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A general method for the preparation of transition metal carbide, nitride and sulfide 

composite materials in the form of macroscopic beads is reported. Ti- and W-based 

materials were prepared by thermal conversion of Ti- or W-loaded ion-exchange resins 

in an appropriate atmosphere, inert, NH3 or H2S, respectively. The spherical 

macroscopic shape of the resin was preserved in most of the product composite 

materials. The fabrication of pure TiN spherical macrostructures is also demonstrated by 

using TiO2 spherical beads prepared from the Ti-loaded resin by resin oxidation at 600 

°C in the thermal treatment procedure. 
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1. Introduction 

Powders are used in many industrial-scale processes but difficulties related to 

their pulverulent nature often arise during transport, handling, storage and operation, for 

instance arching and rate-holing in hoppers, pressure-drop in reactors; sanitary problems 

with dust, attrition with containers, etc. On many occasions, these problems can be 

minimised without using costly specialised equipment by replacement with granular 

materials such as macroscopic beads (i.e. beads with sizes exceeding 0.1 mm). Porous 

macroscopic beads are of particular importance for sorption and catalytic applications in 

fixed bed reactors due to their reduced pressure-drop limitations. The resin templating 

method, which involves the use of ion-exchange resins for the production of porous 

macroscopic beads, has been employed to prepare a variety of inorganic structures. The 

use of resin beads as templates has several advantages: (i) resins are commercially 

available in a variety of bead sizes; (ii) they are available as macroreticular or gel resins 

(with or without the presence of a permanent network of pores, respectively), providing 

control over the porous structure of the inorganic composites or replicas; (iii) cation- 

and anion-exchange resins are available, making it possible to use a vast number of 

precursor solutions; and (iv) their organic nature allows for their carbonisation in inert 

atmosphere or complete combustion. We have used the resin templating method to 

prepare zeolitic,1 silica,2 carbon replicas of zeolites3 and carbon and SiC beads.4 The 

resin templating method has been used by others to prepare porous macroscopic beads 

of cerium oxide5,6 and gadolinium-doped ceria,7 Fe2O3, Al2O3 and TiO2,
8 ZrO2,

9 

ZrO2/Al2O3,
10 TiO2,

11,12 and TiO2-SiO2.
13 The organic nature of the ion-exchange resins 

has been explored to prepare various metal-supported catalysts on carbonised resin 

beads such as Pt, V and Cu/ZnO and Ni.14-17 
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In order to take advantage of the interesting properties of porous macroscopic 

beads for existing or new potential applications, there are needs to develop further the 

range of compositions available by resin templating, especially for non-oxide transition 

metals (TM). Non-oxide TM such as nitrides, carbides and sulfides are of interest for 

applications in energy storage, solar cells and catalysis.18,19 Tungsten carbide has shown 

potential as a replacement of noble-metal catalysts in the degradation of cellulose.20 

Moreover, TM carbides and nitrides are well-known as hard and wear resistant 

materials.21 TM carbides, nitrides and sulfides display interesting low friction 

coefficients with refractory properties. Since TM non-oxide macroscopic beads are 

rarely reported in the literature, the aim of this study is to demonstrate the possibility to 

use ion-exchange resins as precursors for such materials. Ti- and W-loaded ion-

exchange resins were used as precursor materials in this study. 

 

2. Experimental procedures 

A strongly basic anion-exchange resin (Amberlite IRA-900, Aldrich) was used 

in all experiments. Ti- and W-loaded resin composites were prepared by ion-exchange 

from Ti- and W-precursor solutions. The titanium precursor solution was prepared by 

adding Titanium (IV) isopropoxide (Ti-iso, 95%, Alfa Aesar) to Propan-2-ol (PrOH, 

HPLC grade, Fisher Scientific; dried over 4A molecular sieve prior to use) and mixing 

for 15 min. 1 wt.% aqueous tetra-n-propyl ammonium hydroxide solution (TPAOH, 1M 

aqueous solution, Alfa Aesar) was then added dropwise to the clear mixture, which 

resulted in the formation of a gel, and stirring continued for 1 h. The molar composition 

of the Ti precursor mixture was 1.0Ti-iso : 9.5PrOH: 0.2TPAOH : 218.9H2O. The ion-

exchange resin was converted to a hydroxide form by soaking in 1M sodium hydroxide 
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solution and repeated rinsing with distilled water prior to adding to the Ti precursor 

mixture at a weight ratio of 1 to 10 in a polypropylene reactor. The mixture was treated 

at 95 °C for 24 h. After the synthesis, the mother liquor was decanted and the Ti/resin 

composite was washed with distilled water and dried at 70 °C overnight. A single batch 

of Ti/resin composite was used in all further experiments. Ti/resin beads were heat-

treated directly in the appropriate gaseous atmosphere at different temperature: at 900 

°C for 3 hours in NH3 flow (4 L h-1), at 1000 °C for 12 hours and at 1100 °C for 6 hours 

in Ar flow (8 L h-1) to obtain TiN/C, TiC/C-1000 °C and TiC/C-1100 °C samples, 

respectively. For heat-treatments of all samples, the heating ramps used were done in Ar 

at a rate of 1 °C min-1 from room temperature to 600 °C and 5 °C min-1 from 600 °C to 

the final temperature. 

To explore a two-step route, namely nitridation of oxide macrospheres instead of 

direct nitridation of TM/resin composite, TiO2 macrospheres were also obtained by 

calcination of the above Ti/resin composite in air at 600 °C for 10 h (heating rate of 5 

°C min-1). These macrostructures were then treated at 900 °C for 3 hours under NH3 

flow (4 L h-1) to obtain TiN-900 °C. 

The W/resin composite was prepared by adding as received resin to 0.01 M 

sodium tungstate dihydrate solution (Na2WO4•2H2O, Sigma Aldrich) at a weight ratio 

of 1 to 10 in a beaker. The beaker was covered with parafilm and kept at room 

temperature for 7 days. After the treatment, the solution was decanted and the W/resin 

composite was washed with distilled water. Finally, the composite was dried at 70 °C 

overnight. W/resin beads were heated at 900 °C for three hours in NH3 flow to obtain 

WN/C-900 °C sample, at 950 °C for 12 hours in Ar flow to obtain WC/C-950 °C 
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sample, and at 950 °C for 3 hours in H2S (1.2 L h-1 flow) to obtain WS2/C-950°C 

sample. 

X-Ray Diffraction (XRD) patterns were obtained by transmission through a 

capillary silica tube on a STOE Diffractometer, STADI-P model with Cu Kα radiation 

(1.54 Å). Ti-based macrospheres were crushed and inserted in the capillary tube 

whereas W-based macrospheres could not be manually crushed (because of their 

mechanical toughness and spherical shape) and were introduced as made in the 

capillary. Scanning Electron Microscope Philips, XL30 was used to obtain micrographs 

of beads without gold sputtering. 

Thermogravimetric analysis were obtained on a thermogravimetric analyser 

Mettler-Toledo TGA/DSC 3+. Samples were heated at 600 °C under argon flow with a 

5 °C/min heating ramp. At 600°C, argon flow was switched for air flow and 

temperature was maintained at 600°C during one hour. 

 

3. Results and Discussion 

To exemplify the formation of non-oxide TM beads from ion-exchange resins, 

we firstly prepared Ti/resin and W/resin composites by ion exchange from Ti- and W-

precursor solutions. The conversion of the composites was then realised by either 

gas/solid reactions performed with NH3 or H2S gas to yield metal nitrides and metal 

sulfides, respectively, or by solid/solid reaction between TM oxide and carbon arising 

from the carbonised resin for the formation of metal carbides. Fig. 1 illustrates 

schematically the process used to prepare MX macroscopic beads upon resin 

carbonisation (M = TM (Ti or W), X=C, N or S). 
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SEM images of Ti/resin and W/resin composites showed spherical macroscopic 

beads with an average diameter of 0.5 mm, which were similar in size and shape to the 

original resin beads (Fig. S1, Supplementary Information). SEM micrographs of the Ti-

based/C and W-based/C beads obtained after heat-treatment in the respective 

atmosphere and carbonisation of the resin are shown in Fig. 2. Except for the WN/C-

900 °C sample, which contained a mixture of beads and “smashed” beads; all other 

samples (TiN/C-900 °C, TiC/C-1000 °C, TiC/C-1100 °C, WC/C-950 °C and WS2/C-

950 °C) constituted intact spherical beads. The beads’ average diameter was reduced 

from 0.5 mm (parent resin) to 0.3 and 0.4 mm for W- and Ti-based beads, respectively. 

This shrinkage can be attributed to (i) sintering of the non-oxide phases and (ii) weight 

loss due to both the resin carbonisation and the conversion of the oxide to nitride, 

carbide or sulfide. The shrinkage appeared to be more pronounced in the case of W-

based macrospheres, because of the lower metal content in the metal oxide/resin 

composite (6 wt.% for WO3 compared to 25 wt.% for TiO2, Fig. S2, Supplementary 

Information), resulting in a higher contraction of the matrix during resin carbonisation. 

The W-based macrospheres were very hard and difficult to grind in an agate mortar, 

whereas the Ti-based macrospheres were softer. Nevertheless, all product beads 

displayed good mechanical stability and could withstand standard laboratory 

manipulations. 

At higher magnifications, an irregular shell was observed by SEM on most of 

the WS2/C beads (Fig. S3, Supplementary Information). Energy-dispersive X-ray 

spectroscopy (EDX) analysis of the shell and the interior of the beads showed that they 

were both composed of W and S with C barely detected in the outer shell (Figs. S4 and 

S5, Supplementary Information). These results indicate that the materials are WS2-
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coated WS2/C-950 °C beads. This observed difference of the carbon content in the 

beads and the shells could be related to the higher reactivity of H2S with C present in 

the outer shell leading to the formation of CS2 gaseous species at the high temperature.22 

X-ray diffraction (XRD) analysis of the product beads is presented in Fig. 3. The 

XRD patterns of TiN/C (1000 °C and 1100 °C) and WS2/C-950 °C bead samples 

displayed a single crystalline phase (TiN and WS2, respectively). Titanium carbide 

(TiC) was detected in the TiC/C samples prepared at 1000 °C and 1100 °C, however the 

intensity of the TiC peaks was higher in the sample prepared at 1100 °C. 

Complementary studies by thermogravimetric analysis (TGA) showed that C was in 

excess during the carbothermal reduction (TiO2 + 3C  TiC + 2CO) (Fig. S2, 

Supplementary Information). Since the carbothermal reduction of titanium oxide 

requires temperatures usually above 1000 °C,23 this reduction was not completed even 

at 1100 °C, as shown by the concomitant presence of TiO2 (rutile) in the sample 

prepared at this temperature. The WN/C-900 °C beads were composed of two different 

tungsten nitride crystalline phases, WN and W2N. Finally, metal tungsten (W) and 

tungsten carbide (WC1-x) were observed by XRD analysis of WC/C-950 °C beads, 

indicating the occurrence of metal reduction and carbothermal reduction reactions in 

this sample. 

The preparation of non-oxide TM beads from TM oxide beads obtained after 

resin oxidation at 600 °C in air was also tested using the Ti/resin composite. Fig. 4 

shows SEM images of the TiO2 sample obtained after the removal of the resin and the 

corresponding TiN product. The TiO2 sample contained predominantly broken beads 

(Fig. 4A), which were inherited by the TiN product (Fig. 4B). XRD analysis indicated a 

pure TiN phase (Fig. 4C). The result indicates that this approach can also be used to 
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prepare non-oxide TM beads provided that intact TM oxide beads are available as a 

staring material. 

 

 

4. Conclusions 

In summary, this study demonstrates the versatility and simplicity of the resin 

templating method. The method was applied to synthesise a large variety of non-oxide 

transition metal (TM) macroscopic beads (TiN/C-900 °C, TiC/C-1000 °C, TiC/C-1100 

°C, WN/C-900 °C, WC/C-950 °C and WS2/C-950 °C). The process involves heat 

treatment of TM-loaded ion-exchanged resins in different atmospheres (Ar, NH3 or 

H2S). Most of the product beads kept their spherical shape (except for WN/C-900 °C) 

and could be manipulated without affecting their macroscopic shape. The macroscopic 

beads in a non-oxide transition metal form will be interesting for applications in 

catalysis and where contact with harmful powders and attrition have to be limited while 

maintaining good flowability for easy handling. 

 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the online 

version, at  
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Figure captions 

 

Fig.1 Schematic illustration of the process used to prepare TM (W or Ti) carbides, 

sulphides and carbides upon resin carbonisation. 

 

Fig. 2 SEM images of: (A) TiN/C-900 °C, (B) TiC/C-1000 °C, (C) TiC/C-1100 °C, (D) 

WN/C-900 °C, (E) WC/C-950 °C and (F) WS2/C-950 °C beads. 

 

Fig. 3 XRD patterns of: (left) Ti-based macrospheres and (right) W-based 

macrospheres. Symbols are: l TiN (ICDD 00-038-1420), • Rutile (ICDD 00-021-1276), 

* TiC (ICDD 00-032-1383), - Ti2O3 (ICDD 00-010-0063), + WS2 (ICDD 00-008-0237), 

∆ WC1-x (ICDD 00-020-1316), ○ W (metal) (ICDD 00--004-0806), ∟ WN (ICDD 00-

025-1256) and ‡ W2N (ICDD 00-025-1257). 

 

Fig. 4 SEM images of: (A) TiO2 obtained after resin oxidation in air at 600 °C and (B) 

the product TiN-900°C sample, and (C) XRD diffractograms of TiO2 beads and TiN-

900 °C beads obtained by nitridation of TiO2 beads. Symbols are:x TiN (ICDD 00-008-

0237), o Rutile (ICDD 00-021-1276), and I for Anatase (00-021-1272). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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