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In recent years, there has been a tremendous increase in the papers published on synthetic recognition 

elements. Molecularly Imprinted Polymers (MIPs), also referred to as ‘man-made mimics’ of 

antibodies, are able to rebind their template molecules with high affinity. Advantages compared to 

natural receptors include their excellent thermal and chemical stability, low-cost, and ease of the 

production process. However, their use in commercial biosensors is limited due to the difficulty to 

incorporate MIPs into suitable sensing platforms and traditional detection techniques, such as 

chromatography, that require bulky and sophisticated equipment. In this review, we evaluate the 

potential to use MIPs combined with thermal read-out for the detection of low-weight organic 

molecules. We discuss thermal methods to study MIP-template complexation and to determine 

neurotransmitters concentrations. In particular, we highlight the heat-transfer method (HTM), a recent 

technique that is straightforward, low-cost, and requires minimal instrumentation. Until now, sample 

preparation involves a two-step process, making it time-consuming, and measuring biological 

samples is difficult due to the noise in the signal. Different sample preparation methods are discussed 

and it will be demonstrated how this affects the thermal response. An outlook is given in novel 

methods that can simplify and speed up sample preparation. Finally, we show a novel thermal 

technique, which is based on the analysis of transport of thermal waves rather than evaluating the 

fixed heat-transfer resistance. Through applying the concept of thermal waves, signal-to-noise ratio 

is significantly increased, which will result in lower detection limits and has a high potential for the 

study of biological samples. 

 

Corresponding author: Dr. Marloes Peeters (m.peeters:mmu.ac.uk) 

Manchester Metropolitan University, Chester Street, M15GD, United Kingdom. 

Keywords: Molecularly Imprinted Polymers (MIPs), biomimetic sensors, neurotransmitters, thermal 

detection, heat-transfer. 

 



1. Introduction 

 

1.1 General Introduction on MIPs 

Molecularly Imprinted Polymers are polymers containing nanocavities with a pre-determined 

selectivity towards their template molecules [1],[2]. They are sometimes referred to as ‘man-made 

mimics of antibodies’, but compared to natural antibodies their advantages include: low-cost [3], 

robustness [4], and stability under extremes of pH and temperature [5]. The molecular imprinting 

technique dates back to the 1930’s, when Polyakov concluded that the selectivity of silica matrices 

for a certain template depended on the chemical nature of the additive that was introduced during the 

synthesis [6]. Even though several papers were published on this topic in the 1930’s, the start of the 

current molecular imprinting technique technology did not emerge until the 70’s when the groups of 

Wulff [7] and Klotz [8] independently reported on organic polymers with pre-determined ligand 

specificity. When the Mosbach group first introduced the concept of non-covalent binding [9], it was 

a real breakthrough in the field as this allowed easy extraction of the template from the matrix. As a 

result, while from the first paper of Polyakov in 1931 until 2006 a number of 1450 MIP-based articles 

was documented [10], in the period from 2004 to 2011 alone an exponential increase was seen with 

3779 references MIP-related articles [10, 11]. Over the past years this number is steadily increasing, 

with the focus shifting from development of solid materials and monolayers for chromatography 

towards biosensor based applications [12],[13]. The first chemical sensor arrays were developed by 

groups of Dickert [14],[15], Shimizu [16],[17] and Takeuchi [18],[19]. The use of MIPs for sensing 

applications remains challenging, current problems include the development of a suitable interface 

layer [1, 20], leaching of trapped template [21, 22], and the lack of straight-forward and low-cost 

read-out techniques[23, 24]. However, with current methods it is possible to compete with enzymes, 

as was demonstrated by Chianella et al.[25]. The group of Piletsky has developed a straightforward 

approach to coat microplate wells with nanosized MIPs (Figure 1).  

 



 

Figure 1. NanoMIPs were synthesized with a solid approach with vancomycin as the template. With 

a horseradish peroxidase-vancomycin conjugate, detection limits in the order of 2.5 pM were 

achieved in buffer and in blood plasma[25]. Reproduced with permission from ref 25. Copyright 

2013, American Chemical Society. 

 

The specificity of the nanoMIPs towards vancomycin was tested with a competitive assay as follows. 

First, well plates were coated by addition of nanoMIPs solutions, which were evaporated overnight. 

To prevent non-specific binding, the wells were blocked by incubating them with bovine serum 

albumin (BSA) solutions in PBS. Finally, solution of horseradish peroxidase (HRP) and free 

vancomycin were added. The concentration was then calculated by using the absorbance values at 

450 nm and comparing this to the calibration curve. To test the cross-reactivity, the same competitive 

assay was performed with three other commonly used antibiotics, respectively, gentamicin, 

bleomycin, and amoxicillin.  

This approach is a promising alternative to traditional ELISA assays as the sensitivity of the described 

assay is a factor of three orders of magnitude better. In addition, MIPs can be stored for a long period 

of time without adverse effect to the binding properties and non-specific binding in biological samples 

is minimal [26],[27]. In the case of the nanoMIP assay for vancomycin, well plates MIPs could be 

stored 1 month at room temperature before adverse effects on the detection of the template were 

observed [25]. The approach is not just limited to vancomycin, in the past the same assay has been 

reported for beta-agonists such as norepinephrine and epinephrine. With the generic nature of the 

nanoMIP preparation in mind, this suggest the assays for more analytes, such as pollutants, peptides, 

proteins and disease markers, can be developed in a relatively short time. In 2015, MIP Diagnostics 

Ltd. was founded, a spin-off from the University of Leicester, who have developed an automated 

device for synthesizing MIPs within several weeks of receiving the target.  



For biosensing purposes, most MIP-based biosensing platforms are focused around optical, 

fluorescent or electrochemical detection. In this review, we  focus on the application of thermal read-

out techniques for the detection of small organic molecules with MIP-based sensor platforms. First, 

we discuss the use of ultrasensitive isothermal calorimetry, which generates thermodynamic data and 

measures template-MIP binding in solution by evaluating the binding enthalpy. In the next section, 

thermal techniques for binding of organic small molecules to immobilized MIP-layers are reported; 

including thermistors and the heat-transfer method. Finally, an outlook is provided on a new thermal 

technique that relies on the thermal wave transport analysis.  

 

1.2. Comparison of thermal detection techniques 

We will briefly introduce four different thermal techniques here and describe their similarities and 

differences. Examples of small molecule detection with the methods will be discussed in more detail 

in section 2, 3, 4 and 5. 

Isothermal titration calorimetry is the only method in which the MIPs do not need to be immobilized 

on the surface. To perform measurements, the template is dissolved in a buffer solution into which 

aliquots of either the monomer or the polymer microgel are titrated [28]. Changes in the heat (W) are 

recorded and can be correlated to the fraction of bound ligand. It is used to determine binding affinities 

(Ka) and study thermodynamic parameters, such as the binding enthalpy (ΔH), entropy changes (ΔS) 

and binding stoichiometry or complexation ratio[29]. This makes this technique perfectly suitable for 

high-throughput screening of monomers, but it is not commonly used for detection.  

The second method is based on thermistors; a type of resistor, in general a polymer or a ceramic, 

whose resistance is highly dependent on the temperature. A typical sensor would involve MIP 

particles packed into columns (Scheme 1) and subsequently placed into insulated thermistor blocks. 

To perform measurements, analyte solutions are introduced into the system and temperature 

differences are monitored [30].  

 



 

Scheme 1. At the top of the column packed with MIP particles, a thermistor is fixated that is 

connected to a Wheatstone bridge to determine temperature changes of 0.001◦C. Reproduced with 

permission from ref 30, copyright 2013 from Elsevier. 

 

A temperature profile is measured over time and binding of substrates to the MIP layer results in 

changes in the mK range. The temperature peak height, in addition to area under the curve, is 

proportional to the enthalpy and corresponds to a specific substrate concentration. For most reactions, 

concentrations can be determined in the 0.01-100 mM range [31].  

The heat-transfer method is significantly different to these other methods; instead of measuring a 

temperature, a temperature gradient is obtained by applying a heat-flow through the MIP particles. 

The thermal resistance is then determined by dividing the gradient over the power into account, which 

is then correlated to the concentration of target molecules bound to the MIP layer [32]. Measurements 

are performed with a low-cost and home-made set up, while the other two thermal detection methods 

require expensive equipment. The main advantage is the limit of detection, with HTM this is in the 

nM range compared to mM concentrations measured by thermistors. However, this method is not 

suitable to perform kinetic measurements and no additional information about the thermodynamics 

parameters ΔH or ΔS is obtained [32].  

Finally, thermal wave transport analysis is described, a novel method that has only been used for the 

determination of dopamine concentrations [33]. Experiments were performed with the same set up as 

for HTM. Instead of keeping electrodes functionalized with MIPs at a fixed temperature, a thermal 

wave is sent through the MIP sample by first heating it up and subsequently cooling it down. The 

element that is measured is not the thermal resistance but the phase shift, as this is associated with 

how fast or how slow a system responds when it is subjected to temperature changes. It has to be 

noted that increases in the thermal resistance, which occur due to binding of small organic molecules 



to the MIP layer, will also result in a delay in the phase shift. Advantages include that this two 

methods can be applied simultaneously, but advantages of TWTA are a shorter measurement time 

and higher effect size due to decrease of the noise on the signal. 

This information is summarized into Table 1 to demonstrate the strength and weaknesses of each 

technique.  

 

1.3 Advantages thermal detection for biosensing of small organic molecules 

Biosensors with MIPs as recognition element instead of natural receptors offer several advantages, 

including; long-term storage, excellent stability, re-usability, possibility to tailor the MIP to its target, 

and animal use is not required [3, 11]. The area of MIPs for separation and extraction is well-

established and chromatography is commonly used to determine target concentrations. MIP particles 

are directly packed into columns and can distinguish between targets and their corresponding 

enantiomers. The main drawbacks are the cost of the equipment and the fact that it is not possible to 

develop a portable sensor, which can measure concentrations on the spot. Miniaturization is important 

when designing a point-of-care sensor, and optical and gravimetric techniques do not offer a viable 

alternative. Electrochemical sensors can be operated as handheld devices, are suitable to determine 

traces of molecules, and are relatively low-cost[20]. However, issues can arrive with the selectivity, 

interpretation of the data, and it is often limited to the use of monomers or a template that possesses 

electroactive properties. 

All discussed thermal detection techniques have the advantages that they are simple, easy to interpret, 

and can be applied to all templates and versatile MIP polymer structures. ITC and thermistors provide 

valuable information for the screening of monomers and thermodynamic parameters that are difficult 

to obtain with other methods. The other two methods, respectively, HTM and TWTA, have the 

possibility of integration into portable on-site sensors. The acquired limits of detection are suitable 

for detection in buffer solutions, but more research needs to be performed to demonstrate their proof-

of-application with relevant biological samples.  

 

2. The use of calorimetry for MIP template complexation and recognition  

 

In order to use molecular imprinting technology for commercial applications, there needs to be a high 

affinity between the developed MIP and its template. In previous experimental studies, techniques 

that were used to study the template/functional monomer interaction include Nuclear Magnetic 

Resonance (NMR) studies [34],[35], FTIR spectroscopy [36], [37], and to a lesser extent, calorimetry 

[38].  



With calorimetry, the release and absorbance of reaction heat is measured during physical state 

changes of a material by heating [39, 40]. It offers the advantage that no immobilization of the MIPs 

or any modification to starting reactants is required, but the equipment is not generally available in 

labs in contrast to FTIR and NMR, thereby limiting its application. Studies on the pre-polymerization 

complex have been performed with two calorimetric methods; respectively, isothermal batch and 

titration calorimetry. The latter is preferred, since in batch calorimetric experiments unstirred samples 

are affected by strong solvent-polymer interactions, such as swelling of the material over time.  

Nicholls has determined that the degree of template complexation is associated with the change in 

Gibbs free energy of formation of each mode of template-functional monomer interaction [29]. It is 

assumed that MIPs do not undergo conformation changes during recognition of the template and 

hydrophobic interactions are negligible since rebinding experiments are in general performed in 

lipophilic solvents. This means that the energetic contributions of template-functional monomer 

interactions, according to Nicholls, can be simplified to[41] :  

 

Equation 1: 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐺𝑡+𝑟 + 𝛥𝐺𝑟 +  𝛥𝐺𝑣𝑖𝑏 +  Σ  𝛥𝐺𝑝 

 

where the Gibbs free energy changes are: ΔGbind, complex formation; ΔGt + r, translational and 

rotational; ΔGr, restriction of rotors upon complexation; ΔGvib, residual soft vibrational modes; ΣΔGp, 

the sum of interacting polar group contributions. 

There are several examples in literature of the use of ultrasensitive isothermal titration calorimetry to 

evaluate the binding properties of MIPs towards it template. Weber et al., [28] studied the response 

of microgels imprinted with L-Boc-phenylalanine anilide (L-BFA) to a range of probe molecules, 

observing significant difference between the binding enthalpy of the original template compared to 

the other competitors. Hsu et al. [42] determined that insertion of a styrene monomer into a MIP 

composed of polyethylene glycol dimethacrylate enhanced the extraction of the enzyme Ribonoclease 

A. This was determined via two different detection methods, respectively, with Enzyme-Linked 

ImmunoSorbent Assay (ELISA) tests and with microcalorimetry. The results are summarized in 

Table 2, where the number after SM indicates the percentage of styrene incorporated into the 

monomer mixture.  

 

From this table, it can be seen that the imprint factor (IF) as calculated by ELISA assays and 

microcalorimetry follows roughly the same trend. The results for SM-40 are significantly different 

however, where ELISA assays predict a lower IF (1.53) with microcalorimetry a significant increase 



(4.96) is determined. This could be because in the case of ELISA tests MIPs are functionalized onto 

a surface and non-specific binding becomes a more important factor.  

Overall, isothermal calorimetry allows fast and low-cost screening of template-monomer interactions 

and is used for the design and optimization of MIPs for a variety of targets. Selectivity can be 

determined up to a level of chiral recognition, as was demonstrated with a MIP for phenyl-α-

mannopyranoside [43]. At a low degree of occupation of the binding sites, significant differences 

were observed in the endothermic heat effect for the D and L enantiomers, indicating enantioselective 

rebinding of the template. Besides detection, microcalorimetry is also used to evaluate binding 

mechanisms, complexation ratios and material properties of MIPs. The binding mechanism of 2-4-

dichlorophenoxyacetic acid to a vinylpyridine MIP was elucidated by microcalorimetry [44]. It occurs 

in several distinct steps, starting with the dehydration of the pores, followed by binding of the 

template, and finally, rearrangement of water molecules. The process was pH dependent, as shown 

in Table 3 where the thermodynamic parameters for the MIP and NIP are listed at different pH values.    

The values obtained in this study are comparable to previous literature [45]. It shows that at acidic 

pH values, binding to the MIP is driven by entropy while for the NIP enthalpy is the dominating 

force. This is line with the proposed binding mechanism, which involves steric complementary. At 

basic pH values the electrostatic repulsion forces control the binding and a higher positive enthalpy 

is obtained [44]. The use of isothermal titration calorimetry to monitor the energetics of formation of 

the MIP pre-polymerization complex was demonstrated by Zhao et al. [46]. A MIP for patulin, a 

contaminant, was prepared by grafting polymer brushes onto a silica support. The formation of the 

pre-polymerization complex was determined by titrating solutions of the functional monomer, 

acrylamide, to template solutions in the calorimetric cell. By measuring the heat changes after each 

addition the binding constant (K) and enthalpy change (ΔH) were calculated.  

 



 

Figure 2. Isothermal titration calorimetry data for the template binding to the functional monomer 

acrylamide. The profiles are given of titration of acrylamide with patulin (left) and 6-hydroxynicotinic 

acid (right) in aqueous solutions. In the upper panel the raw data of the titration is provided, with in 

the lower panels the normalized data is provided[46]. Reproduced with permission from ref 46, 

copyright 2011 from Springer. 

 

From the microcalorimetry graphs, it was determined that there is a strong donor-acceptor hydrogen 

bond formed between the monomer and both templates. The plot of the kcal/mole of the injectant vs 

the molar ratio demonstrates the affinity distribution and the maximum peak height at a molar ratio 

of 1 indicates that there is a 1:1 ratio of binding for the monomer to the template. This was confirmed 

by molecular modeling, and by performing batch rebinding experiments and analyzing them with 

Scatchard analysis. While for these two templates a similar pattern in titration experiments is 

observed, for a similar molecule, 5-hydroxymethyl-2-furaldehyde, a distinctly different result is 

obtained. As a consequence, the synthesis needs to be adapted and after identifying the groups 

participating in pre-polymerization complex formation need to be matched with the functional 

monomer that is employed in the MIP synthesis.  

Fish et al.[47] used isothermal titration calorimetry to study complexation ratios between the 

functional monomer, methacrylic acid, and the template, the drug cinchonidine. Calorimetric 

titrations elucidated that the minimum energy of the complex was at a ratio of 4:1 mol/mol for the 



monomer relative to the template. This demonstrates that isothermal calorimetry is a useful tool for 

the synthesis of MIPs, as it speeds up the optimization process and allows for screening of different 

monomers. It can also be used to model the presence of heterogeneous binding sites in MIPs [48, 49], 

which supports in the design process[50]. 

 

3. Thermistors as read-out technique for biosensing with MIPs 

 

Thermistors are resistors that exhibit a large and precise change in electrical resistance when 

subjected to a temperature change [31]. Biochemical processes involve the evolution of heat, with the 

total heat that is produced depending on the molar enthalpy change (ΔH) and the total number of 

moles of product (n) used in the reaction [30], [51]. The relative temperature change associated with 

the reaction is dependent on the total heat capacity (Cs) of the system. This difference ΔT, as is 

measured with the read-out of the sensor, is then defined by Equation 2 [30].  

Equation 2:  

𝛥𝑇 =  −( n ΔH / Cs) 

 

Enthalpy changes for enzyme catalysis are associated with values up to 200 kJ/mol, which is 

sufficient to determine metabolites concentrations up to the low micromolar regime [52, 53]. In 

molecular imprinting, as described previously, binding of the template to the nanocavities results in 

an enthalpy change. The benefit of this technique is that it is label-free and the MIPs used in analysis 

do not need to be integrated on the sensor, eliminating the need of an immobilization step.  

Nowadays, they are used for several sensing applications, but examples of MIP-based platforms with 

thermistors as read-out are sparse. The first combination of a thermistor transducer for the recognition 

of small organic molecules with catalytically active MIPs was described by Lettau et al. [54]. In this 

work, MIPs were prepared that possessed catalytic activity towards the substrates phenylacetate and 

4-nitrophenylacetate. For functionalization of the particles, 150 mg of MIP or NIP were packed in a 

column in a flow reactor. Phenylacetate concentrations in aqueous solutions (0.5 – 5 mM) were 

introduced to the system, leading to a peak in the temperature due to conversion of the substrate. After 

flowing the system with buffer, a negative peak was observed that returned to the baseline, which 

was because the substrate was removed from the reactor. Saturation occurred from concentrations 

higher than 0.5 mM, with the operating regime of the sensor from 0.05 to 0.5 mM. The specificity of 

the MIPs was demonstrated by the addition of the reaction products phenol and acetic acid, which 

gave a significantly different response in the calorimetric signal. The data was then used to determine 

kinetic parameters of the MIPs and a Michaelis Menten constant of 2.2 mM was calculated, which is 

similar to what was previously determined for esterolytic MIPs.  



 

In a follow up on this work, a MIP for nitrofurantoin was optimized by combining diaminopyridine 

derivative (BMP) as the first monomer with a urea based derivative (VFU) as the second monomer. 

For the first time, detection with a MIP-based thermistor was achieved in an organic solvent[55] [56]. 

The binding of the template to the MIP is observed as an exothermic peak signal that appears after 

injection of the analyte, which is subsequently followed by endothermic desorption after washing 

with the solvent. This exothermic peak correlates to enthalpy changes associated with non-covalent 

complex formation and changes of solvation of the template at the imprinted polymer[43, 57].  By 

monitoring the exothermic peaks, it was possible to measure nitrofurantoin in the micromolar regime 

in a combination of acetonitrile and dimethylsulfoxide (DMSO). In Figure 3, the binding of the 

template nitrofurantoin is given at the exothermic peak for both the MIP and the reference NIP [56]. 

 

 

 

Figure 3. Concentration dependence of nitrufurantoin binding to the imprinted polymer based on 

two functional monomers MIP-BMP-VFU and the control polymer NIP-BMP-VFU investigated by 

thermometric sensing in acetonitrile + 0.2% DMSO. (Data represent mean ( s.d., n = 3). 

Reproduced with permission from ref 56, copyright from Analytical Chemistry. 

 

The imprint factor that was achieved with thermal detection was similar compared to traditional batch 

rebinding experiments. There are examples in literature which show significant improvement in the 

imprint factor such as MIPs containing phenyl boronic acid residues for the rebinding of fructosyl 

valine[58]. In contrast to previous experiments, here a flow through setup was used to enhance the 

sensor performance. This concept was extended to fructose and pinacol and showed that the choice 

of the cross-linkers has a significant impact on the non-specific binding to the control polymer [59]. 



With this method, label-free detection of fructose was achieved in the range of 0.5-10 mM in buffer 

solutions and the imprint factor was increased with a factor or nearly tenfold compared to traditional 

batch rebinding experiments. An additional benefit of combining MIPs with thermistors is that it can 

be used for characterization of the material since differences in heat generation reflect different 

recognition sites present in the MIPs [54]. 

 

4. The Heat-Transfer Method (HTM) 

In 2012, van Grinsven et al. [32] discovered an anomaly in the thermal behavior of DNA at its melting 

temperature. At this temperature, DNA undergoes a structural conformation from a well-defined 

elongated brush to a spaghetti-coiled structure, increasing the surface area by nearly 150%. This effect 

is known to result in an increase of the electrical resistance due to the formation of an additional 

insulating layer [60], but the increase in the thermal resistance (Rth) had not been reported in literature 

before. The thermal resistance is analogous to the electrical resistance and is defined according to 

Equation 3 [61]. 

 

Equation 3: 𝑅𝑡ℎ =  
𝛥𝑇

𝑃
 

 

In this formula, ΔT (˚C) corresponds to the temperature difference over the sample and P (W) to the 

heating power of the heat sink. The schematic design of this heat-transfer device is shown in Figure 

4. 

 

 

Figure 4. Schematic layout of the HTM setup, in which the sensor chip is connected to a copper 

block with the functional interface facing the liquid flow cell. The temperature T1 is actively 

steered, while temperature T2 in the fluid is recorded with a second thermocouple. With the heat-



transfer related parameters T1-T2 and the input power P, the thermal resistance in time at the solid 

liquid-interface is calculated. Reproduced with permission from ref 61. Copyright 2012, American 

Chemical Society.  

 

This technique, referred to as the heat-transfer method (HTM), has been extended to a variety of 

biosensing applications since it is label-free, low-cost, fast, sensitive, and user-friendly due to the 

nature of the proposed read-out technology. At the moment, current use is for determining phase 

transitions in lipid vesicles [62], single nucleotide polymorphisms in DNA[32], measuring proteins 

concentrations by aptamers[63] [64], and molecular imprinting technology [65, 66]. In the latter, we 

can distinguish between the surface imprinting technique that is used for larger templates such as 

cells and proteins[67, 68] , and the bulk imprinting technique, which is more common for small 

organic molecules [2, 69]. For surface imprinting, cells are pressed onto a semi-cured polyurethane 

layer and subsequently removed after cross-linking [66]. This removal results into the presence of 

micron-sized cavities on the surface and when template cells rebind, heat-transfer is blocked into that 

direction. With HTM as read-out technique, specific detection of cells with SIPs with a limit of up to 

10^4 cells/ml was achieved. In follow up of this research the detection limit was improved by a factor 

of 30% by using polished alumina substrates, eliminating the use of conductive silver paste and 

thereby lowering the resistance at the interface [70]. This principle is not just limited to detection, but 

has also been used for screening of cell quality assays and demonstrated that after culturing cells for 

a prolonged period of time, the bond to the imprint is weaker due to the difference in functional groups 

on the membrane [71]. Selectivity problems can be overcome by coupling the system to a peristaltic 

pump in order to control the flow-rate during sample addition. The competitor molecules bind with a 

lower affinity to the MIP cavities on the surface and were easily removed after flushing at a high rate 

with a buffer solution. This shows that non-specific binding to the imprints is completely overcome 

by shear forces imposed by the liquid flow. In past work, it was demonstrated this is sufficient to 

prevent binding of different types of breast cancer cell lines. 

In the case of bulk imprinting, the cavities are not present on the surface but inside the material and 

rebinding of the template results into partial blocking of the heat-transfer inside the pores. The 

underlying principle detection principle by HTM is referred to as the “pore-blocking model” [65], 

shown in Figure 5. 



Figure 5. Artistic impression of the “pore-blocking model”, with the MIP particle embedded in the 

surface with various pores or binding sites of the template molecule. When the channels are filled 

by the target molecule (indicated by blue dots), heat-flux through the MIP layer is strongly reduced 

and the overall heat-transfer resistance is increased. Reprinted with permission from ref 65. 

Copyright Bioanalytical and Analytical Chemistry, 2013.  

 

To functionalize the MIP particles on the surface, the particles are applied onto an adhesive layer that 

was spin-coated prior on the electrode. Several polymers were tested as adhesive layers, including 

polyvinylchloride (PVC) and modified MDMO-PolyPhenyleneVinylene (MDMO-PPV). Both 

materials have a low glass transition temperature and by slight heating of the substrate, the polymer 

coating will exhibit liquid-like properties and MIP particles are allowed to sink into the adhesive 

layer. The main difference is that PVC is insulating compared to MDMO-PPV, and for performing 

heat-transfer measurement it was preferred to have a conductive adhesive layer on the substrate in 

order for heat to freely pass through the electrode surface. After functionalizing the MIPs onto the 

electrodes, attachment was studied with optical microscopy and it was determined that ~ 30% of the 

surface was occupied with MIP particles [65].  

This process has been performed for MIPs designed for neurotransmitters histamine, L-nicotine, and 

serotonin, and detection limits between 50 to 100 nM were achieved in buffered saline solutions using 

HTM as read-out technique. As references, the NIPs were used and the response of the MIPs was 

tested against competitor molecules. For L-nicotine its metabolite cotinine was studied, for the 

template serotonin dopamine was employed, and histamine was tested against histidine. As a first 

proof-of-application, saliva samples spiked with L-nicotine were measured. This was proven to be 

difficult, since high noise levels were obtained that originate from the viscosity of the sample and 

from the noise generated by the power supply [65]. By fine tuning the settings of the feedback loop, 



the detection limit of the neurotransmitter L-nicotine was brought down to 33 nM in buffer solutions 

[72].  

A first array sensor set up of the HTM equipment was developed by Wackers et al., [73], who 

segmented a flow-through sensor into four quadrants with a sample volume of ~20 μL. With this 

design, it was possible to discriminate between histamine, serotonin and L-nicotine without 

significant cross-selectivity. To enhance the detection limit with HTM as read-out, improvements can 

be done on the heat-transfer of the whole system, which includes both the MIPs and the supporting 

electrode, and on the functionalization of the synthetic receptors on the surface. The MIPs itself are 

insulating, therefore thinner layers rather than micron-sized particles would lower the overall thermal 

resistance and increase the relative effect size. There are other supporting materials available rather 

than electrode bare alumina, which could also stimulate the heat-flux for the sample. Grafting MIPs 

onto graphene fulfills both these criteria since it allows a small dimension, high surface-to-volume-

ratio and graphene possesses superior thermal properties[74]. While there are some examples in 

literature [75] [76], it is not possible to directly graft MIP layers onto graphene and therefore graphene 

oxide is a more viable alternative due to the presence of oxygen functionalities. Peeters et al. [77] 

described a method for developing a MIP-graphene oxide (GO) hybrid by employing reversible 

addition-fragmentation chain transfer (RAFT). The nanosized layers were capable of detecting 

histamine with HTM in the nanomolar regime with a similar detection limit as what was obtained 

with micron-sized particles. However, the drawback was that the MIP-GO hybrids still needed to be 

physically absorbed onto the electrodes, and directed grafting strategies from literature might further 

improve the detection limit [78, 79].  

The main drawback in terms of sample preparation is the long preparation time and there is no direct 

control of the deposition of particles on the surface. Electro polymerization is an alternative that could 

be explored, allowing fast synthesis and monolayer coverage of the surface [20, 80, 81]. Control over 

the synthesis remains complicated however, which could be optimized by using controlled 

polymerization techniques [82-84]. Controlled grafting of MIPs from electrode surfaces or supports, 

such as silica beads, resulted in thin imprinted polymer films with a thickness in the range of 1-2 nm. 

The obtained structures were more homogeneous and the higher surface area lead to superior 

chromatographic performance compared to MIPs prepared by bulk polymerization. In the case of 

thermal detection, these controlled methods were not explored yet. This is particularly interesting in 

the case of graphene as support material since it exhibits superior thermal properties compared to the 

metals that are as electrodes now, such as alumina and silicon.  

 

 

 



5. Thermal wave transport analysis 

In the case of HTM, the sample is kept at a fixed temperature with a constant thermal flux and 

stringent control is required through the feedback system. While nanomolar concentrations are 

measured with this technique, drawbacks include the noise originating from the temperature control 

and the long measurement time (15 min), which does not allow kinetic experiments. Recently, a new 

method was developed which focuses on a thermal wave (amplitude = 0.1˚C) that is transmitted 

through the functional interface and its output measured in the liquid (Figure 4) [33]. Thermal waves 

through polymers have been used in past work to study the charge distribution and transport 

phenomena in polymers with resolutions down to 1 micron [85]. In addition, glass transition 

temperatures of nano-sized polymer films were accurately determined [86]. The applications in 

literature for polymers are only limited and no attempt has been recorded on combining thermal waves 

with MIPs.  

From previous research, it is known that when binding occurs onto the MIP layer, the heat-transfer 

resistance increases[65]. As a result, the overall response of the system to temperature fluctuations is 

delayed and the phase shift can be related to the amount of neurotransmitter bound on the surface of 

the polymer.  

 

Figure 6. Schematic representation of the thermal wave analysis transport set up. A thermal wave 

was applied from the heat sink to the MIP-layer and the output was measured in the liquid.  When 

targets binds to the MIP, it induces a delay in the phase (φ ≠ φ’) and a reduction in amplitude 

(α ≠ α’) of the signal[33].  

 

This technique is measured with the same equipment as for HTM and since both methods are 

performed simultaneously, it provides the option to directly validate results. In first proof-of-principle 

tests, a different approach for sample preparation was used involving the use of screen-printed 



electrodes (SPEs). SPEs were selected since they are cost-effective, highly reproducible, and suitable 

for incorporation into portable devices [87-89]. There are a few examples of MIP-based sensors that 

are combined with SPEs, but literature examples are sparse [89-91]. Peeters et al. have presented a 

new concept for the design of functionalized SPEs, which was based on direct mixing of the MIP 

particles with the bulk of the ink used to fabricate the SPEs. Various particle to ink ratios were tested, 

with 30% of particles vs ink giving the optimal result. Lower particle ratio, such as 5%, resulted in 

significantly lowering the effect size. A ratio of higher than 30% was not achievable; above a certain 

threshold the ink loses its printability because there is not enough graphene ink present. 

This is the first time MIP functionalization on SPEs is shown in a single step, allowing fast preparation 

and high-throughput printing of the electrodes. As proof-of-principle, MIP particles for dopamine 

were incorporated onto SPEs. Dopamine is a neurotransmitter that is indispensable for the efficient 

functioning of a variety of physiological functions and abnormalities in its concentration are 

associated with psychiatric disorders such as schizophrenia and depression [92, 93]. Subsequently, 

MIP-SPEs were mounted into the heat-transfer set up and measurements were performed with 

aqueous solutions that were spiked with dopamine. Detection of dopamine was proven to be specific, 

as no response was observed of the NIP to dopamine. To demonstrate proof-of-application of the 

technique, one spiked food sample was studied. In Table 4, the detection limits for SPE-MIPs are 

provided with three different techniques, respectively, cyclic voltammetry, HTM and TWTA. From 

this table, it is directly clear that TWTA has the benefit of significantly reducing measurement time 

and lowering detection limits in complex samples compared to HTM. To demonstrate this technique 

is generic, the system has to be extended to other neurotransmitters or proteins by adapting the MIP 

interface layer. In addition, several parameters can be varied to optimize measurements, such as the 

composition of the screen-printing ink, use of different SPE substrates and the thickness of the 

substrates.  

 

6. Summary 

MIP-based biosensor platforms provide a viable alternative towards to traditional ELISA assays but 

the potential of thermal detection technique remains relatively unexplored. Therefore, the potential 

of thermal methods for the detection of neurotransmitters with MIPs has been evaluated. It is focused 

on four detection methods, respectively: calorimetry, thermistors, the heat-transfer method, and a new 

technique, thermal wave transport analysis. Calorimetry allows fast and low-cost screening of 

template-monomer interactions and its main application is for the design and optimization of MIPs, 

as it enables determining heterogeneous binding sites in the synthetic receptors. The examples of 

MIP-based thermistors in literature are sparse and detection limits are not sufficient to measure 

biological samples, but it provides useful insight into the distribution of binding sites into MIP 



particles. The heat-transfer method (HTM) is an exciting and emerging technique based upon heat-

transfer, which can measure neurotransmitter concentrations in buffer solutions in a fast and low-cost 

manner. Through adapting the thermal resistance from measuring a fixed heat-transfer resistance to 

the application of thermal waves, the new concept thermal wave transport analysis (TWTA) was 

presented. Preliminary results indicate an enhanced effect size compared to HTM by reducing the 

noise on the signal, which provides the opportunity to measure in complex samples. In summary, 

thermal techniques provide a low-cost and straightforward alternative for detection of low-weight 

organic molecules with MIPs, which will require more study in the future to transform this platform 

into array formats. 
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Tables 

Table 1. The different properties of the detection methods ITC, thermistors, HTM, and TWTA are 

compared, demonstrating the weaknesses and the strength of each technique. 

 ITC Thermistor HTM TWTA 

LOD - - + + 

Measurement time ++ + - + 

Costs set up - + ++ ++ 

Operating costs ++ ++ ++ ++ 

Selectivity ++ + + + 

General applicability ++ ++ ++ ? 

Stability ++ + + + 

Sample preparation ++ + - + 

Portability system - - + + 

 

Table 2. Rebinding efficiency of MIPs and exothermal rebinding of RNase A (0.05 wt% in PBS) to 

various styrene containing MIPs and NIPs, as measured by ELISA and isothermal calorimetry.[42] 

Polymer compositions Imprint factor by ELISA Imprint factor by calorimetry 

SM-00 2.27 2.78 

SM-10 8.56 2.75 

SM-20 10.43 6.15 

SM-40 1.53 4.96 

 

 

 

 

 

 

 



Table 3. The thermodynamic parameters of 2,4-D binding to MIP and NIP at different pH 

values[44]  

Thermodynamic 

Parameter 

pH 3 pH 6 pH 9.5 

 MIP NIP MIP NIP MIP NIP 

ΔGads (kJ/mole) -4.35 -2.78 -3.11 -5.38 -3.27 -6.26 

ΔHads (kJ/mole) 3.25 3.25 0.85 -9.52 8.14 10.25 

ΔT Sads (kJ/mole) 7.6 5.63 3.96 -4.14 11.41 16.51 

 

 

Table 4. Detection limits for MIP-modified SPEs of dopamine in buffer solutions and in a food 

sample for cyclic voltammetry, and the thermal methods HTM, and TWTA. The sample preparation 

time is associated with the preparation time per sample.  

Detection method LOD buffer 

solutions  

(nM) 

LOD food sample 

spiked with 

dopamine (nM) 

Sample 

preparation 

time (min) 

Sample 

measurement 

time (min) 

Cyclic voltammetry 4700 ± 50 - 1 2 

Heat-transfer 

method (HTM) 

350 ± 30 500 ±50 nM 45 15-20 

Thermal wave 

transport analysis 

260 ± 35  150 ± 40 nM 1 3-5 

 

 

 


