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Abstract   This paper proposes a novel approach for building a Natural Language 

Interface to a Relational Database (NLI-RDB) using Conversational Agent (CA), 

Information Extraction (IE) and Object Relational Mapping (ORM) framework. 

The CA will help in disambiguating the user’s queries and guiding the user interac-

tion. IE will play an important role in named entities extraction in order to map 

Natural Language queries into database queries. The ORM framework i.e. the Hi-

bernate framework resolves the impedance mismatch between the Object Oriented 

Paradigms (OOP) and Relational Databases (RDBs) i.e. OOP concepts differ from 

RDB concepts, thus it reduces the complexity in generating SQL statements. Also, 

by utilizing ORM framework, the RDBs entities are mapped into real world objects, 

which bring the RDBs a step closer to the user. In addition, the ORM framework 

simplify the interaction between OOP and RDBs. The developed NLI-RDB system 

allows the user to interact with objects directly in natural language and through nav-

igation, rather than by using SQL statements. This direct interaction tends to be 

easier and more acceptable for humans whom are nor technically orientated and 

have no SQL knowledge. The NLI-RDB system also offers friendly and interactive 

user interface in order to refine the query generated automatically. The NLI-RDB 

system has been evaluated by a group of participants through a combination of qual-

itative and quantitative measures. The experimental results show good performance 

of the prototype and excellent user’s satisfaction. 

Keywords: Natural Language Interfaces to Relational Databases (NLI-RDB); 

Object Relational Mapping (ORM); Natural Language Interfaces; Database In-

terfaces and Hibernate Framework. 

1  Introduction 
In the era of information technology, smart phones and big data, the demand for 

retrieving information from databases in a short time is an urgent need, in particular 

for decision-makers who are normally inexperienced in structured query language 

(SQL). In addition, there are many aspects of our lives that can benefit a technology 
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that provides interfaces to relational databases such as applications on smartphones 

and mini hand-held devices (e.g., tablets). Moreover, such technology allows people 

to access databases using natural language (e.g., English) [1, 2, 3, 4, 5, 6]. Therefore, 

there is an increasing demand on querying the RDBs through the use of natural 

language instead of having experts in SQL.  This requires developing Natural Lan-

guage Interfaces to Relational Databases (NLI-RDBs). The main challenge that de-

velopers of NLI-RDBs continue to face, is how to map or convert the natural lan-

guage questions into SQL queries automatically [1, 2, 3,4]. 

NLI-RDBs research is an important area since 1960s and are still an interesting 

research field. In the literature, several NLI-RDB architectures have been proposed 

for developing prototype systems [1, 2, 6, 7, 8, 9, 10], which can be grouped in five 

main architectures: Pattern-Matching Architecture, Intermediate Representation 

Language Architecture, Syntax-Based Architecture, Semantic Grammar-Based Ar-

chitecture and Intelligent Agents-Based Architecture [1, 2, 4]. The first approach is 

based on Pattern-Matching, which is one of the earliest architectures that used for 

developing NLI-RDBs. This approach uses checking mechanisms to check whether 

a set of tokens, as a user input, matches a pre-defined pattern. Based on matched 

tokens, a specific SQL statement is executed [4]. The Pattern-Matching approach is 

simple but does not require complex natural language processing for implementa-

tion [1, 2]. SAVVY [11] is an example of the Pattern-Matching Architecture. The 

second approach is based on an Intermediate Language in which the user’s question 

is translated from natural language into a high-level representation language inde-

pendent of database (intermediate representation language). Then, the intermediate 

representation language is converted into SQL queries using database query gener-

ator [1, 2, 4]. MASQUE/SQL [10] and EDETE [12] are examples of using the In-

termediate Representation Language Architecture. Independence from the database 

is the main advantage of this system where it can be applied in different domains 

and databases [4]. The third approach is a Syntax-Based Architecture in which the 

natural language query is syntactically analyzed to create parse trees that are used 

directly to create database queries [1, 2]. LUNAR [13] is an example system of the 

Syntax-Based Architecture. The fourth approach is a Semantic-Grammar Architec-

ture, which is largely similar to the Syntax-Based Architecture, but it used semantic 

categories instead of syntactic concepts. It depended on semantic grammar rules to 

parse the user inputs into semantic parse tree, which is then mapped into SQL query 

[1, 2, 4]. LADDER [2, 4] and PLANES [1, 2] are two examples of semantic-based 

NLI-RDB systems. The fifth approach is the Intelligent Agents-Based Architecture. 

This approach is containing knowledge and information about the user and the sur-

rounding world. This knowledge made such systems able to handle questions, 

which could not be directly responded to using database management systems. In 

addition, it provided better understanding of the user's needs [1, 2]. LOQUI [2] is 

an example of Intelligent Agents-Based systems. Whilst, each approach has ad-

vantages and disadvantages, the common major drawbacks are either with the lin-
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guistic and conceptual challenges i.e. natural language understanding and pro-

cessing pitfalls or the database interaction component i.e. presenting an understand-

able responses to user in the case of failure to generate SQL query and in addition 

to offer the user to interact with the results in case of successful mapping from nat-

ural language to SQL query [3]. 

The NLI-RDB novel architecture proposed in this paper built upon three main pil-

lars; firstly a Pattern Matching Conversational Agent (PM-CA) component; in 

which it is used to for offering friendly interaction with the user and partly resolving 

the interaction drawback highlighted in previous work; secondly, an Information 

Extraction (IE) component which offers the capability of extracting named entities 

in real time in which will help in answer the user query. Thirdly, the key novelty of 

the proposed NLI-RDBs, which is the usage of the ORM framework to offer better 

interaction with RDBs through visualizing RDBs entities into real world objects. 

Therefore offering better interaction with user in the case of linguistic, conceptual 

or conversation failure with the conversational agent; in which the interaction with 

RDBs entities is a step closer to the user i.e. more understandable for the user to 

have navigable objects created in real time in response to their queries in which this 

will provide an easier way for interaction compared to SQL statements or un-un-

derstandable error messages in case of failure to generate SQL query automatically. 

This paper is organized as follows: sections 2, 3 and 4 will introduce the main con-

cepts in Information Extraction (IE), Conversational Agent (CA) and Object-Rela-

tional Mapping (ORM). Section 5 will introduce the challenges in developing NLI-

RDBs. Section 6 will introduce the proposed NLI-RDB Framework. Section 7 will 

present the evaluation results. Finally, section 8 provides the conclusion of this 

study. 

2  Information Extraction (IE)  
IE task is primarily for extracting structured information from unstructured or semi-

structured sources. The pioneers in IE are Andersen et al. in late 1970 [14] used IE 

technique for extraction of facts from press releases to generate news stories. An IE 

methodology consist of several stages, and at each stage the method will add a struc-

ture and often lose information, hopefully irrelevant, by applying rules that are ac-

quired manually and/or automatically. In the literature, there are two main ap-

proaches to design an IE methodology. The first is the knowledge engineering 

approach, which is based on having a knowledge engineer to develop rules for the 

IE methodology. According to Appelt et al. [15] the knowledge engineering based 

approach is most effective when resources such as lexicons and rule writers are 

available. The second approach is the automatic training approach, which does not 

require a knowledge engineer, instead, it only requires someone who knows well 

the domain, and then the task is to annotate a corpus of texts for the information 

being extracted. An IE method can be a part of various systems such as Knott et al. 

[9], which uses IE to analyses financial discussion boards for automated crime de-

tection. Owda et al. [16] incorporate IE techniques into an Enhanced Conversation-
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Based Interface to Relational Databases (C-BIRD) in order to generate dynamic 

SQL queries. In Owda et al work IE played an important role in the named entities 

extraction, which added unique successful features for the conversational agent in 

order generate SQL queries in real time. In addition, IE has been successfully used 

in many other fields such as Web Knowledge Bases [17], Text Mining [18] and 

bioinformatics [19]. 

3  Conversational Agent (CA) 
Conversational Agent (CA) is a computer system which can employ text to allow 

people to communicate with computer systems using natural language. The pioneer 

in this field is Alan Turing who discussed the question: “Can machines logically 

process information?” [20]. Since then CA interfaces have been used effectively in 

many applications such as customer service, help desk, website navigation, tech-

nical support [21], web-based guidance [22], tutoring [23], assessment and training 

[24] and database interfaces [1, 2, 25]. There have been a number of CAs used as 

an interface to relational database such as C-BIRD [1, 9], which allows a user to 

converse with a relational database in order to retrieve answers to queries without 

knowledge of SQL. The C-BIRD methodology combines pattern-matching conver-

sational agent with knowledge trees and information extraction modules. Similarly, 

Choudhary  et al. [26] propose another pattern matching approach in which patterns 

have been created for simple query, aggregate function, relational operator, short-

circuit logical operator and joins. All in all; CAs proved to be useful component in 

building NLI-RDBs. 

4  Object-Relational Mapping (ORM)  
Relational Databases Management Systems (RDBMSs) have been used on a large-

scale as an ideal solution for storing and retrieving data [5]. Object Oriented Pro-

gramming (OOP) has been used as a major vehicle for developing interfaces to the 

RDBMSs for human friendly information retrieval and manipulation purposes. The 

OOP has been used to develop many NLI-RDBs [1, 9, 25]. However; a number of 

challenges have been highlighted in the literature such as impedance mismatch i.e. 

OOP concepts does not directly match with RDBMS concepts and OOP developers 

are not usually RDBMSs developers; therefore it is difficult to handle and manipu-

late data stored in RDBMSs using OOP i.e. through SQL interaction. ORM has 

arisen trying to bridge the gap of mismatch between RDBs and OOP [27]. ORM is 

a programming technique that provides a solution for OO systems to exchange data 

with RDBs safely and smoothly by passing entities from and to the relational data-

base through objects as needed. The ORM framework was developed in an open 

source project for Java programmers in 2002, which is called the Hibernate frame-

work, established by Gavin King [28, 29].  Consequently, systems that use this tech-

nology started to appear (e.g., ADO.NET Entity Framework [28] from Microsoft). 

In the programing field, developers prefer to deal with persistent data existing in 

programing objects instead of dealing with SQL statements for accessing data in 
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databases, even though this could lead to “impedance mismatch” between tabular 

data and object state. However, ORM frameworks, such as Hibernate, reduce the 

gap of mismatch between OOP and RDBs by converting data from RDBs into ap-

propriate programing objects and vice versa. The ORM framework sits between 

applications’ i.e. object world and RDBs. It plays the role of mediator for mapping 

object schemas to database schemas [28]. 

5  Challenges in Developing NLI-RDBs 
The challenges in developing NLI-RDBs can be summarized as follow: 

 Linguistic versus Conceptual Failures 

Linguistic and conceptual failures refer to the inability of the NLI-RDB system 

to process natural language query. When the system fails to answer users’ ques-

tions, the users try to re-write their questions thinking that the problem refers to 

the linguistic coverage, whereas it is caused by conceptual failure or vice-versa 

[2].  

 SQL Query Generation Failure 

SQL is a cumbersome language for normal users [30]. Generating SQL statement 

automatically through mapping from natural language questions into SQL que-

ries; is a complex process. In addition to the challenge in carrying out further 

interaction after the failure to generate SQL query and presenting an understand-

able response during this failure. 

 Ambiguity 

Ambiguity is one of the main challenges for developing NLI-RDBs [2, 4, 31], 

which can be present at lexical level, syntax level and referential level [32]. Lex-

ical ambiguity refers to the ambiguity in words. (e.g., a word can be a noun or 

verb depending on the context). Syntax ambiguity refers to the interpretation of 

one sentence in various ways [32]. Referential ambiguity is present when entities 

mentioned previously implicitly or explicitly; then can be referred to these enti-

ties at later stage as pronouns, possessive determiners or noun phrases [2]. 

 Users Assume Intelligence 

NLI-RDBs must use techniques for identification and disambiguation of data and 

meta-data within the natural language context because users usually assume the 

system has intelligence (ability to understand all types of questions [2, 31]). For 

example, "Give me the location of ABC." where it is not specified whether ABC 

is a person, place or city name [31]. 

6  Methodology and Implementation 
This section describes the creation of a NLI-RDB using CA, IE and ORM frame-

work. The key features of the approach are shown in figure 1. The proposed archi-

tecture consists of five major components (User Interface, Text preparation, Engine 

Algorithm, ORM Framework and Relational Database). Each component contains 
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a set of modules. The following are explanations of the five components that will 

be introduced from top to the bottom of the figure for simplicity. 

 
Fig. 1. The NLI-RDB system architecture 
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6.1   User Interface 
The user interface provides interaction between the user and the application. Figure 

2 shows the NLI-RDB prototype system user interface implementation which con-

sists of three main parts. 

 
Fig. 2. The NLI-RDB system’s user interface 

 

 User Natural Language Query 

The user is offered to write his question in natural language such as English. The 

natural language query is sent to the next process to prepare it for analyzing. 

 Agent Response  

The conversational agent displays conversational responses to the user and some 

useful comments regarding the user’s query. The responses are based on pattern 

matching rules performed on algorithm engine unit. 

 Navigable Query Results  

The results of queries are displayed as a navigable table, which includes simple 

and navigable menus. This offers various options for performing a query within 

a query by just a few clicks, without the need of writing again. 

6.2 Text Preparation 
This component prepares the text for analyzing by passing it through two main 

steps: 

 Cleaning Text (CT)  

Before doing a textual analysis, often a text cleaning stage is required. This step 

cleans the user’s query from unnecessary characters and words (e.g., white 

spaces, newlines, dashes, slashes, “could”, “please”, “a”, “the”, etc.). 

 

Agent Response 

User Natural Language Query 

Navigable Query Results 
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 Tokenization  

Tokenization is the process of splitting a string of text into a set of separated 

words called tokens. The user’s natural language query will be split into a se-

quence of tokens for further processing. 

6.3   Engine Algorithm 
The engine algorithm is the main component responsible for analyzing the user’s 

natural language query in order to generate agent responses and Hibernate Query 

Language (HQL) statements. It comprises of four modules. 

 Information Extraction (IE)  

IE component is responsible for filtering the user's query in order to extract the 

objects’ names and their attributes, which represent the relational database tables 

and columns. The extracted information is then sent to HQL generator to be used 

for filling the HQL query template. 

 Conversational Agent Pattern Matching Engine (CA-PM)  

CA-PM component is working to match the cleaned text and tokens with prede-

fined patterns either in order to guide the user through conversational responses 

or to recognize objects attributes and possible conditions, which also will be used 

with HQL generator.  

 HQL Query Generator  

HQL generator is responsible for building a suitable HQL query based on the 

extracted information and matched patterns. The generated HQL query is pro-

cessed by the Hibernate ORM framework in order to generate the requested in-

formation from relational database as objects. 

 Query the Query  

This is a set of predefined HQL templates to perform a query within a query 

using a Graphical User Interface (GUI) context menu. The users can perform 

other queries based on the result of their previous query using mouse clicks, 

without the need for writing natural language query again. The menu contents 

vary with respect to the query result. This provides an easy and fast interactive 

method to facilitate querying within a query result i.e. interacting with objects 

contents directly. This is shown in figure 2. 

6.4   ORM Framework  
The ORM framework (Hibernate) maps an object-oriented model to a relational da-

tabase. The Hibernate establishes and manages communication with the database. 

The generated HQL query is translated by Hibernate into SQL query, which is then 

executed among the relational database. The obtained data is saved as persisted ob-

jects, which can be easily manipulated within the application. The objects results 

set is sent to the user interface to present the result for the user’s natural language 

query. 
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6.5   Relational Database (RDB) 
The Relational Database (RDB) is holding the domain information. The domain is 

designed for university professors and their details such as names, gender, job title 

and departments they are working in, as well as contact details. In addition, it holds 

information related to their research interests, projects, publications and PhD stu-

dents. Moreover, it stores details about the academic timetable and office hours for 

each individual professor. The domain database has been created and populated for 

the purpose of this project and future research to be conducted. 

6.5.1 The Projection of Relational Database Entities into Objects 

The proposed NLI-RDB architecture mainly emphasizes the concept of projection 

of objects from the RDB tables. As a result, RDBs are brought a step closer to the 

user by mapping RDBs entities into real world objects. Figure 3 shows a demon-

stration sample of objects projected from RDB tables, which is easier for the user 

to understand and interact with. The database layer shows the relational database 

and its tables. It could be any RDBMS. The ORM layer represents the Hibernate 

ORM framework, which manages and persists data between Java objects and rela-

tional databases. The Hibernate ORM framework resolves the problem of object-

relational impedance mismatch between OOP and RDBs, therefore it reduces the 

complexity in generating SQL statements during developing applications. The Ob-

jects layer shows objects have been generated from the relational database tables. 

The generated objects can be easily manipulated within the application and easier 

interact with by the user. 

 
Fig. 3. The projection of domain objects generated from the relational database tables 

7  Evaluation Results and Discussion  
This section presents the evaluation methods that have been used in order to evalu-

ate the NLI-RDB system prototype produced. The evaluation included both quanti-

tative and qualitative measures. A questionnaire of two parts firstly, task success 
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[33] using six scenarios to measure system's ability of detecting tables and columns 

that answer the user's query; and secondly the system’s usability [34] using seven 

questions to measure the system ease of use and interface appearance. The evalua-

tion sample is based on using 15 participants in which seven were computer science 

students and eight from different fields. The participants were given an instruction 

sheet including a description for prototype system in addition to the evaluation 

sheet. They were given a typical time of 20 minutes to use the prototype system and 

complete the evaluation. In the first part of evaluation i.e. task success, the partici-

pants were asked to do six scenarios. Each scenario has a set of tasks that have a 

specific goal to be accomplished. They were asked to respond to each task whether 

the system gave the required information correctly or not, (answer ‘Yes’ or ‘No’). 

In the second part, they were asked to give their overall opinion on the system by 

answering a questionnaire about the prototype usability. The measure’s structures, 

details and results are described in the following subsections. 

7.1   Quantitative Measures 
In the Quantitative Evaluation, a task success [33] has been used to measure user’s 

ability to complete specific tasks. The tasks have been divided into six scenarios 

based on the goals listed in table 1. Each scenario has a set of tasks that have a 

specific goal to be accomplished. It has been requested to answer ‘Yes’ or ‘No’ 

(whether the system gave the required information correctly or not). 

Table 1. Task Success Scenarios 

No. Goal of the Scenario with Examples of Tasks 

1 

To measure retrieving information based on one table without a condition. 

1. List all professors in the database. 

2. List all professors' publications. 

2 

To measure retrieving information based on one table with a condition of one or more 

columns. 

1. Tell me about professor Majdi. 

2. What is the timetable of “enterprise programming” unit. 

3 

To measure retrieving information based on two tables with a condition of one column. 

1. Who is supervisor of student Pei Lee? 

2. List all publications of professor Majdi. 

4 

To measure retrieving information based on two tables with a condition of two or more 

columns. 

1. List males professors in Mathematics department. 

2. When is the annual leave of Keeley. 

5 

To measure retrieving information based on some numerical functions such as less than, 

greater than and between. 

1. List papers published since 2012. 

2. List all papers published between 2010 and 2013. 

6 

To measure retrieving information based on the functionalities of bar menus, context 

menus and “Query the Query”.   

1. Select professor "Keeley Crockett" and use right click to get her publication.  

2. Use File menu to save the result as PDF file. 
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7.2   Qualitative Measures 
In the Qualitative Evaluation, usability testing [34, 35, 36, 37, 38] has been done in 

order to measure users' usability satisfaction. Table 2 shows qualitative measures 

besides their goals. In addition, table 3 shows the qualitative measures scales. 

 

Table 2. Qualitative measures 

Measure Goal 

System is easy to use 
To measure user satisfaction toward the prototype in terms of 

simplicity, flexibility and friendliness. 

Understanding the system 

responses 

To measure user satisfaction toward the prototype agent re-

sponse in terms of clarity and content. 

Using of context menu  
To measure user satisfaction toward the prototype in terms of 

simplicity and flexibility of using context menus. 

Using of top menu bar 
To measure user satisfaction toward the prototype in terms of 

clarity and simplicity of using menu bar. 

Text clearness   
To measures user satisfaction toward the prototype in terms of 

type and size of used text. 

Organization of information 
To measures user satisfaction toward the prototype in terms of 

the information distribution in the interface. 

General appearance 
To measures user satisfaction toward the prototype in terms of 

general appearance of the interface. 

 

Table 3. The qualitative measures scales 

Measure Scales 

System is easy to use ☐ easy                    ☐ moderate           ☐ difficult 

Understanding the system responses ☐ easy                    ☐ moderate           ☐ difficult 

Using of context menu  ☐ easy                    ☐ moderate           ☐ difficult 

Using of top menu bar ☐ easy                    ☐ moderate           ☐ difficult 

Text clearness   ☐ very good           ☐ good                  ☐ poor 

Organization of information ☐ very good           ☐ good                  ☐ poor 

General appearance ☐ very good           ☐ good                  ☐ poor 

7.3   Quantitative Results 
The quantitative evaluation was carried out, in Scenarios 1 to 6. In each scenarios, 

the participants were asked to respond whether or not the prototype delivered the 

required information for each task, (answer ‘Yes’ or ‘No’). Table 4 shows the over-

all success of each scenario. 
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Table 4. The overall success of each scenario 

Sce. Goal of the scenario Result 

1 
To measure the success of retrieving information based on one table with-

out any condition. 
100% 

2 
To measure the success of retrieving information based on one table with a 

condition of one or more columns. 
98.89% 

3 
To measure the success of retrieving information based on two tables with 

a condition of one column. 
93.33% 

4 
To measure the success of retrieving information based on two tables with 

a condition of two or more columns. 
92% 

5 
To measure the success of retrieving information based on some numerical 

functions such as less than, greater than and between. 
100% 

6 
To measure the success of retrieving information based on the functionali-

ties of bar menus and context menus. 
100% 

The overall average 97.37% 

7.4   Qualitative Results 

In the qualitative evaluation, the participants were asked to provide their opinions 

about the ease of use of and the general appearance of the prototype. Based on the 

evaluation scales, results have been presented into two groups as shown in table 5 

and table 6.  

Table 5. The evaluation results of usability (group 1) 

The qualitative measures (group 1) easy moderate difficult 

System is easy to use 93.33% 6.67% 0% 

Understanding the system responses 80 % 20 % 0% 

Using of context menu 86.67% 13.33% 0% 

Using of top menu bar 100% 0.00% 0% 

Table 6. The evaluation results of usability (group 2) 

The qualitative measures (group 2) very good good poor 

General appearance 85.71% 21.43% 0% 

Text clearness 92.86% 14.29% 0% 

Organization of information 92.86% 7.14% 7.14% 

 

The overall evaluation results showed an excellent user satisfaction in both the 

quantitative and qualitative evaluations used. 
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8  Conclusion  

This paper proposed building a Natural Language Interface to a Relational Database 

(NLI-RDB) through using Conversational Agent (CA), Information Extraction (IE) 

and Object Relational Mapping (ORM) frameworks. The novelty of work is through 

introducing ORM framework in order to resolve the impedance mismatch between 

the Object Oriented Paradigms (OOP) and Relational Databases (RDBs) which re-

duces the complexity in generating SQL statements. In addition, by mapping the 

RDBs entities into real world objects, the RDBs entities are brought closer to the 

user. Additionally, the ORM frameworks simplify the interaction between OOP and 

RDBs. The developed NLI-RDB prototype system allows for the user to interact 

with objects directly, rather than by using SQL statements. This direct interaction 

tends to be easier and more acceptable for humans. The prototype also offers 

friendly and interactive user interface in order to refine the query generated auto-

matically. The experimental results showed good performance of the prototype and 

excellent user’s satisfaction. 
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