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Abstract— A sensorimotor architecture inspired from 

biological, vertebrate control should (i) explain the interface 

between high dimensional sensory analysis, low dimensional 

goals and high dimensional motor mechanisms and (ii) provide 

both stability and flexibility. Our interest concerns whether 

single-input-single-output intermittent control (SISO_IC) 

generalized to multivariable intermittent control (MIC) can 

meet these requirements.   

We base MIC on the continuous-time observer-predictor-

state-feedback architecture.  MIC uses event detection.  A 

system matched hold (SMH), using the underlying continuous-

time optimal control design, generates multivariate open-loop 

control signals between samples of the predicted state.  

Combined, this serial process provides a single-channel of 

control with optimised sensor fusion and motor synergies. 

Quadratic programming provides constrained, optimised 

equilibrium control design to handle unphysical configurations, 

redundancy and provides minimum, necessary reduction of 

open loop instability through optimised joint impedance.  

In this multivariate form, dimensionality is linked to goals 

rather than neuromuscular or sensory degrees of freedom.  The 

biological and engineering rationale for intermittent rather 

than continuous multivariate control, is that the generalised 

hold sustains open loop predictive control while the open loop 

interval provides time within the feedback loop for online 

centralised, state dependent optimisation and selection.   

 

I. INTRODUCTION 

The vertebrate sensorimotor system conserves a common 
pattern across all species. The common neuroanatomy 
includes a spinal cord within vertebra interfacing muscles and 
local sensors with brain stem, cortex, and their associated 
basal ganglia and cerebellar loops. All vertebrates contain 
local sensor motor coupling within the spinal cord, and also 
contain basal ganglia which provide centralised mechanisms 
for gating, sequential selection and reinforcement learning of 
the coupling between sensory features and motor primitives 
[2, 3].  All vertebrates contain cerebella nuclei which provide 
centralised mechanisms for tuning and optimising 
sensorimotor coupling [4, 5].  

Vertebrates combine continuous and event related 
processing.  Central, sequential, discrete, event related motor 
decision making machinery is associated with basal ganglia 
and frontal-striatal networks.  Central decision making and 
optimisation confers behavioural and evolutionary advantage. 
The adaptive value of online decision making includes being 
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unpredictable for competitors, prey or predators and 
providing a basis for trial and error learning which requires 
the exploration of unknown domains.   

Adaptive control must address the dual demands of 
regulating motor control and learning new motor behaviour.  
There is a tension between the dual demands of exploitation 
and exploration, or alternatively between stability and 
plasticity [6].  This tension is maximised when the controlled 
system is unstable, such as the multi-link mechanical 
structure of the upright human.  An unstable mechanical 
structure benefits from a high control bandwidth. If 
regulation and stability is too good, the sensorimotor signals 
have low variability and bandwidth which compromises 
effective learning and adaptation.  Vertebrate species operate 
successfully in a variety of environmental niches.  However, 
if “success” depends upon adaptability and flexibility, then 
regulation and stability need only be minimally sufficient, 
while biological priority is given to a high bandwidth of 
decision making.  Maximising the bandwidth of motor 
decision making requires that selection and optimisation are 
implemented within the sensorimotor feedback loop. A bio-
inspired architecture suitable for adaptable robots should 
reproduce that flexibility, adaptability, and low control 
bandwidth observed progressively through higher 
mammalian vertebrates. That architecture should also explain 
how selection and optimisation are implemented during 
ongoing sensorimotor control.  

Within the continuous optimal feedback control paradigm 
discrete decision making is restricted typically to an 
undeclared, higher process which passes optimised control 
parameters to a lower continuous regulatory loop [7-9].  The 
continuous regulatory loop models the fast, reflexive spinal, 
brainstem and trans-cortical responses that have been studied 
extensively by physiologists [10, 11].  

Investigation from many authors has considered whether 
sensorimotor control is intermittent [11-15].  The intermittent 
rather than continuous use of sensory information to update 
control signals implies an event trigger determining when to 
use sensory information, a discrete sampling/initialisation 
process and a hold process constructing a time varying 
control trajectory [1]. The effect of the open loop interval is 
to reduce the control bandwidth.  The benefit is (i) the event 
related possibility to iteratively reinitialise the control basis 
and (ii) the availability of predictively stabilised open loop 
time to provide state dependent optimisation [11, 16-18]. In 
short, intermittent v. continuous control trades online 
flexibility for control bandwidth. Recent theoretical and 
methodological advances in SISO_IC have provided new 
experimental evidence of sequential, refractory response 
selection during sustained sensorimotor control [7, 11, 19, 
20].  While including continuous control as a special case, 
SISO_IC provides a more general computational paradigm in 
which discrete refractory selection occurs as a serial, 
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sequential, single channel process within the main feedback 
loop [21-23].   

Here, our question is whether SISO_IC generalised to 
MIC can stabilise the unstable, structure of the upright 
human, using accepted values of passive joint stiffness. 

II. METHODS 

A number of SISO models of intermittent control are 
available [14, 24, 25], one of which has been developed to 
control two segments [15]. The approaches are compared by 
[26].  This paper is based on the explicit SISO model [21] 
which has been experimentally verified [7, 19, 20] and which 
has been extended, recently to multivariate form [1].  

Control of multiple 
neuromuscular degrees of 
freedom.  Vertebrate movement 
is characterised by low-
dimensional goals achieved 
using high-dimensional muscle 
input. In control system terms 
the system has redundant 
actuators. One approach to 
redundancy is by using the 
concept of synergies [14] 
defined as groups of muscles 
which act in concert to give a 
desired action.  It has been 
shown that synergies arise 
naturally in the context of 
optimal control [9]. Synergies 
may be arranged in hierarchies. 

For example, in the context of posture, there is a natural 
three-level hierarchy with increasing dimension comprising 
task space, joint space and muscle space.  This model uses 
the task space – joint space hierarchy. 

Fusion of multiple sensory modalities.  In control system 
terms, the abundant vertebrate, sensor redundancy can be 
incorporated into state-space control using observers or 
Kalman-Bucy filters; this is the dual of the optimal control 
problem.  Again sensors can be arranged in a hierarchical 
fashion. Hence optimal control and filtering provides the 
basis for a continuous-time control system that 
simultaneously applies sensor fusion to utilise sensor 
redundancy and optimal control to utilise actuator 
redundancy.  The extension of SISO_IC [21] to MIC [1] 
allows conventional treatment of multiple sensors and 
actuators using linear quadratic design.  

Extending SISO_IC, MIC is based on the continuous-
time optimal control design method using the observer, 
predictor state-feedback architecture [1].  MIC uses an event 
detection mechanism.  A system matched hold, using the 
underlying continuous optimal control design, generates 
multivariate open-loop control signals between samples of 
the predicted state.  Combined, this serial, sequential process 
provides a single-channel of control with optimised sensor 
fusion and motor synergies. [1]. 

The system-matched hold (SMH) is the key component of 
the intermittent control.  As described previously [21], the 
SMH state h  evolves in a local intermittent time frame τ as 

d/dt h(τ ) = Ah h(τ )   (1) 

where Ah = Ac and  h(0)= p(ti − td) 

where Ac is the closed-loop system matrix of the equivalent 
continuous system, and p is the predicted state. The hold 

state h replaces the predictor state p in the controller 
equation. Other holds (where Ah ~= Ac) are possible [27]. 

Figure 1.  A Continuous optimal control: task selection occurs at 
the “Planner” level, the selected strategy is employed 
continuously via the low level feedback mechanism. This 
feedback loop consists of the “Controller” enclosing the 
continuous stages of sensory analysis (SA) and response 
execution (RE).  
B typical implementation with observer and state FB blocks. The 
command signal serves as a single input to the “Plant” whose 
neuro-muscular system (NMS; panel E) synergistically (e.g. 
pattern generators, muscle modes, synergies or optimal feedback 
systems) translates it to the multiple muscles according to its 
current parameter settings. Once these are routed, the underlying 
muscle forces actuate the multi-segmental system in the space of 
the elemental variables. 
C Generalised IC: a “refractory Response Planner” forms the 
intermediate stage between sensory analysis (SA) and response 
execution (RE); an online process of selecting one movement 
alternative from the many possible which occurs within the 
feedback loop that regulates the task. D MIC implementation [1]. 

E typical NMS block where k is the feedback gain, Sigma 
generates a weighted sum of muscle forces and x_ss 
synergistically allocates the desired forces to each muscle. 

 

 



  

 

Equation (1) does not explicitly depend on the number of 
system outputs and inputs and is thus unchanged in the 
multivariable context.  In essence, the only differences 
between the multivariable intermittent controller and SISO 
intermittent controller are related to the underlying design 
method for the observer gain, controller gain and equilibrium 
state which are handled conventionally using linear quadratic 
regulator (LQR) design as per continuous control.  

The intermittent controller generates an open loop control 
signal based on the hold state h (1). At the discrete 
intermittent sample times ti, the hold state is reset to the 
estimated system state w generated by the observer, thus 
feedback occurs at the intermittent sample times ti.   The 
sample times are constrained to be at least ∆min apart. But, in 
addition to this constraint, feedback only takes place when it 
is needed. Such feedback is required when the open-loop 
hold state h differs significantly from the closed-loop 

observer state w indicating the presence of disturbances.  
There are many ways to measure such a discrepancy. 
Following [21], the one chosen here is to look for a quadratic 
function of the error ehp exceeding a threshold q2: 

E = ehpT (t)Qtehp(t) − qt
2  ≥ 0  (2) 

where ehp(t) = h(t) − w (t)  (3) 

where Qt is a positive semi-definite matrix. 

The unstable, mechanical system comprises a linearized, 
sagittal (2D) version of the three link (lower leg, upper leg, 
trunk-arms-head), three joint (ankle, knee, hip) model of 
human posture given by [28]. The upper, middle and lower 
links are indicated by subscripts u, m and l respectively. The 
linearized equations correspond to: 

Mθ¨ − Gθ = NT 

where θ is the vector of link angles, T is the vector of 
joint torques and M, G, and N are respectively the mass, 
gravity, link matrices. The values for the link lengths, CoM 
location,  masses and moments of inertia (about CoM) where 
taken from Figure 4.1 and Table 4.1 of [29]. 

The single joint inverted pendulum model of human 
balance uses the effect of passive ankle joint stiffness to 
counteract gravity and reduce the toppling rate of the 
pendulum [30, 31].  This toppling rate is directly related to 
the maximum real part of the system eigenvalues. This is 
important as it reduces the control bandwidth necessary to 
stabilise the unstable inverted pendulum system. The 
situation is more complicated in the multiple link case as, 
unlike the single inverted pendulum case, the joint angles are 
distinct from the link angles. The gravity matrix is diagonal 
in link space.  The corresponding stiffness matrix Kφ is 
diagonal in joint space and therefore cannot cancel the 
gravity matrix in all configurations. The diagonal vector of 
mechanical joint stiffness kφ defines the stiffness for a joint 
when the other joints are set at zero (straight) angle 

The choice of Kφ directly affects mechanical instability of 
the multi-link system via the maximum real part of the 
system eigenvalues and thus influences the required closed-
loop control bandwidth.  

By comparison with continuous control, intermittent 
control has a reduced control bandwidth and is 
complemented by the biological availability of joint stiffness 
arising from passive, elastic structures or co-activation of 
muscles. To estimate the minimal joint stiffness required we 
calculate minimal stiffness consistent with the required 
maximum real part of the system eigenvalues [1]. Minimising 
the mean square joint stiffness subject to a maximum open 
loop system real eigenvalue σmax is a quadratic optimisation 
with non-linear constraints which is solved by sequential 
quadratic programming (SQP). 

 

III. RESULTS 

 
Figure 2 A-C shows respectively how the real and imaginary parts 

of the three system eigenvalues pairs vary with the constraint σmax 

together with the spring constants kφ. The joint stiffness values are 

normalised to the values required to cancel the effect of gravity 

when the other joint angles are set to zero.  

D shows variation of the maximum real closed loop eigenvalue for 

a control design with intermittent control parameters minimum 

open loop interval (∆min) 0.25s, time delay 0.1s, event threshold (qt) 

0.1o, and optimized parameters for control priority (qv, qp, qT for 

velocity position, torque).   

 

The spring constants and imaginary parts rise rapidly when 

the maximum real eigenvalue is reduced to below about 2.3.  

When the maximum real eigenvalue lies above 3, the joint 

stiffness values lies in the range 0.05 – 0.35 which is at the 

lower end of accepted physiological estimates of the 

intrinsic passive joint stiffness ranging 0.2-0.9 [30-32].  

 
Figure 3: representative time series of three link segment angles 

using a white noise disturbance (rms amplitude 1Nm, bandwidth 

0.1-5 HZ, σmax = 3, qv, qp, qT = 0.07, 5, 100 [1]) applied at the ankle 

joint.  Using otherwise identical parameters, intermittent regulation 

(blue) is poorer than continuous regulation (green), but not by 

much.  



  

For a SMH using an underlying continuous LQR control 

design with predictor to remove the time delay from the 

feedback loop, the closed loop system is stable. 

IV. CONCLUSIONS 

 MIC can stabilise an unstable multi-link mechanical 

system representing the upright adult human.  

 Stabilisation is consistent with low, physiological values 

of intrinsic joint stiffness. 

 

IC operates a sequential, refractory single channel process 

and links psychological refractoriness, normally associated 

with discrete serial reaction time tasks, with sustained 

sensorimotor control. The open loop interval explains 

refractoriness and explains the low bandwidth of voluntary, 

vertebrate control.  While concurrent, parallel MICs (multi-

tasking) are possible, combination of multiple goals into an 

optimised single dimensional goal implies convergence to a 

single, single channel process.  Discrete decision making 

within the feedback loop, provides a mechanism for flexible 

artificial control consistent with the vertebrate architecture 

of control via centralised selection.  The biological and 

engineering rationale for intermittent rather than continuous 

multivariate control, is that the generalised hold sustains 

open loop predictive control while the open loop interval 

provides time within the feedback loop for online 

centralised, state dependent optimisation and selection.   
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