potential factor 

responsible for a higher CoW, but this analysis would need 10 participants for 
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every variable entered into a regression analysis and would therefore need more 

participants. 

In my opinion stiffer tendons are maybe one of the most important factors in the 

higher CoW and it can be compared with driving a car with flat tires that will just 

increase fuel consumption, i.e. CoW.  

My idea about improving efficiency of walking is that it will not be achieved just 

by performing any kind of aerobic exercises while still driving with flat tires (stiffer 

tendons), but also through appropriate stretching training with the aim of 

increasing tendon compliance. Increasing flexibility of plantar muscles would also 

allow them to store and release more energy and as a logical consequence would 

be longer steps, shorter contact times and lower cadence. 

To best of our knowledge this is the first study that has investigated the CoM 

displacement during walking in a diabetic population. It could be considered as a 

limitation of the present study that body mass was significantly different between 

groups. However, the higher body mass of patients with diabetes (especially 

those with DPN) is a well-known characteristic of this population described in the 

literature (19, 17, 16) and is unlikely to have directly affected the CoM vertical 

displacement. If anything it might be expected that increased body mass might 

reduce the extent to which the CoM is displaced, but this was not found in the 

present study indicating that group differences body mass did not influence the 

present results. Although only a mean of 10 years difference, patients in the DPN 

group were significantly older than controls (66 to 56 years, respectively), which 

might be a confounding factor for some of the variables examined. 

I have shown that there are no differences in the vertical displacement of the CoM 

in patients with diabetes compared with controls when walking speed is matched, 

with the exeption of the maximum walking speed. The higher CoW in patients 
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with diabetes may not be explained by the CoM displacement, but rather may be 

more related to shorter step lengths, increased cadence and the associated 

increased internal work and higher muscles forces developed by walking with 

more flexed joints. 
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6. Conclusions & future directions 

  

Summary of main findings 

 

The main aim of this thesis was to investigate the cost of walking in people with 

diabetes mellitus (DM) and diabetic peripheral neuropathy (DPN) and to examine 

the biomechanical factors that could contribute to explaining any potential 

differences. The work for this thesis investigated level walking as a part of 

everyday life activities. Although there is a wide base of research that had been 

investigating gait patterns in the diabetic population, this is the first body of work 

that has investigated the energy cost of walking (CoW) in people with diabetes. 
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In chapter two it was observed that DPN patients have shorter steps, longer 

single limb stance time, lower concentric work and higher energy cost of walking 

when walking speed is matched. The lower concentric joint work in patients with 

diabetes might be a consequence of kinematic gait alterations and may represent 

a natural strategy aimed at minimizing the CoW. This ‘altered gait strategy’ in 

people with diabetes enables them to meet the task demands in the face of 

compromised musculoskeletal properties and already elevated CoW due to 

energetic inefficiencies. The main finding of this chapter is that people with 

diabetes and diabetic peripheral neuropathy have a higher CoW when the 

walking speeds are matched. This finding is likely due to energetic inefficiencies 

associated with diabetes and DPN reflecting physiological and biomechanical 

characteristics as well as the cumulative effect of potentially higher joint work over 

a given time/distance due to higher cadence. It was surprising that diabetic 

patients were actually able to match the same walking speed as controls despite 

generating significantly reduced lower limb joint work. The same lower limb joint 

work was associated with a higher CoW in diabetic patients and particularly in 

patients with DPN, which can be observed in Fig. 5. Schenau and Cavanagh (14) 

concluded that there are no models available which predict reliable measures for 

positive and negative power from active elements of individual muscles and their 

efficiencies and that joint work cannot be used as a reliable measure for a 

prediction of the CoW. Another contributing factor to the higher CoW in the DPN 

group may be the increased step frequency (the DPN group had a shorter step 

length for a given speed, therefore requiring a higher step frequency). These two 

factors (lower limb joint work and higher step frequency) would increase the 

internal work required for moving the lower limbs and may contribute to a higher 

CoW in people with diabetes and particularly those with DPN. For human walking, 



146 
 

gross cost of transport is U-shaped. Although theoretically self-selected speed 

should be on the bottom of the U-shaped curve that is not always the optimum 

speed of moving which reflects the minimal energy expenditure during the 

walking. 

In the third chapter I have presented that diabetic patients and especially those 

with DPN displayed increased effective mechanical advantage (EMA) and 

smaller external moment arm (ExtMA) at the ankle across all walking speeds. 

The increased EMA was mainly caused by a smaller external moment arm of the 

ground reaction force in the DPN and DM groups compared to Ctrl. The DPN 

group reduced the joint moment at the ankle during walking by applying the 

ground reaction force more proximally on the foot, or at an angle directed more 

towards the ankle, thereby reducing the external moment arm and increasing the 

EMA around the ankle. 

Another finding of this chapter was the reduced lower limb range of motion (RoM) 

during walking in diabetic patients compared with controls. This was achieved via 

shorter steps taken by diabetic patients during walking. It is known that DM and 

DPN patients are able to lower joint moments and walk with shorter steps, and 

this translates to less flexed joints, which in general means that the moment arms 

of the ground reaction force are smaller compared with the situation with more 

flexed joints. These findings demonstrate a mechanism through which people 

with diabetes and particularly those with DPN reduce the joint moment at the 

ankle during walking – by applying the GRF more proximally on the foot or at an 

angle more towards the ankle, reducing the ExtMA around the ankle and thereby 

reducing the ankle joint moment. The increased effective mechanical advantage 

(EMA) was mainly caused by a smaller ExtMA in the DPN and DM groups 

compared to Ctrl. Whilst the total hip joint RoM during walking was reduced in 
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diabetes patients and especially those with DPN compared to controls, patients 

with diabetes and to the greatest extent those with DPN flexed the hip more than 

controls. This kinematic strategy fits very well with the ‘hip strategy’ previously 

reported in other studies (10, 13), whereby diabetes patients have been observed 

to ‘drag’ the leg forwards into the swing phase from the hip, rather than ‘propelling’ 

the leg off from the ground using the ankle plantarflexors.  

In chapter four I have shown the consequent reduction in the force applied to the 

Achilles tendon (AT) would result in reduced tendon elongation and therefore 

reduced storage of elastic strain energy in the diabetic population. The reduced 

contribution from elastic strain energy stored in the Achilles tendon could impact 

upon the gait mechanics and efficiency. My main findings are a smaller MTC 

length change, increased stiffness and hysteresis of the Achilles tendon in the 

DPN group compared to the control group. A stiffer tendon will reduce storage 

and release of energy from the AT. One of the causes might be non-enzymatic 

glycation of tissues and it might contribute to explaining the altered lower limb 

biomechanics, especially the limited ankle and knee RoM in people with diabetes, 

higher cadence, shorter steps, longer contact time and lower ankle joint 

moments.  

In chapter five I investigated the role of the vertical centre of mass (CoM) 

displacement during walking and its potential impact on the CoW. The main 

finding of this chapter shows that it is not the CoM displacement itself that is 

contributing to increased energy cost, but it is more likely linked to step length 

and cadence alterations i.e. although diabetic patients were able to generate 

reduced lower limb joint work (Chapter 2) they displayed increased step 

frequency which cumulatively might increase metabolic cost of walking. The 

vertical displacement of the centre of mass seems to be minimised by the DPN 



148 
 

group around the speeds associated with self-selected walking speed i.e., 1 and 

1.2 m/s. 

Considering findings in all four experimental chapters I suggest that the major 

factors contributing to the increased energy CoW in patients with diabetes and 

DPN must include shorter strides and increased cadence for their effect on 

internal work and also a reduced energy contribution from the Achilles tendon. 

The work for this thesis was the first to address all of these issues in people with 

diabetes in order to try to give us a broader picture of the energy CoW in people 

with diabetes and especially diabetic peripheral neuropathy and to understand 

the biomechanical factors influencing the CoW.  

Another potential factor is the role of the muscle co-activation. Although I have 

not assessed muscle co-activation in the work for this thesis, if increased it would 

contribute to a greater energy consumption by the muscles. 

The main findings of this thesis are that, when the walking speed is matched, 

people with diabetes and diabetic peripheral neuropathy walked with shorter 

strides, longer contact time with the ground, smaller external moment arms, 

smaller range of motion at the ankle, knee and hip, higher cadence, lower ankle 

joint moments, having weaker plantarflexors, producing lower positive muscle 

work, altered muscle-tendon behaviour with less energy stored in their tendons. 

The data indicates that each group choose to walk at a self-selected speed where 

the energy expenditure was optimal. Other important findings are significant 

differences in maximal walking speeds where the DPN group walked slower than 

the Ctrl group. The maximum walking speed was highest in controls, lower in 

patients with diabetes and lower still in patients with DPN. The maximum walking 

speed attainable might be considered as a useful indicator of physical capacities 

and this could be useful focus for future studies. 
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The methods used to quantify oxygen uptake during walking are good and 

certainly well established with good reliability (ICC > 0.80) (12, 3, 1, 11, 4). 

In terms of the statistical analysis of the results in the present thesis, it could have 

been argued to perform a two-way analysis of variance (ANOVA) with group (3 

levels) and walking speed (6 levels) as the two independent variables to avoid 

performing repeated tests with a one-way ANOVA. However, the output from the 

two-way ANOVA would be a main effect for speed, a main effect for group and 

an interaction effect. The results from the two main effects would not be of interest 

since they would take an average of the other main independent variable in giving 

an output for the other. To answer the specific hypotheses set out in the present 

thesis, multiple comparisons would have needed to be performed using post-hoc 

tests within the interaction effect. There might be an argument to state that some 

kind of adjustment for multiple comparisons could have been performed to adjust 

the alpha level. One such test is the Bonferroni correction, however this is a very 

conservative method that divides alpha level by number of comparisons and 

conversely increases the likelihood of making a type 2 error. It should also be 

considered that the analysis of the results were hypothesis-driven and not simply 

to find any possible differences from any number of possibilities. As a 

compromise if I accepted significance only for p-values of below 0.01, very few 

variables would drop out of significance and further this is in line (although not as 

conservative) with the principals of tests to adjust for multiple comparison.. 

Also, the other possibility to sub-divide the controls in similar age groups as the 

diabetics with and without neuropathy was not considered because it would bring 

the group numbers down to very small numbers, which would result in a loss of 

statistical power.  
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Further findings of interest and future directions 

Type 2 diabetes typically affects patients who are overweight and display a lower 

level of physical activity, but evidence suggests that stressful experience might 

affect diabetes, both its onset and its exacerbation. A higher CoW in people with 

diabetes may underpin the lower physical activity levels and lower habitual 

walking distances in this population and may also contribute towards a negative 

spiral where there is a greater perception of difficulty for walking, which causes 

less engagement in physical activity (6, 9, 14, 15, 16), leading to poorer metabolic 

control and worsening of the diabetic condition. To allow intervention to break this 

negative cycle, it is therefore important to understand the factors that contribute 

to increasing the CoW in diabetes. 

I found that stride length and cadence seem to be important factors in terms of 

the cumulative amount of work done for its effects on the CoW and future studies 

might try to manipulate stride length to see how that influences the CoW when 

the stride length is matched between Ctrl and DM and DPN patients and to 

compare the CoW. Possible interventions to reduce the CoW would be to alter 

tendon stiffness through appropriate stretching training with the aim of increasing 

tendon compliance. Increasing flexibility of lower limb muscles would also allow 

them to store and release more energy and as a logical consequence would be 

longer steps, shorter contact times and lower cadence. Furthermore, a measure 

of muscle co-activation, through EMG with appropriate normalization, would be 

useful in further studies and would be able to determine if the efficiency of the 

muscle is compromised.  

In relation to balance it might be interesting to investigate potential differences in 

the CoW between people with diabetes and poor balance control compared to 

those with diabetes but with better balance control. We might hypothesise that 
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instability and the associated corrections needed could increase the CoW. This 

might be challenging since we know (1) balance is impaired to a greater extent in 

people with DPN, so apportioning appropriate groups could be a challenge. 

 

Considerations and limitations 

A higher level of co-activation from agonist-antagonist muscles is a potential 

candidate for contributing towards the higher CoW observed in people with 

diabetes as it is presented previously (5, 7, 8). This important aspect was not 

assessed in the present work for this thesis, but future work should address this 

issue by measuring the level of co-activation from lower limb muscles and also 

relating this level of activation to the maximal activation capacity of the same 

muscles. In the present thesis, although walking speed was matched between 

groups, step length was free to vary and as discussed could have been one of 

the factors contributing to the increased CoW observed in diabetes patients. 

Future work might try to match step length while evaluating the impact on the 

CoW in patients with diabetes. However, this approach may also face the 

confounding effect of walking speed, since matching both step length and walking 

speed might approach the limits of some patient’s capabilities. In terms of the 

participant characteristics for the work composing this thesis, although only a 

mean of 10 years difference, patients in the DPN group were significantly older 

than controls (66 to 56 years, respectively), which might be a confounding factor 

for some of the variables examined. I did not measure blood lactate, which might 

have been particularly relevant to Chapter 2 for confirming that all participants 

were working below their lactate threshold. This is a consideration since the VO2 

slow component is much more pronounced during exercise above the lactate 

threshold compared to below. Since a number of inefficiencies relating to the 
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CoW in patients with diabetes may relate to the muscle, future work might 

investigate the muscular causes of the increased CoW at a cellular level. 
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