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ABSTRACT 
In this study, we provide a mathematical description of the onset of counter-
rotating circular vortices observed for a family of slender rotating cones (of
half-angles 15° or less) in quiescent fluid. In particular, we apply
appropriate scalings in order to simplify the basic-flow profiles, which are
subsequently perturbed, accounting for the effects of streamline curvature.
A combined large Reynolds number and large vortex wavenumber analysis
is used to obtain an estimate for the asymptotic right-hand branch of
neutral stability for a slender rotating cone. Our results confirm our earlier
predictions pertaining to the existence of the new Görtler mode and capture
the effects of the governing centrifugal instability mechanism. Meanwhile,
favourable comparisons are drawn with existing numerical neutral stability
curve results.

1. INTRODUCTION 
Recently, there has been considerable interest in the exact mechanisms
governing the instability and transition to turbulence of flow in three-
dimensional boundary layers. The rotating-disk has been used widely to model
swept-wing flow due to similarities between their basic-flow profiles, but few
studies exist on the boundary-layer flow over rotating cones. Comprehensive
reviews covering geometries ranging from swept-wings to rotating disks and
spheres are given by Reed & Saric [1], Saric et al. [2] and Reshotko [3].
Meanwhile, recent developments on spinning projectiles, aerofoils and



aeroengines have furthered understanding of the onset of laminar-turbulent
transition of boundary-layer flows over rotating cones.

Physically, laminar-turbulent transition within the boundary layer over a
slender rotating nose cone can lead to significant increases in drag. For spinning
projectile applications, such as missiles and torpedoes, the implications for
control and accurate targeting are negative. Understanding the stability of such
boundary-layer flows leads to design modifications and significant cost
savings. As such, the rotating cone setup models the nose of a missile head
travelling through the atmosphere, with ogive-nose cones (studied by Kohama
[4] and Mueller et al. [5]) representing more realistic aerodynamic designs of
modern missile heads.

The first experimental work on the rotating cone was conducted by Kreith,
Ellis & Giesing [6], Tein & Campbell [7] and Kappesser, Greif & Cornet [8] for
a rotating cone in still fluid, and by Salzberg & Kezios [9] for a rotating cone
in axial flow, which is found to exhibit a stabilising effect on the flow to
disturbances. While these experiments accurately measured Reynolds numbers
for transition to turbulence, they were unable to sufficiently resolve the
mechanisms at work within the laminar-turbulent flow region.

In the 1980s, experimental studies by Kobayashi et al. [10] and Kobayashi &
Izumi [11] as well as by Kohama [4] and Mueller et al. [5] (for ogive-nose
cones) observed the existence of spiral vortices, which are generated in the
region of steep shear velocity gradients near the cone wall. Using high-speed
strobe light flow visualisation techniques, these studies showed in detail the
spiral vortices being shed from the cone boundary layer under the action of
distorting forces from the mean velocity field.

It was noticed that a key influence on the nature of these vortices is the cone
half-angle. For example, the experimental study by Kobayashi & Izumi [11] for
cones with slender half-angles, ψ, as low as 15°, clearly show the existence of
pairs of counter-rotating Görtler vortices, which arise from a dynamic
instability induced by the centrifugal force of the flow field (as shown in
figure 1). However, for ψ > 30°,  their results clearly show the spiral vortices
transform to more familiar co-rotating crossflow vortices.

Indeed, measurements of the spiral angle (the angle between the normal to
the vortices and the cone meridian) by Garrett et al. [12] are shown to approach
those observed for a rotating disk as the half-angle tends to 90°. It is well-
known from the studies of Gregory et al. [13] and Hall [14] that the stationary
spiral vortices observed on the rotating disk are in fact co-rotating vortices
attributed to an underlying crossflow instability, based on an unstable inflexion
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point in the crossflow component of the flow field. Recently, Garrett et al. [12]
suggested that the observed centrifugal instability for slender cones with
ψ < 40° stems from an inherently different process to that governing the
crossflow instability for cones with ψ > 40°. Therefore, there is a distinct
variation in the underlying physical mechanism governing the instability for
slender cones, which we shall identify here and model.

The Görtler instability is a type of centrifugal mechanism, which occurs in
the presence of wall curvature. When the boundary layer thickness is small
compared with the radius of curvature, the flow instability is visualised through
the formation of Görtler vortices, which break down to form successive pairs of
counter-rotating vortices. Early work on the Görtler instability mechanism
concerned the linear stability of two-dimensional flows over concave walls, for
example by Görtler [15] and Smith [16]. The parallel-flow approximation was
used, and higher-order curvature effects were neglected. Later, Hall [17]
considered non-parallel effects in the basic flow and found that the disturbances
are concentrated in internal viscous or critical layers well away from the wall
and the free stream. Further numerical investigations by Hall [18, 19] for
nonlinear non-parallel vortices in growing boundary layers led to a
characterisation of the three-dimensional effects of the centrifugal Görtler
instability mechanism. Importantly, it was observed that the relative size of the
crossflow and chordwise flow determines the vortex structure. Hence, by
scaling the coordinates spanwise and normal to the vortex structures on the
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Figure 1. Cross-sectional flow visualisation showing pairs of counter-rotating Görtler
vortices at ψ =15° (Kobayashi & Izumi 11]).



boundary layer thickness, it is possible to develop a linear analysis of neutral
modes characterised by a large vortex wavenumber. 

A comprehensive review of these studies may be found in Hall [20], where
the receptivity problem for Görtler vortices impinging on the leading edge of
the wall was also considered. In a later study, Bassom & Hall [21] analysed the
effect of altering the amount of crossflow present in a boundary-layer as a
mechanism for representing the degree of three-dimensionality within the flow
in both small-and large-wavenumber limits. It was found that sufficiently
strong levels of crossflow eventually eradicate the presence of the Görtler
instability mechanism within the boundary layer. This is of particular interest
in the boundary-layer flow over a rotating cone, as we see from the
experiments of Kobayashi & Izumi [11] that the centrifugal Görtler instability
for small ψ is eventually visualised as a crossflow dominated instability for
larger values of ψ. We identify the counter-rotating vortices for small ψ
observed by Kobayashi & Izumi [11] as pairs of Görtler vortices and suggest
that, as in the study of Bassom & Hall [21], increasing the level of crossflow
(by increasing ψ) eventually leads to the eradication of the counter-rotating
Görtler vortex pairs.

This paper forms the first part of a series of studies investigating the
centrifugal Görtler instability mechanism for slender rotating cones; future
studies will concentrate on the helical spiral waves for larger half-angles
(15°<ψ<45°), which have been observed by Kobayashi & Izumi [11] as well
as slender rotating cones in axial flow (see Kobayashi et al. [10] and Kobayashi
[22]). In the present study, we setup the formulation in section 2 for a slender
half-angle rotating cone in still fluid and derive the steady flow equations in
section 2.1. We proceed to apply appropriate scalings to capture the effects of
streamline curvature in section 2.2 leading to the disturbance equations; these
form the basis of a large Reynolds number and large vortex wavenumber
stability analysis presented in section 3, with a physical interpretation of the
results in section 4. Finally in section 5, we develop comparisons between our
results and existing numerical calculations obtained by Kobayashi & Izumi
[11], before expanding on additional work in progress. 

2. FORMULATION 
We consider a rotating cone setup where the half-angle ψ is sufficiently small
(ψ ≤ 15°) for the dominant mechanism governing the primary instability to arise
from centrifugal forces in the mean flow, due to the curvature of the cone
surface. In particular, flow visualisation of the instability in the literature is
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distinguished by the existence of two physical cases: the existence circular
waves aligned parallel to the azimuthal axis and helical spiral waves, which
appear oblique to the azimuthal axis (see Kobayashi & Izumi [11]). Here, we
proceed to outline the coordinate setup to successfully model circular vortex
waves with zero growth. 

2.1 The Steady Flow
Consider a rigid cone of infinite extent with half-angle ψ, rotating about its axis
of symmetry with constant angular velocity Ω* in a fluid of kinematic viscosity
ν*. We choose an orthogonal curvilinear coordinate system which rotates with
the cone (x, θ, z), representing streamwise, azimuthal and surface-normal
variation, respectively. The local cross-sectional radius of the cone is given by
r* = x* sin ψ (where * denotes dimensional quantities).

Length quantities are scaled on a characteristic length along the cone surface,
l*, and the surface-normal coordinate is further scaled on the boundary-layer
thickness (v*/Ω* sin ψ)1/2:

(1)

where η is the non-dimensional wall-normal coordinate within the boundary
layer and R is the Reynolds number, defined by 

(2)

The steady velocities are non-dimensionalised using the local surface velocity,
x*Ω* sin ψ, so the axisymmetric mean flow is 

(3)

where U, V and W are the non-dimensional velocities in the x*, θ and z*
directions respectively. We scale the steady pressure as

(4)

The relevant continuity and Navier-Stokes equations for the cone geometry are
non-dimensionalised using equations (1–4). Expanding the governing equations
in terms of R and ignoring terms O(R-1/2), leads to the familiar von Kármán [23]

p p l P x R xPb* * * * * sin ( ( ) ( )),/= = + −ρ ψ ηΩ 2 2 2
0

1 2

u u= = −
b l xU xV R WΩ * *sin ( ( )), ( ), ( )),/ψ η η η1 2

R = Ω * * sin
*

.
l

v

2 ψ

x l x z l z z R* * , * * , ./= = = −1 2η
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equations for boundary-layer flow over a rotating disk, and an additional
equation for the pressure: 

(5)

(6)

(7)

(8)

with boundary conditions 

(9)

Note that a prime denotes differentiation with respect to η. Consequently, we
note that this choice of non-dimensionalization results in ψ being scaled out of
the steady flow equations (5–8) for fluid velocity. The system of equations
(5–8) subject to boundary conditions (9) is solved using a fourth-order Runge-
Kutta integration method, in conjunction with a two-dimensional Newton-
Raphson searching routine. We iterate on the boundary conditions at infinity to
produce the well-known velocity profiles. 

2.2 Linear Disturbance Equations 
To model the slender cone problem, we shall consider the special case where
circular waves have been observed experimentally for a rotating cone of half-
angle ψ = 15° by Kobayashi & Izumi [11]. In still fluid, these waves are aligned
with the azimuthal axis (θ ), and as such are periodic in the streamwise direction
(x). Hence, a linear stability analysis incorporating curvature effects may be
developed.

We proceed to linearize the governing equations about the von Kármán
steady mean flow profile (3) and the basic fluid pressure (4) by introducing
small perturbation quantities. To obtain the form of these quantities and capture
the effects of streamline curvature, we first scale the streamwise and normal
coordinates on boundary layer thickness, in the form 

(10)η = =R R1 2 1 2/ /, .z x x

U V W

U V

= = = =
→ → − → ∞
0 0 0 0

0 1

, , , ,

, , .

on

as

η
η

( ) cot ,V
dP
d

+ =1 2 ψ
η

WV U V V′ + + = ′′2 1( ) ,

WU U V U′ + − + = ′′2 21( ) ,

′ + =W U2 0,
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These scales are physically consistent with research in the literature for
problems where the Görtler instability has been modelled, as summarized by
Hall [20]. Streamwise and normal coordinates are scaled on the boundary layer
thickness, as they proceed in spanwise and perpendicular directions to the
circular Görtler vortices. Next, we use the fact that the vortices are periodic in
the streamwise direction to introduce perturbation quantities, which are
characterised by a vortex wavenumber a and azimuthal wavenumber b. Our
basic flow quantities remain unchanged, whereas we scale the perturbation
velocities on boundary layer thickness, so that u and p* may be expressed
according to:

(11)

where

(12)

and the pressure perturbation term scales as

(13)

We non-dimensionalise the governing time-dependent Navier-Stokes equations
and proceed to ignore nonlinear terms. As a result, this choice of scaling leads
to a set of linearized perturbation equations. We note that scaling the velocity
and pressure quantities on boundary layer thickness and its square, respectively,
ensures the resulting leading-order perturbation equations are independent of
the Reynolds number, R. Furthermore, this is the only such choice of scaling,
which leads to consistent disturbance equations. Hence, we apply a large
Reynolds number assumption in order to recover the leading-order equations.
Our subsequent task is to investigate the short-wavelength asymptotic structure
of the centrifugal instability. We identify the spiral vortex wavenumber as 
a = ε−1, where ε is a small parameter which forms the basis of our asymptotic
analysis, and b = O(1). Therefore, the study develops into a combined large
Reynolds number and small wavelength asymptotic analysis, where Görtler
modes are investigated for both large R and small ε. After applying this
substitution, we differentiate the x-component equation with respect to η and
use the z-component equation to arrive at the following form for the reduced
system of linearized disturbance equations

p l R p iax ib* ( * * * sin ) ( )exp( ).= +−ρ ψ η θΩ 2 2 2 1

u = { } +−( * *sin ) ( ), ( ), ( ) exp( ),/Ω l R u v w ax bψ η η η θ1 2 i i

u u u= + = +b bp p p% %, * * *,
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(14)

(15)

(16)

subject to the boundary conditions 

(17)
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3. NEUTRAL STABILITY MODES
In order to conduct a linear stability analysis, the approach we use is to
asymptotically expand the disturbance quantities and apply the method of
matched asymptotic expansions. Importantly, we are conducting a combined
asymptotic stability analysis for large Reynolds number R and large vortex
wavenumber ε–1. As a result, we require a single parameter to suitably capture
the physical effect of both asymptotically large quantities, which we will
introduce in section 3.1 as the Taylor number, T. To analyse the neutrally stable
perturbations with zero growth appearing in the governing equations (14–16),
we observe that the steady flow problem setup is similar to the investigation of
Hall [17] for the Taylor problem of flow between concentric rotating cylinders.
We follow the analysis of Hall [17] for the Taylor problem by expanding the
perturbation quantities and the Taylor number, which is defined as T = 2 cot ψ,
and given by the balance of centrifugal forces from the cone rotation and
viscous forces. Furthermore, as we shall develop an asymptotic analysis for
large Taylor number, we note the quantity 2 cotψ becomes large for a slender
cone, where ψ is small. Now, in a similar way to Hall [17] for the Taylor
problem, we follow Meksyn [24] and seek a WKB solution corresponding to 
the case ε → 0 and obtain a balance of the dominant terms provided we scale T
~ ε–4 and W/V ~ O(ε–2), resulting in 

(18)

where 

(19)

3.1 Leading Order Solution
After substituting the above expressions into equations (15), (16) and equating
terms of O(1) and O(ε2) respectively, we arrive at the following eigenrelation at
leading order

(20)( )
sin
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T h xV
h
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i
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Following the Taylor analysis developed by Hall [17], the vortex activity is
located at the wall, and as such the rotating cone analysis is consistent, so that
V (0) = 0. Consideration of the eigenfunctions corresponding to the six roots of
equation (20) (see Meksyn [24]) show that only real values of K result in
acceptable solutions to the stability equations. Further details are omitted here,
but in brief, we argue as in Hall [17] that real values of K occur in regions where
the right-hand side of equation (20) is positive and has its greatest magnitude.
After re-scaling the eigenvalue in the form we obtain the leading order 
eigenvalue estimate where the minimum V′min = V′(0) = –0.6159
occurs at the wall where η =0. Therefore, for a slender cone with ψ =15°, where
purely circular waves are observed in still fluid, the leading order eigenvalue
estimate is 

3.2 First Order Solution
Our next task is to investigate the asymptotic structure of the effective scaled 
Taylor number, for the special case when We apply the
differential operator (ε2∂2/∂η2 – 1) to (15) and use equation (16) to simplify by
eliminating relevant terms in v~, leading to 

(21)

subject to the boundary conditions

(22)

Here, a number of additional terms appear in equation (21), which for brevity
are omitted, as they only play a role in the asymptotic expansions at higher
order. However, for clarity the reader is referred to Hussain’s PhD thesis [25].
We now follow the scalings used by Hall [17] for the Taylor problem and
expand the Taylor number using a modified expansion to equation (18) given
by 
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While further details in the approach are similar to the analysis of Hall [17] for
the Taylor problem, full details can be found in Hussain’s PhD thesis [25].
Here, we emphasize distinctions between the analyses, which arise due to the
differences in the steady flow profiles (3) and the definition for the Taylor
number. In brief, we employ the method of matched asymptotic expansions to
show that there exists a layer of thickness ε2/3 where the solution which
satisfies the boundary conditions (17) as η → ∞ is governed by the Airy
function.

However, in order to satisfy the boundary conditions at η = 0, an inner
boundary layer exists of thicknessε. As a result, upon matching the inner layer
solution with the outer boundary layer solution, we obtain the following
eigenrelation

(24)

This results in an infinite sequence of eigenvalues {T1n}, which correspond to
the zeros of the Airy function on the negative real axis. Subsequently, the most
dangerous mode of instability has a re-scaled effective Taylor number
expansion given by 

(25)

4. PHYSICAL INTERPRETATION
Qualitatively, this asymptotic expansion of the effective Taylor number (25)
corresponds to an asymptotic estimate of the right-hand branch of the neutral
stability curve. Furthermore, it represents cones of half-angle ψ = 15°, which
admit circular waves aligned with the azimuthal axis, as observed in the
experimental studies of Kobayashi & Izumi [11]. Hence, the result applies
within a specific parameter regime to a small family of slender cones.

Physically, we observe that an increase in the vortex wavenumber of the
circular waves is achieved by an increase in the Taylor number, which governs
the flow, so we move further up the right-hand branch of the neutral curve. Our
assumptions in the analysis require that the boundary layer instability develops
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from close to the cone nose and grows in the streamwise direction. As the
vortex streaks remain circular in nature, we propose that there is no growth
along the azimuthal direction. Hence, for cones of half-angle ψ = 15°, the
vortices are visualised as circular rings and, in terms of the centrifugal
instability, the resulting flow structure is one of the most stable configurations.
While the rotational shear effect of the spinning cone sheds vorticity in the
azimuthal direction, the cone half-angle is sufficiently small such that the
streamwise forcing of the mean flow causes vorticity to be shed along the cone.
The result is the appearance of counter-rotating vortices, which form each
individual streak on the cone surface as the instability develops. Indeed, the
cone half-angle ψ = 15° is a special case as it exhibits a flow arrangement where
these counter-rotating Görtler vortex streaks remain aligned with each other as
circular waves; these rings, termed ‘Taylor’ vortices by Kobayashi et al. [10],
are also observed for a 15° cone in a range of axial flows.

We now present a comparison between our effective Taylor number estimate
and existing results in the literature, which have been calculated by Kobayashi
& Izumi [11], and are presented in terms of the rotational Reynolds number
against the vortex wavenumber, referred to as σ. Now, for slender cones we
know that the boundary layer instability is visualised in terms of counter-
rotating spiral vortices (see Kobayashi & Izumi [11]), which are often termed
Görtler vortices. Furthermore, Hall [17] shows that the Görtler number, G,
which describes the governing centrifugal instability may be written in the form
G = 2R1/2δ, with curvature term δ. Now, Hall [17] shows that G = O(ε–4),
whereas the scaled effective Taylor number estimate (25) gives 
Hence, we connect the rotational Reynolds number, Re, to the conventional
Reynolds number, R, using equation (8) of Kobayashi & Izumi [11] to re-write
the curvature term, which leads to the relation 

As a result, we may write the rotational Reynolds number in terms of the
effective Taylor number This allows us to make a direct
quantitative comparison between our asymptotic estimate for the scaled
effective Taylor number and the numerical Reynolds number calculated by
Kobayashi & Izumi [11], which is shown in Figure 2. Here, both quantities are
calculated against the spiral vortex wavenumbers, referred to as ε–1 and σ,
respectively. Kobayashi’s data is displayed for low Reynolds number Re and
low σ, whereas our results are valid for large Taylor number and large vortex
wavenumber. Noting that our model employs the assumption of large
Reynolds number, we see our comparisons with Kobayashi & Izumi [11] (for
which data exists up to Re ~ 500) improve as the Reynolds number increases.

Re T= ( . ).1 616

Re R= 1 2 1 616/ ( . ).

T O= −( ).ε 4
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We therefore conclude the current asymptotic setup closely models the 
right-hand branch of the neutral curve for Reynolds numbers of O(104) and
above.

5. CONCLUSION 
We have non-dimensionalised the governing Navier-Stokes equations and
introduced appropriate scalings to extract the effects of streamline curvature for
a slender rotating cone. Subsequently, a combined asymptotic linear stability
analysis for large Reynolds number and large vortex wavenumber has led to an
expansion for the governing physical parameter, the Taylor number T = 2 cot ψ,
which corresponds to the right-hand branch of the neutral stability curve. The
chosen scalings of the streamwise and normal coordinates, velocity and
pressure perturbations all depend on the Reynolds number R, with the aim being
to render the governing perturbation equations at leading order (14)–(16)
independent of R. Hence, in the following asymptotic analysis outlined in
section 3, the Taylor number T emerges as the main physical parameter in the
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Figure 2. Comparison between scaled effective asymptotic Taylor number (right) and
Reynolds number Re of Kobayashi & Izumi [11] (left) against vortex wavenumbers ε−1

and σ for ψ = 15°.

T



problem, governed by surface curvature. This is consistent with Hall [17],
where the Taylor problem of flow between concentric cylinders is considered.
Importantly, alternative scalings would not successfully identify T as the
governing param-eter, as the perturbation equations would remain dependent on
R. Initially a factor in the right-hand side of the first term in equation (15), T is
asymptotically expanded to appear in the eigenrelation (20) at leading order and
subsequently in the first-order perturbation equation (21), with an Airy function
solution. 

Once T has been identified as the governing physical parameter in the
perturbation equations at leading order for large Reynolds number, it is
asymptotically expanded in terms of large vortex wavenumber ε–1, for small ε.
As a result, the asymptotic expansion for T depends directly on ε, with the
solution (25) being compared with the rotational Reynolds number Re of
Kobayashi & Izumi [11] in section 4. Therefore, the initial choice of coordinate,
velocity and pressure scales in terms of large Reynolds number R play a major
role in casting the perturbation equations in a suitable form to enable a
subsequent asymptotic analysis for small ε.

Importantly, the present study is confined to a family of slender cones rotating
within still fluid. Work is currently underway to extend the range of applicability
to less slender cones (15° < ψ < 45° ),where the centrifugal instability is still
believed to play a dominant role in still fluid (see Kobayashi & Izumi [11]). In
addition, the introduction of a fixed strength axial flow models spinning
projectiles with greater physical relevance; a stability analysis in this setup would
involve using the more complex basic flows discussed in Garrett et al. [26].
Furthermore, both numerical and experimental studies by Kobayashi [22] and
Kobayashi et al. [10] exist in the axial flow case, which facilitates comparisons
with the asymptotics in progress; we hope to report on both studies in due course. 
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