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Abstract ─ The traditional macro-only network is not 

effective, especially when communication signal is 

required for users far away from the macrocell base 

station and located in the cell edge. The signal strength 

reaching these users is excessively attenuated due to 

fading and shadowing. The deployment of femtocells 

around the cell edge of this macrocell helps to reduce the 

effect of fading and shadowing thereby increasing the 

overall efficiency of the cellular network. This holds a 

great promise for adaptive space-based wireless sensor 

networks, formation-flying satellites and constellations. 

Index Terms ─ Femtocells, heterogeneous networks, 

macrocells, spectral efficiency, uplink. 

I. INTRODUCTION 
Spectral efficiency is an important measure of the 

performance of a communication system that deals with 

the effective transmission of data. This efficiency must 

be optimized to match the available radio spectrum for 

mobile users to achieve a seamless communication. As 

the number of mobile users increases, the pressure on the 

available communication spectrum increases, leaving 

users in the cell-edge with extremely poor reception of 

the signal from the base station. The increase in mobile 

users is fast becoming higher than the spectral efficiency 

enhancements available to meet the required increase in 

the teledensity traffic.  

To meet these challenging necessities in terms of 

coverage, capacity and deployment costs, heterogeneous 

network transmission techniques [1-3] are regarded to be 

one of the most promising solutions. A crucial part of 

these techniques will be how to significantly improve the 

capacity of users in the cell edge, coverage in rural areas 

due to the long distance between the traditional base 

stations and the mobile users in these areas as well as 

underground locations due to wall attenuation. One of 

the current heterogeneous network approaches is the 

deployment of low-power and low-cost femtocells within 

and around the main macro cellular infrastructure. This 

is referred to as two-tier heterogeneous network [4-6]. 

This paper considers the effect of shadowing and 

fading on the area spectral efficiency (ASE) of this two-

tier heterogeneous network in uplink called the Macro-

Femto Heterogeneous Network (MFHN). 

From Fig. 1, the first tier of the case study 

heterogeneous network comprises of the macro-only 

network in which the carrier frequency is re-used at a 

minimum distance D[m]. This first tier comprises of a 

circular macrocell of radius 𝑅𝑚 [m] with a base station

made up of an omnidirectional antenna. The user is 

considered to be randomly located within the macro-cell 

bounded by 𝑅0 and 𝑅𝑚, where 𝑅0 is the minimum distance

a user can be with reference to the macrocell base station. 

Fig. 1. Femtocells distribution at the cell edge in the 

Macro-Femto network [7]. 
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II. SYSTEM MODEL AND ANALYSIS
The second tier heterogeneous network is made up 

of 𝑁 circular femtocells each of radius 𝑅𝑛 [m] with low-

powered low-cost user deployed femto base station at the 

center. The femtocells are deployed round the edge of 

the reference macrocell. This is also referred to as the 

femto-on-edge (FOE) configuration in [7]. For the 

simulation, the number of femtocells per macrocell, N, is 

given as: 

𝑁 =  𝜇
𝐴𝑚

𝐴𝑛
, (1) 

where 
mA  is the area of the macrocell, 

nA , the area of 

each of the femtocells and   the femto population factor 

(FPF) [7] which controls the number of femtocells per 

macrocell. Simplifying this further, we obtain the 

following relationship: 

𝑁 =  𝜇
4×𝑐

𝑅𝑛
. (2) 

A. Bandwidth allocation 

In this paper, the co-channel allocation of the 

bandwidth is utilized where the users all share the same 

frequency channel without any partitioning. Hence the 

bandwidth for the macrocell and femtocell users are thus: 

𝑊𝑚 = 𝑊𝑓 = 𝑊, (3)

where, 𝑊𝑚 is the bandwidth for the macrocell users, 𝑊𝑓

is the bandwidth for the femtocell users and 𝑊 is the total 

available bandwidth. The macrocell and the femtocells 

share all the communication resources available. For 

simplicity, the channel is assumed to be serving only 

one user at a time for the both tier. The bandwidth is re-

used throughout the macrocell network at a distance 

𝐷 =  𝑅𝑢(𝑅𝑚 + 𝑅𝑛), where 𝑅𝑢 is the network traffic load

which has a value of 2 for a fully loaded cellular network 

[7]. 

B. Mobile user distribution 

The mobile users in the macrocell, femtocell and 

interfering cells are assumed to be independent and 

uniformly distributed in their cells. The joint probability 

density function (PDF) of the macrocell users at any 

location (𝑟, 𝜃) from its serving macrocell base station is 

given by [7]: 

𝑝(𝑟, 𝜃) =
𝑟−𝑅0

𝜋(𝑅1−𝑅0)2, (4) 

where 𝑅0 ≤ 𝑟 ≤ 𝑅1, 0 ≤ 𝜃 ≤ 2𝜋 and 𝑅1 = 𝑅𝑚 − 𝑅𝑛.

For the femtocell users at any location (�̃�, 𝜃) from 

its serving femtocell base station, the PDF is given as: 

𝑝(�̃�, 𝜃) =
�̃�

𝜋𝑅𝑛
2, (5) 

where 0 ≤ �̃� ≤ 𝑅𝑛 and 0 ≤ 𝜃 ≤ 2𝜋.

C. Shadowing 

The shadowing is modelled as a lognormal 

distribution with the probability density function (PDF) 

of the slowly varying received signal power given as [7]: 

𝑝𝑠(𝑃) =
𝜀

√2𝜋𝜎𝑃
𝑒𝑥𝑝 (−

(𝜀 𝑙𝑛(𝑃)−𝜇)2)

2𝜎2 ), (6) 

where 𝜀=10/ln 10, 𝜇 = 𝜀 ln (�̅�) is the logarithmic mean 

power in dB, 𝜎 is the shadow standard deviation in dB. 

D. Fading 

This is modelled using the slow varying flat fading 

channel. It is assumed that the fading environment is 

characterized by a Nakagami-m distribution with the 

probability density function (PDF) of the received signal 

power given as [7]: 

𝑝𝑠(𝑃) = (
𝑚

Ω
)𝑚 𝑃𝑚−1

𝑟(𝑚)
exp (−𝑚

𝑃

Ω
), (7) 

where 𝑚 is the Nakagami fading parameter, Ω is the 

mean received power related to path-loss and shadowing, 

𝑟(. ) is the gamma function. 

E. Area spectral efficiency 

The area spectral efficiency is defined as the sum of 

the maximum available rates per bandwidth per unit 

macro-cell area. For the two tier network being 

considered, mathematically the ASE can be expressed 

as: 

𝐴𝑆𝐸 =
4(𝑊𝑚𝐶𝑚+𝑁𝑊𝑓𝐶𝑓)

𝜋𝑊𝑅𝑢
2(𝑅𝑚+𝑅𝑛)2 , (8) 

𝑊𝑚 is the bandwidth of the macrocell, 𝑊𝑓 is the

bandwidth of the femtocell, 𝐶𝑚 is the spectral efficiency

(Capacity) of the macrocell, 𝐶𝑓 is the capacity of the

femtocell and 𝑁 is the number of femtocell deployed. 

From the earlier assumption in Equation (1), this 

equation reduces to: 

𝐴𝑆𝐸 =
4(𝐶𝑚+𝑁𝐶𝑓)

𝜋𝑅𝑢
2(𝑅𝑚+𝑅𝑛)2. (9) 

III. SIMULATION PARAMETERS
A Monte-Carlo simulation procedure is established 

for the given system parameters in Table 1. 

Table 1: Simulation parameters values 

Simulation Parameters Femtocell Macrocell 

System bandwidth 20 MHz 

Cell radius 30 m 100-600 m 

Path-loss exponent 2 2 

Additional path-loss 

exponent 
2 2 

BS antenna height 5 m 25 m 

Mobile user antenna 

height 
1.5 m 1.5 m 

Femto population factor, 
  1 

Reference distance 100 

Path-loss constant, K 1 

Maximum transmit 

power 
10 Watt 

Reference distance, Ro - 100 m 
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A. Area spectral efficiency with shadowing 

In this section, the effect of shadowing is 

investigated. Shadowing occurs due to objects 

obstructing the relative propagation path between the 

transmitter and receiver. For a long distance propagation, 

the received signal is modelled as a log-normal 

distribution with values in dB. A case of light shadowing 

(𝜎𝑑 = 4 dB) and heavy shadowing (𝜎𝑑 = 6 dB) are

considered [8]. 

Figure 2 shows the effect on the area spectral 

efficiency for a shadowing parameter of 4 dB. From 

Fig. 2, a lognormal shadowing parameter of 4 dB reduces 

the ASE for the macro only. For the macro-femto 

network, shadowing effect is negligible. In Fig. 3, the 

increase in the shadowing parameter to 6 dB further 

reduces the area spectral efficiency of the macro-only 

network. The area spectral efficiency of the macro-femto 

network is minimally affected.  

Fig. 2. Effect of shadowing on the area spectral efficiency 

for 𝝈𝒅 = 4 dB.

Fig. 3. Effect of shadowing on the area spectral efficiency 

for 𝝈𝒅 = 6 dB.

Comparing Figs. 2 and 3, the lower effect of 

shadowing on the macro-femto network can be attributed 

to the deployment of the low powered femtocells at the 

cell edge which provides the platform of signal reception 

for the cell-edge user rather than receiving communication 

signal directly from the traditional macro base station 

which is subject to more shadowing effect. 

Furthermore, the deployment of the femtocells 

provides the medium for cell-edge users’ connection to 

the network reducing the traffic on the traditional 

microcell network. This leads to less shadowing 

experienced over the macro-only distance; hence, 

improving the quality of the over-all macro-femto 

network. 

The reported area spectral analysis of terrestrial 

macro-femto heterogeneous network can be extended 

to design and deploy small satellite missions operating 

as constellations, clusters and formation flying nodes 

in space. The categories for this application would 

span highly adaptive attosatellites, femtosatellites, 

picosatellites, nanosatellites and microsatellites in low 

Earth orbit [8, 9]. The feasible modes of operation are 

explained in [9], while [10] examines the operational 

times analysis of the payload subsystem for cost-

effective mission, optimal operational margins and 

efficient power budgeting. This is an emerging trend for 

space-based macro-femto heterogeneous sensor networks. 

B. Area spectral efficiency with fading 

Fading is the distortion to communication signal as 

it is being propagated through certain propagation 

medium. This distortion may be as a result of multiple 

reflection of transmitted signal from various surfaces 

leading to a multipath propagation of the transmitted 

signal. This effect is considered for mobile users situated 

in the cell edge where they are prone to excessive fading 

on the communication signal from the traditional 

macrocell base station. 

From Figs. 4 and 5, as the interfering mobile user 

increases from 𝑚𝐼=1 to 𝑚𝐼=3, the degradation on a

Macro-only network reduces the spectral efficiency 

when compared with the macro-femto heterogeneous 

network. There is a negligible effect of the fading on the 

macro-femto heterogeneous network. In a deep fade 

scenario, the macro-femto network performs better than 

the Macro-only network as the radius of the macrocell is 

increased. 

Fig. 4. Effect of fading on the area spectral efficiency for 

𝒎𝑰 = 1.

UKO, UKOMMI, EKPO, KHAREL: AREA SPECTRAL EFFICIENCY OF A MACRO-FEMTO HETEROGENEOUS NETWORK 1045



Fig. 5. Effect of fading on the area spectral efficiency for 

𝒎𝑰 = 3.

IV. CONCLUSION
A Monte-Carlo simulation process has been carried 

out to investigate the effect of fading and shadowing 

on the area spectral efficiency of a Macro-Femto 

Heterogeneous Network. This effect is compared with a 

macro-only network. The simulation result shows that 

the fading and shadowing effect in the macro-femto 

network is minimal when compared with the macro-only 

network. The immediate future works bordering on this 

research span the terrestrial and space communications 

networks. Firstly, the investigation of the effect of fading 

and shadowing between femto and femto cells located in 

the macro cell-edge is a core research area. Secondly, the 

energy efficiency of the macro-femto scheme discussed 

in this paper can be investigated further. Heterogeneous 

network hybrids such as a three-tier heterogeneous 

network form a key study niche that next-generation 

networks will depend on for a reliable seamless global 

communication. Furthermore, the study can be extended 

to validate the area spectral efficiency of space-based 

sensor nodes and small satellite constellations links in 

Earth orbits. 
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