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ABSTRACT  

HSP70 is a molecular chaperone and a key component of the heat shock response. Due to its 

proposed importance in oncology, this protein has become a popular target for drug discovery 

efforts, efforts which have as yet brought little success. In this study, we have demonstrated that 

adenosine derived HSP70 inhibitors bind to the protein with a novel mechanism of action, the 

stabilization by desolvation of an intramolecular salt-bridge, which induces a conformational 

change in the protein, leading to high affinity ligands. We also demonstrate that through the 
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application of this mechanism, adenosine derived HSP70 inhibitors can be optimized in a 

rational manner.  

INTRODUCTION 

Heat shock proteins are a highly conserved family of molecular chaperones that facilitate the 

folding, stability and cellular localization of their substrate proteins.
1
 Up-regulation of the 

pathways associated with the heat shock response has been implicated in a number of disease 

areas, including cancer.
2
 Recent focus has been on the inhibition of the molecular chaperone 

HSP90 using ATP-competitive inhibitors, an approach that has resulted in considerable success 

as several compounds have now entered clinical trials.
3
 The HSP70 family of molecular 

chaperones represents another potential target for small-molecule mediated antagonism of the 

heat-shock response pathway. The HSP70 isoform HSC70 is ubiquitously expressed in most 

tissues, whilst the inducible isoform HSP72 is largely expressed in response to stress, including 

treatment with HSP90 inhibitors, and aids cell survival through inhibition of several apoptotic 

pathways.
4
 We have previously shown that dual knockdown of these two HSP70 isoforms in 

human colon and ovarian tumor cell lines results in apoptosis, which was in contrast with non-

tumorigenic cell lines where apoptosis was not observed, indicating a potential therapeutic 

window for HSP70 inhibitors.
5
 

In order to execute their refolding activity, the HSP70 proteins utilize the hydrolysis of ATP to 

ADP/Pi in a complex catalytic cycle involving a number of protein conformational changes and 

through a process which is tightly regulated by various co-chaperones.
6
 While this complexity 

presents numerous opportunities to antagonize the refolding activity of HSP70, the clearest 

strategy remains ATP-competitive binding of inhibitors to the conserved nucleotide binding 

domain of the protein. Unfortunately, this approach has proven particularly challenging. There 
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remains only one published chemotype which displays ATP-competitive sub-micromolar 

inhibition of HSP70 and has been shown to be effective in cellular assays, a chemotype derived 

from adenosine(Figure 1).
7,8 

Figure 1. Adenosine-derived ATP-competitive inhibitors of HSP70 

 

The ATPase domain of HSP70 is a member of the actin ATPase family of proteins, a target 

class which has delivered very little success in the discovery of high affinity ligands.
9
 A recent 

study
10

 to assess the potential of the HSP70 ATP binding site for antagonism with small 

molecules using SiteMap
®11

 described the target as “difficult”;
12

 whilst a separate analysis using 

a fragment-based screening approach returned a very low hit rate (0.4%),
10

 a result generally 

associated with low ligandability.
13

 Also, several studies into the biochemical mechanism of 

HSP70 refolding activity and ATP hydrolysis have demonstrated that the ATP binding site of 

HSP70 in solution is highly flexible in nature, undergoing numerous conformational changes.
14

 

With the challenge of finding ATP-competitive hit matter against HSP70 hindering the 

potential development of inhibitors for this important target, we sought to investigate the binding 

mechanism of adenosine-derived ligands to the ATP site of HSP70. The aim was to improve our 

understanding of how high affinity ligands bind to this region of the protein so that this 

knowledge could be applied to future inhibitor design. 

DEVELOPMENT OF TOYOCAMYCIN DERIVED LIGANDS 
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The slow turnover of ATP by HSP70 and the potent product inhibition by ADP/Pi
15

 means that 

functional assays are challenging for the development inhibitors with this protein. Therefore, we 

focused on using surface plasmon resonance (SPR) as a biophysical method to assess the affinity 

of ligands. Unfortunately, full-length human HSP70 gave poor SPR data in our hands. Therefore, 

the nucleotide-binding domain (NBD) of human HSC70 (tr-HSC70 residues 1 to 381)
16

 was used 

in all SPR experiments. Adenosine 1 is a relatively weak ligand for tr-HSC70, displaying a pKD 

= 3.95±0.01 (KD = 110 M, n = 3),
17

 when measured by SPR, but we decided to use this 

compound as a starting point for our investigations into the binding mechanisms of this 

chemotype to the HSP70 proteins. We began by analyzing the importance of the ribose motif to 

the binding affinity of adenosine 1. Removing either the 2’- or 3’-hydroxyl groups
18

 from the 

sugar motif or changing their relative and absolute stereochemistry resulted in no measurable 

binding being observed with concentrations up to 1 mM (data not shown, see supporting 

information). Removal of either the 6-amino group or the 3-nitrogen of adenine ring also resulted 

in the loss of all measurable activity. These results demonstrated the importance of the ribose 

motif and the adenine aminopyrimidine motif to binding of adenosine-derived ligands to the 

hydrophilic region of the protein. In contrast, removal of the 5’-hydroxyl was well tolerated, as 

compound 2 retained its activity in with a pKD = 3.88±0.02 (KD = 130 M, n = 3) (Figure 2 and 

SI Table 1).
19

 

Figure 2. The 5’-ribose hydroxyl has little effect on affinity 

 

The heteroatoms and stereo chemistry highlighted in red are important for affinity to HSP70 and 

could not be replaced by hydrogen or CH or the stereochemistry changed.
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It had previously been shown by Massey et al that addition of a primary or secondary amine to 

the 8-position of adenosine resulted in a significant increase in affinity for these ligands.
7
 In our 

hands, 8-aminoadenosine 3 gave a pKD = 5.16±0.01 (KD = 7.0 M, n = 3) a 16-fold increase in 

affinity when compared to adenosine 1. We decided to investigate this substituent in order to 

better understand its role in the improved affinity of these compounds (Table 1). 

Table 1. 8- and 5’-Subsituted adenosine based HSP70 ligands 

 

Entry Compd. R
1
 R

2
 pKD±SEM

a
 KD (M)

b
 

1 3   5.16±0.01 7.0 

2 4   4.77±0.02 17 

3 5   <3.00 >1000 

4 6   <3.00 >1000 

5 7   4.56±0.01 27 

a
All results are quoted as the geometric mean±SEM of 3 independent experiments unless 

otherwise stated, pKD=-log10(KD(M)*10
-6

). 
b
All values are quoted to 2 significant figures. 

Methyl substitution on the 8-amino group (entry 2) gave ligand 4 and resulted in a 2.5-fold 

drop in affinity,
20

 while dimethyl analogue 5 (entry 3) displayed a KD greater than 1 mM. 

Replacement of the 8-amino substituent with a methoxy group to give 6 (entry 4) also resulted in 

a complete loss of activity. This dramatic effect on binding suggested that one of the hydrogens 

of the 8-amino group was involved in hydrogen bonding. To assess whether an intramolecular 

hydrogen bond to the 5’-hydroxyl was important for affinity we removed this group to give 7 
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(entry 5). However, only a 4-fold drop affinity was observed with analogue 7 when compared 

with 8-aminnoadenosine 3, and 7 still displays a 4-fold increase in affinity when compared to 

adenosine 1. These results indicate that an intramolecular hydrogen bond between the 8-amino 

substituent and the 5’-hydroxyl group cannot completely explain the increased affinity observed 

with the 8-aminoadenosine series when compared with adenosine analogues or the observed 

activity cliff when both hydrogen bond donors are blocked.
21

 

Finally, we sought to investigate the role of the imidazole ring of adenosine to the binding of 

these ligands to HSP70 (Table 2). 

Table 2. Natural product nucleoside derived HSP70 ligands 

 

Entry Compd. Name
a
 R A pKD±SEM

b
 KD (M)

c
 

1 1 Adenosine  N 3.95±0.01 110 

2 8 Tubercidin  C 4.55±0.26 28 

3 9 Toyocamycin  C 4.04±0.01 90 

4 10 Sangivamycin  C 5.49±0.02 3.3 

a
All compounds were purchased from the relevant commercial suppliers and used without 

further purification. 
b
All results are quoted as the geometric mean±SEM of 3 independent 

experiments unless otherwise stated, pKD=-log10(KD(M)*10
-6

). 
c
All values are quoted to 2 

significant figures. 

We screened three commercially available bacterial natural products, all based on the 

replacement of the purine of adenosine with a pyrrolopyrimidine scaffold, exchanging the 

nitrogen at the 7-position with carbon.
22

 Comparing this change in scaffold to adenosine 1 (entry 

1): the more lipophilic derivative tubercidin 8 (entry 2) displayed a 4-fold improvement in 
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affinity, substitution at the 7-postion was well tolerated, with the nitrile derivative toyocamycin 9 

(entry 3) displaying comparable affinity, and the primary amide derivative sangivamycin 10 

(entry 4) gave a 35-fold increase in affinity at 3.3 M. 

With knowledge of the increased affinity observed with the pyrrolopyrimidine scaffold in 

hand, we planned to combine the scaffold hop with the improved affinity previously described 

for 8-amino substitution of the adenosine scaffold. 8-Amino substitution of tubercidin proved 

synthetically intractable due to the absence of an electron-withdrawing group at the 7-position 

making aromatic substitution at the 8-position challenging. Therefore, we focused our efforts on 

the synthesis of 8-aminotoyocamycin 12 and 8-aminosangivamycin 13 (Scheme 1). 

Scheme 1. Natural product derived ligands of HSP70 

 

Tribenzoyl intermediate 11 was prepared in four steps and 20% yield using a previously 

described procedure.
23

 Despite repeated attempts, we were unable to introduce an ammonia 

equivalent to the 8-position. However, we were successful using methylamine as a nucleophile to 

give 8-N-methylaminotoyocamycin 12, which underwent in situ deprotection of the benzoyl 

groups under the reaction conditions. Treatment of intermediate 11 with basic hydrogen peroxide 

resulted in hydrolysis of the nitrile group and subsequent addition of methylamine gave 8-N-
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methylaminosangivamycin 13 in low yield and moderate purity.
24

 8-N-Methylaminotoyocamycin 

12 gave a pKD = 5.47±0.02 (KD = 3.3 M, n = 3) against tr-HSC70. This result represented a 27-

fold improvement in activity compared to toyocamycin 9 (Table 2, entry 1) and a 5-fold increase 

in affinity when compared to the corresponding 8-N-methyladenosine 12 (Table 1, entry 2). In 

contrast, 8-N-methylsangivamycin 13 gave a pKD = 4.52 (KD = 30 M, n = 1),
25

 which is a 7-

fold drop in affinity compared to sangivamycin 10 (Table 2 entry 3). We rationalized this SAR 

through the potential effect of the 7-substituent on the hydrogen bonding ability of the key 8-N-

methylamino group. The 7-position primary amide substituent of 13 can form an intramolecular 

hydrogen bond with the 8-N-methylamino group to give a resonance stabilized 6-membered 

intramolecular hydrogen bond,
26

 which would mask the hydrogen bond donor effect of the 8-N-

methylamino substituent and block the binding of this ligand. 

In order to develop the toyocamycin scaffold further, we sought to introduce a benzylic 

substituent to the 8-position amine. Previously, Massey et al. have shown that N-benzyl 

substitution at the 8-amino position could improve the affinity of adenosine derived inhibitors of 

HSP70 (Figure 1).
7
 Since our toyocamycin derived scaffold 12 had displayed a 5-fold 

improvement in affinity compared to the corresponding adenosine scaffold 4, we hypothesized 

that addition of an 8-N-benzyl substituent to toyocamycin would result in an improved 

chemotype for HSP70 inhibition. 8-N-Benzyltoyocamycin 14 was prepared via a similar method 

to 12, using benzylamine as a nucleophile and subsequent deprotection of benzoyl protecting 

groups using sodium methoxide. For comparison 8-N-Benzyladenosine 15 was prepared in one-

step via a literature procedure from commercially available 8-bromoadenosine (Scheme 2).
27

 

Scheme 2. 8-N-Benzyl derivatives of adenosine analogues 
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8-N-Benzyladenosine derivative 15 gave a pKD = 5.84±0.02 (KD = 1.5 M, n = 3) representing 

a 12-fold improvement in binding affinity compared to the 8-N-methyladenosine analogue 4 

(Table 1, entry 2); however, the 8-N-benzyltoyocamycin analogue 14 gave a pKD = 5.56±0.02 

(KD = 2.8 M, n=3), representing little change in affinity compared to 8-N-methyltoyocamycin 

derivative 12, despite the increase in molecular weight. Even though toyocamycin 9 was 

apparently an improved scaffold, when compared to adenosine for the inhibition of HSP70, we 

had been unable to develop the compounds beyond a micromolar affinity ligand. We believed 

that improving our understanding of the complex SAR surrounding the nucleoside core and 

lipophilic 8-N-benzyl substituent would be crucial to the discovery and development of small-

molecule inhibitors of HSP70. 

HSP70 CONFORMATIONS 

The biochemical mechanisms of the refolding activity of HSP70 have been the subject of 

numerous publications.
14

 In 1995, kinetic studies by McKay and Ha using changes in tryptophan 

fluorescence indicated that the HSP70 isoform, HSC70, undergoes a number of conformational 

changes in the catalytic cycle.
28

 The energy released from ATP hydrolysis drives subsequent 
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conformational changes in the substrate binding domain, allowing HSP70 to carry out its 

refolding function on client proteins. However, what McKay and Ha discovered was that ATP 

and ADP have two distinct binding mechanisms. Whilst ADP binds and dissociates in a single-

step, the binding of ATP is a two-step process, requiring a conformational change of the 

nucleotide binding domain prior to ATP hydrolysis. We hypothesized that the complexity 

surrounding the apparent SAR of the nucleoside derived HSP70 inhibitors was due to a flip in 

mechanism between a one-step and an induced conformational change two-step mechanism.
29

 

In order to investigate whether a two-step binding model is consistent with the observed 

nucleoside SAR, we decided to utilize the X-ray crystallography of the HSP70/ligand complex. 

There is currently no full-length crystal structure of human HSP70 and we were also 

unsuccessful in our attempts to generate such a structure. We therefore focused our 

crystallography efforts on the nucleotide binding domain (NBD) of the human HSP70 isoform 

HSP72. Since we wanted to investigate ligand induced conformational changes of HSP70 a 

ligand soaking strategy would be inappropriate, as the crystal would either limit conformational 

change or block the binding of ligands. We therefore developed a small molecule/protein co-

crystallization protocol, which would allow us to observe a greater range of ligand-bound protein 

conformations.
30

 

In our hands, ADP 16 gave an affinity of pKD = 6.49 (KD = 0.32 M, n = 1) when measured by 

SPR against the tr-HSC70.
31

 The co-crystal structure of ADP/Pi bound to the nucleotide binding 

domain of HSP72 clearly revealed a closed conformation of the protein. The two -helices 

closed around the adenosine motif of ADP, forming multiple hydrogen bonds with the ribose and 

adenine fragments (Figure 3). 

Figure 3. Crystal Structure of ADP/Pi bound to HSP72  
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PDB: 3ATU, key hydrogen bonding interactions and their distances in Angstroms are indicated. 

The key salt-bridge interaction between lysine-56 and glutamic acid-268 was measured at 2.9 Å. 

Purple and green stars represent sodium and magnesium ions respectively.  

In the structure, the two phosphate groups of ADP form multiple hydrogen bonds within the 

phosphate binding region of tr-HSP72. It is clear from this structure that tr-HSP72 would need to 

undergo a conformational change in order for ADP/Pi to dissociate. An interesting observation 

from the analysis of this structure was that in order to observe the closed conformation, with the 

protein enveloping the ligand, it is necessary for the two -helices to come in close proximity to 

each other. The ligand/protein co-crystal structure, rather than a structure obtained by soaking 

reveals this conformation is apparently stabilized by the formation of a solvent exposed salt-

bridge between glutamic acid-268 and lysine-56.
32

 Intrigued by this apparent formation of this 

novel intramolecular interaction, we then sought to generate a co-crystal structure of the bacterial 

natural product sangivamycin 10 (KD = 3.3 M) (Figure 3). 

Figure 3. Co-crystal structure of Sangivamycin 10 bound to HSP72 
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Key hydrogen bonding interactions and their distances in Angstroms are indicated. The key salt-

bridge interaction between lysine-56 and glutamic acid-268 was measured at 7.4 Å. 

The crystal structure of sangivamycin 10 revealed a similar hydrogen bonding framework to 

the adenosine motif of the ADP/Pi structure (Figure 3). The pyrrolopyrimidine ring interacts with 

serine-275 and the 2'- and 3'-hydroxyls of the ribose interacts with lysine-271. However, in 

contrast to ADP/Pi, sangivamycin 10 co-crystallized in an open conformation of tr-HSP72; 

whereby, the two -helices of the nucleotide binding domain are no longer in close proximity, so 

no solvent exposed salt-bridge is able to form between glutamic acid-268 and lysine-56. It is this 

difference in the binding conformation which we hypothesize is an important factor in the 

complexity of SAR observed with nucleoside derived inhibitors of HSP70. The binding of both 

ADP/Pi 16 and sangivamycin 10 are dominated by the formation of multiple hydrogen bonds to 

key residues in the nucleoside binding cleft but the key difference between the two ligands is 

their ability to induce and stabilize the closed conformation of tr-HSP72. It is this ligand-driven 

induced conformational change that leads to high affinity inhibitors of HSP70. The conformation 
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change observed with ADP/Pi 16 is presumably brought about by the interactions of the -

phosphate group of ADP with the glycine rich loops of the phosphate binding region. This 

conformational change could force water molecules from the nucleotide binding domain cleft, 

strengthening the many hydrogen bond contacts surrounding the adenosine ring and especially 

the ribose ring, due to the more hydrophobic environment. The absence of a -phosphate group 

in sangivamycin 10 means there is no induced conformational change so affinity is only 

dependent on the multiple hydrogen bonds (Figure 4). 

Figure 4. Induced open and induced closed conformations of HSP72 

 

The copper structure describes the co-crystal structure of ADP/Pi bound to HSP72 in the induced 

closed conformation, due to interactions of the phosphate groups through hydrogen bonds with 

the glycine rich loops and stabilized by the salt-bridge. The grey structure describes the co-

crystal structure of Sangivamycin 10 bound to HSP72. The overlay clearly shows Sangivamycin 

10 crystalizes in the open conformation, such that formation of the key salt bridge is not possible.   

MIMICKING THE -PHOSPHATE 
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Mimicking phosphate groups with druglike ligands represents a significant challenge in 

medicinal chemistry.
33

 However, if it is possible to induce the closed conformation of the HSP70 

nucleotide binding domain via an alternative mechanism, then mimicking the -phosphate of 

ADP would be unnecessary. Since the only new enthalpic intra-protein interaction that we could 

observe in the closed tr-HSP72 structure, when compared with the open sangivamycin 10 

structure, was the solvent exposed salt-bridge between glutamic acid-268 and lysine-56, we 

hypothesized that any ligand stabilizing this interaction would stabilize the closed conformation 

of HSP70, leading to increased affinity. We therefore proposed that the previously described 

potent 8-N-benzyladensoine derived ligands were able induce a conformational change in the 

HSP70 but via a more lipophilic mechanism, which would be more amenable to drug discovery. 

In order to investigate this hypothesis we synthesized the known quinoline derived HSP70 

inhibitor 17, in one step and 68% yield using our previously described method (Scheme 3).
7
 

Scheme 3. Synthesis of quinoline adenosine derivative 

 

Although several 8-N-substituted HSP70 inhibitors have been described in the literature,
7
 the 

8-N-quinoline adenosine derived ligand 17 was chosen since it was reported to be the highest 

affinity ligand which was only substituted at the 8-position. In our hands, 17 gave a pKD = 

6.14±0.01 (KD = 0.72 M, n = 3) against tr-HSC70 when measured by SPR, which was 

consistent with the data reported in the literature.
34

 8-N-Quinoline aminoadenosine derived 

ligand 17 was then submitted to our co-crystallization protocol with tr-HSP72 (Figure 5). 
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Figure 5. Co-crystallization of 8-N-Quinoline aminoadenosine derived ligand 17 bound to 

HSP72  

 

The grey structure clearly demonstrates the formation the key salt-bridge when co-crystallized 

with 8-N-quinolineadenosine 17. Important hydrogen bonding interactions are indicated with 

their distances in Angstroms. 

When 17 was co-crystallized with the nucleotide binding domain of HSP72 we found that the 

protein had crystallized in its closed conformation. The conformation of tr-HSP72 induced by 17 

was superimposable on the co-crystal structure of ADP/Pi with tr-HSP72 (Figure 6). To our 

knowledge, this is the first example of a co-crystal structure demonstrating a non-nucleotide 

ligand binding to the closed conformation of HSP70. The similarity between the HSP70 

conformation observed with ADP/Pi and 8-N-quinoline adenosine 15 co-crystal structures is 

consistent with the potential importance of the induced conformational change to the affinity of 

the 8-N-benyl nucleoside derived inhibitors of HSP70. However, the mechanism by which the 
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induced conformational change occurs must be distinctly different, since the quinoline moiety of 

17 forms no interactions within the phosphate binding region. 

In order to rationalize the induced conformational change observed with 17 we further 

analyzed the closed structure of tr-HSP72 to identify the key binding interactions. 8-N-Quinoline 

adenosine 17 displays a similar hydrogen bonding network with the same key residues observed 

in both ADP/Pi and sangivamycin 10. However, in contrast with the open conformation observed 

with sangivamycin 10, the closed conformation of tr-HSP72 and quinoline 27 clearly showed the 

key salt-bridge interaction between glutamic acid-268 and lysine-56 binding the two -helices of 

the nucleotide binding cleft, the same salt-bridge predicted from the ADP/Pi structure (Figure 5). 

In the ADP/Pi/tr-HSP72 co-crystal structure the salt-bridge is solvent exposed, weakening its 

effect.
35

 By contrast, in the 17/tr-HSP72 co-crystal structure the quinoline moiety is able -stack 

against arginine-272. Although this interaction is solvent exposed so is only likely to be weak,
36

 

the result is to place the quinoline group directly in front of the salt-bridge. Since the quinoline is 

highly lipophilic, this creates a more lipophilic environment surrounding the salt-bridge, 

protecting it from water and strengthening the interaction, which leads to increased affinity for 8-

N-benzyl aminonucleoside derived ligands.
37

 We propose the binding mechanism of such ligands 

to HSP70 is analogous to a “door and latch”. The initial binding event is similar for all 

nucleoside derived ligands of HSP70 and is dominated by hydrogen bonds to serine-275 and 

lysine-271. The nucleotide binding domain is then able to close around the ligand; however, for 

this process to be favorable it must be stabilized by the ligand. ADP can achieve this through 

interactions with the phosphate binding region, whilst quinoline ligand 17 stabilizes the key salt-

bridge through hydrophobic desolvation. Sangivamycin 10 has neither of these substituents so 

predominately binds to the open conformation. 
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Figure 6. Overlay of ADP/Pi and 8-N-Quinoline adenosine 17 co-crystal structures with HSP72 

 

Overlay of the ADP/Pi-HSP72 co-crystal structure (grey) and the 8-N-Quinolineadenosine 17-

HSP72 co-crystal structure (copper). The key salt-bridge is highlighted with a distance of 2.7 Å.  

OPTIMIZING THE 8-POSITION 

In order to test this hypothesis, and to generate more active ligands of HSP70 for further 

development, we synthesized a series of 8-N-benzylaminoadenosine analogues using the 

previously described method. 

Table 3. The 8-position optimization of adenosine derived HSP70 ligands 

 

Entry Compd. R pKD±SEM
a
 KD (M)

b
 

1 17  6.14±0.01 0.72 

2 15  5.84±0.02 1.4 
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3 18  6.55±0.01
c
 0.28 

4 19  6.34±0.01 0.46 

5 20  6.53±0.01 0.30 

6 21  5.45±0.01 3.5 

7 22  5.73±0.01 1.9 

a
All results are quoted as the geometric mean±SEM of 3 independent experiments unless 

otherwise stated, pKD=-log10(KD(M)*10
-6

). 
b
All values are quoted to 2 significant figures. 

c
The 

geometric mean of n=9 experiments. 

The 8-N-benzyl derivative 15, as shown previously, gave a pKD = 5.84±0.02 (KD = 1.4 M, 

n=3) when measured by SPR against tr-HSC70. The weaker activity observed with the benzyl 

group 15 compared to quinoline 17 we rationalized is due to its less efficient desolvation of the 

glutamic acid/lysine salt bridge by the smaller lipophilic group. Therefore, we decided to add a 

number of lipophilic substituents to assess whether we could improve the desolvation effect, 

promote the induced closed conformation and improve the affinity of the ligands. para-Chloro-

substitution to give adenosine derivative 18 (Entry 3) gave a pKD = 6.55±0.01 (KD = 0.28 M, n 

= 9), a 5-fold improvement in affinity compared to compound 15 and a 60-fold improvement 

compared to 8-N-methylaminoadenosine. Similar improvements were also observed for the 

para-fluoro 19 (Entry 4, pKD = 6.34±0.01, KD = 0.46 M, n =3) and para-methyl (Entry 5, pKD 

= 6.53±0.01, KD = 0.30 M, n =3). Since the crystal structures of this ligand class show that the 

benzylic moiety resides in the cleft formed by the two -helices in the nucleotide binding 

domain of HSP70, it is unlikely that the para-lipophilic substituents interact with HSP70 via a 

lipophilic pocket, as the group is essentially solvent exposed. This effect could not be explained 

by an increase in the overall lipophilicity of the ligand to exploit the non-specific hydrophobic 

effect, since dichlorobenzyl derivative 21 (Entry 6, pKD = 5.45±0.01, KD = 3.5 M, n =3) 
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displayed a significant drop in affinity. The effect of desolvation was highlighted for the para-

methoxy analogue 22 (Entry 7, pKD = 5.73±0.01, KD = 1.9 M, n =3), which can be explained 

by a steric clash with the salt-bridge in the induced closed conformation destabilizing the 

interaction and resulting in a lower affinity ligand. 

CONCLUSIONS 

HSP70 is a challenging protein to target with small molecules due to the hydrophilic nature of 

the nucleotide binding site and the high flexibility of that binding site. In order to target the 

nucleotide binding domain it is important to understand the conformational changes that this 

region of the protein undergoes. Using protein/ligand X-ray crystallography, we have 

demonstrated for the first time that non-nucleotide ligands of HSP70 can induce conformational 

changes in the protein and that these changes can play an important role in the binding of HSP70 

inhibitors. The use of X-ray crystallography in the study of HSP70 conformations and their 

importance in inhibitor design remains in its early stages. In solution, kinetic studies suggest that 

this protein undergoes a number of conformational changes of not just the nucleotide binding 

domain but also the substrate binding domain.
28

 Also, interactions between these two domains 

and the role of co-chaperones in these conformational changes have yet to be addressed. Better 

understanding of the flexibility of HSP70 and its effect on the affinity of ligands will contribute 

to better assay design and more efficient inhibitor optimization and in the future. 
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EXPERIMENTAL SECTION 

Supporting Information Available: Experimental procedures for all compounds and 

intermediates, copies of 1H-NMR and 13C-NMR of final compounds, details of commercially 

available analogues, supporting SPR data and sensorgrams, complete SPR methods and 

crystallography details. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

Experimental Procedures (Chemistry) 

Unless otherwise stated, reactions were conducted in oven dried glassware under an atmosphere 

of nitrogen using anhydrous solvents. All commercially obtained reagents and solvents were 

used as received. Thin layer chromatography (TLC) was performed on pre-coated aluminum 

sheets of silica (60 F254 nm, Merck) and visualized using short-wave UV light. Flash column 

chromatography was carried out on Merck silica gel 60 (partial size 40-65 μm). 1H NMR spectra 

were recorded on Bruker AMX500 (500 MHz) spectrometers using an internal deuterium lock. 

Chemical shifts are quoted in parts per million (ppm) using the following internal references: 

CDCl3 (δH 7.26), MeOD (H 3.31) and DMSO-d6 (δH 2.50). Signal splitting are recorded as 

singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m), doublet of doublets (dd), doublet 

of doublet of doublets (ddd), apparent triplet (app. t) and broad (br.). Coupling constants, J, are 

measured to the nearest 0.1 Hz. 13C-NMR spectra was recorded on Bruker AMX500 

spectrometers at 126 MHz using an internal deuterium lock. Chemical shifts are quoted to 0.01 

ppm, unless greater accuracy was required, using the following internal references: CDCl3 (δC 

http://pubs.acs.org/
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77.0), MeOD (C 49.0) and DMSO-d6 (δC 39.5). High resolution mass spectra were recorded an 

Agilent 1200 series HPLC and diode array detector coupled to a 6210 time of flight mass 

spectrometer with dual multimode APCI/ESI source. Analytical separation was carried out on a 

Merck Purospher STAR RP-18, 30x4 mm column using a flow rate of 1.5 mL/min in a 4 minute 

gradient elution, UV detection was at 254 nm. All compounds were >95% purity by HPLC 

analysis unless otherwise stated. 

(2R,3R,4S,5R)-2-(6-amino-8-(methylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-

3,4-diol 4 

To a solution of 8-bromoadenosine (0.051 g, 0.147 mmol) in EtOH (1.473 ml) was added 

methylamine solution (33% solution in EtOH, 0.247 ml, 2.95 mmol) and the mixture was heated 

to 80 
o
C for ~12 hrs. After this time the mixture was cooled to room temperature and the solvent 

removed under reduced pressure. The resulting residue was purified by silica gel 

chromatography eluting with 2 M MeOH/NH3:EtOAc (8:2) to give the desired compound as a 

white solid (0.031 g 71%); δH (500 MHz, DMSO-d6) 7.90 (s, 1H), 6.95 (d, J = 4.8 Hz, 1H), 

6.57 (s, 2H), 5.92 (dd, J = 6.0, 4.0 Hz, 1H), 5.86 (d, J = 7.3 Hz, 1H), 5.26 (d, J = 6.7 Hz, 1H), 

5.16 (d, J = 4.0 Hz, 1H), 4.68 (td, J = 7.0, 5.3 Hz, 1H), 4.12 (ddd, J = 5.6, 4.1, 2.1 Hz, 1H), 3.97 

(d, J = 2.3 Hz, 1H), 3.70 - 3.58 (m, 2H), 2.89 (d, J = 4.5 Hz, 3H); δC (126 MHz, DMSO-d6) 

152.86, 152.52, 150.28, 148.89, 117.64, 86.99, 86.13, 71.42, 71.20, 62.15, 29.59; HRMS (ESI) 

C11H17N6O4 (M+H
+
) requires 297.1306, found 297.1299. 

(2R,3R,4S,5R)-2-(6-amino-8-(dimethylamino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 5 

To a solution of 8-bromoadenosine (0.064 g, 0.185 mmol) in EtOH (1.849 ml) was added 

dimethylamine (40% solution in water, 0.416 ml, 3.70 mmol) and the mixture was heated to 80 
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o
C for ~12 hrs. After this time the mixture was cooled to room temperature and the solvent 

removed under reduced pressure. The resulting residue was purified by silica gel 

chromatography eluting with 2 M MeOH/NH3:EtOAc (9:1) to give the desired product as a white 

solid (0.027 g, 47%); δH (500 MHz, MeOH) 8.05 (d, J = 1.1 Hz, 1H), 5.91 (d, J = 7.5 Hz, 1H), 

5.16 (dd, J = 7.5, 5.3 Hz, 1H), 4.36 (dd, J = 5.2, 1.4 Hz, 1H), 4.14 (d, J = 1.9 Hz, 1H), 3.86 (dd, 

J = 12.6, 2.3 Hz, 1H), 3.73 (dd, J = 12.6, 2.7 Hz, 1H), 3.03 (s, 6H); δC (126 MHz, MeOD). 

157.19, 153.92, 149.92, 149.22, 116.86, 89.06, 86.97, 71.96, 71.79, 62.86, 41.89; HRMS (ESI) 

C12H19N6O4 (M+H
+
) requires 311.1462, found 311.1464. 

(2R,3R,4S,5R)-2-(6-amino-8-methoxy-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 

6 

 

(2R,3R,4S,5R)-2-(6-amino-8-(methylamino)-9H-purin-9-yl)-5-methyltetrahydrofuran-3,4-diol 7 

To a solution of 5’-deoxyadenosine (0.024 g, 0.096 mmol) in dioxane (0.478 ml) and water 

(0.478 ml) was added KHPO4 (0.065 g, 0.287 mmol) and bromine (0.023 g, 0.143 mmol) as a 

solution in water (0.5 ml) and the mixture was stirred for 15 minutes. The mixture was then 

quenched sat. sodium thiosulfate solution (5 ml), extracted with EtOAc, dried (MgSO4) and the 

solvent removed under reduced pressure. The resulting residue was used in the next step without 

further purification. 

The product from the previous step (0.032 g, 0.097 mmol) was dissolved in 2 M MeNH2 in 

EtOH (1.939 ml) and the mixture was heated to 70 
o
C for ~12 hrs. After this time the mixture 

was cooled to room temperature and the solvent removed under reduced pressure. The resulting 

residue was purified by silica gel chromatography eluting with 2 M MeOH/NH3:EtOAc (1:9) to 

give the desired product as a white solid (0.009 g, 33% over two steps); δH (500 MHz, DMSO-
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d6) 7.90 (s, 1H), 6.75 (q, J = 4.5 Hz, 1H), 6.45 (s, 2H), 5.58 (d, J = 4.2 Hz, 1H), 5.23 (d, J = 5.0 

Hz, 1H), 5.09 (q, J = 5.0 Hz, 1H), 4.99 (d, J = 5.7 Hz, 1H), 4.14 - 4.04 (m, 1H), 3.83 (app. p, J = 

6.2 Hz, 1H), 2.88 (d, J = 4.5 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H); δC (126 MHz, DMSO-d6) 

152.97, 152.91, 150.19, 149.12, 117.95, 88.07, 79.10, 74.87, 71.05, 29.73, 18.96; HRMS (ESI) 

C11H17N6O3 (M+H
+
) requires 281.1357, found 281.1354. 

(2R,3R,4R,5R)-2-(4-amino-6-bromo-5-cyano-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-

((benzoyloxy)methyl)tetrahydrofuran-3,4-diyl dibenzoate 11 

Prepared via a previously described procedure in 4 steps and 20% overall yield. The 

spectroscopic data matched that previously described.
38

 

4-amino-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-6-

(methylamino)-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile 12 

(2R,3R,4R,5R)-2-(4-amino-6-bromo-5-cyano-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-

((benzoyloxy)methyl)tetrahydrofuran-3,4-diyl dibenzoate 11 (118 mg, 0.174 mmol) was 

dissolved in 2 M methylamine in ethanol(5 ml) and the reaction was heated in a microwave 

reactor at 140 
o
C for 1 hr. After this time, the mixture was cooled to room temperature and the 

solvent removed under reduced pressure. The resulting residue was purified by silica gel 

chromatography with the Biotage SP1 purification system (column: 10+S; flow rate, 15ml/min; 

gradient starting with 100% DCM from 0 to 1 CV then from 100% DCM to 2% NH4OH/18% 

MeOH/80% DCM from 1 CV to 21 CV) to give the desired compound as a white solid (0.045 g, 

80% yield); δH (500 MHz, MeOD) 3.22 (s, 3H), 3.83-3.84 (m, 2H), 4.14 (q, J = 1.9 Hz, 1H), 

4.27 (dd, J = 5.6, 2.0 Hz, 1H), 4.65 (dd, J = 7.6, 5.6 Hz, 1H), 6.29 (d, J = 7.9 Hz, 1H), 8.01 (s, 

1H); δC (126 MHz, MeOD) 29.55, 61.31, 70.91, 71.19, 86.12, 87.35, 101.19, 118.75, 148.27, 

149.87, 151.26, 154.16; HRMS (ESI) C13H17N6O4 (M+H
+
) requires 321.1306, found 321.1303. 
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4-amino-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-6-

(methylamino)-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide 13 

To a solution of (2R,3R,4R,5R)-2-(4-amino-6-bromo-5-cyano-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-

5-((benzoyloxy)methyl)tetrahydrofuran-3,4-diyl dibenzoate 11 (87 mg, 0.127 mmol) in THF (1 

mL), was added hydrogen peroxide (33%, 1 ml) and 1 M NaOH (1 ml). The reaction was stirred 

at room temperature for ~18 hrs before 1 M HCl was added until the mixture reached pH 6 when 

the solvent was removed under reduced pressure. The resulting residue was dissolved in 2 M 

methylamine in ethanol (5 ml) and the reaction was heated to 120 
o
C in a microwave reactor for 

50 min. After this time the mixture was cooled to room temperature and the solvent removed 

under reduced pressure. The resulting residue was purified by silica gel chromatography using 

the Biotage SP1 purification system (Column: 10+S; Flow rate, 15ml/min; gradient starting with 

100% DCM from 0 to 1 CV then from 100% DCM to 2% NH4OH/18% MeOH/80% DCM from 

1 CV to 21 CV) to give the desired product as a yellow solid (0.009 g, 10% yield); δH (500 

MHz, MeOD) 2.89 (s, 3H), 3.78 (dd, J = 12.2, 1.9 Hz, 1H), 3.86 (dd, J = 12.2, 2.2 Hz, 1H), 4.18 

(q, J = 1.7 Hz, 1H), 4.33 (dd, J = 5.5, 1.3 Hz, 1H), 4.85 (m, 1H), 6.12 (d, J = 7.9 Hz, 1H), 8.02 

(s, 1H); δC (126 MHz, MeOD) 35.35, 62.23, 71.62, 72.28, 86.70, 87.49, 98.51, 101.02, 146.72, 

147.31, 150.61, 157.30, 167.61; HRMS (ESI) C13H19N6O5 (M+H
+
) requires 339.1411, found 

339.1408. 

4-amino-6-(benzylamino)-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-

yl)-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile 14 

(2R,3R,4R,5R)-2-(4-amino-6-bromo-5-cyano-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-

((benzoyloxy)methyl)tetrahydrofuran-3,4-diyl dibenzoate 11 (31 mg, 0.045 mmol) was dissolved 

in EtOH (2 mL) and benzylamine (29 mg, 0.27 mmol) was added to the solution. The reaction 
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was heated in a microwave reactor at 160 
o
C for 1 hr. After this time the mixture was cooled to 

room temperature and the solvent removed under reduced pressure. The resulting residue was 

dissolved in methanol (0.5 ml) and 0.5 M sodium methoxide (1 mL) was added. The reaction 

was stirred at room temperature for 1 hr then the solvent was removed under reduced pressure. 

The resulting residue was purified by silica gel chromatography with the Biotage SP1 

purification system (column: 10+S; flow rate, 15ml/min; gradient starting with 100% DCM from 

0 to 1 CV then from 100% DCM to 2% NH4OH/18% MeOH/80% DCM from 1 CV to 21 CV) to 

give the desired compound as a white solid (0.007 g, 39% yield); δH (500 MHz, MeOD) 3.80-

3.86 (m, 2H), 4.18 (q, J = 1.8 Hz, 1H), 4.28 (dd, J = 5.6, 1.7 Hz, 1H), 4.73 (dd, J = 7.8, 5.7 Hz, 

1H), 4.78 (d, J = 10.3 Hz, 2H), 6.37 (d, J = 7.9 Hz, 1H), 7.25-7.27 (m, 1H), 7.33-7.36 (m, 2H), 

7.41-7.43 (m, 2H), 8.01 (s, 1H); δC (126 MHz, MeOD) 46.28, 61.40, 71.14, 71.29, 86.27, 87.38, 

101.06, 118.30, 126.72, 126.98, 128.25, 138.41, 148.25, 149.94, 150.10, 154.22; HRMS (ESI) 

C19H21N6O4 (M+H
+
) requires 397.1619, found 397.1614. 

(2R,3R,4S,5R)-2-(6-amino-8-(benzylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-

3,4-diol 15 

To a solution of 8-bromoadenosine (0.061 g, 0.176 mmol) in n-butanol (1.762 ml) was added 

i
Pr2NEt (0.092 ml, 0.529 mmol) and benzylamine (0.038 ml, 0.352 mmol) and the mixture was 

heated to 120 
o
C for ~16 hrs. After this time the mixture was cooled to room temperature and the 

resulting residue was purified by silica gel chromatography eluting with EtOAc:MeOH (95:5) to 

give the desired product as a as a white solid (0.017 g, 26%); δH (500 MHz, MeOD) 8.00 (s, 

1H), 7.45 - 7.38 (m, 2H), 7.37 - 7.32 (m, 2H), 7.28 - 7.23 (m, 1H), 6.11 (d, J = 7.7 Hz, 1H), 4.81 

(dd, J = 7.6, 5.4 Hz, 1H), 4.69 (d, J = 15.8 Hz, 1H), 4.64 (d, J = 15.8 Hz, 1H), 4.30 (dd, J = 5.6, 

1.6 Hz, 1H), 4.18 (q, J = 1.9 Hz, 1H), 3.85 (dd, J = 12.0, 2.3 Hz, 1H), 3.79 (dd, J = 11.9, 1.7 Hz, 
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1H); δC (126 MHz, MeOD) 152.12, 151.99, 149.65, 148.63, 138.75, 128.11, 126.68, 126.52, 

116.56, 87.29, 86.41, 71.64, 71.52, 61.75, 45.42; HRMS (ESI) C17H21N6O4 (M+H
+
) requires 

373.1619, found 373.1623. 

(2R,3R,4S,5R)-2-(6-amino-8-((quinolin-6-ylmethyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 17 

To a solution of 8-bromoadenosine (0.099 g, 0.285 mmol) in n-butanol (2.85 ml) was added 

quinolin-6-ylmethanamine (0.045 g, 0.285 mmol) and 
i
Pr2NEt (0.149 ml, 0.854 mmol) and the 

mixture was heated to 120 
o
C under N2 for 24 hrs. After this time the mixture was cooled to 

room temperature and the solvent removed under reduced pressure. The resulting residue was 

purified by chromatography eluting with EtOAc:2 M MeOH/NH3 (80:20) to give the desired 

product as a white solid (0.008 g, 7%); δH (500 MHz, MeOD) 8.83 (dd, J = 4.4, 1.7 Hz, 1H), 

8.37 (dt, J = 8.4, 1.2 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 8.02 (s, 1H), 7.95 (d, J = 1.8 Hz, 1H), 

7.86 (dd, J = 8.8, 2.0 Hz, 1H), 7.54 (dd, J = 8.3, 4.3 Hz, 1H), 6.16 (d, J = 7.6 Hz, 1H), 4.32 (dd, 

J = 5.4, 1.7 Hz, 1H), 4.21 (q, J = 1.9 Hz, 1H), 3.87 (dd, J = 12.0, 2.3 Hz, 1H), 3.80 (dd, J = 

11.9, 1.7 Hz, 1H); δC (126 MHz, MeOD) 151.98, 151.94, 149.72, 149.52, 148.44, 146.69, 

137.89, 136.94, 129.30, 128.46, 127.90, 125.07, 121.35, 116.59, 87.38, 86.47, 71.70, 71.53, 

61.75, 45.29; HRMS (ESI) C20H22N7O4 (M+H
+
) requires 424.1728, found 424.1725. 

(2R,3R,4S,5R)-2-(6-amino-8-((4-chlorobenzyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 18 

To a solution of 8-bromoadenosine (0.078 g, 0.225 mmol) in n-butanol (2.253 ml) was added 

i
Pr2NEt (0.118 ml, 0.676 mmol) and (4-chlorophenyl)methanamine (0.055 ml, 0.451 mmol) and 

the mixture was heated to 120 
o
C for ~12 hrs. After this time the mixture was cooled to room 

temperature and the resulting residue was purified by silica gel chromatography eluting with 
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EtOAc:MeOH (95:5) to give the desired product as a white solid (0.033 g, 36%); δH (500 MHz, 

MeOD) 8.00 (s, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 6.10 (d, J = 7.5 Hz, 1H), 

4.79 (dd, J = 7.6, 5.4 Hz, 1H), 4.66 (d, J = 15.9 Hz, 1H), 4.62 (d, J = 16.0 Hz, 1H), 4.30 (dd, J = 

5.4, 1.7 Hz, 1H), 4.18 (q, J = 1.9 Hz, 1H), 3.85 (dd, J = 11.9, 2.3 Hz, 1H), 3.79 (dd, J = 12.0, 

1.7 Hz, 1H); δC (126 MHz, MeOD) 152.19, 151.83, 149.68, 148.72, 137.67, 132.42, 128.22, 

128.16, 116.54, 87.30, 86.40, 71.65, 71.50, 61.73, 44.80; HRMS (ESI) C17H20ClN6O4 (M+H
+
) 

requires 407.1229, found 407.1237. 

(2R,3R,4S,5R)-2-(6-amino-8-((4-fluorobenzyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 19 

To a solution of 8-bromoadenosine (0.048 g, 0.139 mmol) in n-butanol (1.387 ml) was added (4-

fluorophenyl)methanamine (0.032 ml, 0.277 mmol) and 
i
Pr2NEt (0.073 ml, 0.416 mmol) and the 

mixture was heated to 120 
o
C ON. After this time the mixture was cooled to room temperature 

and the solvent removed under reduced pressure. The resulting residue was purified by silica gel 

chromatography eluting with EtOAc:MeOH (9:1) to give the desired product as a white solid 

(0.043 g, 79%); δH (500 MHz, MeOD) 7.50 (dd, J = 8.3, 5.3 Hz, 1H), 7.44 - 7.38 (m, 2H), 7.23 - 

7.16 (m, 1H), 7.09 - 7.04 (m, 2H), 6.09 (d, J = 7.6 Hz, 1H), 4.78 (dd, J = 7.6, 5.4 Hz, 1H), 4.65 

(d, J = 15.7 Hz, 1H), 4.60 (d, J = 15.7 Hz, 1H), 4.29 (dd, J = 5.4, 1.6 Hz, 1H), 4.17 (q, J = 1.9 

Hz, 1H), 3.83 (dd, J = 12.0, 2.2 Hz, 1H), 3.78 (dd, J = 11.9, 1.7 Hz, 1H); δC (126 MHz, MeOD) 

164.14, 163.00, 161.06, 152.14, 151.85, 149.66, 148.65, 134.75, 134.72, 130.99, 130.92, 128.53, 

128.46, 116.55, 115.67, 115.50, 114.79, 114.62, 87.26, 86.41, 71.60, 71.50, 61.72, 44.79;
39

 

HRMS (ESI) C17H20FN6O4 (M+H
+
) requires 391.1525, found 391.1517. 

(2R,3R,4S,5R)-2-(6-amino-8-((4-methylbenzyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 20 
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To a solution of 8-bromoadenosine (0.062 g, 0.179 mmol) in n-butanol (1.791 ml) was added p-

tolylmethanamine (0.045 ml, 0.358 mmol) and 
i
Pr2NEt (0.093 ml, 0.537 mmol) and the mixture 

was heated to 120 
o
C for ~48 hrs. After this time the mixture was cooled to room temperature 

and the solvent removed under reduced pressure. The resulting residue was purified by silica gel 

chromatography eluting with EtOAc:MeOH (9:1) to give the desired product as a white solid 

(0.042 g, 60.7%); δH (500 MHz, MeOD) 7.99 (s, 1H), 7.28 (d, J = 7.8 Hz, 2H), 7.16 (d, J = 7.7 

Hz, 2H), 6.09 (d, J = 7.6 Hz, 1H), 4.80 (dd, J = 7.6, 5.4 Hz, 1H), 4.64 (d, J = 15.6 Hz, 1H), 4.58 

(d, J = 15.6 Hz, 1H), 4.29 (dd, J = 5.4, 1.7 Hz, 1H), 4.18 (d, J = 1.9 Hz, 1H), 3.84 (dd, J = 12.0, 

2.3 Hz, 1H), 3.78 (dd, J = 11.9, 1.7 Hz, 1H), 2.32 (s, 3H); δC (126 MHz, MeOD) 152.08, 

152.01, 149.64, 148.59, 136.39, 135.64, 128.70, 126.57, 116.57, 87.27, 86.40, 71.61, 71.50, 

61.74, 45.26; HRMS (ESI) C18H23N6O4 (M+H
+
) requires 387.1775, found 387.1779. 

(2R,3R,4S,5R)-2-(6-amino-8-((3,4-dichlorobenzyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 21 

To a microwave vial was added 8-bromoadenosine (0.300 g, 0.870 mmol) and 3,4-

dichlorobenzylamine (0.29 ml, 2.17 mmol) in ethanol (1.73 ml). The reaction mixture was 

irradiated at 140 
o
C for 90 min. The reaction mixture was concentrated and the crude residue was 

purified by silica gel column chromatography eluting with EtOH:DCM (3:7) to give the desired 

product as a white solid (0.28 g, 73%); δH (500 MHz, DMSO-d6) 7.90 (s, 1H), 7.70 – 7.53 (m, 

3H), 7.37 (dd, J = 8.3, 2.0 Hz, 1H), 6.55 (s, 2H), 5.99 – 5.85 (m, 2H), 5.32 (d, J = 6.6 Hz, 1H), 

5.18 (d, J = 4.0 Hz, 1H), 4.72 (td, J = 7.0, 5.3 Hz, 1H), 4.56 (d, J = 6.0 Hz, 2H), 4.12 (ddd, J = 

5.5, 3.9, 1.9 Hz, 1H), 3.99 (q, J = 2.3 Hz, 1H), 3.62 (dt, J = 7.0, 3.2 Hz, 2H); δC (126 MHz, 

DMSO-d6) 153.0, 151.5, 150.3, 149.2, 141.7, 131.3, 130.9, 129.7, 129.6, 128.1, 117.4, 87.0, 
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86.30, 71.5, 71.4, 62.2, 44.8; HRMS (ESI) C17H19Cl2N6O4 (M+H
+
) requires 442.0867, found 

442.0859. 

(2R,3R,4S,5R)-2-(6-amino-8-((4-methoxybenzyl)amino)-9H-purin-9-yl)-5-

(hydroxymethyl)tetrahydrofuran-3,4-diol 22 

To a solution of 8-bromoadenosine (0.073 g, 0.211 mmol) in n-butanol (4.22 ml) was added (4-

methoxyphenyl)methanamine (0.083 ml, 0.633 mmol) and iPr2NEt (0.221 ml, 1.265 mmol) and 

the mixture was heated to 120 
o
C for ~12 hrs. After this time the mixture was cooled to room 

temperature and the solvent removed under reduced pressure. The resulting residue was purified 

by silica gel chromatography eluting with EtOAc:MeOH (95:5) to give the desired product as a 

white solid (0.049 g, 58%); δH (500 MHz, MeOD) 7.98 (s, 1H), 7.32 (d, J = 8.8 Hz, 1H), 6.89 

(d, J = 8.8 Hz, 1H), 6.07 (d, J = 7.6 Hz, 1H), 4.78 (dd, J = 7.6, 5.4 Hz, 1H), 4.60 (d, J = 15.3 

Hz, 1H), 4.55 (d, J = 15.3 Hz, 1H), 4.28 (dd, J = 5.6, 1.7 Hz, 1H), 4.16 (q, J = 1.9 Hz, 1H), 3.83 

(dd, J = 12.0, 2.3 Hz, 1H), 3.78 (s, 3H), 3.77 (obs. dd, J = 11.9, 1.7 Hz, 1H); δC (126 MHz, 

MeOD) 158.96, 152.09, 151.98, 149.63, 148.59, 130.63, 127.94, 116.59, 113.49, 87.27, 86.38, 

71.61, 71.48, 61.73, 54.26, 45.05; HRMS (ESI) C18H22N6NaO5 (M+Na
+
) requires 425.1544, 

found 425.1540. 

Experimental Procedures (Surface Plasmon Resonance Spectroscopy) 

 

Experimental Procedure (X-ray Crystallography) 
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ABBREVIATIONS 

HSP70, Heat Shock Protein 70; HSP72, Heat Shock Protein 72; HSC70, Heat Shock Cognate 70; 

tr-, truncated; ATP, adenosine triphosphate; ADP, adenosine diphosphate; Pi, inorganic 

phosphate; KD, equilibrium dissociation constant; pKD, Log of the equilibrium dissociation 

constant; SEM, standard error of the mean; M, micromolar; n, number of statistical repeats; 

NBD, nucleotide binding domain; SPR, surface plasmon resonance. 
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