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Abstract:

Renal transplantation can often be complicated due to delayed graft function, which 

is a direct sequel of ischemia reperfusion injury. The adverse outcome of delayed 

graft function is not only short term but the long term function of the graft is also 

affected.  Therefore,  it  is  important  to  understand  the  mechanisms  of  ischemia 

reperfusion  injury.  Reactive  oxygen  species  are  the  key  mediators  in  ischemia 

reperfusion  injury causing  direct  cell  damage which  also  initiate  inflammation  by 

inducing chemokines. Presence of Inflammation is a marker of severe delayed graft 

function.  However,  the  effect  of  oxidative  stress  on  the  expression  of  key 

chemokines has not been fully established yet.

Therefore, the aim of this study was to measure the oxidative stress response and 

the  secretion  of  chemokines  in  a  cell  culture  model  that  mimics  the  effects  of 

ischemia reperfusion injury in immortalised human renal proximal tubular epithelial 

cells, HK-2. 

Cells were treated with varying concentrations of hydrogen peroxide and markers of 

oxidative  stress  response  and  chemokine  release  were  measured.  Exposure  to 

hydrogen peroxide induced a significant increase in the activity of the antioxidant 

enzyme glutathione peroxidase and the levels of the chemokines Interleukin-8 (IL-8;  

CXCL8) and MCP-1 (CCL2). A dose related increase of chemokine secretion was 

also observed. The cytokine Interleukin-1β (IL-1β) at 1ng/ml significantly potentiated 

the expression of both IL-8 (CXCL8) and MCP-1 (CCL2) which showed synergistic 

response in the presence of hydrogen peroxide. Pre-incubation of the cells with the 

anti-oxidant N-acetyl cysteine (NAC) strongly suppressed the induction of both IL-8 

and MCP-1 when stimulated with hydrogen peroxide and IL-1β. 
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This  study  demonstrates  the  potential  of  anti-oxidants  like  N-acetyl  cysteine  in 

ameliorating  the  effects  of  ischemia  reperfusion  injury  thus  suggesting  a  new 

therapeutic  approach  in  renal  transplantation.  These  findings  can  have  potential 

implications  for  clinical  use  to  prevent  ischemia  reperfusion  injury  in  renal 

transplantation.  
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1. Introduction:

Compared with dialysis,  renal transplantation offers patients with end stage renal 

failure improved survival and quality of life. Delayed graft function (DGF) is a well-

known  complication  affecting the  kidney  allograft  in  the  immediate  post-

transplantation period. The incidence of DGF has been increasing over time from 

14.7% to 21.3% perhaps due to the use of expanded criteria donors (1).  Patients 

with  DGF require  prolonged hospitalisation and rehabilitation, which increase the 

overall  cost of transplantation. Meta-analysis by Yarlagadda et al had shown that 

patients with DGF had a 41% increased risk of graft loss and a higher mean serum 

creatinine. DGF was also associated with a 38% relative increase in the risk of acute 

rejection (2). Halloran et al have reported that the half-life of cadaveric kidneys with 

no delayed graft function was 11·5 years, compared with 7.2 years for those with  

delayed function (3). This makes a compelling case to investigate DGF further and to  

find novel solutions to ameliorate this phenomenon. 

The proximal tubules located in the outer medulla of the kidney are the primary site 

of injury in renal ischemia and reperfusion (4). Under normal physiological conditions 

this region is marginally oxygenated and has a high basal metabolic demand (5),(6). 

Therefore, hypoxic or ischemic injury can cause a significant damage to the proximal 

tubules.

The Ischemia-reperfusion injury (IRI)  is  a highly complex cascade of events that 

includes interactions between the vascular endothelium, interstitial  compartments, 

circulating immune cells, and other biochemical factors. Inflammation is known to be 

a key mediator of IRI and a considerable body of data demonstrates the significance 

of the innate immunity in IRI (7),(8).  The absence of oxygen and nutrients during 

ischemia  creates  a  condition  in  which  the  restoration  of  circulation  results  in 
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production of Reactive Oxygen Species (ROS) in the proximal tubules. Oxidative 

damage from the ROS increases the local generation of pro-inflammatory cytokines 

and chemokines which recruit neutrophils and lymphocytes at the site of injury and 

lead  to  an  inflammation-like  state.  The  neutrophils  themselves  increase  the 

generation of ROS and also cause direct cellular injury rather than restoration of 

normal function. 

Reactive  oxygen  species  (ROS)  are  known  to  stimulate  the  production  of  key 

transcription factors, growth  factors and inflammatory mediators like  Interleukin-8 

(IL-8; CXCL8), Monocyte chemoattractant protein-1 (MCP-1; CCL2) and Regulated 

on normal T cell expressed and secreted (RANTES; CCL5)(9). These chemokines 

recruit neutrophils and lymphocytes thus leading to subsequent cellular injury (10). 

The chemokines are a family of chemotactic cytokines that act as directional signals 

in the migration of effector leukocytes (11). In addition, chemokines have also been 

shown to activate leukocytes, influence haematopoiesis, and modulate angiogenesis 

(12),(13).

Interleukin-8  (CXCL8)  represents  a  classical  CXC chemokine  which  is  a  potent 

inducer  of  neutrophil  chemotaxis  (14).  It  is  produced  early  in  inflammation  in 

response to stimuli  such as endotoxin and by the early,  alarm cytokines such as 

TNFα and IL-1. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is a member of 

the C-C chemokine family, and a potent chemotactic factor for monocytes. CCL2 is 

produced by a variety of cell  types it is one of the key chemokines that regulate 

migration and infiltration of monocytes/macrophages (15). 

Neutrophil  activation in IRI  has been gaining attention in  the past  several  years, 

primarily due to the re-evaluation of the role of excessive inflammatory response in 

kidney IRI. In models of renal IRI, depletion of neutrophils, blockade of neutrophil  
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adhesion to the endothelium, and inhibition of the complement system have shown 

to decrease kidney damage (16). Land et al have demonstrated that changes in the 

expression of chemokine and chemokine receptors following transplantation regulate 

the migration of leukocytes from the peripheral circulation into the allograft (17). The 

role of chemokines in IRI known but its behaviour in proximal tubules is less known.

2. Objectives:

1.  To  measure  oxidative  stress  response  in  a  cell  culture  system  (immortalised 

human renal  proximal  tubular  epithelial  cells  hRPTEC)  in  response to  simulated 

pathological condition of ischemia reperfusion injury.

2. To determine the ability of human tubular cells to produce chemokines in a similar 

setting.

3. To establish the role of oxidative stress on the expression of IL-8 (CXCL8) and 

MCP-1 (CCL2) 
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3. Materials and Methods

Cell culture

HK-2  cells  were  obtained  from  the  American  Type  Culture  Collection  (ATCC, 

Rockville, CRL-2190) and were cultured until 90–95% confluent in six-well plates or 

T75 flasks in DMEM/Ham's F12 growth medium supplemented with 5.5 mM glucose, 

2 mM L-glutamine, 5 µg/ml insulin, 5 µg/ml transferrin, 5 ng/ml sodium selenite, 0.4 

µg/ml hydrocortisone, 5 ng/ml epidermal growth factor, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 20 mM HEPES, and 10% FCS. The growth medium was changed on 

alternate days and the cells were used for no more than 10 passages. HK-2 cells 

cultured with serum were growth arrested for 48h in serum free media (SFM). 

Subculture was performed weekly or when the monolayers reached 80% confluence 

as assessed by phase-contrast microscopy. Cells were maintained in an incubator at 

37°C and 5% CO2. Cell viability was assessed using the Trypan blue exclusion assay 

using 30, 300, 1000 µM H2O2 (18). 

Model for Ischaemia Reperfusion Injury

HK-2 cells were seeded in 6 well culture plates as described previously. Once 80% 

confluence was reached, growth was arrested by incubation in SFM for 24 hrs prior 

to all experiments. The cells were then incubated with 0.5 mM hydrogen peroxide for 

60 minutes at  37°C in  an incubator.  Cells  were then washed with  PBS at  room 

temperature three times and incubated in growth media for 6,12,24, or 36 hours. The 

control group were not exposed to hydrogen peroxide but were given PBS wash to 

keep the conditions similar in both groups. The cells were then harvested at the 

above  stated  time  intervals  to  assess  markers  of  oxidative  stress  catalase  and 

glutathione peroxidise. 
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Model for Chemokine Induction

HK-2 cells were grown as described previously.  Oxidative stress was induced by 

exposure to 30 or 300µM hydrogen peroxide for 60 minutes. The cells were washed 

then three times with PBS and were incubated in SFM for 24hrs. Supernatants were 

collected for IL-8 (CXCL8) and MCP-1 (CCL2) analysis. The cells were harvested in 

sodium hydroxide to  determine the protein  content  which  was analysed by BCA 

(Sigma). 

Model for Chemokine Suppression with NAC

HK-2 cells were grown as described previously. Cells were incubated with 10mM 

NAC for 60 minutes and washed three times with PBS. The control cells were not 

exposed to NAC but received a wash with PBS to keep all conditions similar in both 

sets. Cells were then incubated in 30 and 300μM H2O2 for 60 min. The cells were 

then washed three times with PBS and incubated in SFM for 24 hrs. Supernatants 

were collected and analysed for IL-8 and MCP-1.

Model for Chemokine Induction with IL-1β and NAC Inhibition:

HK-2 cells were cultured as described previously. Cells were incubated with 10mM 

NAC for 60 minutes and washed three times with PBS. The control cells were not 

exposed  to  NAC but  however  received  a  wash  with  PBS to  keep all  conditions 

similar in both sets. Following this some cells were pre-incubated with 1ng/ml IL-1β 

for 24 hrs. Other cells remained in SFM. Cells were then washed three times with 

SFM and incubated in 30 or 300µM H2O2 for 60 min. The cells were washed three 

times with SFM and incubated in SFM for 24 hrs. Supernatants were collected and 

analysed for IL-8 and MCP-1 using ELISAs.
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Glutathione Peroxidase and Catalase activity assays

Cells were harvested in 550µl of PBS/well and sonicated for 10sec at 15 microns 

(Soniprep 150, Sanyo Scientific). The cell extracts were clarified by centrifugation, 

and the protein content was measured by the bicinchoninic acid method (BCA).  

Glutathione peroxidase (GPx) activity was measured using the method of Flohe and 

Gunzler (19). 

Catalase activity was measured spectrophotometrically using the assay developed 

by Beers and Sizer (20).

IL-8 and MCP-1 ELISA

The media supernatants were collected, clarified from cell debris by centrifugation 

and stored at -20°C prior to analysis.

IL-8  and  MCP-1  levels  were  measured  using  sandwich  ELISA according  to  the 

manufacturer’s protocol (R&D Systems). The ELISA plates were read using a micro 

plate reader (Powerwave X340, Bio-tech Instruments Inc, Vermont,USA) at 450nm 

using background subtraction at 570nm. The concentrations of IL-8 and MCP-1 in 

the supernatants were determined from a standard curve and were normalised using 

the total protein values of the respective cell monolayers.

Data analysis

Statistical  analyses  were  carried  out  using  the  Statistical  Package  for  Social 

Sciences (SPSS version 11.01, Surrey, UK). All data were expressed as means  ± 

SE.  Data were analysed using a one-way repeated measures ANOVA. Where a 

significant value was observed, Tukey’s HSD post hoc analysis was performed to 

identify  where  the  significant  differences  occurred.  A  P  value  of  <0.05  was 

considered significant.
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4. Results:

Cell  viability was assessed using the Trypan blue exclusion assay.  Adherent and 

floating cells were harvested at 24 and 48 hrs after exposure to either SFM alone 

(control)  or  to  Hydrogen  peroxide  preparation.  The  pooled  adherent  and  non-

adherent  cells  remained  viable  both  at  24  and  48  hours  after  exposure  to 

30,300,1000 µM hydrogen peroxide with no significant difference between the three 

groups.(Figure not shown)

Glutathione peroxidase and catalase enzyme activity in response to H2O2

Glutathione peroxidase activity was measured  at 2,4,8,12,24 and 36 hours. There 

was a significant rise in glutathione peroxidase activity in the samples collected after 

36  hours  of  injury  (181.8+/110.61mU/mg  compared  to  95.34+/-23.88mU/mg  in 

control; (p<0.05)), as shown in Figure 1. The experiments were repeated on at least 

three separate occasions.

There was no significant change in the activity of catalase at any time interval (n=12;  

figure not shown). 

 Figure 1:  Glutathione peroxidase (Gpx) activity  in  cell  exposed to 0.5 mM 

hydrogen peroxide (n=6) 

Basal production of IL-8 (CXCL8)

IL-8  (CXCL8)  was detected within 6 hours of incubation in SFM 70.3+/-36.86pg/ml 

and the concentration increased with time, 456.8+/-94.28pg/ml at 12 hours, 925+/-

139pg/ml at 24 hours and 1337+/-158pg/ml at 48 hours (results not shown). Basal 

IL-8 production could be due to the stress of cell culture due to transfer of cells and 

change  in  media.  The  progressive  rise  with  time  is  possibly  the  effect  of 

accumulation. 
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Effect of growth media and hydrogen peroxide on IL-8 (CXCL8):

When exposed to 30 or 300 µM of hydrogen peroxide in growth media or SFM, no 

change in IL-8 (CXC) was observed in cells cultured in growth media. In contrast, 

cells incubated in SFM showed a significant rise in IL-8 (CXCL8) with 300  µM of 

hydrogen peroxide measured at 24 hrs (Figure 2).

The possible explanation for this could be the albumin in foetal calf serum may have 

scavenged the free radicals resulting in reduced stimulation of cells in growth media 

group. Other explanation can be that the cells are less stressed in growth media as 

compared to SFM thus resulting in less stimulation in growth media group. 

                

Figure 2: Induction of IL-8 with 30 and 300µM H2O2 in serum free media but not 

in growth media 

Effect of Interleukin-1beta (IL-1β) on IL-8 (CXCL8) production

HK-2 cells when stimulated with 1ng/ml IL-1β showed an increase in IL-8 (CXCL8) 

production (Figure 3). In the same experiment 30 and 300 µM of hydrogen peroxide 

also increased the production of IL-8 significantly. A further increase in IL-8 (CXCL8) 

was observed in cells  exposed to IL-1β  and then incubated with  30 and 300µM 

hydrogen  peroxide,  (Figure  3).  There  was  no  statistical  difference  between  the 

exposure  to  30  and  300µM  hydrogen  peroxide  alone.  However,  there  was  a 

significant  rise  between  cells  exposed  to  30  or  300  µM hydrogen  peroxide  and 

further stimulated with  IL-1β which was more than expected suggesting synergism 

between IL-1β and hydrogen peroxide. 

 Figure 3: IL-8 induction with IL-1 alone and in combination with H2O2 (n=6) * 
P <0.05
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Effects of N-Acetyl cysteine (NAC) and hydrogen peroxide on IL-8 production 
In HK-2 cells were pre-incubated with NAC 10mM and then stimulated with 

hydrogen peroxide 30 and 300 µM, IL-8 (CXCL8) was inhibited in both 

groups. 4464+/-425pg/ml and 3993+/-1464pg/ml respectively as 

compared to cells not pre-incubated with NAC 5919+/-659pg/ml and 

6865+/-105pg/ml, although this was not statistically significant (p>0.05; 

data not shown).

Effects  of  N-acetyl  cysteine  (NAC)  and  Interleukin-1beta  (IL-1β)  on  IL-8 

production

HK-2 cells when stimulated with 1ng/ml IL-1β significantly increased the  production 

of IL-8 to 7990+/-972pg/ml when compared with control cells that were incubated 

with culture  medium  alone  at 5631+/-154pg/ml  (p<0.05).  Further,  in  cells  pre-

incubated  with  NAC  the  effect  of  IL-1 β was  suppressed  significantly  (5669+/-

798pg/ml; p<0.05) as shown in Figure 4. 

Figure 4: IL-1β alone stimulation of IL-8 (CXCL8) and its inhibition by NAC pre-
incubation

Stimulation  of  IL-8  (CXCL8) with  IL-1β  and  hydrogen  peroxide  and  its 

inhibition with NAC:

To study the effect of antioxidant treatments on the production of chemokines, the 

above experiments were repeated on cells that were induced with IL-1β and H2O2 (30 

or 300  µM). A significant increase of IL-8 was observed in cells exposed to IL-1β 

alone.  However,  this  effect  was  partially  abolished  by NAC (Figure  5).  The IL-8 

generation  in  cells   stimulated with  30µM of  hydrogen peroxide  was  moderately 

inhibited in response to 10mM NAC pre-incubation  (2495+/1924pg/ml vs 3222+/-

12
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904pg/ml). In contrast, the IL-8 levels in cells stimulated with 300µM of hydrogen 

peroxide were significantly inhibited by NAC (1961+/-322pg/ml vs 4837+/-414pg/ml) 

as shown in Figure 5. The results demonstrate the role of oxidative stress induced by 

hydrogen  peroxide  in  mediating  IL-8  (CXCL8)  release  and  show a  dose  related 

response.

Figure 5: Suppression of H2O2 and IL-1β mediated production of IL-8 (CXCL8) 

by pre-incubation with NAC (N)

Oxidative stress and MCP-1 (CCL2) production

Effect of Hydrogen peroxide and IL-1β on MCP-1 (CCL2) 

MCP-1(CCL2) was investigated similar to previous experiments on IL-8  (CXCL8). 

There was no change in MCP-1 (CCL2) levels in response to either 30 or 300 µM of 

hydrogen peroxide (Figure 6). When cells were incubated with IL-1β they showed a 

significant  increase  in  MCP-1  (CCL2)  (2902+/-68pg/ml)  compared  to  the  control 

group (1616+/-54pg/ml) as shown in Figure 6. These results indicate that hydrogen 

peroxide has less involvement in MCP-1 (CCL2) production as compared to IL-8 

(CXCL8), however IL-1β  was able to potentiate its production suggesting different 

mechanisms maybe involved for hydrogen peroxide and IL-1β.

Figure 6: Induction of MCP-1 (CCL2) with IL-1β  but not with hydrogen peroxide 

Effect of pre-incubation with NAC and induction with hydrogen peroxide and IL-1β  on 

MCP-1 (CCL2)
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Pre-incubation with NAC resulted in a significant reduction of MCP-1 (CCL2) levels 

in  cells  exposed  to  300  µM  of  hydrogen  peroxide  (793.7+/-57pg/ml)  but  not  in 

response to 30 µM hydrogen peroxide (1172+/-109pg/ml) (Figure 7). These findings 

again suggest oxidative stress is involved, although pathways may possibly be more 

complex.  Pre-incubation  of  cells  with  NAC  also  resulted  in  inhibition  of  IL-1β 

induction although this was not statistically significant as shown in Figure 7.

Figure  7: Effect  of  pre-incubation  with  NAC  and  induction  with  Hydrogen 
peroxide and IL-1β on MCP-1 (CCL2) levels

Combined effect of H2O2, IL-1β , and NAC on MCP-1 (CCL2) 

The above experiments were repeated similar to the experiment with IL-8 (CXCL8) 

with the addition of cells stimulated with both IL-1β and hydrogen peroxide (30 and 

300 µM) and cells pre-incubated with 10mM NAC. Results were similar to those seen 

with  IL-8  (CXCL8).  IL-1β significantly  increased  the  MCP-1  (CCL2)  to  2902+/-

68pg/ml and NAC was able to inhibit this to a level of 2818+/-261pg/ml although 

again this was not statistically significant.  In the subset which were induced with 

hydrogen  peroxide  and  IL-1,  NAC  pre-incubation  caused  a  reduction  in  MCP-1 

(CCL2) in 300 µM group to 1044+/-303pg/ml when compared with the set which did 

not get NAC, 2636+/-177pg/ml (p<0.05) as shown in Figure 8.

Figure 8: Combined effect on MCP-1 production after NAC pre-incubation on 

IL-1β  and H2O2   stimulated cells

14
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5. DISCUSSION

Oxidative stress resulting from IRI has been shown to have a major role in causing 

DGF  (21).  Chemokines  mediate  the  inflammatory  response  but  it  is  difficult  to 

establish a  detailed role  of  proximal  tubules.  Therefore,  a  simulated condition  of 

oxidative stress was attempted within the constraints of an in vitro model. HK-2 cells 

are a suitable model system for the purpose of these experiments because of their 

thorough characterisation, durability and consistent physiological response.

IRI  was  simulated  by  incubating  HK-2  cells  with  hydrogen  peroxide.  Hydrogen 

peroxide  introduced  exogenously  in  high  concentration  is  known  to  permeate 

through  cell  membranes  cannot  be  detoxified  to  water  by  the  intra-cellular 

antioxidant enzymes and produce oxidative stress (22). 

Hydrogen peroxide is converted by catalase and glutathione peroxidase to water. 

Glutathione peroxidase has been mainly shown to be produced in kidneys and HK-2 

cells  have been shown to  express glutathione peroxidase (23,24).  Several  other 

studies  have  also  reported  involvement  of  glutathione  peroxidase  in  defence 

responses  to  oxidative  stress  in  proximal  tubules  (25,26).Our  study  has  shown 

significant increase in  glutathione peroxidase from HK-2 cells  after induction with 

hydrogen peroxide.

Miguel et al have utilised hydrogen peroxide in a cell culture model of HeLa cells to  

study its effect on antioxidant enzymes. Hydrogen peroxide induced oxidative stress 

in a time- and concentration- dependent manner which was prevented with the use 

of the anti-oxidants ascorbic acid and N-acetyl cysteine (27).

There was no change in  catalase activity in  this  model.  There could  be several 

reasons  for  this  but  catalase  has  shown  to  be  less  responsive  in  experimental 

oxidative stress conditions due to differential inhibition (27). Catalase is also reported 
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to be inactivated by hydroxyl radicals, while glutathione peroxidase and superoxide 

dismutase (SOD) are considerably less affected by these radicals (28).

The observed basal secretion of IL-8 (CXCL8) by HK-2 cells is possibly the response 

of the cells to normal stress of growth inherent in cell culture systems. Bioprocess 

forces are known to be encountered during cell culture and include hydrodynamic 

shear  and  stresses  resulting  from  transfer  through  capillaries  or  by  pipetting  to 

suspend cell pellets (29). The progressive rise with time is the effect of accumulation. 

Andreucci et al also found a rise in IL-8 (CXCL8) after hydrogen peroxide stimulation 

in HK-2 cells (30). Shimada et al showed a similar rise from gastric epithelial cells 

when stimulated with hydrogen peroxide (31). DeForge et al showed the stimulatory 

effect  of  hydrogen  peroxide  on  IL-8  (CXCL8) production  by  HepG2  cells,  A549 

pulmonary type II epithelial cells, and human skin fibroblasts (32).

Cytokines like IL-1β, TNF or the bacterial product LPS in both a time- and dose-

dependent manner are known to increase expression of  IL-8  (CXCL8)  mRNA and 

secreting IL-8 (CXCL8) peptide (33). Ivison et al proved the link and mechanism of 

hydrogen peroxide mediated IL-8 (CXCL8) induction. This was dose dependent and 

associated with synergistic phosphorylation of p38 MAP kinase and with prolonged I-

κB degradation and NF-κB activation (34).

Enesa et al observed that H2O2 combined with cytokines (IL-1β, TNFα) induced IL-8 

(CXCL8) synergistically  in  cultured  epithelial  cells.  They  also  observed  that  the 

capacity  of  H2O2 to  enhance  IL-8  (CXCL8) induction  in  response  to  TNFα  was 

suppressed in cultures that were pre-treated with NAC (35).

Inhibition of MCP-1 (CCL2) signalling in ischemic renal injury has been shown to 

have a protective role (36). Takahashi et al have suggested JNK- and IκB-dependent 
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pathways regulate MCP-1 (CCL2) synthesis and also found NAC could suppress 

MCP-1 (CCL2) production (37).

NAC has also been shown to protect kidneys against oxidative damage from in vitro 

simulated  reperfusion  injury  (38).  Antonicelli  et  al  investigated  the  effect  of  

Nacystelyn, a recently developed lysine salt of NAC upon interleukin IL-8 (CXCL8) 

release and the activation of the re-dox-sensitive transcription factors AP-1, NF-κB, 

and C/EBP in a human alveolar epithelial cell line (A549)(39).

Ayvaz et al have reported the benefit of NAC in intestinal ischemic injury as well as,  

reperfusion in  rat  model  (40).  Similarly Nitescu et al  have shown NAC improves 

kidney function, and reduces renal interstitial inflammation, in rats subjected to renal 

IRI (41). Zhang et al found that NAC exerts its protective effect in part by directly 

scavenging ROS and in part via ERK1/2 activation in HK-2 cells (42) while Lee et al 

have shown NAC reduced Colistin induced nephrotoxicity in human proximal tubules 

(43).

Despite many favourable results in the  in  vitro models,  NAC has not  been used 

widely in the clinical world. So far it has shown some clinical benefit in preventing 

DGF and contrast nephropathy. (44-46 ). Briguori et al have reported that NAC was 

better than fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity 

(47).

Danilovic et al have shown clinical benefit of NAC in renal transplant recipients. Use 

of NAC resulted in reduced rate of DGF and better renal function was seen for up to  

one  year  (48).  NAC  administration  has  also  showed  an  improvement  in  the 

histopathological  findings  of  ischemia/reperfusion  damages  (40).  Donor  pre 

treatment with  NAC has been shown to  preserve renal  metabolism and improve 

outcomes of IRI  injured kidney transplants (49).  Fuentes et al  have shown NAC 
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treatment in patients with stable renal function after transplantation increased high-

density lipoprotein cholesterol and antioxidant molecules in relation to glutathione 

peroxidase, with a positive influence on renal function (50). However clinical trials 

have failed to show any benefit of using NAC as pre-treatment in deceased donors 

(51).

Although there is widespread involvement of ROS but there is a lack of widespread 

use of anti oxidants in clinical use. N-acetylcysteine, despite the growing evidence of 

benefit, has very limited utility used only for treating over-doses of acetaminophen 

and for improvement of bronchial mucous fluidity (52).

Many anti-oxidants show strong positive effects in the laboratory, but only a few of 

these drugs are used as anti-oxidants in humans. Some plausible reasons for this is 

that because  ROS production  occurs  ubiquitously  in  aerobic  cells  and  chemical 

reactivity of ROS takes place in a non-specific manner; to find statistically significant 

differences in different cells or tissues is difficult.  Because ROS production is very 

common and the human body has an abundant capacity for producing anti-oxidants, 

it  is  difficult  to obtain statistical  differences in trials designed to evaluate an anti-

oxidative drug.

Also even if expression of enzyme or protein is seen it may not necessarily result in 

an increase in activity (53).

Conclusion:

This study has shown that HK-2 cells are responsive to various physiological stimuli  

like  hydrogen  peroxide  and  cytokines.  IL-1β mediated  IL-8  production  is  partly 

mediated via oxidative radicals as NAC, a powerful antioxidant, was able to inhibit 

this reaction. Oxidative stress is possibly the underlying mechanism involved in the 
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various responses seen. The challenge remains in using these novel targets and 

their translation from bench to bedside (54). 

DGF  is  an  important  clinical  outcome  after  kidney transplantation,  and  one  that 

needs  to  be  addressed  by  funding agencies  and  clinical  trials. In  an  era  of 

tremendous shortage of kidneys for transplantation, every effort should be made  to 

improve the  survival  of  the  transplanted kidneys  in  the  recipient.  Therefore,  it  is 

imperative that we implement strategies to reduce the incidence of DGF in an effort 

to  improve  long-term graft  survival.  Cold  storage phase  is  indeed an underused 

therapeutic window.  High dosage of NAC can be delivered in cold perfusion fluids. 

The present  results  should be interpreted keeping in mind the constraints of  cell 

culture model.
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	In HK-2 cells were pre-incubated with NAC 10mM and then stimulated with hydrogen peroxide 30 and 300 M, IL-8 (CXCL8) was inhibited in both groups. 4464+/-425pg/ml and 3993+/-1464pg/ml respectively as compared to cells not pre-incubated with NAC 5919+/-659pg/ml and 6865+/-105pg/ml, although this was not statistically significant (p>0.05; data not shown).

