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Abstract

Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a
reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the
airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and
submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are
what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL
volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway
epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR
(PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR
delivered CFTR to .60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold
over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl2

and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of
non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus
transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells
of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to
our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of
surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus
transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF
human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates
comparable to those in non-CF airways.
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Introduction

Cystic fibrosis (CF) is the most common recessive lethal genetic

disorder in Caucasian populations and results from a defect in the

CFTR gene. Although CF affects many organs, the pulmonary

manifestations account for over 90% of the morbidity and

mortality [1]. Dysfunction of CFTR in CF airway epithelium

perturbs the normal regulation of ion transport, leading to a

reduced volume of airway surface liquid (ASL), mucus dehydra-

tion, decreased mucus transport (MCT), and mucus plugging of

the airways, which are hallmarks of early CF lung disease. Failure

of effective mucus clearance initiates and exacerbates CF lung

disease, resulting in an inability to effectively prevent or eradicate

bacterial infection, typically dominated by Pseudomonas aeruginosa.

Persistent neutrophil-mediated inflammation in CF airways

further compromises defective clearance and, over several

decades, results in airway destruction and fatal decline of lung

function.

PLoS Biology | www.plosbiology.org 1 July 2009 | Volume 7 | Issue 7 | e1000155

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161890575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Airway mucus clearance is dependent on MCT facilitated by

ciliated cell function and cough clearance, and constitutes

‘‘mechanical’’ innate defense of the lung [2]. Both MCT and

cough clearance require sufficient hydration of mucus secretions

for effective airway clearance. The currently accepted model for

CF lung pathogenesis is that absence of CFTR function leads to

ASL volume reduction that results in mucostasis. A logical

therapeutic strategy to reverse CF lung pathogenesis would

therefore replace CFTR function to CF airway epithelium,

restoring ASL volume regulation and MCT. CFTR gene delivery

strategies remain a rational approach towards this goal. To date,

however, clinical trials in CF patients using CFTR gene delivery

techniques have resulted in limited successful gene delivery that is

widely considered to be insufficient for therapeutic benefit to CF

patients. The fundamental hurdle to these approaches is the low

efficiency of CFTR gene delivery to human conducting airway

epithelial cells that regulate MCT.

In non-CF human airways, CFTR is expressed in ciliated

airway epithelial cells of the surface and submucosal gland ductal

epithelium [3], and in the fluid-secreting cells of the submucosal

glands [4]. Ciliated cells are the predominant luminal epithelial

cell type present throughout the proximal and distal conducting

airways and are critical cell types for facilitating MCT [5]. These

properties of ciliated cells make them an abundant and relevant

target for CFTR gene delivery. Since restoration of MCT or ASL

volumes to normal non-CF levels has not been described after

delivery of CFTR to CF airway epithelium either in vitro or in

vivo, it remains unknown how much CFTR or how many surface

epithelial cells will be required to express CFTR to restore

mechanical innate defense to the airways.

In vitro models of human ciliated airway epithelium (HAE)

recapitulate the morphology and physiology of the human airway

epithelium and have been a valuable tool in the study of cell

physiologic mechanisms that regulate ion and fluid transport and

MCT in the human ciliated conducting airways [6–8]. Impor-

tantly, HAE retain phenotypic differences between non-CF and

CF airway epithelium, i.e., CF HAE exhibit reduced or absent

cAMP-mediated chloride ion (Cl2) secretion, dysregulation of

sodium ion (Na+) absorption, excessive ASL absorption, dehydra-

tion of secreted mucus, and mucostasis [6]. This model has been

predictive of the in vivo efficacy of drug- and gene-based

therapeutics in human clinical studies [9–16]. In particular, this

model has been utilized to determine that currently available gene

transfer vectors approved for clinical testing (e.g., adenovirus,

lentivirus, AAV, and nonviral vectors) are inefficient at delivering

CFTR to sufficient numbers of surface epithelial cells to restore

CFTR function or ASL volume for effective MCT. The target

number of cells in a ciliated airway epithelium needed to express

CFTR for restoration of ASL and MCT is currently unknown.

We have shown that human parainfluenza virus (PIV)

selectively targets ciliated cells of HAE after luminal delivery

[17]. Since recombinant PIV can be re-engineered to express large

transgene inserts [18], we used PIV to: (1) generate PIV-expressing

CFTR as an additional gene (PIVCFTR); (2) test whether delivery

of CFTR to CF ciliated cells restored mechanical innate defense,

i.e., MCT, to human CF airway epithelia; and (3) determine the

numbers of CF epithelial cells requiring CFTR to restore MCT

rates to normal non-CF HAE levels. Using CF HAE, CFTR

expression levels per cell and numbers of cells expressing CFTR

were correlated with correction of ion transport, ASL volume

regulation, and MCT rates to assess the relationship between gene

transduction and restoration of normal mucociliary transport. We

show that PIV-mediated delivery of CFTR to ciliated cells of CF

HAE resulted in functional CFTR channel activity with

restoration of ASL volume homeostasis and MCT. Further, we

show that CFTR expression in individual ciliated cells does not

require tight regulation of expression and that restoration of MCT

rates to those measured in non-CF HAE required CFTR delivery

to at least 25% of surface epithelial cells or approximately 30% of

ciliated cells. Hence, we describe the first demonstration, to our

knowledge, of efficient CFTR gene delivery to CF ciliated airway

epithelium that is sufficient to correct the fundamental physiolog-

ical dysfunctions that precipitate CF lung pathogenesis.

Results

Efficient CFTR Delivery to Ciliated Airway Epithelium by PIV
Recombinant PIV-expressing GFP (PIVGFP) infects ciliated cells

of an in vitro model of human airway epithelium that recapitulates

the morphology of the human ciliated airway epithelium in vivo

(Figure 1A, 1B, and 1C). Inoculation of freshly excised human

tracheobronchial airway epithelium showed PIVGFP also targeted

ciliated cells under noncultured conditions (Figure 1D).

To express CFTR in CF ciliated cells, a PIV with CFTR

inserted into the viral genome was constructed (PIVCFTR, Figure

S1). Apical surface inoculation of CF HAE with PIVCFTR or

PIVGFP at 106 plaque-forming units (PFU) (100 ml of 107 PFU/

ml for 2 h: multiplicity of infection [MOI] ,3 for all lumenal cells

and ,5 for ciliated cells) resulted in infection of a significant

number of cells 48 h postinoculation (pi) as detected by

immunolocalization of PIV fusion (F) glycoprotein viewed en face

(Figure 2A and 2B). Immunolocalization of PIV-mediated GFP

and PIV F expressed by PIVGFP or F glycoprotein expressed by

PIVCFTR confirmed targeting of ciliated cells (Figure 2C and

2D). Quantitation of lumenal cells infected by PIVGFP or

PIVCFTR revealed that similar numbers of ciliated cells were

infected by each virus (Figure 2E). Although ciliated cell numbers

were variable in HAE derived from different donors (range 60% to

80%), the percentage of ciliated cells per square centimeter of

epithelium surface area determined by b-tubulin IV immunode-

tection showed that on average approximately 70% of surface cells

Author Summary

The ciliated epithelium that lines the conducting airways
of the lung normally functions to transport hydrated
mucus secretions out of the airways to maintain respira-
tory sterility. Cystic fibrosis (CF) lung disease results from
reduced airway surface hydration leading to decreased
mucus clearance that precipitates bacterial infection and
progressive obstructive lung disease. CF is a genetic
disease, and the mutant protein is a chloride ion channel
(CFTR) that normally regulates ion and fluid transport on
the airway surface. Restoration of corrected CFTR function
to the airway epithelium of CF patients by delivering a new
CFTR gene to airway epithelial cells has long been
envisioned as a therapeutic strategy for CF lung disease.
Towards this goal, we use a novel viral vector to deliver
CFTR to a culture model that represents the ciliated airway
epithelium of CF patients and show that this strategy
restores airway surface hydration and mucus transport to
levels of that in non-CF individuals. This study demon-
strates efficient and efficacious CFTR delivery to CF ciliated
airway epithelium and that CFTR delivered to approxi-
mately 25% of the surface epithelial cells restores normal
levels of airway surface hydration and mucus transport.
These studies serve as a benchmark for the efficiency of
CFTR gene delivery to CF airways for future CF gene
therapy studies in vivo.
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were ciliated cells. Since the total number of lumenal surface cells

in HAE approximates 0.36106 cells, we estimate that approxi-

mately 42% of surface cells or approximately 60% of ciliated cells

were infected by PIV under these conditions.

The PIV vector replicates in ciliated cells and by 24 h pi, sheds

progeny virions onto the culture surface, resulting in further

rounds of ciliated cell infection. However, when low viral titers

(103 PFU) were used to inoculate HAE, evidence of further rounds

of infection (i.e., spread) was not apparent until 48 h pi [17]. To

determine whether the high efficiency of ciliated cell infection by

PIVCFTR was dependent on spread of progeny virus from ciliated

cell to ciliated cell, we compared infection rates at 24 h versus

48 h pi. HAE inoculated with PIVCFTR (106 PFU) for 2 h

showed similar high infection rates at 24 h pi as for 48 h (2-h data

for Figure 2F vs. 2E), indicating that the initial high titer inoculum

and not cell–cell spread of virus mediated the highly efficient

targeting of ciliated cells by PIV. Prolonging or decreasing

inoculation times to 8 h or 5 min produced modestly increased

or decreased infection rates, respectively (Figure 2F). The high

numbers of PIVCFTR-infected cells with only 5-min inoculation

time highlight the high efficiency of PIV infection and suggest that

short exposure times in the airways will be sufficient for efficient

targeting of ciliated cells in vivo.

Although equally efficient at targeting ciliated cells as PIVGFP,

PIVCFTR stimulated significantly lower amounts of epithelial cell-

derived inflammatory mediators associated with in vivo viral

pathogenesis. Indeed, PIVCFTR only induced inflammatory

mediator secretion to levels stimulated by inoculation with UV-

inactivated PIV (Figure 2G for CXCL8, and Figure S2 for

CXCL10, IL-6, IL-12p40, MCP-1, and RANTES). Since

PIVCFTR produced 10-fold fewer progeny virions than PIVGFP

due to the insertion of the relatively large CFTR insert (Figure 2H),

it is likely that the generation of inflammatory mediators is

proportional to the rate of PIV replication in ciliated cells.

PIV Delivers CFTR to Ciliated Cells, Resulting in
Overexpression and Apical Localization of Functional
CFTR

Expression levels of transduced CFTR in CF HAE were

determined by comparing the levels of exogenous CFTR mRNA

Figure 1. Infection of human ciliated cells by PIV in vitro and ex vivo. (A) Scanning electron micrograph of HAE showing cilia and mucus on
the luminal surface. (B) Histological cross-section of HAE showing pseudostratified, columnar airway epithelium with ciliated (cc) and mucin-secreting
cells (mc) and basal epithelial cells (bc). (C) Representative confocal XZ sections of HAE or (D) histological sections of human tracheobronchial tissue
inoculated with PIVGFP (106 PFU) and GFP expression assessed at 24 h pi. GFP was detected by indirect immunofluorescence with rabbit anti-GFP
polyclonal antibodies (Ab) and goat anti-rabbit IgG-fluorescein (green). Ciliated cells were identified using mouse primary Ab against acetylated a-
tubulin and detected with anti-mouse IgG-Texas Red (red). GFP colocalized to cells that were also positive for acetylated a-tubulin, confirming the
targeting of ciliated cells in vitro and ex vivo by PIV. Bar represents 20 mm in (A); and 5 mm in (B, C, and D).
doi:10.1371/journal.pbio.1000155.g001
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expressed by PIVCFTR relative to endogenous CFTR mRNA in

CF HAE and non-CF HAE using quantitative RT-PCR.

Previously, it has been estimated that human airway cells contain

only approximately 10 CFTR transcripts/cell [19]. In our

experiments, we found that CF HAE inoculated with PIVCFTR

produced a 236-fold increase in CFTR mRNA when compared to

cultures inoculated with PIVGFP or mock (Figure 3A). Since this

large-fold increase in CFTR mRNA is in part reflective of the low

endogenous copy number of CFTR, we also assessed CFTR

protein levels semiquantitatively by western blot. CF HAE

Figure 2. Efficient targeting of CF ciliated cells by PIVCFTR. (A–D) Representative immunodetection of human PIV fusion (F) glycoprotein
(red) (A and B) en face or (C and D) in histological sections of CF HAE 48 h pi with PIVGFP (A and C) or PIVCFTR (B and D). F glycoprotein was detected
by indirect immunofluorescence with a murine monoclonal anti-F Ab and anti-mouse IgG conjugated to AlexaFluor 594 (red). GFP-positive cells were
identified in histological sections (C), using rabbit anti-GFP conjugated to fluorescein (green). Fluorescence was viewed using a Texas Red filter only
(A and B) or a combined Texas Red-FITC-UV-filter (C and D). Bars represent 200 mm and 10 mm for (A and B, and C and D), respectively. (E and F)
Quantitation of (E) numbers of PIV F-positive ciliated cells showing that PIVGFP and PIVCFTR infect similar numbers of ciliated cells at 48 h pi (n = 8);
and (F) the efficiency of ciliated cell infection by PIVCFTR assessed at 24 h was similar with 5-min, 2-h, or 8-h inoculation times (n = 6). (G) CXCL8
protein levels secreted by HAE 48 h pi with mock, UV-inactivated PIV, PIVGFP, or PIVCFTR showing reduced levels for PIVCFTR versus PIVGFP.
Responses positive/negative of the abscissa reflect CXCL8 secretion into apical/basolateral compartments, respectively (n = 5 for each). (H) Viral titers
in apical compartment at 48 h pi for PIVGFP (green) and PIVCFTR (red) showing attenuated growth of PIVCFTR (n = 5 for each). An asterisk (*) denotes
p,0.05; ns, not significantly different. Error bars indicate SEM .
doi:10.1371/journal.pbio.1000155.g002
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Figure 3. Expression of functional CFTR in CF ciliated cells targeted by PIV. (A) CFTR mRNA levels in CF HAE 48 h after inoculation with
PIVGFP or PIVCFTR and relative to mRNA levels in CF HAE mock-inoculated (n = 12). (B) Representative western blot of CFTR protein in lysates of CF
HAE 48 h pi with mock (lane 1), PIVGFP (lane 2), and PIVCFTR (lanes 3–5), with lanes 4 and 5 representing serial 10-fold dilution of cell lysates. For
comparison, non-CF HAE lysates also were included to detect endogenous CFTR levels (lane 6). Markers indicate the fully glycosylated mature form of
CFTR (Band C) and immature nonglycosylated CFTR (Band B). Data are representative of experiments with cells derived from two separate patients.
(C) Representative confocal images of CFTR immunoreactivity in CF HAE (i and ii), and non-CF HAE (iii and iv), 48 h after inoculation with PIVGFPCFTR
(i and iii) or PIVGFP (ii and iv). CFTR was detected with CFTR monoclonal Ab (clone 596) and secondary Abs conjugated to AlexaFluor 594 (red). CF
HAE inoculated with PIVGFPCFTR (i) showed immunolocalization of CFTR at apical domains of ciliated cells that were also GFP-positive, but not in
GFP-negative ciliated cells or in CF HAE infected with PIVGFP (ii). Robust apical domain CFTR and GFP were detected in non-CF HAE ciliated cells
inoculated with PIVGFPCFTR and endogenous CFTR levels detected in GFP-negative ciliated cells (iii, arrowheads). Endogenous CFTR was detected at
the apical membranes of GFP-positive and -negative ciliated cells after inoculation with PIVGFP (iv, arrowheads). Bar represents 5 mm. (D)
Representative traces of short-circuit current measurements (Isc) from CF HAE 48 h pi by PIVCFTR, PIVGFP, or mock showing post amiloride responses
to sequentially added forskolin (Fsk), and CFTR172. A representative Fsk-induced Isc response by a non-CF HAE is shown for comparison. No Fsk
responses were seen in CF HAE inoculated with PIVGFP or mock, consistent with the absence of CFTR. (E) Summary data for Fsk-activated changes in
Isc (DIsc) in CF HAE 48 h pi with mock, PIVGFP, PIVDF508CFTR, or PIVCFTR. Fsk responses for non-CF HAE are shown as comparison. CFTR delivery to
ciliated cells resulted in restoration of functional Cl2 channel activity in CF HAE to levels exhibited in non-CF HAE. Each bar represents at least 11
cultures from four different patients. ns denotes not significantly different. Error bars indicate SEM.
doi:10.1371/journal.pbio.1000155.g003
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inoculated with PIVCFTR expressed large amounts of mature

CFTR (Figure 3B, lane 3, band C), whereas no mature CFTR

protein was detected in CF HAE inoculated with vehicle alone

(lane 1) or PIVGFP (lane 2). Serial 10-fold dilutions of total protein

lysates of CF HAE inoculated with PIVCFTR (lanes 4 and 5)

provided a semiquantitative measurement of the amounts of

exogenous CFTR protein in CF HAE compared to CFTR protein

levels in non-CF HAE (lane 6). We estimate that an approximately

50-fold increase in mature CFTR protein in transduced CF HAE

was achieved compared to non-CF HAE. Therefore, two

independent measures of CFTR abundance indicate a significant

overexpression of both CFTR mRNA and protein in transduced

CF HAE. Note, these measures are likely an underestimate given

that not all ciliated cells are infected by PIVCFTR. Because

approximately 60% of ciliated cells were infected in these

experiments, and ciliated cells on average comprise approximately

70% of surface cells within a culture, we estimate that individual

infected ciliated cells likely overexpress CFTR protein by at least

100-fold over non-CF ciliated cells.

Apical localization and overexpression of CFTR above

endogenous levels in ciliated cells was confirmed by immunode-

tection of CFTR in CF HAE and non-CF HAE (Figure 3C). For

these studies, we chose to engineer both GFP and CFTR into a

single PIV vector (PIVGFPCFTR) to enable identification of

infected cells by GFP fluorescence. In CF HAE infected with

PIVGFPCFTR, CFTR was immunolocalized only to ciliated cells

that were also positive for GFP (Figure 3Ci) and concentrated in

apical membrane domains at the base of the cilial shafts. Although

endogenous CFTR in non-CF ciliated cells in vitro is localized to

these regions [3], subapical membrane CFTR immunoreactivity

was also detected after PIVGFPCFTR, likely suggesting the

increased presence of CFTR in recycling endosomes. Infection of

CF HAE with PIVGFP alone showed that ciliated cells positive for

GFP were negative for CFTR immunoreactivity (Figure 3Cii).

When non-CF HAE were infected by PIVGFPCFTR, endogenous

CFTR was present in GFP-negative ciliated cells and overex-

pressed in GFP-positive cells (Figure 3Ciii). For non-CF HAE

infected with PIVGFP, GFP-positive and -negative ciliated cells

showed only endogenous CFTR apical membrane immunoreac-

tivity (Figure 3Civ). CFTR (endogenous or PIV-delivered), GFP,

or PIV antigens were never detected in cell types that did not

posses cilia (Figure S3).

To determine whether PIV-mediated CFTR delivery to ciliated

cells resulted in functional CFTR anion channel activity in CF

HAE, we maximally stimulated cAMP-mediated anion transport

capacity using forskolin (Fsk), an activator of CFTR. Figure 3D

shows bioelectric short-circuit current (Isc) traces obtained in

Ussing chamber experiments with CF HAE inoculated with mock

(vehicle alone), PIVGFP, or PIVCFTR. For comparison, a Isc

trace from a non-CF HAE is also shown. Whereas Isc responses to

Fsk were not observed in mock- or PIVGFP-inoculated CF HAE,

CF HAE inoculated with PIVCFTR exhibited rapid and sustained

increases in Isc that were rapidly inhibited by a CFTR-specific

inhibitor (CFTR172 [20]). Experiments using CF cells derived from

four different donors revealed that the kinetics and magnitudes of

the Fsk responses in PIVCFTR-corrected CF HAE were

indistinguishable from those observed for non-CF HAE

(Figure 3D and 3E; range 6.7–42.0 mA/cm2 for PIVCFTR, 0–

1.5 mA/cm2 for CF HAE controls [mock and PIVGFP] and 7.8–

70.3 mA/cm2 for non-CF HAE). An additional control using PIV

expressing the nonfunctional CFTR mutant DF508CFTR

(PIVDF508) confirmed that functional CFTR was required for

bioelectric correction of CF HAE (Figure 3E). These data show

that delivery of functional CFTR to CF ciliated cells fully restored

maximally stimulated CFTR anion channel activity to normal

non-CF levels. PIVCFTR did not significantly affect UTP-

mediated Cl2 secretion in CF HAE beyond that of PIVGFP

(Figure S4).

Overexpression of CFTR in CF Ciliated Cells Does Not
Increase Anion Transport Beyond That of Non-CF HAE

Although others have shown that overexpression of CFTR was

not detrimental to airway epithelial cell integrity in vitro and in

vivo [21,22], we had anticipated that Fsk-stimulated Cl2 secretion

would exceed that of non-CF HAE since CF ciliated cells

significantly overexpressed CFTR, i.e., CF HAE would be

‘‘supercorrected.’’ That CF HAE overexpressing CFTR exhibited

identical anion secretion as measured in non-CF HAE with

endogenous CFTR levels suggested that the ceiling for anion

secretion rates was not solely related to the absolute quantity of

CFTR present in ciliated cells. Several explanations appeared

plausible to account for this observation.

A first explanation is that transduced CFTR was not trafficked

to the apical membrane of CF ciliated cells. As shown in Figure 3C,

this was not the case, as immunofluorescent localization revealed

clear targeting of transduced CFTR to apical domains of CF

ciliated cells. It is possible, however, that not all correctly trafficked

CFTR was inserted into the apical membrane in regions that

facilitate function. Certainly, our immunolocalization data suggest

CFTR is present in subapical membrane structures likely

representing recycling endosomes.

A second explanation is that overexpression of CFTR resulted

in mislocalization of a fraction of CFTR to basolateral membranes

of ciliated cells. This event would be predicted to dampen Fsk-

induced CFTR responses as suggested for adenovirus-mediated

CFTR delivery to airway epithelia [23]. Although CFTR

immunoreactivity was restricted to the apical domains of ciliated

cells, even when overexpressed (Figure 3C), we further tested for

this possibility by using CFTR172 as a probe to measure CFTR

functional activity in apical and/or basolateral compartments of

PIVCFTR-corrected CF HAE. Addition of CFTR172 to apical

surfaces 15 min before or during Fsk-induced anion secretion

resulted in rapid and complete inhibition of secretion (Figure 4A).

In contrast, CFTR172 applied to basolateral surfaces before or

during Fsk-induced anion secretion had no effect on Fsk-induced

anion secretion, suggesting that no significant functional CFTR

was present in the basolateral membranes of ciliated cells.

A third explanation is that the Fsk responses are limited by the

apical membrane driving force for Cl2 secretion. We tested this

possibility by comparing the Fsk responses with PIVCFTR-

corrected CF HAE (.100-fold increased CFTR) to non-CF HAE

(endogenous CFTR levels) with protocols designed to make the

electrochemical driving force for Cl2 secretion nonlimiting

(bathing solutions changed from Cl2 replete [Krebs bicarbonate

Ringer, KBR] to Cl2 deplete [high potassium low chloride,

HKLC]). As shown in Figure 4B, Fsk responses in CF HAE

overexpressing CFTR and non-CF HAE were similar under

conditions of physiological Cl2 secretory driving forces (KBR).

Importantly, when the apical membrane Cl2 secretory driving

force was made large and not limiting by lumenal Cl2 substitution,

Fsk again stimulated similar responses in CF HAE overexpressing

CFTR compared to non-CF HAE (Figure 4B, HKLC). These

observations strongly suggest that overexpressed levels of CFTR

do not produce reduction in Cl2 secretory driving forces that offset

the additional quantity of CFTR in the apical membrane and

hence buffer the Cl2 secretion rates. As an additional control,

UTP-mediated Cl2 secretion (via calcium-activated Cl2 channels)

was increased .20-fold in HKLC bathing solution compared to

CFTR Delivery to Ciliated Airway Cells
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KBR (Figure 4C), indicating that the maximal anion secretory

capacity of cultures had not been reached.

Collectively, these data suggest that CFTR overexpressed in CF

ciliated cells is selectively trafficked to the apical domains of these

cells. However, a ceiling of CFTR Cl2 secretion is reached that

approximates that of endogenous CFTR in non-CF HAE. We

speculate that this ceiling reflects the limiting requirement of the

number of potential apical membrane docking sites for CFTR

and/or the limited amount of accessory/regulatory proteins

localized at apical membranes of CF cells required for CFTR

function. It is likely that CFTR insertion into the apical

membranes of ciliated cells is tightly regulated with recycling

and replenishment of CFTR governed by CFTR-rich recycling

endosomes. To determine whether limited availability of docking

sites or accessory proteins was unique to CF ciliated cells, non-CF

HAE were inoculated with PIVCFTR and PIVGFP, and Fsk

responses compared (Figure 4D). Overexpression of CFTR in

non-CF HAE provided only moderately increased Fsk-mediated

Cl2 secretion compared to cultures inoculated with PIVGFP.

Although modest but significant differences in resistance were

measured before/after Fsk treatment in mock-treated non-CF

HAE, no significant differences in resistance were measured

before/after forskolin treatment after PIVCFTR versus PIVGFP

inoculations: (Resistances [V.cm2] before/after Fsk: Mock,

550649/40160.5; PIVGFP, 452639/40260; PIVCFTR,

419612/40160.2; n = 5 for each). Collectively, these data suggest

replacement of a corrective CFTR gene to CF ciliated cells is the

only manipulation required for correction of the CF defect since

both CF and non-CF HAE regulate CFTR activity similarly.

Restoration of ASL Volume Regulation in CF HAE by
Expressing CFTR in Ciliated Cells

The dehydrated airway surface phenotype characteristic of CF

results from the inability to induce Cl2 secretion and the failure to

regulate Na+ absorption to maintain ASL height at approximately

7–10 mm, i.e., physiologic ‘‘thin-film’’ volumes. We investigated

whether expression of CFTR in CF ciliated cells corrected both

the Cl2 secretory and Na+ hyperabsorptive phenotype of CF HAE

by measuring responses to specific antagonists on transepithelial

potential difference (Vt) with microelectrodes under thin-film

conditions when the height of the ASL was at steady state.

Measurement of the basal contribution of Cl2 transport to Vt by

blocking basolateral membrane cellular Cl2 entry with bumeta-

nide (1024 M) showed that 40% of the Vt in non-CF HAE was

accounted for by Cl2 ion transport (Figure 5A, white bars). In

contrast, in CF HAE, there was no detectable bumetanide-

sensitive Vt, consistent with the absence of functional CFTR (black

bars). However, after PIVCFTR, but not PIVGFP, the contribu-

tion of Cl2 transport to CF HAE Vt was indistinguishable from

that for non-CF HAE (approximately 40%, red bars). These data

obtained under thin-film conditions confirm that delivery of

Figure 4. CFTR activity in ciliated cells is regulated by factors other than CFTR levels. (A) Percentage inhibition of Fsk-activated CFTR by
CFTR172 applied to either the apical (AP) or basolateral (BL) surfaces of PIVCFTR-corrected CF HAE. CFTR activity was inhibited by apical, but not
basolateral, addition of CFTR172 for at least 15 min (n = 4). (B) Driving force for Cl2 secretion does not dictate magnitude of the Fsk response
determined by measurement of Fsk-mediated DIsc under physiological Cl2 concentration (KBR) or Cl2-free solutions (HKLC) in CF HAE 48 h after
inoculation by PIVGFP (green bars) or PIVCFTR (red bars) and compared to non-CF HAE (white bars) (n = 8). (C) UTP-mediated Cl2 secretion in KBR
(solid bars) and HKLC (hatched bars) bathing solutions after inoculation of CF HAE with vehicle alone (black bars), PIVGFP (green bars), or PIVCFTR
(red bars) (n = 6). Note that under conditions of increased driving force for Cl2 secretion, responses far exceed the maximal responses achieved with
Fsk-mediated CFTR activation in the presence of overexpressed CFTR. (D) Fsk-induced DISC in non-CF HAE inoculated with mock (black bars), PIVGFP
(green bars), or PIVCFTR (red bars), showing that overexpression of CFTR on top of endogenous CFTR does not significantly enhance the Fsk-
mediated secretory response under physiological conditions (n = 5 for each). ns denotes not significantly different. Error bars indicate SEM .
doi:10.1371/journal.pbio.1000155.g004
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Figure 5. Expression of CFTR in CF ciliated cells restores normal ASL homeostasis and MCT to CF HAE. (A) The contribution of Cl2 and
Na+ to transepithelial electrical potential difference (Vt) under thin-film conditions in CF HAE mock-inoculated (black bars), PIVGFP (green bars), or
PIVCFTR (red bars). Vt changes for non-CF HAE are shown for comparison (white bars). Bar graphs depict percentage change in Vt in response to Cl2

channel inhibitor bumetanide (Bum) and Na+ channel inhibitor benzamil (Bum/Benz). Each bar represents eight cultures derived from three different
patients, and an asterisk (*) indicates p,0.05, and ns indicates not significant. (B) ASL height measurements 24 h after apical addition of 25 ml of PBS
containing Texas Red dextran to CF HAE 48 h pi with mock (black), PIVGFP (green), or PIVCFTR (red) and compared to ASL height in non-CF HAE
(white). Each bar represents nine cultures from three patients. (C) Cilia beat frequency measurements (CBF in beats per second [bps]) from CF HAE
24 h after the addition of 25 ml of PBS to CF HAE 48 h pi with mock (black), PIVGFP (green), or PIVCFTR (red) and compared to non-CF HAE (white).
Each bar represents six cultures derived from two patients. (D) MCT rates measured 24 h after bead addition to CF HAE inoculated with mock (black),
PIVGFP (green), or PIVCFTR (red). MCT for non-CF HAE are shown for comparison (white). Each bar represents at least nine cultures derived from three
patients. (E) Representative photomicrographs showing time-lapse (3-s exposures) movement 24 h after addition of green fluorescent microspheres
(as an index of MCT) on CF HAE 48 h after inoculation with mock (i), PIVGFP (ii), or PIVCFTR (iii). Note: GFP-positive cells are also observed below
beads in PIVGFP-inoculated CF HAE. Bar represents 60 mm, and asterisk (*) denotes p,0.05, and ns not significantly different compared to non-CF
HAE (iv). Error bars indicate SEM.
doi:10.1371/journal.pbio.1000155.g005
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CFTR to CF ciliated cells fully corrected the Cl2 secretory defect

to non-CF levels.

The epithelial Na+ channel (ENaC) is rate-limiting for Na+

absorption and is negatively regulated by CFTR expression [24–

26]. Since ENaC activity is regulated by mediators present in the

ASL (e.g., nucleotides and proteases [27,28]), and Ussing

chamber (‘‘thick-film’’) studies result in washing away of these

critical ENaC regulatory factors, we determined how CFTR

delivery to CF ciliated cells affected the regulated activity of

ENaC under thin-film conditions using microelectrodes. The

change in Vt, in response to the Na+ channel blocker, benzamil

(1025 M), indicated that Na+ transport accounted for approxi-

mately 40% of the total Vt in non-CF HAE (Figure 5A, white

bars) and approximately 80% of transport in CF HAE (black

bars), consistent with a Na+ hyperabsorptive phenotype for CF

airway epithelia. Expression of CFTR, but not GFP, in CF

ciliated cells significantly reduced the contribution of CF HAE

Na+ transport to levels measured in non-CF HAE (Figure 5A, red

bars). These data show that delivery of CFTR to CF ciliated cells

restored both Cl2 secretion and the regulation of Na+ absorption

by CF airway epithelia to normal, non-CF HAE levels. The

simplest conclusion drawn from these data is that ENaC and

CFTR both reside in ciliated cells in the human airway

epithelium.

CFTR Expression in CF Ciliated Cells Restores Regulation
of Apical Surface Hydration

During these experiments, it was noted that the lumenal

surfaces of PIVCFTR-corrected CF HAE appeared hydrated

compared to the dehydrated surfaces of CF HAE, suggesting that

the rebalancing of Na+ absorption and Cl2 secretion consequent

to delivery of CFTR to ciliated cells restored hydration to the

lumenal surfaces of CF HAE. Therefore, we initiated experiments

to measure ASL height regulation in CF HAE in the absence or

presence of transduced CFTR in ciliated CF cells.

ASL volume regulation was assessed by measuring ASL height

with XZ-plane confocal microscopy 48 h after addition of 25 ml of

PBS to the apical surfaces of CF HAE. In control CF HAE

(inoculated with mock or PIVGFP), CF epithelia absorbed almost

all fluid from their surfaces, resulting in an ASL height of 3 mm,

i.e., the minimal space of compacted folded-over cilia and

consistent with mucostasis (Figure 5B) [29]. However, in

PIVCFTR-corrected CF HAE, ASL height stabilized at approx-

imately 8 mm, a height similar to that of non-CF HAE (Figure 5B).

These data show that delivery of CFTR to CF ciliated cells fully

restored the regulation of ASL height to levels maintained by non-

CF HAE, thus establishing the critical role of CFTR and ciliated

cells in ASL height homeostasis.

We next investigated whether the depletion of ASL over time

impaired cilia beat by measuring ciliary beat frequency (CBF) of

CF HAE under thin-film conditions. Immediately after addition of

25 ml of PBS to the apical surface of CF HAE, CBF was

approximately 8 Hz, a value not different than exhibited by non-

CF HAE (Figure 5C). However, consistent with the decreased ASL

height in control CF HAE, effective CBF was reduced 48 h later in

CF HAE compared to non-CF HAE (Figure 5C). In contrast,

effective CBF was maintained in PIVCFTR-inoculated, but not

PIVGFP-inoculated, CF HAE at levels similar to those measured

in non-CF HAE (Figure 5C). These data strongly argue that

ineffective cilia beat observed in CF HAE reflects a defect in ASL

height regulation, not ciliary function, and restoration of ASL

height regulation with PIVCFTR is sufficient to restore effective

cilia beat in CF HAE.

CFTR Expression in CF Ciliated Cells Restores Effective
MCT

A novel feature of the HAE model is the recapitulation of MCT,

reflecting coordinated cilia beat that produces rotational flow of

mucus over hydrated epithelial apical surfaces [6]. In CF HAE,

the rotational flow is abolished due to ASL depletion, mimicking

mucostasis described for CF airways in vivo [6]. To determine

whether expression of CFTR in CF ciliated cells could prevent

mucostasis, CF HAE were inoculated with PIVCFTR, PIVGFP,

or mock and, 24 h later, a small bolus of 1-mm fluorescent beads

added to the apical surfaces and cultures maintained at .95%

humidity for 24 h. For control CF HAE, rotational flow of beads

was rarely observed at 48 h pi (Figure 5D, 5Ei, and 5Eii), i.e.,

mucostasis occurred. In contrast, PIVCFTR-corrected CF HAE

exhibited significant rotational flow of beads, indicating that MCT

had been restored (Figure 5D and 5Eiii). Under these conditions at

48 h pi, PIVCFTR restored approximately 50% of the MCT

measured in parallel non-CF HAE (Figure 5D and 5Eiv). These

data are the first demonstration, to our knowledge, that MCT can

be restored to CF airway epithelia by delivering CFTR to ciliated

cells, indicating that the cumulative effects of CFTR deficiency on

mechanical innate defense can be reversed by this strategy.

Why MCT was not completely restored to normal levels,

especially when ion transport processes and ASL volume

regulation were fully corrected, remains to be determined. A

possible explanation may relate to potentially subtle cytopathic

effects of PIV infection at 48 h pi. To address this possibility, we

inoculated non-CF HAE with PIVGFP or PIVCFTR, and

assessed MCT 48 h later. PIVGFP decreased MCT to 4063%

(n = 5) of normal levels, whereas PIVCFTR decreased MCT to

approximately 74611% (n = 5) of normal levels. These data

strongly suggest that after 48 h of PIV infection, virus-induced

cytopathic events, likely linked to virus replication capacity, limit

complete restoration of MCT to non-CF levels.

Duration of CFTR correction is limited by shedding of PIV-

infected ciliated cells. Experiments to determine the duration of

PIVCFTR-mediated bioelectric correction showed that significant

functional correction was maintained for at least 1 wk with

detectable, but decreased, levels of function remaining at 21 d pi

(Figure 6A). Previously, we have shown that PIV-infected ciliated

cells are shed from HAE 3–7 d pi by a poorly understood process

of extruding infected ciliated cells from the epithelium onto the

lumenal surfaces of HAE [17]. This process likely represents an

innate defense function of the epithelium to rid itself of PIV-

infected ciliated cells. To confirm that PIV-infected ciliated cells

were being shed from the epithelium, we assessed the cellular

composition of apical secretions 6 d after PIVGFP inoculation. By

morphologic and immunodetection of GFP-positive cells and

ciliated cells, we determined that PIV-infected ciliated cells were

shed into apical secretions at a rate far exceeding that of natural

ciliated cell shedding (Figure 6B). Therefore, the temporally

related loss of CFTR functional activity in PIVCFTR-corrected

CF HAE likely reflects shedding of infected ciliated cells and

suggests that the extent of correction is directly related to the

numbers of ciliated cells expressing CFTR. To further explore this

relationship, we counted the numbers of PIV-positive cells present

in CF HAE over time and show that the loss of PIV-positive

ciliated cells paralleled the loss of Cl2 transport (compare

Figure 6C to 6A), suggesting that the magnitude of correction

was indeed directly proportional to the number of CF ciliated cells

expressing CFTR.

Interestingly, although the numbers of PIV-positive ciliated cells

were similar at day 2 and 4 pi for both transgenes (CFTR or GFP),

by day 8 pi, significantly more PIVCFTR-positive ciliated cells
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remained compared to PIVGFP. Because PIVCFTR has a lower

replication capacity than PIVGFP, we speculate that ciliated cell

shedding is related to the rate of virus replication and that

identification or generation of PIV vectors with further attenuated

replication may provide delivery vectors that prolong functional

CFTR correction. Further characterization of the processes

involved in PIV-induced ciliated cell shedding from HAE may

also provide novel strategies to prolong the lifespan of CFTR-

expressing ciliated cells.

Efficacy of CFTR Correction Is Related to the Number of
Surface Epithelial Cells Expressing CFTR

A central question in CF gene transfer studies has been the

efficiency of CFTR delivery required for clinical benefit. For

chemical corrector therapies, efficiency reflects the percent

increase in CFTR function per cell. With respect to gene transfer

studies, when CFTR expression exceeds endogenous levels on a

per cell basis, it may be speculated that efficiency reflects the

number of cells within the epithelium targeted for CFTR delivery.

Given the low endogenous level of CFTR expression in ciliated

cells, coupled with high levels of exogenous CFTR expression

generated from PIV vectors, we performed dose-effect experi-

ments with PIV designed to ask what percentage of CF surface

epithelial cells must be corrected to restore hydration and MCT to

the airway surface in CF HAE.

First, we determined that inoculation of CF HAE with different

concentrations of PIVCFTR (range 103–106 PFU) resulted in

inoculum-dependent increases in the percentage of PIV-positive

cells at 24 h pi (Figure 7A). Increasing numbers of cells expressing

CFTR paralleled increasing CFTR mRNA levels, Fsk-stimulated

Cl2 secretion, and Amil-sensitive Na+ absorption (Figure 7B, 7C,

and 7D).

We next used this approach to determine the percentage of cells

required to express CFTR to restore normal ASL homeostasis and

MCT to CF HAE under thin-film conditions. ASL height and

MCT were measured in CF HAE 24 h after inoculation with

PIVCFTR at different concentrations. PIVCFTR resulted in

concurrent increases in ASL height and MCT rates that were

proportional to the percentages of PIV-positive cells, with a

plateau occurring at approximately 40% of PIV-positive cells

(Figure 7E and 7F). As controls, PIV expressing GFP or

DF508CFTR failed to increase ASL height or MCT rates in CF

HAE (Figures 7E and 7F). By comparison of these data to ASL

height and MCT measurements in non-CF HAE (Figure 7E and

7F, dashed lines), it was noted that ASL height and MCT rates

both plateaued at levels similar to those measured in non-CF

HAE, suggesting that normal homeostasis had been reached. We

Figure 6. Duration of CFTR functional correction is limited by shedding of PIV-infected ciliated cells. (A) Duration of CFTR functional
activity in PIV corrected CF HAE. CF HAE were inoculated with PIVCFTR (red bars) or PIVGFP (green bars) at day 0, and ion transport studies were
performed at days specified (n = 8 cultures derived from 3 different patients). Significant CFTR function could be measured for up to 8 d but waned
by 21 d pi in CF HAE inoculated with PIVCFTR. No significant CFTR function was detected in CF HAE inoculated with PIVGFP. (B) Histological Cytospin
assessment of cells shed into apical surface secretions at day 6 pi showing few shed ciliated cells in mock-inoculated CF HAE (i and iii), whereas
significant numbers of cells were shed after PIVGFP (ii and iv). Cytospinned apical washes were counterstained with Giemsa (i and ii) or probed with
Abs to GFP (green) and acetylated alpha-tubulin (red) to show ciliated cells. Bar represents 20 mm. Images are representative of Cytospins from two
individual experiments. (C) Loss of PIV F-positive cells over time after inoculation with PIVCFTR (red bars) or PIVGFP (green bars), showing that
PIVCFTR and PIVGFP infected equal numbers of ciliated cells at day 2, but that ciliated cell shedding was delayed for PIVCFTR versus PIVGFP by day 8.
Data derived from same dataset in (A). An asterisk (*) denotes p,0.05. Error bars indicate SEM.
doi:10.1371/journal.pbio.1000155.g006
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Figure 7. How many CF airway epithelial cells require CFTR to restore ASL homeostasis and MCT to non-CF HAE levels? (A)
Quantitation of the percentage of PIV F-positive cells 24 h after inoculation with different concentrations of PIVCFTR (103–106 PFU) and correlation of
percentage of PIVCFTR-positive cells to: (B) increased CFTR mRNA expression levels; (C) Fsk-activated changes in Isc; (D) amil-induced changes in Isc;
(E) ASL height; and (F) MCT rates. All measurements were made 24 h after inoculation with PIVCFTR (closed red circles) or controls (PIVGFP or
PIVDF508CFTR, closed green triangles) as described in Materials and Methods. n.11 for each data point representing cultures from 2 or 3 different
donors. Dashed lines and grey shaded regions represent mean and standard deviations of ASL heights and MCT rates measured in parallel
experiments with non-CF HAE. For these experiments, approximately 80% of surface cells were ciliated cells. (G) Schematic representation depicting
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speculate that the plateau levels for ASL height and MCT reflect

homeostatic feedback signals within ASL under the thin-film

conditions, e.g., ATP release rates that regulate ion channel

activity.

By comparison of data obtained in corrected CF HAE to that in

normal non-CF HAE, we calculate that at least 25% of surface

epithelial cells (30% of ciliated cells) required CFTR expression to

restore ASL height regulation to non-CF HAE levels. For MCT,

approximately 40% of cells (50% of ciliated cells) required CFTR

expression to approach MCT rates measured in parallel non-CF

HAE. These data identify the efficiency of epithelial cell CFTR

delivery to restore defective MCT in CF HAE. Of note is the

observation that although PIVCFTR was able to restore MCT to

nearly normal levels, MCT, unlike ASL height, was not fully

restored. This discrepancy is likely related to the cytotoxic effects

of PIV infection on MCT, but not ASL measurements. In these

experiments, performed 24 h after inoculation, MCT restoration

is much improved over that measured at 48 h pi (Figure 5D),

further suggesting that 48 h, but not 24 h, of infection with this

prototypic PIV vector had detrimental effects on MCT. These

data, taken together with those indicating that overexpression of

CFTR on a per cell basis was not detrimental to ion and fluid

transport processes, indicate that gene delivery vectors capable of

targeting at least 25% of the surface airway epithelial cells will be

sufficient to restore ASL height regulation and MCT to levels

comparable to those exhibited in non-CF airway epithelia and that

precise regulation of CFTR levels at least in ciliated cells is not

required.

Discussion

Successful gene transfer to CF airways in vivo has been

principally hampered by a lack of efficacy due to the inefficiency of

gene transfer to human airway epithelium that normally exhibits

CFTR function [30–33]. Although there is clear evidence that

both airway surface and submucosal gland epithelia are dysfunc-

tional in CF, presently, the precise airway regions of the CF lung

that require CFTR delivery for restoration of normal physiological

function and reduction of disease symptoms are not well

established. Although dependent on antibodies used, CFTR has

been localized to human ciliated cells [3] and the fluid-secreting

cells of the submucosal glands [4]. Previously noted physiologic

characteristics of ciliated cells also indicate that ciliated cells

function to maintain airway surface hydration [34]. Certainly,

ciliated cells facilitate effective MCT and airway mucus clearance.

Together, these properties of ciliated cells combined with the

abundance of ciliated cells throughout the human airways make

this cell type a logical, although not exclusive, target for CF lung

gene delivery strategies.

In this study, we have shown that PIV-mediated CFTR delivery

to ciliated cells is efficient and sufficient for correcting the CF

airway epithelium phenotype, i.e., efficient delivery of CFTR to

CF human ciliated airway epithelium corrected hallmark charac-

teristics of CF HAE that mimic the initiating events of CF lung

disease, i.e., abnormal ASL volume homeostasis and mucostasis

(Figures 5 and 7). Abnormal ASL homeostasis in CF airway

epithelium is due to dysregulated Na+ and Cl2 ion transport [35],

both consequent to the absence/dysfunction of CFTR at the

apical membrane [24]. Here, we have demonstrated that delivery

of CFTR to ciliated cells restores Cl2 secretion and reduces the

Na+ hyperabsorption characteristic of the CF airway epithelium in

vitro and in vivo, providing confirmatory evidence that CFTR

functions as both a Cl2 channel and regulator of ENaC within

ciliated cells. Further, we have demonstrated that correction of the

ion channel defects of CF HAE restores the integrated physiology

required for ASL regulation, which ultimately restores MCT

(shown schematically in Figure 7G).

A critical variable for restoration of CFTR functional activity by

PIV is the percentage of cells expressing CFTR. Using CF HAE,

we demonstrate that restoration of normal ASL height and MCT

required CFTR delivery to approximately 25% and approximate-

ly 40% of surface epithelial cells, respectively. We suggest that

restoration of ASL height is the most predictive measure for these

studies, as PIV clearly exerts cytotoxic effects on MCT, but not

ASL measurements. These effects were isolated to MCT, but not

ASL, suggesting that virus-mediated cytotoxicity may affect the

synchrony of cilia beat, leading to modestly reduced effectiveness

of ciliated cells to transport mucus.

Previous studies with gap junction–coupled polarized, but not

differentiated, airway epithelial cell lines suggested that approx-

imately 6%–10% of cells required CFTR to correct the Cl2

transport defect [36], whereas almost all cells (.90%) required

CFTR overexpression to correct ENaC hyperabsorption [21].

Clearly, expression of CFTR in nonciliated airway epithelial cells

would be predicted to increase fluid secretion onto the apical

surfaces of these cells although these previously published studies

did not test this hypothesis. In our studies, we have directly shown

that expression of CFTR in 60% of CF ciliated cells fully corrects

the ENaC hyperabsorption defect (Figure 5A) and that CFTR

expression in approximately 25% of cells (approximately 30% of

ciliated cells) corrects ASL volume homeostasis in CF HAE

(Figure 7E). With respect to ENaC activity after CFTR delivery,

the reasons why our data differ from these previous studies are

unclear, but it may be speculated that differentiated human airway

epithelium models as used in this current study are more

representative and relevant to the required efficiency of CFTR

delivery to human airway epithelium in vivo.

Although our data indicate that CFTR delivery to CF ciliated

cells is sufficient for restoring MCT to CF HAE, it is likely that

delivery of CFTR to other nonciliated surface epithelial cells may

provide functional CFTR activity capable of hydrating the airway

surface. At present, we are not aware of gene delivery vectors

capable of delivering CFTR exclusively to nonciliated cells of

HAE to determine whether CFTR expression in nonciliated cells

also restores MCT. In our studies, we have combined the

requirement of ciliated cells for generation of MCT with CFTR

targeting of CF ciliated cells to restore defective MCT. Since

ciliated cells are the predominant airway surface epithelial cell type

throughout the human conducting airways, vectors targeting at

least ciliated cells may achieve the required efficiency of delivery

for restoration of MCT. We propose that targeting at least ciliated

cells provides efficient and effective CFTR function that is

sufficient for restoration of MCT.

the role of CFTR and ENaC in ASL homeostasis in non-CF airway epithelium; the presence of CFTR modulates ENaC activity and combined regulation
of these ion channels dictates ASL depth regulation at a level sufficient for effective MCT (black arrow). In CF airway epithelium, the absence of CFTR
reduces fluid secretion and leads to dysregulation of ENaC activity overall resulting in hyperabsorption of surface fluid, dehydration of ASL, and
mucostasis with accumulation of mucus plugs. Delivery of CFTR to ciliated cells of CF HAE by PIV restores CFTR function, ENaC regulation, ASL
homeostasis, and MCT. Error bars indicate SEM.
doi:10.1371/journal.pbio.1000155.g007
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Our data using an in vitro model of human airway epithelium

predict that CFTR delivery to 25% of CF airway epithelial cells

will restore MCT to near normal levels. However, it remains to be

determined what proportion of normal MCT rates in vivo would

be beneficial to CF patients. Tracheal mucus velocities in young

smokers are significantly reduced compared to young nonsmokers

(3.4 mm/min versus 10.0 mm/min) but without significant

differences in lung function, perhaps suggesting that MCT at

rates below ‘‘normal’’ may be sufficient to maintain pulmonary

healthy [37]. These in vivo studies measured mucus velocities only

in the trachea, whereas CF lung disease likely initiates in the more

vulnerable, smaller bronchiolar airway regions. If these regions

respond similarly to CFTR delivery, then it is possible that

delivering CFTR to fewer than 25% of CF cells may provide

sufficient MCT to maintain healthy airways. Further testing of this

hypothesis will require appropriate in vivo studies.

Since PIV infects ciliated airway epithelium of hamsters and

human and nonhuman primates, but not those of the murine

airways, testing our PIV vectors in vivo in appropriate models is

difficult. Additionally, it has been recently reported that expression

of human or murine CFTR in ciliated cells of CFTR2/2 mice

failed to correct the nasal epithelium bioelectric defect, although

correction was demonstrated in neonatal, but not adult, tracheal

epithelium [38]. One explanation for these results, in contrast to

our data, is that murine CFTR expressed in murine ciliated cells

may not function correctly. Our study highlights the need to test

vectors for CFTR delivery in appropriate human models and that

such data obtained from CF mouse models require cautious

interpretation. The recent generation of a CF pig model [39,40]

may be beneficial for testing such vector systems, but preliminary

data using ciliated airway epithelial cultures derived from porcine

trachea suggest that this species is also not infected by the human

viruses from which our PIV vectors are generated.

Using our prototypic PIV vector, we could not determine the

lowest limit of CFTR expression on a per cell basis required for

correction since this vector significantly overexpressed CFTR

relative to endogenous levels. In this regard, because CFTR is

critical for regulation of ASL homeostasis, there has been concern

that overexpression of CFTR in CF airways would ‘‘supercorrect’’

Cl2 transport and generate excessive fluid secretion. This concern,

while reasonable, appears unwarranted based on our observations

that ion transport rates and ASL heights in CF HAE after CFTR

delivery did not exceed that measured in non-CF HAE (Figures 3,

5, and 7). These data agree with previously published reports in

which CFTR was transgenically overexpressed in mouse airway

epithelium without deleterious results in terms of cell or organ

toxicity [22]. However, in this transgenic study, CFTR was

overexpressed in Clara cells and alveolar type II cells of the mouse

lung, and so our study represents the first demonstration, to our

knowledge, of the functional safety of CFTR overexpression in

human ciliated cells. Since CFTR overexpression did not super-

correct ASL regulation, we speculate that normal airway

epithelium exhibits multiple apical membrane regulatory mecha-

nisms in addition to CFTR levels that prevent excessive secretion

of fluid into the airway lumen, i.e., airway flooding.

Demonstrating that PIV expresses CFTR at levels in excess of

those required to restore full function to CF HAE suggests that

further attenuation of PIV will be feasible while still providing

sufficient CFTR for functional correction. Indeed, the lower

replication capacity 10-fold reduction of PIVCFTR compared to

PIVGFP, in the context of .100-fold overexpression of CFTR in

individual ciliated cells, suggests that further attenuation of PIV

will continue to provide sufficient CFTR for correction of the CF

MCT defect and possibly further reduce the generation of

inflammatory mediators and cytotoxicity associated with our

PIV vector prototype. The continued effort to develop vaccines

against PIV has generated a wealth of live attenuated recombinant

PIV [41] that exhibit attenuated replication. It is interesting to

note that PIV3 vaccine candidates have been extensively evaluated

after lumenal airway delivery in adults and infants as young as

3 mo [42]; an age of CF patients in which CFTR replacement

would be desirable.

The demonstration of efficacious CFTR gene delivery to human

ciliated airway epithelium overcomes a major hurdle to gene

transfer approaches for CF lung disease. Other strategies to

improve gene delivery to the human airways are ongoing and are

focused on vector development [43–45] and/or manipulation of

the host tissue [46,47]. However, the results so far published have

not shown significant improvement in the ability to deliver

transgenes to human ciliated airway epithelium. Lentiviral-based

vectors pseudotyped with Ebola, influenza virus, baculovirus,

Sendai, or SARS-CoV envelope proteins efficiently transduce

airway epithelial cells in vitro and murine airways in vivo [48–53],

suggesting that combining useful envelope glycoproteins with the

potential longer duration of gene expression afforded by

lentiviruses may provide novel vectors for lung gene transfer

strategies. Similar vectors can be envisioned using the glycopro-

teins of PIV to target lentiviruses to human ciliated airways.

However, to date, none of these vector systems have progressed to

functional studies after delivery of CFTR to human ciliated airway

epithelium, and no demonstration of correction of the CF

phenotype (e.g., ASL height or MCT) has been reported.

Collectively, the studies reported here demonstrate the

efficiency of CFTR delivery to human CF ciliated airway

epithelium that is sufficient to reverse the CF phenotype of ASL

dehydration and mucostasis. Our prototypic PIV vector provides a

useful tool for manipulating ciliated cell function and for

investigating the future potential of delivering functional CFTR

to the airways of CF patients.

Materials and Methods

Construction of PIVCFTR, PIVDF508CFTR, and
PIVGFPCFTR

Recombinant hPIV3 (NC_001796) encoding human CFTR

(NM_000492) or DF508CFTR cDNA or GFP and CFTR as

separate genes was generated from the cDNA antigenome of full-

length hPIV3 JS strain and described in detail in the Supplemental

Methods (Text S1). After rescue, PIV replicated in HEp2 cells to a

titer comparable to the JS wild-type strain (109.1 50% tissue culture

infective dose [TCID50]/ml) suggesting that GFP, CFTR, or

DF508CFTR did not adversely affect the growth capacity of PIV in

producer epithelial cell lines. Virus titers generated by CF HAE

were determined in duplicate by procedures previously described

[17].

Human Airway Epithelial Cell Cultures
Human tracheobronchial tissues were obtained by the Univer-

sity of North Carolina (UNC) CF Center Tissue Culture Core

from airways resected from CF (DF508/DF508 mutation) or non-

CF patients undergoing elective surgery under UNC Institutional

Review Board–approved protocols. Isolated epithelial cells were

obtained and plated at a density of 250,000 cells per well on

permeable Transwell-Col supports (T-Col, 12-mm diameter;

Corning-Costar [13,54]). For bioelectric measurements in Ussing

chambers, cells were plated on type IV collagen-coated Snapwell

supports (Corning-Costar). HAE were generated by provision of

an air–liquid interface for 4–6 wk to form well-differentiated,
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polarized cultures that resemble in vivo pseudostratified ciliated

epithelium [13]. Prior to viral inoculation, the apical surfaces of

HAE were rinsed three times over 15 min and inoculated with

100 ml of 107 PFU/ml virus stocks for 2 h at 37uC (unless

otherwise described). After removal of inoculum, HAE were

returned to humidified incubators. Human tracheobronchial

tissues with 1 cm2 of epithelial cell surface area were inoculated

with 100 ml of PIVGFP (107 PFU/ml) or vehicle control for 2 h at

37uC, and then tissues were washed in medium and returned to

the incubator for 24 h in minimal media volume. After fixation in

4% PFA, tissues were paraffin-embedded, and histological sections

were prepared. Immunodetection of GFP was performed as

described below.

Immunodetection Protocols
To determine epithelial cell types infected by PIVGFP in vitro,

HAE were fixed in 4% PFA, permeabilized with 1% Triton X-

100, and ciliated cells identified with mouse primary antibodies

(Ab) against acetylated a-tubulin (Zymed Laboratories) and anti-

mouse IgG-Texas Red (Jackson ImmunoResearch) using confocal

X-Z scanning microscopy. Ex vivo tissues were paraffin-embed-

ded, and histological sections were prepared. GFP signal was

enhanced by indirect immunofluorescence with rabbit anti-GFP

polyclonal Ab (Ab-Cam) and goat anti-rabbit IgG-fluorescein

(Jackson ImmunoResearch). Both in vitro and ex vivo, GFP

colocalized to cells that were also positive for acetylated a-tubulin,

confirming the targeting of ciliated cells in vitro and ex vivo by

PIV.

Immunolocalization of PIV F protein was performed on HAE

fixed in 4% PFA and immunostained either en face or on paraffin-

embedded histological sections. For en face detection, the apical

surfaces of HAE were incubated with PIV3 F-specific monoclonal

Ab (clone 216.16), followed by goat anti-mouse IgG-Alexa-

Fluor594 (Invitrogen). Quantitation of percentages of cells

expressing PIV F protein was performed as described previously

[17] by assessing four different en face fields of the HAE surface

with two cultures obtained from each of three patients. For

histological sections, HAE were immunostained as previously

described [17]. GFP fluorescence was enhanced as described

above. To immunolocalize CFTR in ciliated cells, CF and non-CF

HAE inoculated with PIVGFPCFTR or PIVGFP were gently

scraped with pipette tips and cell suspensions in PBS, immediately

pelleted onto glass slides with Cytospin, and then air-dried.

Following fixation in 4% PFA, CFTR was detected with anti-

human CFTR mouse monoclonal Ab #596 (a gift from Dr. J.

Riordan, University of North Carolina at Chapel Hill) and

Alexafluor594-conjugated goat anti-mouse antibody. Cell nuclei

were counterstained with Hoechst 33342 (Invitrogen). Images

were taken with a Leica SP2 Laser Scanning Confocal

Microscope, and processed with Adobe Photoshop CS2.

To assess ciliated cell shedding induced by PIV, the apical

surfaces of CF HAE inoculated with PIVGFP or mock were

washed in 200 ml of PBS for 30 min, harvested, and washes

pelleted onto glass slides using a StatSpin Cytofuge2 (Iris Sample

Processing) and then air-dried. Slides were then counterstained

with Giemsa (Invitrogen) or probed with rabbit anti-GFP

polyclonal Ab (Ab-Cam) with goat anti-rabbit IgG-fluorescein

(Jackson ImmunoResearch) and Ab against acetylated a-tubulin

(Zymed Laboratories) with anti-mouse IgG-Texas Red (Jackson

ImmunoResearch). Cell nuclei were counterstained with Hoechst

33342 (Invitrogen). Fluorescent confocal images and DIC were

taken with Leica SP2 Laser Scanning Confocal Microscope.

Image processing and overlay were done with Adobe Photoshop

CS2.

Western blot analyses of CFTR protein was performed on HAE

lysed in M-PER buffer (Pierce). Equal amounts of total protein

(850 mg) per sample were adjusted to 1 ml volume with lysis buffer

and added to 2 ml of anti-CFTR Ab #596, followed by 50 ml of

immobilized-protein G agarose bead slurry (Pierce). Proteins were

released from beads with sample buffer, separated with a

NuPAGE 3%–8% Tris-Acetate Gel (Invitrogen), and transferred

to PVDF membranes. The membranes were then incubated with

anti-CFTR Ab (#596) followed by goat anti-mouse IgG-HRP

(Jackson ImmunoResearch), and CFTR were visualized with

SuperSignal West Dura Substrate (Pierce).

Quantitative Reverse Transcriptase PCR for CFTR
Total RNA was isolated HAE after inoculation with either

PIVCFTR, PIVGFP, or vehicle alone using acid phenol-guanidine

thiocyanate followed by DNase digestion and further purification

using the Qiagen RNeasy Mini Kit. RNA from three individual

CF HAE per inoculation was pooled and first-strand cDNA was

synthesized with oligo(dT) and SuperScript II reverse transcriptase

(Invitrogen) to ensure amplification of mRNA and not viral

genome RNA. Quantitative PCR was performed using a Roche

LightCycler with the Roche FastStart DNA Master SYBR Green I

Kit according to the manufacturer’s protocols. Using the Light-

Cycler Software version 4.0, levels of CFTR mRNA were

normalized to the level of GAPDH.

Inflammatory Mediator Measurements
Apical and basolateral samples were collected 48 h pi by

applying 0.2 ml of serum-free medium to apical surfaces and

harvested 30 min later. Basolateral samples were harvested from

the basolateral medium. Samples were stored at 280uC before

cytokine analyses using 28-plex Beadlyte Assays (Upstate) with

Luminex technology (see Text S1 for details).

Ion Transport Measurements
HAE were mounted in Ussing chambers for measurement of

transepithelial resistance (Rt), transepithelial potential difference

(Vt), and short-circuit current (Isc) as previously described [55].

HAE were bathed in bilateral Krebs Bicarbonate Ringer solution

(KBR) gassed with 95% O2, 5% CO2, and maintained at 37uC. Vt

was clamped to zero, and pulsed to 610 mV for 0.5 s every 60 s.

The electrometer output was digitized online, and Isc, Rt, and

calculated Vt displayed on a video monitor. Drugs (amiloride

[1025 M], forskolin [1026 M], and UTP [1024 M]) were added

from concentrated stock solutions to either lumenal and/or serosal

surfaces (all obtained from Sigma-Aldrich). CFTR172 (1025 M)

was synthesized from a local source according to appropriate

standards and used as previously described [20]. CFTR172 was

added to the apical or basolateral bath 15 min before or during

forskolin-activated CFTR ion transport. For the basolateral

studies, CFTR172 did not affect forskolin-activated responses even

when left 15 min until addition of CFTR172 to the contralateral

surface. For the time course of CFTR functional activity

experiments, all CF HAE were inoculated with either PIVGFP

or PIVCFTR at day 0, and on specific days, cultures were

mounted in Ussing chambers for analyses.

For microelectrode measurements of Vt in thin films of ASL,

borosilicate glass microelectrodes (World Precision Instruments)

were filled with 3 M KCl and positioned into the ASL by a

motorized micromanipulator (MC1000e; SD Instruments) con-

nected to a high-impedance electrometer (World Precision

Instruments). A macroelectrode, constructed of polyethylene

tubing containing 3 M KCl/4% agar, was placed in the serosal

bath as the ground. To measure the contribution of basal Cl2 and
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Na+ transport to Vt, bumetanide (1024 M) and benzamil (1025 M),

respectively, were added to the basolateral bath 10 min prior to

recording, as previously described [35]. To avoid evaporation of the

thin ASL layer in low-humidity environments, 100 ml of immiscible

perfluorocarbon (Fluorinert-77; 3 M Corporation) was added to the

airway surface as previously described [56].

ASL Height Measurements
To visualize the ASL height, 25 ml of PBS containing 0.2% vol/

vol Texas Red-dextran (10 kDa; Invitrogen) was added to the

lumenal surfaces of HAE. This volume of PBS results in an initial

ASL height of approximately 20–30 mm, as previously described

[56]. Images of the Texas Red–labeled ASL are acquired by laser-

scanning confocal microscopy (Zeiss Model 510) using the

appropriate filters, 540 nm excitation/630 nm emission for Texas

Red. Perfluorocarbon was added to the airway surface 10 min

after the addition of the dye to avoid evaporation of ASL as

described above. ASL height was determined by averaging the

height obtained from XZ scans of five predetermined points per

HAE over time [56].

Cilia Beat Frequency Measurements
HAE were rinsed three times with PBS, then placed on an

inverted phase contrast microscope (TE 2000; Nikon) to record

cilial movement with a 206objective. High-speed (125 Hz) video

images were captured with an eight-bit b/w camera (GS-310

Turbo; Megaplus). The analog signal was digitized via an analog-

to-digital converter board (A/D; National Instruments). A digital

computerized CBF analysis system was used to analyze the

acquired video images, using specialized software, based on

Sisson-Ammons Video Analysis [57].

Measurement of MCT Rates
HAE were removed from a well-humidified incubator and

washed three times with PBS, and green fluorescent microspheres

(0.02% vol/vol, 1 mm; Invitrogen) were added to apical surfaces in

20 ml of PBS and then HAE immediately returned to the

incubator. The rate of microsphere displacement was measured

from time-lapse fluorescent images (488 nm excitation/530 nm

emission) acquired for 3 s with an inverted epifluorescence

microscope (Eclipse; Nikon) and a charge-coupled device (CCD)

camera (OrcaER; Hamamatsu). Angular bead transport velocity

was calculated as previously described [6].

Statistics
All data are expressed as means6standard error of the mean

(SEM) and followed normal distribution as assessed by a standard

Normality Test (Kolmogorov-Smirnov). Unpaired Student t-test

was used to assess the difference between groups. One-way

ANOVA was performed when more than two groups were

compared with a single control, and then the differences between

individual groups within the set assessed by a multiple-comparison

test (Tukey) when the F was ,0.05. A p-value of ,0.05 was

considered significant.

Supporting Information

Figure S1 Schematic representation of construction of
PIVCFTR, PIVDF508CFTR, and PIVGFPCFTR. The cod-

ing sequence for CFTR was inserted into the downstream

noncoding region of the HN gene. Nucleotides 8598–8603 of the

PIV3 genome were modified into a StuI site, which was used to

accept a linker that contained the PIV3 gene-end (GE), intergenic

(IG), and gene-start (GS) transcription signals, followed by SacII

and ApaI sites. These latter sites were used to accept a SacII-ApaI

fragment containing the open reading frame for CFTR (shaded

rectangle, with ATG and TAG initiation and termination codons

indicated). PIVGFPCFTR was constructed with the same strategy

as for PIVCFTR, except with the PIVGFP backbone. Thus,

PIVGFP-CFTR expresses two transgenes, GFP and CFTR,

simultaneously.

Found at: doi:10.1371/journal.pbio.1000155.s001 (0.41 MB TIF)

Figure S2 Inflammatory mediators secreted by CF HAE in
response to PIVGFP or PIVCFTR. Luminex bead-based

quantitation of inflammatory mediators secreted into apical (positive

of abscissa) and basolateral (negative of abscissa) compartments of CF

HAE 48 h pi with mock (vehicle control alone) (black bars), UV-

inactivated PIVGFP (hatched bars), PIVGFP (green bars), or

PIVCFTR (red bars). CXCL-10, IL-6, IL-12p40, MCP-1, RANTES,

and CXCL-8 were the only analytes of 27 tested that were significantly

altered by virus infection. In all cases, PIVCFTR infection resulted in

decreased secretion of inflammatory mediators compared to PIVGFP

and reducing secretion to that measured after UV-PIVGFP alone

(n = 4 for each point, ns denotes not statistically significant differences).

Found at: doi:10.1371/journal.pbio.1000155.s002 (0.52 MB TIF)

Figure S3 PIV Infection and CFTR is only detected in
ciliated cells. CFTR or PIV antigens were immunodetected with

anti-CFTR # 596 (red) or rabbit polyclonal anti-PIV (green),

respectively. (A) CFTR was detected in PIVCFTR-inoculated non-

CF ciliated cells as well as noninoculated ciliated cells. (B) In CF HAE,

PIVCFTR only infected ciliated cells and expressed transduced

CFTR. No CFTR or PIV antigen was detected in nonciliated cells

(arrowheads). (C) Endogenous CFTR was only detected in ciliated

cells from non-CF HAE. For (B and C), arrowheads show absence of

CFTR in nonciliated cells. Bar represents 10 mm.

Found at: doi:10.1371/journal.pbio.1000155.s003 (6.24 MB TIF)

Figure S4 Effect of PIV-mediated CFTR expression in CF
HAE on UTP-mediated Cl2 secretion and transepithelial
resistance. Changes in UTP-mediated Isc responses (hatched bars,

left ordinate) and transepithelial resistance (grey bars, right ordinate)

48 h pi with vehicle alone, PIVGFP, or PIVCFTR. PIV infection of

CF HAE resulted in a potentiated UTP response over vehicle

control but did not significantly affect transepithelial resistances.

Found at: doi:10.1371/journal.pbio.1000155.s004 (0.37 MB TIF)

Text S1 Additional methodologies are described. These

include the detailed procedures for the molecular constructions of

recombinant PIV vectors (PIVCFTR, PIVDF508CFTR, and

PIVGFPCFTR), the oligonucleotide sequences for primers used

for qRT-PCR assays, and the list of inflammatory mediators

measured by Luminex multiplex assays.

Found at: doi:10.1371/journal.pbio.1000155.s005 (0.03 MB DOC)
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