
  

 

Abstract—Multivariable intermittent control (MIC) combines 

stability with flexibility in the control of unstable systems.  Using 

an underlying continuous-time optimal control design, MIC uses 

models of the physical system to generate multivariate open-loop 

control signals between samples of the observed state.  Using 

accurate model values of physical system parameters, stability of 

the closed loop system is not dependent upon sample interval.  

Here we consider the sensitivity of MIC to inaccurate model 

values of system parameters.  The high dimensionality of 

multiple parameters combined with an unstable open loop 

system ensures the ratio of hyper-volumes containing good to 

bad parameter combinations resembles a “needle in a haystack”.  

Is this sensitivity a problem or an asset?  

Prediction error between open loop and observed states 

provides the basis for triggering a sampling event but is also 

sensitive to inaccurate model values.  Investigation of the 

mapping between prediction error and model values of physical 

parameters illustrates the value of prediction error to identify 

combinations of parameters giving stable closed loop control 

with low state error, similar to that provided by accurate values.   

Sensitivity of prediction error to model inaccuracy is 

potentially an asset facilitating adaptation and supporting the 

rationale for MIC to combine control with flexibility.   

 

I. INTRODUCTION 

Adaptive control must address the dual demands of 
regulating motor control and learning new motor behaviour.  
There is a tension between the dual demands of exploitation 
and exploration, or alternatively between stability and 
plasticity.  This tension is maximised when the controlled 
system is unstable, such as the multi-link mechanical structure 
of the upright human.  An unstable mechanical structure 
benefits from a high control bandwidth. If regulation and 
stability is too good, the sensorimotor signals have low 
variability and bandwidth which compromises effective 
learning and adaptation.  Vertebrate species operate 
successfully in a variety of environmental niches.  However, if 
“success” depends upon adaptability and flexibility, then 
regulation and stability need only be minimally sufficient, 
while biological priority is given to a high bandwidth of 
decision making.  Maximising the bandwidth of state 
dependent motor decision making requires that selection and 
optimisation of control structure and design are implemented 
within the sensorimotor feedback loop [1, 2]. An on-board, 
bio-inspired architecture suitable for adaptable robots 
operating in complex, changing environments, for example 
operating safely in close physical proximity with humans, 
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should maximise the decision making bandwidth and should 
implement state dependent selection and optimisation within 
the feedback loop.    

Investigation from many authors has considered whether 
human sensorimotor control is intermittent. In short, 
intermittent v. continuous control trades state dependent online 
flexibility for control bandwidth [2]. The intermittent rather 
than continuous use of sensory information to update control 
signals implies an event trigger determining when to use 
sensory information, a discrete sampling/initialisation process 
and a hold process constructing a time varying control 
trajectory (Fig. 1), [3]. The duration for which control is open 
loop is called the open loop interval. A disadvantage of 
intermittent control (IC) is the reduction in control bandwidth.  
Benefits are (i) the event related possibility to iteratively 
reinitialise the control basis and (ii) the availability of 
predictively stabilised time for state dependent selection and 
optimisation [1, 2, 4].  

Recent theoretical and methodological advances have 
provided new experimental evidence that while human 
sustained tracking masquerades as continuous control, humans 
actually uses sensory feedback intermittently to sequentially 
update intervals of open loop predictive control [2, 5, 6].  An 
attribute of open loop predictive control of unstable systems, 
is that control is sensitive to inaccurate model values of 
physical system parameters.  While sensitivity presents a 
challenge to control of unstable systems, it also presents 
possible advantages when control needs to be adaptable.  

Within IC, prediction error is used to trigger the 
intermittent use of sensory feedback (Fig 1). Here, our 
question is whether prediction error provides the information 
required to identify good model parameter values, giving 
stable closed loop control similar to that obtained with the 
accurate values.  

II. METHODS 

Multivariate intermittent control (MIC) is based on the 
continuous-time optimal control design method using the 
observer, predictor state-feedback architecture [3, 7].  MIC 
uses an event detection mechanism.  A system matched hold, 
using the underlying continuous optimal control design, 
generates multivariate open-loop control signals between 
samples of the predicted state. This serial, sequential process 
provides a single channel of control with optimised sensor 
fusion and motor synergies [3]. 
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The system-matched hold (SMH) is the key component of 
the intermittent control.  As described previously [7], the SMH 
state h  evolves in a local intermittent time frame τ as 

d/dt h(τ ) = Ah h(τ )   (1) 

where Ah = Ac and  h(0)= p(ti − td) 

where Ac is the closed-loop system matrix of the equivalent 
continuous system, and p is the predicted state. The hold state 

h replaces the predictor state p in the controller equation. 
Other holds (where Ah ≠ Ac) are possible.  

The intermittent controller generates an open loop control 
signal based on the hold state h (1). At the discrete 
intermittent sample times ti, the hold state is reset to the 
estimated system state w generated by the observer, thus 
feedback occurs at the intermittent sample times ti.   The 
sample times are constrained to be at least ∆min apart. But, in 
addition to this constraint, feedback only takes place when it 
is needed. Such feedback is required when the open-loop hold 
state h differs significantly from the closed-loop observer 
state o

w indicating normally, the presence of disturbances.  
There are many ways to measure such a discrepancy. 
Following [7, 8], we compute a quadratic function of the 
prediction error ehp, such that E>1 triggers sampling of the 
observed state xo

w, 

E(t) = ehp
T (t)Qtehp(t)    (2) 

where ehp(t) = h(t) − o
w (t)    (3) 

where Qt is a positive semi-definite matrix representing 
appropriate weights for each state [8]. E is thus a continuously 
evolving scalar norm of the prediction error ehp.  

The unstable, mechanical system comprises a linearized, 
sagittal (2D) version of the three link (lower leg, upper leg, 
trunk-arms-head), three joint (ankle, knee, hip) model of 
human posture. For this system each segment has four physical 
parameters: mass (m), link length (l), CoM location (c),  and 
radius of gyration (r) with values taken from Figure 4.1 and 
Table 4.1 of [9].   The controller is designed using linear 
quadratic regulation as described previously [3, 8].  

Previously, the observer and predictor used exact values of 
physical parameters within the equations modelling the 
system.  Here we used inexact model values expressed relative 
to the true value.  To provide a measure of closed loop 
stability, we calculated the maximum real pole of the 
underlying continuous closed loop system of the SMH. 

Using the set of model parameter values as a 
multidimensional input (X) we simulated, repeatedly, ten 
seconds of movement generated by a change in set point w of 
size w0 (Fig. 2). Since prediction error (E) varies continuous 
(eq. (2)), we calculated a scalar measure of prediction error (ē), 
normalised for size of movement: 

ē = -log10(Ē/w0), 
where Ē is the mean of E for times 3 < t ≤ 10s. We also 

calculated State Error, defined as the root mean square value 

 

Figure 2: Representative effect of inaccurate controller model on 

movement of single segment following a change in set point.  A, B: 

segment angle (radians).  C, D: Prediction Error (blue). Trigger times 

(red).  

 Left: controller uses correct values of physical system parameters.  

Here, in the absence of disturbance, following triggering of the 

change in set point at 0.2s, (vertical red line), and following a delay 

of 0.2 s, the prediction  error (blue) is reduced to zero by accurate 

control action which remains open loop for the duration of the 

movement.  

Right controller uses incorrect value of system mass (1.4 x correct 

value).  Although open loop control is inaccurate, causing rapidly 

rising prediction error, repeated triggering and increased oscillation, 

the closed loop system is stable since the oscillations decay. N.B. IC 

adapts naturally to inaccurate parameter values, measurement noise 

and disturbances by the trigger mechanism which promotes more 

frequent use of sensory feedback.  

 

Fig. 1.  Implementation of intermittent control. In common with 
continuous optimal control, the observer and predictor contain 
models reproducing the behaviour of the physical system. The 
command signal, u, serves as a single input to the “Plant” whose 
neuro-muscular system synergistically translates it to the multiple 
system segments. By comparison with continuous control, 
intermittent control, includes the additional processes (green) of 
event trigger, sampling, and generalised hold [3].   
    The hold generates open loop control signals equal to the 
equivalent underlying continuous control in the absence of 
disturbances d and changes in set point w. 
    Prediction error is the difference between the predicted hold state 
xh and observed state xo

w.  Following a specified minimum open 
loop interval, sampling of the observed state to update open loop 
control is triggered by prediction error exceeding a threshold.  
     Here the observer, predictor and hold use values of physical 
system parameters (segmental mass m, length l, mass location c, 
radius of gyration r) which are not known accurately. For all 
simulations the delay, sampling delay and minimum open loop 
interval were 0.2, 0 and 0.1s respectively. The neuromuscular 
system was second order with two time constants of 0.1s. 



  

of the position component of the hold state xh for the same 7 
seconds.  

Our objective was to map the relationship between model 
values of system parameters (X) and normalised prediction 
error (ē) and consider the value of that mapping for adapting 
control.  
 To provide a uniform, economical selection of values for 
mapping, we sampled randomly, uniformly within a 
multidimensional convex hull, initialised on the vertices of a 
hypercube, at ± 40% of the true parameter values. Following 
800 trials, the convex hull was contracted to surround the 
cases providing the lowest 200 values of prediction error (ē).  
To prevent shrinking to an unrepresentative local minimum, 
every other trial sampled, randomly, normally (S.D. = 0.1), a 
location outside a randomly chosen vertex of the convex hull. 
After each iteration of 200 trials, the convex hull was 
recalculated. 
 To provide a, smooth representation, robust to a variety of 
distributions, we modelled the mapping X to y as a multi-
dimensional Gaussian process [10]. We used a squared 
exponential covariance function with Automatic Relevance 
Determination providing individual scaling for each 
dimension, and a second order polynomial mean function. 
Using the Gaussian process model to generate values at test 
locations, we performed a global pattern search, constrained 
within the convex hull to locate the parameter values of the 
minimum prediction error. 

To regulate the scale of the multidimensional mapping, 
we adopted a strategy of first investigating the four 
parameters of the upper link, with the lower segments 
immobilised.  This approach is to optimise values of the 
upper link until they are reliable enough to be used as fixed 
parameters while mapping parameter values to prediction 

error for the next lower segment. This sequential method of 
mapping parameters reduces the problem to a size that does 
not scale with the number of dimensions and is inspired by the 
observation that humans learn head control, followed by trunk 
control progressively down trunk segments until control of the 
head and complete trunk is sufficient to enable free sitting and 
subsequently standing balance [11].  

 

III. RESULTS 

When model parameters were varied individually, prediction 

error (ē) increased with parameter inaccuracy allowing easy 

identification of true physical values (Fig 3).  Inaccurate 

parameter values reduce the stability of the underlying closed 

loop system, but the underlying closed loop system remains 

stable for a range of inaccurate parameter values. Inaccurate 

parameter values increase state error, although the 

relationship is not as well defined as that between prediction 

error and parameter values.   

 Figs. 4 and 5 show that covariation of model parameters led 

to more complicated relationships between input parameter 

values and prediction error.  However, the multivariate 

mapping of prediction error to model values allows effective 

identification of combinations of parameters giving stable 

intermittent control with minimal prediction error, and with 

minimal state error (Fig. 5). Figure 5 shows that reducing state 

errors to acceptably low levels requires close regulation of 

model parameter values within narrow limits.  Some 

parameters (e.g. mass of the upper segment, and length of the 

middle segment), and or parameter combinations require 

closer regulation than others. 

 Sequential application of the search to model parameters 

for upper (Fig 4), middle (Fig 5) and lower segments, 4000 

trials at each stage, and the Gaussian process model, led to 12 

parameter values (below) giving a prediction error, maximum 

 
Fig. 3: Univariate mapping of prediction error, stability and 
performance to normalised model values of physical system 
parameters. These relationships were produced using movement 
of a single (upper) segment following a change in set point, as 
shown in Fig 2.  A. Prediction error (ē). B. Maximum real pole of 
the continuous close loop system underlying the system matched 
hold.  C. State error, rms value of the final 7 seconds. 
The true value of the physical parameter is easily identified from 
its univariate variation with prediction error.  IC is stable for a 
variety of model values.   
Inaccurate model values cause Prediction error to increase even 
when stability is unchanging (c.f. m1).  Decreased closed loop 
stability amplifies the growth of prediction error.   
Prediction error is related to State error, so regulation of 
parameters to minimise prediction error would also provide good 
control.  Compared with prediction error, State error but provides 
a less useful identification of physical parameter values.  

 
Figure 4 Covariation of prediction error with model parameters. 
Data from movement of single, upper segment following change in 
set point. Contours show prediction error (ē) related to pairs of 
parameter values.  Red lines show convex hull.  Green lines show 
convex hull shrunk to data points.  Green and black dots show 
samples giving lowest 800 and 200 prediction errors.  Red star, 
Gaussian process minimum.  Magenta star lowest data value. 
      The convex hull defines combinations of parameters giving 
minimal prediction error.   



  

real pole and state error of 0.98, -2.4, 0.025 rads, compared 

with 0.16, -2.6, 0.007 rads for true values.  

 
Quantity m1      l1      c1     r1      m2    l2       r2      c2      m3    l3      c3     r3 

Estimated 1.01  0.88  1.00   1.01   1.15  1.00    0.80   1.00   0.7    1.00   0.7    1.3 

± 95% ci 0.03  11     0.04   0.5    0.02   0.005  0.03   0.7     0.04   0.1    0.4    0.02 

IV.  CONCLUSIONS 

MIC can stabilise an unstable multi-link mechanical system 

representing the upright adult human. However, control is 

sensitive to inaccurate model values of the physical system. 

From the evidence we formulate the following hypotheses: 

 Prediction error provides sufficient information to 

identify combinations of parameter values giving stable 

intermittent control with minimal state error close to 

that obtained with true values.  

 Top down, sequential, identification of segments 

simplifies identification of the multilink system.  

 

MIC operates intermittent sampling of sensory feedback to 

update predictive open loop control. Inaccurate model values 

ensures the observer and predictor insert error, disturbing the 

closed loop system.  This error is amplified by inaccurate 

open loop control when the physical system is unstable. This 

sensitivity of MIC to inaccurate model values is compounded 

by the number of inaccurate parameters. Clearly the unique 

accurate parameter values are present within the set of all 

possible values, however, the number of values giving 

unstable or poor control multiplies with the number of 

parameters. Consequently the region of parameter 

combinations producing low state error is rather small 

requiring close regulation of model parameter values (Fig 5).  

 

The sensitivity of prediction error to inaccurate model values 

is a potential advantage providing an error signal enabling 

adaptation of control.  Identification of the true physical 

parameters is unnecessary providing it is possible to identify 

combinations of parameters giving good, stable control [12].  

Our exploration of the mapping between parameter values, 

and prediction error suggests the identification of 

combinations of parameters giving good control is tractable 

using prediction error.  It appears that minimisation of 

prediction error will also minimise state error.  This would 

ensure that the dual control of parameters and states resolves 

into a single process.  If prediction error generated naturally 

within MIC enables identification of good model parameters, 

this sensitivity to model inaccuracy becomes an asset which 

facilitates adaptation and which supports the combination of 

control with flexibility.  
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Figure 5 Covariation of prediction error, stability and performance 
with model parameters. Data from movement of upper two segments 
following change in set point. Model values of upper segment were 
fixed using the combination identified previously (Fig. 4).  
Panels A: Contours show prediction error (ē) related to pairs of 
parameter values.  Red lines show convex hull.  Green lines show 
convex hull shrunk to data points.  Green and black dots show 
samples giving lowest 800 and 200 prediction errors.  Red star, 
Gaussian process minimum.  Magenta star lowest data value. 
Panels B: Contours show maximum real pole of underlying closed 
loop system (SMH).  Panels C. Contours show state error (radians).   
        Within the convex hull region, prediction error defines 
combinations of parameters giving minimal prediction error.  
Minimal prediction error is related to maximal close loop stability 
and minimum state error.   


