
Evaluation of open source software: comparative perspectives

between proprietary and open code development

Authors:

Andrew Schofield

PhD student

Information Systems Institute

Salford University

Salford M5 4WT

UK

T. +44 161 295 5025

E. a.j.schofield@salford.ac.uk

Dr Amit Mitra

Director of Postgraduate Research

Information Systems Institute

Salford University

Salford M5 4WT

UK

T. +44 161 295 5537

E. a.mitra@salford.ac.uk

This paper addresses the issues connected with the evaluation of Information Systems

developed using Open Source software. It identifies the key differences between traditional

forms of development using proprietary software and Open Source methodologies and

analyses the consequences of IS/IT evaluation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161890534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.j.schofield@salford.ac.uk

Abstract
The Open Source movement and the general new interest and acceptance of Open Source

software development indicates the approach of a paradigm shift, in the way Information

Systems (IS) and Information Technology (IT) Evaluation should be carried out. With the use

of Open Source software in IS design comes a whole new set of norms and standards which

affect how IS/IT must be implemented and evaluated.

The majority of IS/IT Evaluation activities are performed from a perspective that has

traditionally considered the business aspects to be of overriding importance. Such a focus is

often less on the actual technical quality of the system and more on its potential value and the

affect it will have on efficiency and efficacy of organisations. Managers who oversee such

evaluation projects are often only concerned with implementation costs and how much

money they could save or generate through its use. In any case, there are certain key issues

that IS/IT Evaluation activities concentrate on. To evaluate these issues and the

successfulness of a system, a company must have something to compare their system with.

Apart from basic calculations based on profit, loss, assets and liabilities, and perhaps

comparisons with other similar evaluation projects which have taken place within or outside

the business in question, there may also be an implicit set of norms which organisations base

their evaluations upon.

Open Source software development however, puts many factors, including costing, into an

entirely different perspective in comparison to traditional styles of system development.

Traditional system development usually includes use of proprietary software outsourced from

a bespoke developer, the use of off-the-shelf software, or the complete in-house development

of a system. Open Source operates with different rules which means that many of the well

established factors of IS/IT Evaluation are no longer relevant or are completely inappropriate

when applied to Open Systems.

The present paper attempts to address the issue of Open Systems Evaluation. Specifically the

paper will examine fundamental differences between traditional IS software systems

development, and projects which make use of Open Source software and ideologies. This will

be accomplished by constructing a framework that illustrates the differences between the two.

Upon defining the differences the paper will investigate how Open Systems, or more

specifically systems making use of Open Source software, can be evaluated with the

emphasis on the differences when compared to traditional, proprietary based evaluation.

Key words: Open source, proprietary software, bespoke software, IS evaluation

Introduction
Information Technology (IT) is in a constant state of upheaval, evolution and change.

Consequently the definitions of standards with regard to performance and effectiveness are

continually being re-defined. Trends indicate that this situation will never change and that

technology will continue to progress in the same way (c.f. Wolstenholme et al 1993, Brooks

1995).

Open Source software (OSS) has been the biggest change is IS development in recent times

and many authors (c.f. Moody 2001; Pavlicek 2000; Raymond 1999, Stallman 1999) have

described the phenomenon as a revolution. We use the term OSS to generally refer to all Free

and/or Open Source software, which may be freely altered, exchanged and to which the

source code is available. It is acknowledged that there are variants of the definition of OSS

but hopefully the context in which the term is used within the paper will make it clear which

specific part of the definition attention is being drawn to. Considering how fast technology is

changing and how the OSS mode of operation is now being practiced by many organisations

around the world, it is important that the general principles of IS/IT Evaluation recognise that

OSS differs from traditional development.

Research in the IS/IT Evaluation realm has tended to concentrate on several main areas.

George (2000) identifies three main aspects of IT Evaluation research

Motivation for IT

Evaluation

Research: What

& When

Purpose: efficiency, effectiveness,

understanding

Nature of research

Theory base and reference discipline

Focus of IT

Evaluation

Research: Why

Level of Analysis

Scope of IT

Stage in life-cycle of the IT

Frequency of evaluation

Research

Approaches in IT

Evaluation

Research: How

Approaches: objective or subjective

Research model

Measurement issues

Data analysis

Table 1: Aspects of IT Evaluation Research Source: (George 2000, p.1096)

Table 1 illustrates the issues that are commonly addressed by IT Evaluation research. The

aspects shown on the right on table 1 are fairly generic but when applied to OSS models of

system development, it is conceivable that many factors will be affected. Particularly

noteworthy issues are those of the IT life-cycle aspects, measurement issues and data

analysis. These issues are particularly relevant to OSS evaluation for reasons that should be

made apparent by this paper. Sarefeimidis & Smithson (2003) state that there are gaps

between theoretical work of IS evaluation and how it is practically implemented. With the

difference between OSS and traditional techniques being overlooked, these gaps seem almost

certain to widen as OSS gains acceptance.

IS/IT Evaluation basically consists of comparing the system with some standard. Although

this may not be explicitly defined in the literature it is implied in many literary definitions of

IS/IT Evaluation (c.f. Irani et al 2000a; Irani 2002; Jones 2000;). Evaluation of an IS

therefore needs two things to compare it to. Firstly a set of organisational requirements is

needed to compare with the capabilities of the current system. A definition of what is

considered to be an acceptable level of functionality and performance must be defined and

the actual system compared with these parameters. Secondly there must also be an

acknowledgement of how these levels compare to wider norms and standards within the IS

domain. These could be considered as internal and external comparison factors i.e.

comparisons made with a specification developed inside the organisation, and those defined

outside it, such as the capabilities of a competitor. In business and management terms this is

described as the external business environment, the analysis of which is considered essential

for a business to be successful. (Capon, 2000; Worthington & Britton, 2000). To be able to

function in the business field, especially the highly electronic arena that exists today, an

organisation’s evaluations must also look towards the outside world, and not just in towards

itself.

This paper attempts to identify major differences between proprietary and OSS systems

development in terms of evaluation using literature such as the above as an evaluation

framework.

Open Source Evaluation

Evaluation Factors

Within both proprietary and OSS systems development, the variety of methods used from one

organisation to the next coupled with more intangible factors such as motivation,

organisational politics and self-interest, result in a myriad of different classifications of

projects (Schofield & Mitra 2004). However, the key differences between proprietary and

OSS development lie in the issues of licensing, group development and peer review, and

economics.

Licensing

Flexibility is OS software’s greatest asset and one of the primary reasons for people and

organisations choosing it as an alternative approach to proprietary solutions. The flexibility is

made possible because of some very clever licensing documents such as the GNU General

Public License (GPL). (See www.gnu.org for more information). The most common use of

OSS licences allows the code for a piece of software to be freely accessed, distributed and

altered to fit the user’s needs. The software is in most cases available free of charge as well as

being free of restriction. The only restriction in licenses such as the GPL, is that the freedom

it establishes can never be removed and must be passed on to those who receive the software.

This freedom is achieved by allowing the source code for a program to be seen and altered by

anyone. The customisability of the software thus allows a software system to be tailored to

the individual needs and requirements of an organisation. This has substantial ramifications

for IS Development and consequently IS Evaluation. Organisations implementing

Information Systems have traditionally had two options open to them

1. Purchase a proprietary solution by using off-the-shelf technology and software

2. To develop a system in house, perhaps involving the use of some off-the-shelf

software or to outsource the bespoke development to another company.

http://www.gnu.org/

Both these approaches mean that IS Evaluation activities will be looking at the system as a

fairly fixed or rigid system. If an off-the-shelf system is used, it will be fairly generic and

therefore the evaluation will be looking at how well the system fits into the working

processes of the organisation. This is the major weak point of off-the-shelf solutions caused

by the inflexibility and fixed nature of this kind of software. This of course depends on the

size of the organisation and the scale of the IS project. Smaller companies with limited

technological requirements, may have many more choice and alternative solutions that the

larger organisations. Larger organisations tend to need more specific or bespoke software as

their business activities, like their system requirements, are more complicated. The question

then becomes, what does the organisation do with the results of the evaluation? Due to this

inherent inflexibility it seems fair to conclude that the organisation may have to alter its

working practices and processes, to fit into the requirements of the IS system (c.f. Hammer

and Champy 2001). This is the opposite of what an organisation tries to achieve by

implementing an IS and is clearly not a desirable scenario. As a result of this however, many

organisations will simply put up with systems that are not best suited to them (c.f. Irani et al

2000b; Khalifa et al 2000). It is therefore suggested that the customisable nature of OSS

facilitates a kind of system development which is more in line with business requirements an

operations.

For an organisation developing an IS using OSS, the circumstances are somewhat different.

Software developed in house can be done so much more efficiently due to the freedom

associated with OSS. Firstly there is a large amount of OSS available which an organisation

can use. The majority of this software is of a very high quality and much of it can be used as

it is. Research by Fitzgerald & Kenny (2003) indicates that organisations may certainly be

able to operate using entirely OSS with little or no code development work. As proprietary

software systems also need some work to install and configure, there is little difference in this

regard between the two types of software. Secondly, as most OSS licenses are designed to

prevent restriction rather than enforce it, post-development operating costs will also be

reduced due to the lack of need to renew software licenses. The real advantage of OSS is

however the ability to alter, adapt and customise a system. If a piece of software does not do

the job, the organisation can alter its functionality. Providing the necessary skills are in the

organisation, this almost guarantees a system that fulfils the requirements if it developed

correctly.

Development

The methods and techniques used for development of OSS are completely different from the

traditional proprietary methods. The traditional development cycle depicts a methodology

used in an office with a development team working together to engineer software from

scratch. Although this approach is often adopted there are drawbacks to the way the system

operates. The now famous work of Brooks (1995) demonstrated that the inefficient part of the

system was the communication overhead between the developers. However OSS

development avoids these problems because of the way it can make use of the OSS

community (See figure 1).

As figure 1 shows, after the initial development of the software, the prototype is released into

the community for all to use, and more importantly test and improve. This leads to the

realisation that testing is no longer just a phase in the project life cycle, as it often in

traditional development projects, but rather that it is an intrinsic part in the communal

development process. Several authors (c.f. Raymond, 2000; Pavlicek, 2000; Moody, 2001;

Evers, 2000) have identified this factor as one of the key reasons for the success of the OSS

development methodology. Lanzara & Morner (2003 p.1) state “Technology, rather than

formal or informal organization, embodies most of the conditions for governance in open-

source software projects”, suggesting that technological determinism has a role to play in the

process.

The advantage of being open to organisations developing in-house software is that the

community will contribute to the development of the code in several ways. In most cases,

OSS developers participating in projects in this way are intrinsically motivated because they

have chosen to take part in the project themselves. This may also explain the high quality of

the software produced in OSS circles (c.f. Hertel et al, 2003; Lakhani & Wolf, 2003). These

external co-developers may contribute to the project by finding and reporting bugs or by

actually fixing them themselves and submitting the fixes to the core developers for

consideration. It is also common for these contributors to propose improvements or new

features, write them themselves and submit them for inclusion into the program. Figure 2

shows how this is achieved. The co-developers operate within there own micro-environments

and contribute voluntarily to the larger macro-project. Because of the methods of

communication which are dictated by the technology, there is not the same communication

overhead as is found in tradition development. Organisations may therefore not only make

use of existing software as a foundation to build there software upon, but may also benefit

from other people’s development of the code.

Initial Design Idea

Cause/Prompt

Motive Project

Declaration

Initial Development

(To first testing

phase)

Release

Improve
Community

Developmental

Participation

Figure 1: Conceptual Context-free Open Source Software Development Model

Adapted from Raymond (2000)

The differences in the method of development are very important for the evaluation of

organisation’s software system. As was discussed earlier, evaluation is concerned with

comparing the system as it currently is, to a set of requirements. A possible risk with the OSS

style of development is that third party developments i.e. those done by external co-

developers in the OSS community will not be developed specifically with the organisation in

mind. This mismatch between the requirements and the developer has long been a topic for

discussion in software engineering literature as it is often the cause of ineffectual software.

Economics

Proprietary software is usually written in order to generate profit for the developing company.

On the flip side, companies normally buy software because they believe it will benefit the

organisation in some way, perhaps to improve efficiency or effectiveness. This highlights

what Raymond (1999) defines as the difference between “use value” and “sale value”. To the

developer, sale value is the most important aspect. To the user, use value is more important.

IS/IT Evaluation has traditionally focused on the economical factors of IS development and

implementation to basically judge whether the system is economically viable. Again OSS is

entirely different. Firstly because the majority of OSS is available for free. This means that

the monetary value of the software is no indication of its viability as an effective software

tool. Put simply, asking the question “is it value for money”, isn’t particularly relevant when

using free OSS as the answer invariably going to be yes. Therefore economically based forms

of IS evaluation are not appropriate for use with OSS.

111100010100110110101011101010001011010011000010101111001010100

Program Code

Co-Developer Co-Developer

Co-Developer

Co-Developer

Core Project

Leader/Team

Figure 2: Open Source Structural Development

If OSS is developed by an organisation, whether it starts from scratch or improves some

existing software, the organisation will have the cost of paying the developers and possibly

training them as well. However by making use of the OSS community, the organisation could

get a significant amount of its development work done for it by unpaid volunteers. Raymond

(2000) states that one of the reasons for the quality of OSS is that the external co-developers

are not hand picked by the core developers. It is this randomness and self selection process

which introduces many varying perspectives and approaches allowing problems to be found

and solutions proposed in different and original ways. Organisations themselves may

participate in this exchange of ideas and code and work together to produce better systems

(Pavlicek 2000). As specific types of organisations have specific requirements, they may

work together to produce a system which will meet both their needs. Linux is an excellent

example of this. Different distributions of the operating systems have been created for

different purposes e.g. Linux for embedded systems, or systems where the availability and

robustness are of paramount importance. For organisations, this is very good economical

model as it shares the cost of development whilst improving the likelihood of a quality

system being produced. Evaluation therefore needs to consider the amount of valuable

resources that the organisation can make use of at no cost and not just how much of the direct

costs can be cut by using OSS.

The adoption of the OSS approach will affect companies who choose to outsource the

development of a customised software system. Although the developing company will charge

for the design, installation and maintenance of the system, they will be in a position to offer

these services at a lower price. This is because in many OSS cases, code from existing

software can be re-used, therefore there will not be as much actual development work but

rather adaptation and customisation. When managers are presented with a choice between

two companies offering similar solutions and one has a lower price tag, it seems fairly certain

that they will choose the most economical option.

Maintenance

Many IS/IT evaluations take place after a new product has been installed and has been in use

for some time (c.f. Jackson, 2001; Irani, 2002; George, 2000). The issue of maintenance then

becomes an important issue. This aspect is apparent in the literature on Legacy systems and

demonstrates that IS/IT evaluation should also be used to identify problems with existing

systems (Bennett, 1995; Bocij et al, 1999; Brodie & Stonebraker, 1995; Ptak et al, 1999).

This is an area where proprietary and OSS systems differ considerably. In the majority of

cases proprietary software, when purchased, includes certain guarantees as to the

performance and effectiveness of the product. Included in these agreements are the provision

for support and assistance with problems. How far this agreement goes depends on the type

of software and the license provided. OSS solutions provided by a company also usually

include support but OSS acquired from other sources such as the Internet, will usually give

no guarantee or direct support. This is a common concern for large organisation developing

in-house OSS solutions.

No support for a software system is something that most IT managers would find appalling.

That is unless of course they were aware of the support available from the OSS community.

As was discussed earlier, the OSS community is extremely efficient at finding and fixing

bugs. From a maintenance point of view having this amount of support is a very positive

thing, even if it does not take the same form as support for proprietary products. Fizgerald &

Kenny (2003) observed that bulletin boards and other forms of online community based

forums were the main source of support for their case study. This may not be an appealing

thought to many however, as it almost seems as though no one is accountable for the

software.

The alternative is the outsourced OSS approach. Companies which specialise in developing

bespoke software based on OSS code almost invariably offer support for there systems. This

is often the only way of generating profit. As Raymond (2000 p.12) states “Give Away

Recipe, Open A Restaurant”. IS/IT evaluators must consider how maintainable a system is.

If all support has been removed for a product, it is questionable if the system is a viable asset

to the company.

Factorial Analysis

It can be seen that there are many differences between OSS and proprietary software. Not just

in the software itself, but the development styles used, the strategies available to

organisations, the economical aspects and the more vague and intangible factors of

community behaviour and motivational aspects. As a basic framework there are definable

factors which relate to, and have consequences for the evaluation of an IS. Table 2 shows

these factors and the consequences for both OSS and proprietary systems.

 Open Source Proprietary

Flexibility Ability to alter code to suit

organisational needs

Alteration needs special permission

from owner. (May not be given)

Other work may be

used/integrated into design

Software may not be used in other

programs.

Availability Software may be acquired

without a license.

Software may require initial payment

for licensed use.

No license renewal License may require renewal payment.

No limit to use. Number of available copies and type

of use may be restricted by license

type.

More training maybe required

before staff can use OSS.

Some training maybe required but

many parts may already be familiar.

Reliability Unless outsourced, OSS rarely

comes with guarantees.

License normally includes guarantee

and support

OSS community will most likely

support any faults.

Developer will fully support own

software but probably only for a

limited time.

Software will be supported

almost indefinitely by OSS

community

Software will be supported until

developer removes support or ceases

trading.

Code developed by external co-

developers will not be

customised for the specific

organisation.

All non-off-the-shelf software will be

tailored to the organisation.

Returns (on

investment)

In house developments may

efficiently make use of existing

code in community so a smaller

work force may be needed.

In house developments must be done

from scratch or on pre-authored code

by a suitably sized development team.

Outsourced code can still be

supported by community

Out sourced code may be supported

only by developer.

Software maybe acquired free of

charge.

Software will cost an amount

specified by developer.

Community support is free,

outsourced support will be

charged for.

All support from developer will be

charged for.

Software acquired at no cost

may often be used ‘out of the

box’ i.e. no development work

required.

Purchased software must be used in its

‘out of the box’ state.

Cost of training or hiring skilled

staff maybe high. E.g. Linux

certified engineers are rarer than

Microsoft engineers.

Training and hiring costs will be fairly

low as skills are common.

Table 2: Factorial Analysis of Open and Proprietary Evaluation Aspects

The above framework highlights the differences between proprietary and OSS based IS. It is

evident that there are large differences in almost all areas. Given the above, it seems a

foregone conclusion that any attempt to evaluate an OSS system using proprietary standards

will give inappropriate results.

Relevance to Practitioners

For those involved in IS/IT evaluation, it should now be evident that implementing an OSS

solution is very different from implementing a proprietary one. A different approach to

evaluation must be taken and the above factors need to be considered in order to get a

realistic and useful result.

A key issues in the evaluation and use of OSS is one of perspective. Evaluators and system

developers making use of OSS need to get out of the traditional mindset that views software

and systems as property. Although it may seem unrealistic, a approach should be adopted that

views software as sharable tools that can be freely interchanged between individuals and

organisations alike without any loss of profit. For those involved in the financial aspects of

IS/IT evaluation, awareness of the huge difference in economical factors involved is

essential. A very good example is Linux, which is available in certain distributions with

around 3000 software packages. These are complete systems comparable to Microsoft

Windows, and available completely free of charge. As was stated earlier, some OSS solution

providers will also charge a fee but will supply guaranteed support. Fitzgerald and Kenny’s

(2003) research indicated that a full OSS implementation of an organisation system,

including development and support, was approximately 25% of the cost of implementing the

proprietary alternative. Evaluators must be aware of these huge differences in order to

correctly evaluate the usefulness and value of an OSS based IS.

Conclusions
The present paper has attempted to call attention to the intrinsic differences between OSS and

proprietary software systems and how these differences affect the act of IS/IT evaluation.

Analysis of the factors led to the creation of four groups; Licensing, Development,

Economics and Maintenance. These four groups encompass the focal areas relative to IS/IT

evaluation from the legal issues relating to software use and development to issues of

flexibility and efficacy of developmental methods, the financial considerations, and the

separate issue of post-developmental support and continuous availability.

Traditionally evaluation has focused on the financial aspects of investing in an IS. In many

cases this is still true today. The methods used in these situations do not take the larger

picture into account and also provide a skewed view of the economical factors. The return on

investment (ROI) method is a good example of an evaluation method that does not provide

reliable results. We have seen that OSS is a completely different approach that will almost

certainly render many of these methods inappropriate. There may also be several political and

social facets to an evaluation which would not arise with the use of proprietary systems and

vice versa. There is often a sense of reluctance to make the move to OSS as it is still a new

and developing area. For IS/IT evaluation, this is an important issue especially when

economics are involved. Fitzgerald & Kenny (2003) found that the view of an IT manager

was;

“If you have a product which costs €1 million-it may seem appropriate to spend €500,000 on

consulting. However if the product costs nothing, then spending €500,000 somehow seems to

be a more difficult decision to take, yet the saving is still €1 million”.

Fitzgerald & Kenny (2003 p.324)

The biggest obstacle to the evaluation of OSS systems is perhaps the same as that which is

preventing the mass adoption of OSS as a viable business model. Business is based on

competition and the use of IT is, in many people’s view, a tool for leveraging competitive

advantage. Therefore the premise of giving away developed software, sharing it with others

who may well be direct market competitors, and even getting software at no cost does not

compute when compared to the traditional business model. Consequently it seems fair to

conclude that companies developing systems in co-operation with other companies or the

OSS community should approach IS/IT evaluation with the same holistic view.

From the very beginning of the paper the importance of comparable norms in IS/IT

evaluation have clearly been important. One message that has been apparent throughout this

research is that OSS brings a new set of standards to the equation. From a practical

perspective standards are important. A basic example would be Microsoft Office which

commands the bulk of the office suite market. MS Office file formats have consequently

become a de facto standard. To succeed in today’s communication rich business world,

companies must be able to exchange data in these common formats. OSS office suites often

now support these formats, which is an indication of the increasing realisation of the

importance of standards. In most cases, with the exception of server technology, OSS is not

considered as standard or even as being in common use. To this end, Investment analysis and

evaluation attempts will dub OSS as being inappropriate even if it performs much better than

the proprietary counterpart.

A catch 22 situation now seems to exist wherein companies are reluctant to invest in OSS

solutions, which may be unable to grow in popularity if not backed by companies who

feedback into the OSS community. Having said this, some large and very influential

companies, such as IBM, Netscape and Oracle have invested in OSS and if the future is

indeed ‘open’, IS/IT evaluation methods will need to be altered to bring them in line with the

new ways.

References

Bennett. K. H (1995), “Legacy Systems: Coping With Success”, IEEE Software, January

1995, Vol 12, No. 1

Bocij. P, Chaffey. D, Greasley. A, Hickie. S (1999) “Business Information Systems:

Technology, Development and Management”, Financial Times Management, Pitman

Publishing, UK

Brodie. M. L & Stonebraker. M (1995) “Migrating Legacy Systems - Gateways, interfaces &

the incremental approach”, Morgan Kaufmann Publishers, Inc., California, USA

Brooks, F.P., (1995), “The Mythical Man Month”, Addison Wesley Longman, Inc.

Capon, C. (2000), “Understanding Organisational Context”, Prentice Hall

Evers, S. (2000), “An Introduction to Open Source Software Development”, Available at:

http://user.cs.tu-berlin.de/~tron/opensource/opensource.html, Accessed (February 2004)

Fitzgerald, B. and Kenny, T. (2003), “Open Source Software in the Trenches: Lessons from a

Large-scale OSS Implementation”, Twenty-Fourth International Conference on Information

Systems, Seattle, Washington, USA, December 14-17

George, B. (2000), “A Framework for IT Evluation Research”, Americas Conference on

Information System 2000, Long Beach California, USA

Hammer, M., Champy, J. (2001) “Reengineering the Corporation: A manifesto for Business

Revolution”, Nicholas Brealey, UK

Hertel, G., Niedner, S., Herrmann, S. (2003), “Motivation of Software Developers in Open

Source Projects: An Internet-based Survey of Contributors to the Linux Kernel”, Research

Policy, Special Issue on Open Source Software Development, Available at:

http://opensource.mit.edu/papers/hertel.pdf , Accessed (February 2004)

Irani, Z., Love, P., Zairi, M. (2000a), “Information Systems Evaluation”, Mini-track

Introduction, Americas Conference on Information Systems 2000, Long Beach California,

USA

Irani, Z., Love, P., Hides, T.M. (2000b), “Investment Evaluation of New Technology:

Integrating IT/IS Cost Management into Model”, Americas Conference on Information

Systems 2000, Long Beach California, USA

Irani, Z., (2002), “Information Systems evlatuation: navigating through the problem domain”,

Information & Management 40, pp. 11-24.

Jackson, M. (2001), “What’s so important about evalution?”, Library Management, Vol 22,

No. 1/2, pp. 50-57.

Jones, S., Hughes, J. (2000), “Understanding IS Evaluation as a Complex Social Process”,

Americas Conference on Information Systems 2000, Long Beach California, USA

Khalifa, G., Irani, Z., Baldwin, L.P. (2000), “IT Evaluation: Drivers and Consequences”,

Americas Conference on Information Systems 2000, Long Beach California, USA

Lakhani, K. R., Wolf, R.G. (2003), “Why Hackers Do What They Do: Understanding

Motivation Effort in Free Open Source Software Projects”, MIT Sloan School of

Management Working paper, Available at:

http://freesoftware.mit.edu/papers/lakhaniwolf.pdf, Accessed (February 2004)

Lanzara, G.F. and Morner, M. (2003), ‘The knowledge ecology of Open-Source Software

Projects’, paper presented at seminar on ‘ICTs in the contemporary world’ at LSE

Department of Information Systems on 2nd October

Moody, G. (2001), “Rebel Code: How Linus Torvalds, Linux and the Open Source Movement

Are Outmastering Microsoft”, The Penguin Press, UK

Pavlicek, R. C. (2000), “Embracing Insanity: Open Source Software Development”, Sams

Publishing, USA

Ptak. R. L, Morgenthal. JP, Forge. S (1999) “Manager’s Guide to Distributed Environment:

From Legacy to Living Systems”, John Wiley and Sons Inc, NY, USA

Raymond, E. S, (1999), “The Magic Cauldron”,

Available at: http http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/

(Accessed December 2003)

Raymond, E. S, (2000), “The Cathedral and the Bazaar”,

Available at: http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ (Accessed

November 2003) and in Dibona et al (1999)

Schofield, A., Mitra, A. (2004), “Complexities of Classifying Open Source: Developing a

Framwork for Categorising Open Software Development”, UK Academy of Information

Systems conference 2004, Glasgow, UK.

Serafeimidis, V. & Smithson, S. (2003), “Information systems evaluation as an organizational

institution – experience from a case study”, Information Systems Journal 2003 13, pp. 251-

274.

Smithson, S. & Hirschheim, R. (1998) “Analysing information systems evalutation: another

look at an old problem”, European Journal of Information Systems, pp. 158-174.

Stallman, R. (1999), “The GNU Operating System and the Free Software Movement”, in

Dibona et al (1999).

Wolstenholme, E.F., Henderson, S., Gavine, A., (1993) “The Evlaution of Management

Information Systems: A Dynamic and Holistic Approach”, John Wiley & Sons Ltd, UK.

Worthington, I. & Britton, C. (2000) “The Business Environment”, 3rd edition, Prentice Hall..

