

Natural Language Interface to Relational

Database (NLI-RDB) through Object Relational

Mapping (ORM)

Mr Abdullah Alghamdi, Dr. Majdi Owda and Dr. Keeley Crockett

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan

University, Chester Street, Manchester, M1 5GD, UK

Email: abdullah.a.alghamdi@stu.mmu.ac.uk, {m.owda, k.crockett}@mmu.ac.uk

Abstract This paper proposes a novel approach for building a Natural Language

Interface to a Relational Database (NLI-RDB) using Conversational Agent (CA),

Information Extraction (IE) and Object Relational Mapping (ORM) framework.

The CA will help in disambiguating the user’s queries and guiding the user interac-

tion. IE will play an important role in named entities extraction in order to map

Natural Language queries into database queries. The ORM framework i.e. the Hi-

bernate framework resolves the impedance mismatch between the Object Oriented

Paradigms (OOP) and Relational Databases (RDBs) i.e. OOP concepts differ from

RDB concepts, thus it reduces the complexity in generating SQL statements. Also,

by utilizing ORM framework, the RDBs entities are mapped into real world objects,

which bring the RDBs a step closer to the user. In addition, the ORM framework

simplify the interaction between OOP and RDBs. The developed NLI-RDB system

allows the user to interact with objects directly in natural language and through nav-

igation, rather than by using SQL statements. This direct interaction tends to be

easier and more acceptable for humans whom are nor technically orientated and

have no SQL knowledge. The NLI-RDB system also offers friendly and interactive

user interface in order to refine the query generated automatically. The NLI-RDB

system has been evaluated by a group of participants through a combination of qual-

itative and quantitative measures. The experimental results show good performance

of the prototype and excellent user’s satisfaction.

Keywords: Natural Language Interfaces to Relational Databases (NLI-RDB);

Object Relational Mapping (ORM); Natural Language Interfaces; Database In-

terfaces and Hibernate Framework.

1 Introduction
In the era of information technology, smart phones and big data, the demand for

retrieving information from databases in a short time is an urgent need, in particular

for decision-makers who are normally inexperienced in structured query language

(SQL). In addition, there are many aspects of our lives that can benefit a technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161890762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

that provides interfaces to relational databases such as applications on smartphones

and mini hand-held devices (e.g., tablets). Moreover, such technology allows people

to access databases using natural language (e.g., English) [1, 2, 3, 4, 5, 6]. Therefore,

there is an increasing demand on querying the RDBs through the use of natural

language instead of having experts in SQL. This requires developing Natural Lan-

guage Interfaces to Relational Databases (NLI-RDBs). The main challenge that de-

velopers of NLI-RDBs continue to face, is how to map or convert the natural lan-

guage questions into SQL queries automatically [1, 2, 3,4].

NLI-RDBs research is an important area since 1960s and are still an interesting

research field. In the literature, several NLI-RDB architectures have been proposed

for developing prototype systems [1, 2, 6, 7, 8, 9, 10], which can be grouped in five

main architectures: Pattern-Matching Architecture, Intermediate Representation

Language Architecture, Syntax-Based Architecture, Semantic Grammar-Based Ar-

chitecture and Intelligent Agents-Based Architecture [1, 2, 4]. The first approach is

based on Pattern-Matching, which is one of the earliest architectures that used for

developing NLI-RDBs. This approach uses checking mechanisms to check whether

a set of tokens, as a user input, matches a pre-defined pattern. Based on matched

tokens, a specific SQL statement is executed [4]. The Pattern-Matching approach is

simple but does not require complex natural language processing for implementa-

tion [1, 2]. SAVVY [11] is an example of the Pattern-Matching Architecture. The

second approach is based on an Intermediate Language in which the user’s question

is translated from natural language into a high-level representation language inde-

pendent of database (intermediate representation language). Then, the intermediate

representation language is converted into SQL queries using database query gener-

ator [1, 2, 4]. MASQUE/SQL [10] and EDETE [12] are examples of using the In-

termediate Representation Language Architecture. Independence from the database

is the main advantage of this system where it can be applied in different domains

and databases [4]. The third approach is a Syntax-Based Architecture in which the

natural language query is syntactically analyzed to create parse trees that are used

directly to create database queries [1, 2]. LUNAR [13] is an example system of the

Syntax-Based Architecture. The fourth approach is a Semantic-Grammar Architec-

ture, which is largely similar to the Syntax-Based Architecture, but it used semantic

categories instead of syntactic concepts. It depended on semantic grammar rules to

parse the user inputs into semantic parse tree, which is then mapped into SQL query

[1, 2, 4]. LADDER [2, 4] and PLANES [1, 2] are two examples of semantic-based

NLI-RDB systems. The fifth approach is the Intelligent Agents-Based Architecture.

This approach is containing knowledge and information about the user and the sur-

rounding world. This knowledge made such systems able to handle questions,

which could not be directly responded to using database management systems. In

addition, it provided better understanding of the user's needs [1, 2]. LOQUI [2] is

an example of Intelligent Agents-Based systems. Whilst, each approach has ad-

vantages and disadvantages, the common major drawbacks are either with the lin-

3

guistic and conceptual challenges i.e. natural language understanding and pro-

cessing pitfalls or the database interaction component i.e. presenting an understand-

able responses to user in the case of failure to generate SQL query and in addition

to offer the user to interact with the results in case of successful mapping from nat-

ural language to SQL query [3].

The NLI-RDB novel architecture proposed in this paper built upon three main pil-

lars; firstly a Pattern Matching Conversational Agent (PM-CA) component; in

which it is used to for offering friendly interaction with the user and partly resolving

the interaction drawback highlighted in previous work; secondly, an Information

Extraction (IE) component which offers the capability of extracting named entities

in real time in which will help in answer the user query. Thirdly, the key novelty of

the proposed NLI-RDBs, which is the usage of the ORM framework to offer better

interaction with RDBs through visualizing RDBs entities into real world objects.

Therefore offering better interaction with user in the case of linguistic, conceptual

or conversation failure with the conversational agent; in which the interaction with

RDBs entities is a step closer to the user i.e. more understandable for the user to

have navigable objects created in real time in response to their queries in which this

will provide an easier way for interaction compared to SQL statements or un-un-

derstandable error messages in case of failure to generate SQL query automatically.

This paper is organized as follows: sections 2, 3 and 4 will introduce the main con-

cepts in Information Extraction (IE), Conversational Agent (CA) and Object-Rela-

tional Mapping (ORM). Section 5 will introduce the challenges in developing NLI-

RDBs. Section 6 will introduce the proposed NLI-RDB Framework. Section 7 will

present the evaluation results. Finally, section 8 provides the conclusion of this

study.

2 Information Extraction (IE)
IE task is primarily for extracting structured information from unstructured or semi-

structured sources. The pioneers in IE are Andersen et al. in late 1970 [14] used IE

technique for extraction of facts from press releases to generate news stories. An IE

methodology consist of several stages, and at each stage the method will add a struc-

ture and often lose information, hopefully irrelevant, by applying rules that are ac-

quired manually and/or automatically. In the literature, there are two main ap-

proaches to design an IE methodology. The first is the knowledge engineering

approach, which is based on having a knowledge engineer to develop rules for the

IE methodology. According to Appelt et al. [15] the knowledge engineering based

approach is most effective when resources such as lexicons and rule writers are

available. The second approach is the automatic training approach, which does not

require a knowledge engineer, instead, it only requires someone who knows well

the domain, and then the task is to annotate a corpus of texts for the information

being extracted. An IE method can be a part of various systems such as Knott et al.

[9], which uses IE to analyses financial discussion boards for automated crime de-

tection. Owda et al. [16] incorporate IE techniques into an Enhanced Conversation-

4

Based Interface to Relational Databases (C-BIRD) in order to generate dynamic

SQL queries. In Owda et al work IE played an important role in the named entities

extraction, which added unique successful features for the conversational agent in

order generate SQL queries in real time. In addition, IE has been successfully used

in many other fields such as Web Knowledge Bases [17], Text Mining [18] and

bioinformatics [19].

3 Conversational Agent (CA)
Conversational Agent (CA) is a computer system which can employ text to allow

people to communicate with computer systems using natural language. The pioneer

in this field is Alan Turing who discussed the question: “Can machines logically

process information?” [20]. Since then CA interfaces have been used effectively in

many applications such as customer service, help desk, website navigation, tech-

nical support [21], web-based guidance [22], tutoring [23], assessment and training

[24] and database interfaces [1, 2, 25]. There have been a number of CAs used as

an interface to relational database such as C-BIRD [1, 9], which allows a user to

converse with a relational database in order to retrieve answers to queries without

knowledge of SQL. The C-BIRD methodology combines pattern-matching conver-

sational agent with knowledge trees and information extraction modules. Similarly,

Choudhary et al. [26] propose another pattern matching approach in which patterns

have been created for simple query, aggregate function, relational operator, short-

circuit logical operator and joins. All in all; CAs proved to be useful component in

building NLI-RDBs.

4 Object-Relational Mapping (ORM)
Relational Databases Management Systems (RDBMSs) have been used on a large-

scale as an ideal solution for storing and retrieving data [5]. Object Oriented Pro-

gramming (OOP) has been used as a major vehicle for developing interfaces to the

RDBMSs for human friendly information retrieval and manipulation purposes. The

OOP has been used to develop many NLI-RDBs [1, 9, 25]. However; a number of

challenges have been highlighted in the literature such as impedance mismatch i.e.

OOP concepts does not directly match with RDBMS concepts and OOP developers

are not usually RDBMSs developers; therefore it is difficult to handle and manipu-

late data stored in RDBMSs using OOP i.e. through SQL interaction. ORM has

arisen trying to bridge the gap of mismatch between RDBs and OOP [27]. ORM is

a programming technique that provides a solution for OO systems to exchange data

with RDBs safely and smoothly by passing entities from and to the relational data-

base through objects as needed. The ORM framework was developed in an open

source project for Java programmers in 2002, which is called the Hibernate frame-

work, established by Gavin King [28, 29]. Consequently, systems that use this tech-

nology started to appear (e.g., ADO.NET Entity Framework [28] from Microsoft).

In the programing field, developers prefer to deal with persistent data existing in

programing objects instead of dealing with SQL statements for accessing data in

5

databases, even though this could lead to “impedance mismatch” between tabular

data and object state. However, ORM frameworks, such as Hibernate, reduce the

gap of mismatch between OOP and RDBs by converting data from RDBs into ap-

propriate programing objects and vice versa. The ORM framework sits between

applications’ i.e. object world and RDBs. It plays the role of mediator for mapping

object schemas to database schemas [28].

5 Challenges in Developing NLI-RDBs
The challenges in developing NLI-RDBs can be summarized as follow:

 Linguistic versus Conceptual Failures

Linguistic and conceptual failures refer to the inability of the NLI-RDB system

to process natural language query. When the system fails to answer users’ ques-

tions, the users try to re-write their questions thinking that the problem refers to

the linguistic coverage, whereas it is caused by conceptual failure or vice-versa

[2].

 SQL Query Generation Failure

SQL is a cumbersome language for normal users [30]. Generating SQL statement

automatically through mapping from natural language questions into SQL que-

ries; is a complex process. In addition to the challenge in carrying out further

interaction after the failure to generate SQL query and presenting an understand-

able response during this failure.

 Ambiguity

Ambiguity is one of the main challenges for developing NLI-RDBs [2, 4, 31],

which can be present at lexical level, syntax level and referential level [32]. Lex-

ical ambiguity refers to the ambiguity in words. (e.g., a word can be a noun or

verb depending on the context). Syntax ambiguity refers to the interpretation of

one sentence in various ways [32]. Referential ambiguity is present when entities

mentioned previously implicitly or explicitly; then can be referred to these enti-

ties at later stage as pronouns, possessive determiners or noun phrases [2].

 Users Assume Intelligence

NLI-RDBs must use techniques for identification and disambiguation of data and

meta-data within the natural language context because users usually assume the

system has intelligence (ability to understand all types of questions [2, 31]). For

example, "Give me the location of ABC." where it is not specified whether ABC

is a person, place or city name [31].

6 Methodology and Implementation
This section describes the creation of a NLI-RDB using CA, IE and ORM frame-

work. The key features of the approach are shown in figure 1. The proposed archi-

tecture consists of five major components (User Interface, Text preparation, Engine

Algorithm, ORM Framework and Relational Database). Each component contains

6

a set of modules. The following are explanations of the five components that will

be introduced from top to the bottom of the figure for simplicity.

Fig. 1. The NLI-RDB system architecture

7

6.1 User Interface
The user interface provides interaction between the user and the application. Figure

2 shows the NLI-RDB prototype system user interface implementation which con-

sists of three main parts.

Fig. 2. The NLI-RDB system’s user interface

 User Natural Language Query

The user is offered to write his question in natural language such as English. The

natural language query is sent to the next process to prepare it for analyzing.

 Agent Response

The conversational agent displays conversational responses to the user and some

useful comments regarding the user’s query. The responses are based on pattern

matching rules performed on algorithm engine unit.

 Navigable Query Results

The results of queries are displayed as a navigable table, which includes simple

and navigable menus. This offers various options for performing a query within

a query by just a few clicks, without the need of writing again.

6.2 Text Preparation
This component prepares the text for analyzing by passing it through two main

steps:

 Cleaning Text (CT)

Before doing a textual analysis, often a text cleaning stage is required. This step

cleans the user’s query from unnecessary characters and words (e.g., white

spaces, newlines, dashes, slashes, “could”, “please”, “a”, “the”, etc.).

Agent Response

User Natural Language Query

Navigable Query Results

8

 Tokenization

Tokenization is the process of splitting a string of text into a set of separated

words called tokens. The user’s natural language query will be split into a se-

quence of tokens for further processing.

6.3 Engine Algorithm
The engine algorithm is the main component responsible for analyzing the user’s

natural language query in order to generate agent responses and Hibernate Query

Language (HQL) statements. It comprises of four modules.

 Information Extraction (IE)

IE component is responsible for filtering the user's query in order to extract the

objects’ names and their attributes, which represent the relational database tables

and columns. The extracted information is then sent to HQL generator to be used

for filling the HQL query template.

 Conversational Agent Pattern Matching Engine (CA-PM)

CA-PM component is working to match the cleaned text and tokens with prede-

fined patterns either in order to guide the user through conversational responses

or to recognize objects attributes and possible conditions, which also will be used

with HQL generator.

 HQL Query Generator

HQL generator is responsible for building a suitable HQL query based on the

extracted information and matched patterns. The generated HQL query is pro-

cessed by the Hibernate ORM framework in order to generate the requested in-

formation from relational database as objects.

 Query the Query

This is a set of predefined HQL templates to perform a query within a query

using a Graphical User Interface (GUI) context menu. The users can perform

other queries based on the result of their previous query using mouse clicks,

without the need for writing natural language query again. The menu contents

vary with respect to the query result. This provides an easy and fast interactive

method to facilitate querying within a query result i.e. interacting with objects

contents directly. This is shown in figure 2.

6.4 ORM Framework
The ORM framework (Hibernate) maps an object-oriented model to a relational da-

tabase. The Hibernate establishes and manages communication with the database.

The generated HQL query is translated by Hibernate into SQL query, which is then

executed among the relational database. The obtained data is saved as persisted ob-

jects, which can be easily manipulated within the application. The objects results

set is sent to the user interface to present the result for the user’s natural language

query.

9

6.5 Relational Database (RDB)
The Relational Database (RDB) is holding the domain information. The domain is

designed for university professors and their details such as names, gender, job title

and departments they are working in, as well as contact details. In addition, it holds

information related to their research interests, projects, publications and PhD stu-

dents. Moreover, it stores details about the academic timetable and office hours for

each individual professor. The domain database has been created and populated for

the purpose of this project and future research to be conducted.

6.5.1 The Projection of Relational Database Entities into Objects

The proposed NLI-RDB architecture mainly emphasizes the concept of projection

of objects from the RDB tables. As a result, RDBs are brought a step closer to the

user by mapping RDBs entities into real world objects. Figure 3 shows a demon-

stration sample of objects projected from RDB tables, which is easier for the user

to understand and interact with. The database layer shows the relational database

and its tables. It could be any RDBMS. The ORM layer represents the Hibernate

ORM framework, which manages and persists data between Java objects and rela-

tional databases. The Hibernate ORM framework resolves the problem of object-

relational impedance mismatch between OOP and RDBs, therefore it reduces the

complexity in generating SQL statements during developing applications. The Ob-

jects layer shows objects have been generated from the relational database tables.

The generated objects can be easily manipulated within the application and easier

interact with by the user.

Fig. 3. The projection of domain objects generated from the relational database tables

7 Evaluation Results and Discussion
This section presents the evaluation methods that have been used in order to evalu-

ate the NLI-RDB system prototype produced. The evaluation included both quanti-

tative and qualitative measures. A questionnaire of two parts firstly, task success

10

[33] using six scenarios to measure system's ability of detecting tables and columns

that answer the user's query; and secondly the system’s usability [34] using seven

questions to measure the system ease of use and interface appearance. The evalua-

tion sample is based on using 15 participants in which seven were computer science

students and eight from different fields. The participants were given an instruction

sheet including a description for prototype system in addition to the evaluation

sheet. They were given a typical time of 20 minutes to use the prototype system and

complete the evaluation. In the first part of evaluation i.e. task success, the partici-

pants were asked to do six scenarios. Each scenario has a set of tasks that have a

specific goal to be accomplished. They were asked to respond to each task whether

the system gave the required information correctly or not, (answer ‘Yes’ or ‘No’).

In the second part, they were asked to give their overall opinion on the system by

answering a questionnaire about the prototype usability. The measure’s structures,

details and results are described in the following subsections.

7.1 Quantitative Measures
In the Quantitative Evaluation, a task success [33] has been used to measure user’s

ability to complete specific tasks. The tasks have been divided into six scenarios

based on the goals listed in table 1. Each scenario has a set of tasks that have a

specific goal to be accomplished. It has been requested to answer ‘Yes’ or ‘No’

(whether the system gave the required information correctly or not).

Table 1. Task Success Scenarios

No. Goal of the Scenario with Examples of Tasks

1

To measure retrieving information based on one table without a condition.

1. List all professors in the database.

2. List all professors' publications.

2

To measure retrieving information based on one table with a condition of one or more

columns.

1. Tell me about professor Majdi.

2. What is the timetable of “enterprise programming” unit.

3

To measure retrieving information based on two tables with a condition of one column.

1. Who is supervisor of student Pei Lee?

2. List all publications of professor Majdi.

4

To measure retrieving information based on two tables with a condition of two or more

columns.

1. List males professors in Mathematics department.

2. When is the annual leave of Keeley.

5

To measure retrieving information based on some numerical functions such as less than,

greater than and between.

1. List papers published since 2012.

2. List all papers published between 2010 and 2013.

6

To measure retrieving information based on the functionalities of bar menus, context

menus and “Query the Query”.

1. Select professor "Keeley Crockett" and use right click to get her publication.

2. Use File menu to save the result as PDF file.

11

7.2 Qualitative Measures
In the Qualitative Evaluation, usability testing [34, 35, 36, 37, 38] has been done in

order to measure users' usability satisfaction. Table 2 shows qualitative measures

besides their goals. In addition, table 3 shows the qualitative measures scales.

Table 2. Qualitative measures

Measure Goal

System is easy to use
To measure user satisfaction toward the prototype in terms of

simplicity, flexibility and friendliness.

Understanding the system

responses

To measure user satisfaction toward the prototype agent re-

sponse in terms of clarity and content.

Using of context menu
To measure user satisfaction toward the prototype in terms of

simplicity and flexibility of using context menus.

Using of top menu bar
To measure user satisfaction toward the prototype in terms of

clarity and simplicity of using menu bar.

Text clearness
To measures user satisfaction toward the prototype in terms of

type and size of used text.

Organization of information
To measures user satisfaction toward the prototype in terms of

the information distribution in the interface.

General appearance
To measures user satisfaction toward the prototype in terms of

general appearance of the interface.

Table 3. The qualitative measures scales

Measure Scales

System is easy to use ☐ easy ☐ moderate ☐ difficult

Understanding the system responses ☐ easy ☐ moderate ☐ difficult

Using of context menu ☐ easy ☐ moderate ☐ difficult

Using of top menu bar ☐ easy ☐ moderate ☐ difficult

Text clearness ☐ very good ☐ good ☐ poor

Organization of information ☐ very good ☐ good ☐ poor

General appearance ☐ very good ☐ good ☐ poor

7.3 Quantitative Results
The quantitative evaluation was carried out, in Scenarios 1 to 6. In each scenarios,

the participants were asked to respond whether or not the prototype delivered the

required information for each task, (answer ‘Yes’ or ‘No’). Table 4 shows the over-

all success of each scenario.

12

Table 4. The overall success of each scenario

Sce. Goal of the scenario Result

1
To measure the success of retrieving information based on one table with-

out any condition.
100%

2
To measure the success of retrieving information based on one table with a

condition of one or more columns.
98.89%

3
To measure the success of retrieving information based on two tables with

a condition of one column.
93.33%

4
To measure the success of retrieving information based on two tables with

a condition of two or more columns.
92%

5
To measure the success of retrieving information based on some numerical

functions such as less than, greater than and between.
100%

6
To measure the success of retrieving information based on the functionali-

ties of bar menus and context menus.
100%

The overall average 97.37%

7.4 Qualitative Results

In the qualitative evaluation, the participants were asked to provide their opinions

about the ease of use of and the general appearance of the prototype. Based on the

evaluation scales, results have been presented into two groups as shown in table 5

and table 6.

Table 5. The evaluation results of usability (group 1)

The qualitative measures (group 1) easy moderate difficult

System is easy to use 93.33% 6.67% 0%

Understanding the system responses 80 % 20 % 0%

Using of context menu 86.67% 13.33% 0%

Using of top menu bar 100% 0.00% 0%

Table 6. The evaluation results of usability (group 2)

The qualitative measures (group 2) very good good poor

General appearance 85.71% 21.43% 0%

Text clearness 92.86% 14.29% 0%

Organization of information 92.86% 7.14% 7.14%

The overall evaluation results showed an excellent user satisfaction in both the

quantitative and qualitative evaluations used.

13

8 Conclusion

This paper proposed building a Natural Language Interface to a Relational Database

(NLI-RDB) through using Conversational Agent (CA), Information Extraction (IE)

and Object Relational Mapping (ORM) frameworks. The novelty of work is through

introducing ORM framework in order to resolve the impedance mismatch between

the Object Oriented Paradigms (OOP) and Relational Databases (RDBs) which re-

duces the complexity in generating SQL statements. In addition, by mapping the

RDBs entities into real world objects, the RDBs entities are brought closer to the

user. Additionally, the ORM frameworks simplify the interaction between OOP and

RDBs. The developed NLI-RDB prototype system allows for the user to interact

with objects directly, rather than by using SQL statements. This direct interaction

tends to be easier and more acceptable for humans. The prototype also offers

friendly and interactive user interface in order to refine the query generated auto-

matically. The experimental results showed good performance of the prototype and

excellent user’s satisfaction.

References

[1] M. Owda, Conversation-based interfaces to relational databases (C-BIRDs), Manchester: Man-

chester Metropolitan University, 2012.

[2] I. Androutsopoulos, G. D. Ritchie and P. Thanisch, "Natural Language Interfaces to Databases

– An Introduction," Natural Language Engineering, vol. 1, no. 01, pp. 29-81, 1995.

[3] N. Nihalani, S. Silakari and M. Motwani, "Natural language Interface for Database: A Brief

review," International Journal of Computer Science Issues, vol. 8, no. 2, 2011.

[4] N. Sangeeth and R. Rejimoan, "An Exhaustive Study on NLIDB Systems and their Chal-

lenges," International Journal of Computer and Advanced Engineering Research (IJCAER),

vol. 02, no. 02, 2015.

[5] K. Shabaz, J. O'Shea, K. Crockett and A. Latham, "Aneesah: A Conversational Natural Lan-

guage Interface to Databases," in Proceedings of the World Congress on Engineering, London,

2015.

[6] M. Llopis and A. Ferrández, "How to make a natural language interface to query databases

accessible to everyone: An example," Computer Standards & Interfaces, vol. 35, no. 5, pp. 470-

481, 2013.

[7] X. Yiqiu, W. Liwei and Y. Shi, "The Study on Natural Language Interface of Relational Data-

bases," in Environmental Science and Information Application Technology (ESIAT), 2010 In-

ternational Conference, Wuhan, 2010.

[8] A. Shah, J. Pareek, H. Jyoti and N. Panchal, "NLKBIDB - Natural Language and Keyword

Based Interface to Database," International Conference on Advances in Computing, Commu-

nications and Informatics (ICACCI), pp. 1569-1576, 2013.

[9] M. Owda, Z. Bandar and K. Crockett, "Information Extraction for SQL Query Generation in

the Conversation-Based Interfaces to Relational Databases (C-BIRD)," in Agent and Multi-

Agent Systems: Technologies and Applications, Springer Berlin Heidelberg, 2011, pp. pp 44-

53.

14

[10] I. Androutsopoulos, G. R. P and Thanisch, MASQUE/SQL: An Efficient and Portable Natural

Language Query Interface for Relational Databases, University of Edinburgh, Department of

Artificial Intelligence, 1993.

[11] T. Johnson, "Natural language computing: the commercial applications," The Knowledge En-

gineering Review, vol. 1, no. 3, pp. 11-23, 1986.

[12] P. ReisAffiliated, J. Matias and N. Mamede, "Edite – A Natural Language Interface to Data-

bases: a New Dimension for an Old Approach," in Information and Communication Technol-

ogies in Tourism, Springer Vienna, 1997, pp. pp 317-326.

[13] W. A. Woods, R. Kaplan and a. N.-W. B. , "The Lunar Sciences Natural Language Infor-

mation System: Final report," Bolt, Beranek and Newman, 1972.

[14] P. M. Andersen, P. J. Hayes, A. K. Huettner, L. M. Schmandt, I. B. Nirenburg and S. P.

Weinstein, "Automatic Extraction of Facts from Press Releases to Generate News Stories," in

Proceedings of the third conference on Applied natural language processing, 1992.

[15] E. Applet and D. Israel, "Introduction to Information Extraction," in Tuotorial at IJCAI con-

ference, 1999.

[16] M. Owda and E. Knott, "extraction, The detection of potentially illegal activity on financial

discussion boards using information," in Conference: 2nd International Conference on Cyber-

crime, Security and Digital Forensics, 2012.

[17] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam and S. Slattery,

"Learning to extract symbolic knowledge from the World Wide Web," in Proceedings of the

fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artifi-

cial intelligence, 1998.

[18] R. J. Mooney and R. Bunescu, "Mining knowledge from text using information extraction,"

in ACM SIGKDD Explorations Newsletter - Natural language , 2005.

[19] R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani and Y. W. Wong,

"Comparative experiments on learning information extractors for proteins and their interac-

tions," Artificial intelligence in medicine, vol. 33, no. 2, pp. 139-155, 2005.

[20] A. M. Turing, "Computing machinery and intelligence," Mind, vol. 59, no. 236, pp. 433-460,

1950.

[21] J. Lester, K. Branting and B. Mott, "Conversational Agents," in Practical Handbook of Inter-

net Computing, New York: Chapman & Hall, 2004, pp. 220-240.

[22] A. Latham, K. Crockett and Z. B, "A conversational expert system supporting bullying and

harassment policies," in In the 2nd ICAART, 2010.

[23] S. D’Mello, B. Lehman, J. Sullins, R. Daigle, R. Combs, K. Vogt, L. Perkins and A. Graesser,

"A Time for Emoting: When Affect-Sensitivity Is and Isn’t Effective at Promoting Deep Learn-

ing," in Intelligent Tutoring Systems, Springer Berlin Heidelberg, 2010.

[24] P. G. Kenny and T. D. Parsons, "Embodied Conversational Virtual Patients," in Conversa-

tional Agents and Natural Language Interaction: Techniques and Effective Practices, Infor-

mation Science Reference, 2011, pp. 254-281.

[25] K. Pudner, K. Crockett and Z. Bandar, "An Intelligent Conversational Agent Approach to

Extracting Queries from Natural Language," in World Congress on Engineering 2007 (Volume

1);2007, p305, 2007.

[26] N. Choudhary and S. Gore, "Pattern based approach for Natural Language Interface to Data-

base," International Journal of Engineering Research and Applications, Vols. Vol. 5,, no. Issue

1(Part 2), pp. pp.105-110, 2015.

[27] G. King and C. Bauer, Java Persistence with Hibernate, Revised ed., Greenwich, CT: Manning

Publications, 2006.

[28] E. O’Neil, "Object/Relational Mapping 2008: Hibernate and the Entity Data Model (EDM),"

Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp.

1351-1356, 2008.

[29] C. Bauer and G. King, Hibernate in Action, Greenwich: Manning Publications Co., 2005.

[30] P. P. Filipe and N. J. Mamede, "Databases and Natural Language Interfaces," JISBD, pp. 321-

332, 2000.

15

[31] A. Mohite and V. Bhojane, "Challenges and Implementation Steps of Natural Language In-

terface for Information Extraction from Database," International Journal of Recent Technology

and Engineering (IJRTE), vol. 3, no. 1, pp. 108-111, March 2014.

[32] "AI - Natural Language Processing," Tutorials Point, 14 April 2015. [Online]. Available:

www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_natural_language_pro-

cessing.htm. [Accessed 5 August 2015].

[33] J. Nielsen, "Success Rate: The Simplest Usability Metric," 2001. [Online]. Available:

https://www.nngroup.com/articles/success-rate-the-simplest-usability-metric/. [Accessed 10

December 2015].

[34] "Usability Evaluation Basics," usability.gov, 8 July 2013. [Online]. Available: www.usabil-

ity.gov/what-and-why/usability-evaluation.html. [Accessed 5 October 2015].

[35] "Usability in Software Design," 2000. [Online]. Available: https://msdn.microsoft.com/en -

us/library/ms997577.aspx. [Accessed 2015 October 7].

[36] J. Nielsen, "10 Usability Heuristics for User Interface Design," 1 January 1995. [Online].

Available: www.nngroup.com/articles/ten-usability-heuristics. [Accessed 8 October 2015].

[37] D. J. Mayhew, "The Usability Engineering Lifecycle," CHI'99 Extended Abstracts on Human

Factors in Computing Systems. ACM, pp. 147-148, 1999.

[38] J. Nielsen, "How Many Test Users in a Usability Study?," 4 June 2012. [Online]. Available:

www.nngroup.com/articles/how-many-test-users/. [Accessed 3 October 2015].

